JP2000356419A - Air conditioner for vehicle - Google Patents

Air conditioner for vehicle

Info

Publication number
JP2000356419A
JP2000356419A JP11170850A JP17085099A JP2000356419A JP 2000356419 A JP2000356419 A JP 2000356419A JP 11170850 A JP11170850 A JP 11170850A JP 17085099 A JP17085099 A JP 17085099A JP 2000356419 A JP2000356419 A JP 2000356419A
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
compressor
heat exchanger
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11170850A
Other languages
Japanese (ja)
Other versions
JP2000356419A5 (en
JP4323619B2 (en
Inventor
Tomonori Zenbou
友紀 前坊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Climate Systems Corp
Original Assignee
Japan Climate Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Climate Systems Corp filed Critical Japan Climate Systems Corp
Priority to JP17085099A priority Critical patent/JP4323619B2/en
Publication of JP2000356419A publication Critical patent/JP2000356419A/en
Publication of JP2000356419A5 publication Critical patent/JP2000356419A5/ja
Application granted granted Critical
Publication of JP4323619B2 publication Critical patent/JP4323619B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/063Feed forward expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a constitution that enables small-sized and inexpensive fabrication and is suitable for the case of using particularly carbon dioxide or the like as a refrigerant. SOLUTION: A refrigerant compressed by a compressor 1 to a pressure exceeding a critical pressure and cooled by a gas cooler 2 is decompressed by a first throttling part 3. The refrigerant decompressed by the first throttling part 3 is allowed to perform heat exchange with a refrigerant to be sucked by the compressor 1 through an inner heat exchanger 4. The refrigerant cooled by the inner heat exchanger 4 is decompossed by a second throttling part 5 and is alledred to flow into an evaporator 6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、車両用空調装置、
特に、冷媒に二酸化炭素を用いる蒸気圧縮タイプに適し
た車両用空調装置に関するものである。
The present invention relates to a vehicle air conditioner,
In particular, the present invention relates to a vehicle air conditioner suitable for a vapor compression type using carbon dioxide as a refrigerant.

【0002】[0002]

【従来の技術】従来、冷媒に二酸化炭素を用いる蒸気圧
縮式のサイクル装置が公知である(例えば、特表平3─
503206号公報参照)。このサイクル装置では、コ
ンプレッサから吐出された冷媒(二酸化炭素)をガスク
ーラ、絞り弁およびエバポレータを介して循環させてい
る。ガスクーラの下流側配管とエバポレータの下流側配
管との間には内部熱交換器が設けられている。そして、
この内部熱交換器により、ガスクーラでの放熱を補完
し、エバポレータに於ける吸熱効率を向上させている。
2. Description of the Related Art Heretofore, a vapor compression type cycle device using carbon dioxide as a refrigerant has been known (for example, Japanese Patent Application Laid-Open No. Heisei 3 (1993) -1990).
503206). In this cycle device, the refrigerant (carbon dioxide) discharged from the compressor is circulated through a gas cooler, a throttle valve, and an evaporator. An internal heat exchanger is provided between the downstream pipe of the gas cooler and the downstream pipe of the evaporator. And
This internal heat exchanger complements the heat radiation in the gas cooler and improves the heat absorption efficiency in the evaporator.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記サ
イクル装置では、二酸化炭素を用いているため、一般的
な冷媒であるHFC─134aに比べると約10倍の作
動圧力が必要となる。このため、各構成部品を耐圧強度
の高い大型で高価なものとしなければならない。
However, in the above-mentioned cycle apparatus, since carbon dioxide is used, an operating pressure about ten times as high as that of HFC # 134a, which is a general refrigerant, is required. For this reason, each component must be large and expensive with high pressure resistance.

【0004】また、サイクルでの成績係数を最大とする
ために、高圧側に設けた絞り弁の開度を調整している。
このため、ガスクーラの熱負荷が高いときや、二酸化炭
素の循環量が少ないときに、エバポレータでの冷房能力
が不足する。そして、二酸化炭素を完全にガス化しきれ
ないと、コンプレッサに液相冷媒が流入し、液圧縮によ
り破損する恐れがある。液圧縮防止のため、コンプレッ
サの吸入側流路にアキュムレータを設けると、その内部
に、冷媒と共に流動するコンプレッサの潤滑オイルが滞
留し、コンプレッサの潤滑性を低下させて破損に至らし
めることがある。また、アキュムレータを設けること
で、装置の大型化、コストの増加がもたらされる。
Further, in order to maximize the coefficient of performance in a cycle, the opening of a throttle valve provided on the high pressure side is adjusted.
Therefore, when the heat load of the gas cooler is high or when the amount of circulating carbon dioxide is small, the cooling capacity of the evaporator is insufficient. If the carbon dioxide cannot be completely gasified, the liquid-phase refrigerant flows into the compressor and may be damaged by liquid compression. If an accumulator is provided in the suction-side flow path of the compressor to prevent liquid compression, the lubricating oil of the compressor flowing together with the refrigerant may accumulate inside the accumulator, reducing the lubricity of the compressor and causing damage. Further, the provision of the accumulator leads to an increase in the size of the device and an increase in cost.

【0005】さらに、高圧側の冷媒は超臨界域にあるガ
ス状態で絞り弁を通過するので、絞り弁で大きな通過音
が発生し、乗員に不快感を与える。この場合、絞り弁を
車室外に設けただけでは、絞り弁とエバポレータとの間
の配管流路が長くなり、冷媒の熱損失や圧力損失が発生
し、冷房性能の低下を招く。また、配管の周囲に断熱材
を配設すると、作業工程が増えると共にコストアップを
招来する。
[0005] Further, since the refrigerant on the high pressure side passes through the throttle valve in a gas state in a supercritical region, a loud passing sound is generated by the throttle valve, giving an occupant an uncomfortable feeling. In this case, simply providing the throttle valve outside the vehicle compartment increases the length of the piping flow path between the throttle valve and the evaporator, causing heat loss and pressure loss of the refrigerant, and lowering the cooling performance. In addition, if a heat insulating material is provided around the pipe, the number of working steps increases and the cost increases.

【0006】そこで、本発明は、小型かつ安価に製作で
き、特に冷媒に二酸化炭素等を用いる場合に適した車両
用空調装置を提供することを課題とする。
Accordingly, an object of the present invention is to provide a vehicle air conditioner which can be manufactured in a small size and at low cost, and which is particularly suitable when carbon dioxide or the like is used as a refrigerant.

【0007】[0007]

【課題を解決するための手段】本発明は、前記課題を解
決するための手段として、車両用空調装置を、冷媒を臨
界圧力を超える圧力に圧縮するコンプレッサと、該コン
プレッサで圧縮された冷媒を冷却するガスクーラと、該
ガスクーラで冷却した冷媒を臨界圧力以下に減圧する第
一絞り部と、該第一絞り部で減圧した冷媒と前記コンプ
レッサに吸入される冷媒とを熱交換させる内部熱交換器
と、該内部熱交換器で冷却した冷媒を減圧する第二絞り
部と、該第二絞り部で減圧した冷媒を蒸発させた後、前
記内部熱交換器を介してコンプレッサに戻すエバポレー
タとを備えた構成としたものである。
According to the present invention, there is provided a compressor for compressing a refrigerant to a pressure exceeding a critical pressure and a refrigerant compressed by the compressor. A gas cooler to be cooled, a first constriction section for decompressing the refrigerant cooled by the gas cooler below a critical pressure, and an internal heat exchanger for exchanging heat between the refrigerant decompressed in the first constriction section and the refrigerant sucked into the compressor. And, a second throttle unit that decompresses the refrigerant cooled by the internal heat exchanger, and an evaporator that evaporates the refrigerant depressurized by the second throttle unit and returns the refrigerant to the compressor via the internal heat exchanger. The configuration is as follows.

【0008】この構成により、コンプレッサから吐出さ
れた圧縮冷媒は、ガスクーラで冷却された後、第一絞り
部で減圧されて気液2相状態となる。これにより、内部
熱交換器に流入する冷媒圧力を抑えることが可能とな
る。また、内部熱交換器で冷却され、液相状態で第二絞
り部を通過するため、騒音を発生させることがない。そ
して、第二絞り部で減圧されて気液2相状態となった
後、エバポレータに流入し、周囲の空気から吸熱する。
その後、エバポレータから流出し、内部熱交換器を通過
することにより気相状態となってコンプレッサに戻る。
これにより、コンプレッサでの液圧縮が防止される。
[0008] With this configuration, the compressed refrigerant discharged from the compressor is cooled by the gas cooler, and then decompressed by the first throttle to be in a gas-liquid two-phase state. This makes it possible to suppress the pressure of the refrigerant flowing into the internal heat exchanger. In addition, since it is cooled by the internal heat exchanger and passes through the second throttle portion in a liquid state, no noise is generated. Then, after being decompressed by the second throttle portion to be in a gas-liquid two-phase state, it flows into the evaporator and absorbs heat from the surrounding air.
Thereafter, the gas flows out of the evaporator, passes through the internal heat exchanger, enters a gas phase state, and returns to the compressor.
This prevents liquid compression in the compressor.

【0009】冷媒圧力を臨界圧力以下とするために、前
記第一絞り部により、入口側の冷媒の温度および圧力に
基づいて開度を調整すればよい。
In order to keep the refrigerant pressure below the critical pressure, the degree of opening may be adjusted by the first throttle section based on the temperature and pressure of the refrigerant on the inlet side.

【0010】また、コンプレッサに所定過熱度の冷媒を
吸入させるために、前記第二絞り部により、前記コンプ
レッサに吸入する冷媒の温度および圧力に基づいて開度
を調整すればよい。
Further, in order to cause the compressor to draw a refrigerant having a predetermined degree of superheat, the degree of opening may be adjusted by the second throttle section based on the temperature and pressure of the refrigerant drawn into the compressor.

【0011】そして、前記第二絞り部をエバポレータの
近傍に配設すると、冷媒を熱損失や圧力損失を起こすこ
となくエバポレータに供給することが可能となる。
When the second throttle portion is disposed near the evaporator, the refrigerant can be supplied to the evaporator without causing heat loss or pressure loss.

【0012】以上の構成により、冷媒に二酸化炭素を利
用しても、適切な流動状態を得ることができる。
According to the above configuration, an appropriate fluidized state can be obtained even if carbon dioxide is used as the refrigerant.

【0013】[0013]

【発明の実施の形態】以下、本発明に係る実施形態を添
付図面に従って説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0014】図1は、本実施形態に係る車両用空調装置
の概略図である。この車両用空調装置は、コンプレッサ
1から吐出させた冷媒を、ガスクーラ2、第一絞り部
3、内部熱交換器4、第二絞り部5、エバポレータ6、
および内部熱交換器4を介してコンプレッサ1に戻して
循環させるようになっている。ガスクーラ2と第一絞り
部3を接続する第一配管7の途中には、第一圧力センサ
8と第一温度センサ9が設けられている。内部熱交換器
4とコンプレッサ1を接続する第二配管10の途中には
第二圧力センサ11と第二温度センサ12が設けられて
いる。各センサ8,9,11,12での検出信号は制御
装置13に入力され、制御装置13は、これらの信号に
基づいて、後述するように第一絞り部3および第二絞り
部5の開度を調整する。
FIG. 1 is a schematic diagram of a vehicle air conditioner according to this embodiment. This vehicle air conditioner uses a gas cooler 2, a first throttle unit 3, an internal heat exchanger 4, a second throttle unit 5, an evaporator 6,
And, it returns to the compressor 1 via the internal heat exchanger 4 and circulates. A first pressure sensor 8 and a first temperature sensor 9 are provided in the middle of the first pipe 7 connecting the gas cooler 2 and the first throttle unit 3. A second pressure sensor 11 and a second temperature sensor 12 are provided in the second pipe 10 connecting the internal heat exchanger 4 and the compressor 1. The detection signals from the sensors 8, 9, 11, and 12 are input to the control device 13, and based on these signals, the control device 13 opens the first throttle portion 3 and the second throttle portion 5 as described later. Adjust the degree.

【0015】前記コンプレッサ1は、冷媒である二酸化
炭素を、臨界圧力を超える圧力に圧縮して高温状態で吐
出する。
The compressor 1 compresses carbon dioxide as a refrigerant to a pressure exceeding a critical pressure and discharges the carbon dioxide at a high temperature.

【0016】前記ガスクーラ2およびエバポレータ6
は、波型に形成したフィンと扁平チューブとを交互に積
層し、2つのヘッダ間に一体化した従来周知の構造であ
る。冷媒は、ヘッダと扁平チューブの内部を蛇行しなが
ら流動し、フィンを介して外部を通過する空気と熱交換
される。
The gas cooler 2 and the evaporator 6
Is a well-known structure in which corrugated fins and flat tubes are alternately laminated and integrated between two headers. The refrigerant flows while meandering inside the header and the flat tube, and exchanges heat with the air passing outside through the fins.

【0017】前記第一絞り部3および第二絞り部5は、
図2に示すように、直交する流路に形成された弁口14
を、ステッピングモータ15の駆動により弁体16を上
下動させることにより開度を調整する構成である。但
し、冷媒流量を調整可能な構成であれば、従来周知の他
のいかなる構成であっても採用可能である。
The first throttle unit 3 and the second throttle unit 5 are
As shown in FIG. 2, the valve port 14 formed in the orthogonal flow path
The opening degree is adjusted by moving the valve element 16 up and down by driving the stepping motor 15. However, any other conventionally known configuration that can adjust the flow rate of the refrigerant can be adopted.

【0018】前記内部熱交換器4は、図3に示すよう
に、ガスクーラ2からの高圧冷媒が通過する内管17
と、その周囲にエバポレータ6からの低圧冷媒が通過す
る外側流路19を形成する外管18とからなる二重管構
造である。そして、冷媒は、両流路を通過する際に熱交
換される。
As shown in FIG. 3, the internal heat exchanger 4 has an inner pipe 17 through which a high-pressure refrigerant from the gas cooler 2 passes.
And an outer pipe 18 around which an outer flow path 19 through which the low-pressure refrigerant from the evaporator 6 passes is formed. The refrigerant exchanges heat when passing through both flow paths.

【0019】前記エバポレータ6と第二絞り部5は車室
内側に配設され、他は車室外側(エンジンルーム)に配
設されている。
The evaporator 6 and the second throttle unit 5 are disposed inside the vehicle compartment, and the others are disposed outside the vehicle compartment (engine room).

【0020】次に、前記車両用空調装置の動作を説明す
る。
Next, the operation of the vehicle air conditioner will be described.

【0021】図4のモリエル線図に示すように、コンプ
レッサ1を駆動すると、冷媒は、臨界圧力を超える圧力
とされ、高温状態となる(A)。そして、ガスクーラ2
に流入し、そこで冷却される。このとき、冷媒圧力は、
臨界圧力を超える値に維持されたままとなる(B)。
As shown in the Mollier diagram of FIG. 4, when the compressor 1 is driven, the refrigerant is set to a pressure exceeding the critical pressure and is brought to a high temperature state (A). And gas cooler 2
And is cooled there. At this time, the refrigerant pressure is
The value remains above the critical pressure (B).

【0022】続いて、第一絞り部3を通過し、臨界圧力
以下に減圧されて気液2相状態となる(C)。この場
合、制御装置13による第一絞り部3の開度の調整は次
のようにして行う。
Subsequently, the gas passes through the first throttle unit 3 and is reduced in pressure below the critical pressure to be in a gas-liquid two-phase state (C). In this case, the control device 13 adjusts the opening degree of the first throttle unit 3 as follows.

【0023】すなわち、図5のフローチャートに示すよ
うに、まず、第一温度センサ9で検出されるガスクーラ
2を通過した後の冷媒温度を読み込む(ステップS
1)。そして、この検出温度に基づき、図6のグラフに
従って第一絞り部3の入口側の目標圧力を決定する(ス
テップS2)。また、第一圧力センサ8で検出されるガ
スクーラ2を通過した後の冷媒圧力を読み込み(ステッ
プS3)、前記目標圧力と比較する(ステップS4)。
検出圧力が目標圧力未満であれば、第一絞り部3の開度
を小さくする(ステップS5)。これにより、内部熱交
換器4に流入する冷媒量の不足を防止し、その後の適切
な流動状態を得ることが可能となる。一方、検出圧力が
目標圧力以上であれば、逆に第一絞り部3の開度を大き
くする(ステップS6)。これにより、冷媒圧力を臨界
圧力以下とすることができる。なお、第一絞り部3の開
度は、目標圧力に上限値と下限値を設け、上限値(例え
ば、目標圧力+1MPa)を超えれば小さくし、下限値
(例えば、目標圧力−1MPa)よりも小さくなれば大
きくする。
That is, as shown in the flowchart of FIG. 5, first, the temperature of the refrigerant after passing through the gas cooler 2 detected by the first temperature sensor 9 is read (Step S).
1). Then, based on the detected temperature, the target pressure on the inlet side of the first throttle unit 3 is determined according to the graph of FIG. 6 (step S2). Further, the pressure of the refrigerant after passing through the gas cooler 2 detected by the first pressure sensor 8 is read (Step S3) and compared with the target pressure (Step S4).
If the detected pressure is lower than the target pressure, the opening degree of the first throttle unit 3 is reduced (step S5). Thereby, it is possible to prevent the shortage of the amount of the refrigerant flowing into the internal heat exchanger 4, and to obtain an appropriate flow state thereafter. On the other hand, if the detected pressure is equal to or higher than the target pressure, the degree of opening of the first throttle unit 3 is increased (step S6). As a result, the refrigerant pressure can be made equal to or lower than the critical pressure. In addition, the opening degree of the 1st throttle part 3 sets an upper limit and a lower limit to a target pressure, makes it small if it exceeds an upper limit (for example, target pressure +1 MPa), and makes it smaller than a lower limit (for example, target pressure -1 MPa). If it gets smaller, make it larger.

【0024】このように、ガスクーラ2を通過した後の
冷媒温度および冷媒圧力に基づいて第一絞り部3の開度
を調整するようにしたので、その後の冷媒の流動に支障
を来すことのないく冷媒圧力を臨界圧力以下に抑えるこ
とができる。したがって、内部熱交換器(ここでは、内
管17)に耐圧構造を採用する必要がなくなる。この結
果、内部熱交換器4を小型で安価に製作することが可能
となる。特に、内管17を薄くすることにより、各流路
の冷媒間での熱交換効率を高めることができる。
As described above, since the opening degree of the first throttle portion 3 is adjusted based on the refrigerant temperature and the refrigerant pressure after passing through the gas cooler 2, the flow of the refrigerant thereafter is not hindered. In addition, the refrigerant pressure can be kept below the critical pressure. Therefore, it is not necessary to employ a pressure-resistant structure for the internal heat exchanger (here, the inner pipe 17). As a result, the internal heat exchanger 4 can be manufactured small and inexpensively. In particular, by making the inner pipe 17 thin, the heat exchange efficiency between the refrigerants in each flow path can be increased.

【0025】内部熱交換器4では、冷媒は、内管17を
通過し、外側流路19を通過する冷媒に放熱することに
より、冷却されて液相状態となる(D)。
In the internal heat exchanger 4, the refrigerant passes through the inner pipe 17 and radiates heat to the refrigerant passing through the outer flow path 19, thereby being cooled to a liquid phase (D).

【0026】そして、エバポレータ6に流入する前に、
第二絞り部5を通過することにより、再び減圧されて気
液2相状態となる(E)。この場合、第二絞り部5の開
度は次のようにして調整する。
Before flowing into the evaporator 6,
By passing through the second throttle section 5, the pressure is reduced again to a gas-liquid two-phase state (E). In this case, the opening of the second throttle unit 5 is adjusted as follows.

【0027】すなわち、図7のフローチャートに示すよ
うに、まず、第二温度センサ12で検出される内部熱交
換器4を通過した後の冷媒温度を読み込む(ステップS
11)。また、第二圧力センサ11で検出される内部熱
交換器4を通過した後の冷媒圧力を読み込む(ステップ
S12)。そして、読み込んだ冷媒圧力から得られる冷
媒の飽和温度に基づいて、コンプレッサ1に吸入される
冷媒のスーパーヒート(過熱度)を算出する(ステップ
S13)。
That is, as shown in the flowchart of FIG. 7, first, the temperature of the refrigerant after passing through the internal heat exchanger 4 detected by the second temperature sensor 12 is read (Step S).
11). Further, the pressure of the refrigerant after passing through the internal heat exchanger 4 detected by the second pressure sensor 11 is read (step S12). Then, based on the saturation temperature of the refrigerant obtained from the read refrigerant pressure, superheat (degree of superheat) of the refrigerant sucked into the compressor 1 is calculated (step S13).

【0028】[0028]

【数1】SH=Ts−T00=f(Ps) SH:スーパーヒート(過熱度) Ts:コンプレッサ吸入冷媒温度 Ps:コンプレッサ吸入冷媒圧力 T0:冷媒飽和温度[Number 1] SH = Ts-T 0 T 0 = f (Ps) SH: superheat (superheat) Ts: compressor suction refrigerant temperature Ps: compressor suction refrigerant pressure T 0: a refrigerant saturation temperature

【0029】算出されたスーパーヒート(過熱度)が5
(℃)以下であれば、第二絞り部5の開度を小さくし
(ステップS14)、15(℃)を超えていれば、大き
くする(ステップS15)。
The calculated superheat (degree of superheat) is 5
If it is (° C.) or less, the opening degree of the second throttle unit 5 is reduced (step S14), and if it exceeds 15 (° C.), it is increased (step S15).

【0030】冷媒は、ガスクーラ2のみならず、内部熱
交換器4を通過することにより十分に冷却されて液相状
態となっているので、第二絞り部5を通過する際、大き
な音を発生させることがない。したがって、第二絞り部
5をエバポレータ6の近傍、すなわち車室内側に配設し
ても、乗員が不快音を耳にすることがない。そして、エ
バポレータ6内には、熱損失や圧力損失の少ない車室内
空気との熱交換に適した冷媒が流入することになる。
The refrigerant is sufficiently cooled by passing not only the gas cooler 2 but also the internal heat exchanger 4 to be in a liquid phase state. I will not let you. Therefore, even if the second throttle unit 5 is disposed near the evaporator 6, that is, in the vehicle interior, the occupant does not hear discomfort sound. Then, into the evaporator 6, a refrigerant suitable for heat exchange with the vehicle interior air having small heat loss and pressure loss flows.

【0031】その後、冷媒は、エバポレータ6で車室内
の空気から吸熱して液相を蒸発させる(F)。そして、
内部熱交換器4の外側流路19を通過する。このとき、
前述のように、第二温度センサ12および第二圧力セン
サ11での検出値に基づいて第二絞り部5の開度が調整
されているので、残る液相を全て蒸発させて5〜15
(℃)のスーパーヒート状態でコンプレッサ1に吸入さ
せることができる(G)。したがって、コンプレッサ1
に冷媒が液相で流入することがなくなり、液圧縮による
損傷を確実に防止できる。
Thereafter, the refrigerant absorbs heat from the air in the passenger compartment by the evaporator 6 to evaporate the liquid phase (F). And
It passes through the outer flow path 19 of the internal heat exchanger 4. At this time,
As described above, since the opening degree of the second throttle portion 5 is adjusted based on the detection values of the second temperature sensor 12 and the second pressure sensor 11, all of the remaining liquid phase is evaporated to 5 to 15
(G) can be sucked into the compressor 1 in a superheat state (G). Therefore, compressor 1
The refrigerant does not flow into the liquid phase, and damage due to liquid compression can be reliably prevented.

【0032】[0032]

【発明の効果】以上の説明から明らかなように、本発明
に係る車両用空調装置によれば、ガスクーラで冷却した
冷媒を第一絞り部により減圧した状態で内部熱交換器に
流入させるようにしたので、内部熱交換器の内圧の上昇
を抑えることができる。したがって、内部熱交換器に耐
圧構造を採用する必要がなくなり、安価に形成可能とな
る。
As is apparent from the above description, according to the vehicle air conditioner of the present invention, the refrigerant cooled by the gas cooler is caused to flow into the internal heat exchanger while being decompressed by the first throttle. Therefore, an increase in the internal pressure of the internal heat exchanger can be suppressed. Therefore, it is not necessary to adopt a pressure-resistant structure for the internal heat exchanger, and it can be formed at low cost.

【0033】また、入口側の冷媒の温度および圧力に基
づいて第一絞り部の開度を調整するようにしたので、エ
バポレータの冷房能力を最大限に発揮させることが可能
となる。
Further, since the opening degree of the first throttle portion is adjusted based on the temperature and pressure of the refrigerant on the inlet side, the cooling capacity of the evaporator can be maximized.

【0034】さらに、コンプレッサに吸入する冷媒の温
度および圧力に基づいて第二絞り部の開度を調整するよ
うにしたので、コンプレッサの損傷を的確に防止するこ
とが可能となる。
Further, since the opening degree of the second throttle portion is adjusted based on the temperature and pressure of the refrigerant sucked into the compressor, it is possible to prevent damage to the compressor accurately.

【0035】そして、第一絞り部、第二絞り部および内
部熱交換器により、第二絞り部をエバポレータの近傍に
配設しても、配管流路を長くすることなく、騒音の発生
を防止可能である。
Further, even if the second throttle portion is arranged near the evaporator by the first throttle portion, the second throttle portion, and the internal heat exchanger, generation of noise can be prevented without lengthening the pipe flow path. It is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本実施形態に係る車両用空調装置の概略図で
ある。
FIG. 1 is a schematic diagram of a vehicle air conditioner according to an embodiment.

【図2】 図1の第一および第二絞り部を示す断面図で
ある。
FIG. 2 is a cross-sectional view showing first and second throttle portions of FIG. 1;

【図3】 図1の内部熱交換器を示す断面図である。FIG. 3 is a sectional view showing the internal heat exchanger of FIG. 1;

【図4】 図1の各構成部品に於ける冷媒のエンタルピ
と圧力の関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the enthalpy and the pressure of the refrigerant in each component in FIG.

【図5】 第一絞り部の開度制御を示すフローチャート
である。
FIG. 5 is a flowchart illustrating opening degree control of a first throttle unit.

【図6】 冷媒温度と目標圧力の関係を示すグラフであ
る。
FIG. 6 is a graph showing a relationship between a refrigerant temperature and a target pressure.

【図7】 第二絞り部の開度制御を示すフローチャート
である。
FIG. 7 is a flowchart illustrating opening degree control of a second throttle unit.

【符号の説明】[Explanation of symbols]

1…コンプレッサ 2…ガスクーラ 3…第一絞り部 4…内部熱交換器 5…第二絞り部 6…エバポレータ 8…第一圧力センサ 9…第一温度センサ 11…第二圧力センサ 12…第二温度センサ 13…制御装置 17…内管 18…外管 19…外側流路 DESCRIPTION OF SYMBOLS 1 ... Compressor 2 ... Gas cooler 3 ... First throttle part 4 ... Internal heat exchanger 5 ... Second throttle part 6 ... Evaporator 8 ... First pressure sensor 9 ... First temperature sensor 11 ... Second pressure sensor 12 ... Second temperature Sensor 13 ... Control device 17 ... Inner pipe 18 ... Outer pipe 19 ... Outer flow path

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 冷媒を臨界圧力を超える圧力に圧縮する
コンプレッサと、 該コンプレッサで圧縮された冷媒を冷却するガスクーラ
と、 該ガスクーラで冷却した冷媒を臨界圧力以下に減圧する
第一絞り部と、 該第一絞り部で減圧した冷媒と前記コンプレッサに吸入
される冷媒とを熱交換させる内部熱交換器と、 該内部熱交換器で冷却した冷媒を減圧する第二絞り部
と、 該第二絞り部で減圧した冷媒を蒸発させた後、前記内部
熱交換器を介してコンプレッサに戻すエバポレータとを
備えたことを特徴とする車両用空調装置。
A compressor for compressing the refrigerant to a pressure exceeding the critical pressure; a gas cooler for cooling the refrigerant compressed by the compressor; a first constrictor for reducing the pressure of the refrigerant cooled by the gas cooler to a critical pressure or less; An internal heat exchanger for exchanging heat between the refrigerant decompressed in the first constriction unit and the refrigerant sucked into the compressor; a second constriction unit for decompressing the refrigerant cooled in the internal heat exchanger; An evaporator for a vehicle, comprising: an evaporator that evaporates the refrigerant decompressed in the section and returns the refrigerant to the compressor via the internal heat exchanger.
【請求項2】 前記第一絞り部は、入口側の冷媒の温度
および圧力に基づいて開度を調整することを特徴とする
請求項1に記載の車両用空調装置。
2. The vehicle air conditioner according to claim 1, wherein the first throttle portion adjusts an opening degree based on a temperature and a pressure of a refrigerant on an inlet side.
【請求項3】 前記第二絞り部は、コンプレッサに吸入
する冷媒の温度および圧力に基づいて開度を調整し、コ
ンプレッサに所定過熱度の冷媒を吸入させることを特徴
とする請求項1又は2に記載の車両用空調装置。
3. The second throttle section adjusts an opening degree based on a temperature and a pressure of the refrigerant drawn into the compressor, and causes the compressor to draw a refrigerant having a predetermined superheat degree. A vehicle air conditioner according to claim 1.
【請求項4】 前記第二絞り部をエバポレータの近傍に
配設したことを特徴とする請求項1ないし3のいずれか
1項に記載の車両用空調装置。
4. The air conditioner for a vehicle according to claim 1, wherein the second throttle portion is disposed near an evaporator.
【請求項5】 前記冷媒は二酸化炭素であることを特徴
とする請求項1ないし4のいずれか1項に記載の車両用
空調装置。
5. The air conditioner for a vehicle according to claim 1, wherein the refrigerant is carbon dioxide.
JP17085099A 1999-06-17 1999-06-17 Air conditioner for vehicles Expired - Fee Related JP4323619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17085099A JP4323619B2 (en) 1999-06-17 1999-06-17 Air conditioner for vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17085099A JP4323619B2 (en) 1999-06-17 1999-06-17 Air conditioner for vehicles

Publications (3)

Publication Number Publication Date
JP2000356419A true JP2000356419A (en) 2000-12-26
JP2000356419A5 JP2000356419A5 (en) 2006-06-29
JP4323619B2 JP4323619B2 (en) 2009-09-02

Family

ID=15912490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17085099A Expired - Fee Related JP4323619B2 (en) 1999-06-17 1999-06-17 Air conditioner for vehicles

Country Status (1)

Country Link
JP (1) JP4323619B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014318A (en) * 2000-06-01 2003-01-15 Denso Corp Ejector cycle
EP1717528A2 (en) 2005-04-25 2006-11-02 Matsushita Electric Industrial Co., Ltd. Refrigeration cycle apparatus
WO2007022777A1 (en) * 2005-08-25 2007-03-01 Knudsen Køling A/S A heat exchanger
JP2007071529A (en) * 2006-09-08 2007-03-22 Denso Corp Refrigerating cycle device
JP2007192429A (en) * 2006-01-17 2007-08-02 Sanden Corp Gas-liquid separator module
EP1632733A3 (en) * 2004-09-07 2010-04-21 Panasonic Corporation Refrigeration cycle apparatus and control method
EP2198217A1 (en) * 2007-10-09 2010-06-23 Advanced Thermal Sciences Corp. Thermal control system and method
JP2010281567A (en) * 2000-06-01 2010-12-16 Denso Corp Ejector type refrigerating cycle
EP2187150A3 (en) * 2008-11-18 2014-01-15 Fujikoki Corporation Refrigerating Cycle

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014318A (en) * 2000-06-01 2003-01-15 Denso Corp Ejector cycle
JP2010281567A (en) * 2000-06-01 2010-12-16 Denso Corp Ejector type refrigerating cycle
EP1632733A3 (en) * 2004-09-07 2010-04-21 Panasonic Corporation Refrigeration cycle apparatus and control method
EP1717528A2 (en) 2005-04-25 2006-11-02 Matsushita Electric Industrial Co., Ltd. Refrigeration cycle apparatus
EP1717528A3 (en) * 2005-04-25 2011-08-03 Panasonic Corporation Refrigeration cycle apparatus
WO2007022777A1 (en) * 2005-08-25 2007-03-01 Knudsen Køling A/S A heat exchanger
JP2007192429A (en) * 2006-01-17 2007-08-02 Sanden Corp Gas-liquid separator module
JP2007071529A (en) * 2006-09-08 2007-03-22 Denso Corp Refrigerating cycle device
EP2198217A1 (en) * 2007-10-09 2010-06-23 Advanced Thermal Sciences Corp. Thermal control system and method
EP2198217A4 (en) * 2007-10-09 2014-04-09 Be Aerospace Inc Thermal control system and method
EP2187150A3 (en) * 2008-11-18 2014-01-15 Fujikoki Corporation Refrigerating Cycle

Also Published As

Publication number Publication date
JP4323619B2 (en) 2009-09-02

Similar Documents

Publication Publication Date Title
JP3365273B2 (en) Refrigeration cycle
JP3813702B2 (en) Vapor compression refrigeration cycle
AU2006293191B2 (en) Air conditioning apparatus
US7320228B2 (en) Refrigerant cycle apparatus
EP1347251B1 (en) Method for increasing efficiency of a vapor compression system by evaporator heating
JP4463466B2 (en) Ejector cycle
EP1489367B1 (en) Refrigerating cycle device
US8099978B2 (en) Evaporator unit
EP1577621A2 (en) Refrigerating machine
EP1628088A2 (en) Refrigerant cycle apparatus
JP4776438B2 (en) Refrigeration cycle
MXPA00008667A (en) Combined evaporator/accumulator/suction line heat exchanger.
JPH09264622A (en) Pressure control valve and vapor-compression refrigeration cycle
KR101797176B1 (en) Dual pipe structure for internal heat exchanger
JP2007051833A (en) Ejector type refrigeration cycle
JP4346157B2 (en) Air conditioner for vehicles
JP4323619B2 (en) Air conditioner for vehicles
JP4661710B2 (en) Vapor compression refrigeration cycle
JP4930214B2 (en) Refrigeration cycle equipment
JP2002295915A (en) Air conditioner
JP5659909B2 (en) Heat pump equipment
WO2022013982A1 (en) Refrigeration cycle device
JP4015171B2 (en) Refrigerant condenser
JP5991271B2 (en) Ejector refrigeration cycle
JP2008121913A (en) Vapor compression type refrigerating cycle

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060516

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090605

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees