JP2000351603A - Hydrogen absorbing and desorbing fluid - Google Patents

Hydrogen absorbing and desorbing fluid

Info

Publication number
JP2000351603A
JP2000351603A JP11162599A JP16259999A JP2000351603A JP 2000351603 A JP2000351603 A JP 2000351603A JP 11162599 A JP11162599 A JP 11162599A JP 16259999 A JP16259999 A JP 16259999A JP 2000351603 A JP2000351603 A JP 2000351603A
Authority
JP
Japan
Prior art keywords
hydrogen
fine particles
hydrogen storage
release
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11162599A
Other languages
Japanese (ja)
Inventor
Takuichi Arai
卓一 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP11162599A priority Critical patent/JP2000351603A/en
Publication of JP2000351603A publication Critical patent/JP2000351603A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen absorbing and desorbing fluid enabling the sedimentation of fine particles to be suppressed even if the fluid is left for a long period of time and also enabling its deterioration to be suppressed even if a number of cycles where hydrogen absorption and hydrogen desorption are repeated is increased by dispersing the fine particles having both hydrogen absorbing power and hydrogen desorbing power in a solvent and also by including a sedimentation inhibitor which suppresses the sedimentation of the fine particles. SOLUTION: In this fluid, at least one kind selected from hydrogen absorbing metals such as Pd, Mg and Zr and alloys such as a Pd-based alloy, a rare earth element-based alloy (a La-based alloy, a Ce-based alloy, a misch metal, etc.), a Fe-Ti-based alloy, a Mg-based alloy and a Zr-based alloy can be employed as a hydrogen absorbing substance. As fine particles having both hydrogen absorbing power and hydrogen desorbing power, colloidal particles having an average particle diameter of 1 nm to 1 μm can be employed. As a solvent, an aqueous solvent, an organic solvent or the like which can disperse fine particles can be employed. A sedimentation inhibitor preferably is selected from those which have an affinity for a solvent for dispersing fine particles.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は水素吸蔵放出流体に
関する。
[0001] The present invention relates to a hydrogen storage / release fluid.

【0002】[0002]

【従来の技術】水素吸蔵合金などの水素吸蔵能および水
素放出能が良好な物質が提供されている。この物質とし
てはパラジウム系、希土類元素系等が代表的なものであ
る。このものでは、吸蔵させた水素を適宜放出させ、水
素を利用することができる。この物質はバルク体または
粉粒状として使用されている。
2. Description of the Related Art Materials having good hydrogen storage ability and hydrogen release ability, such as a hydrogen storage alloy, have been provided. Representative examples of this substance include a palladium-based substance and a rare-earth element-based substance. In this case, the occluded hydrogen is appropriately released, and the hydrogen can be used. This material is used as a bulk or a powder.

【0003】[0003]

【発明が解決しようとする課題】上記した水素吸蔵能お
よび水素放出能を備えた物質は、バルク体または粉粒状
であり、配管による移送等が困難となり、使用形態は制
約される。そこで近年、本発明者らは、水素吸蔵能およ
び水素放出能を有する微粒子を溶媒中に分散させた水素
吸蔵放出流体を開発している。
The above-mentioned substances having the hydrogen storage ability and the hydrogen release ability are in the form of a bulk or a powder, and are difficult to be transported by piping, so that the use form is restricted. Therefore, in recent years, the present inventors have developed a hydrogen storage / release fluid in which fine particles having hydrogen storage / release properties are dispersed in a solvent.

【0004】しかしこの水素吸蔵放出流体では、放置時
間が長くなると、水素吸蔵能および水素放出能を有する
微粒子が沈降してしまう。この場合、水素吸蔵放出流体
の濃度は不均一となる。微粒子の粒径を小さくすれば、
微粒子の沈降はある程度は抑えられるものの、水素吸蔵
放出流体の放置期間が長期化すれば、凝集により微粒子
の粒径が増加し、やはり沈降してしまう。
[0004] However, in this hydrogen storage and release fluid, if the standing time is long, fine particles having a hydrogen storage capacity and a hydrogen release capacity settle. In this case, the concentration of the hydrogen storage / release fluid becomes non-uniform. By reducing the particle size of the fine particles,
Although the sedimentation of the fine particles can be suppressed to some extent, if the storage period of the hydrogen storage / release fluid is prolonged, the particle diameter of the fine particles increases due to agglomeration, which also causes sedimentation.

【0005】また微粒子の粒径を小さくした場合には、
微粒子が酸化等の被毒により劣化し易くなり、水素吸蔵
および水素放出を繰り返すサイクル数が増加すると、水
素吸蔵放出流体は劣化し、目標とする水素吸蔵能を得に
くくなる。本発明は上記した実情に鑑みてなされたもの
であり、放置時間が長くなっても微粒子の沈降を抑制で
き、更に水素吸蔵および水素放出を繰り返すサイクル数
が増加しても劣化を抑制するのに有利な水素吸蔵放出流
体を提供することを課題とする。
When the particle size of the fine particles is reduced,
When the number of cycles in which hydrogen storage and release are repeated increases, the hydrogen storage and release fluid deteriorates and it becomes difficult to obtain a target hydrogen storage capacity. The present invention has been made in view of the above-described circumstances, and it is possible to suppress the sedimentation of fine particles even when the standing time is long, and to further suppress deterioration even when the number of cycles of repeating hydrogen storage and hydrogen release is increased. It is an object to provide an advantageous hydrogen storage and release fluid.

【0006】[0006]

【課題を解決するための手段】本発明の水素吸蔵放出流
体は、水素吸蔵能および水素放出能を有する微粒子を溶
媒中に分散させると共に、微粒子の沈降を抑える沈降抑
制物質が含まれていることを特徴とするものである。
The hydrogen storage and release fluid of the present invention contains fine particles having a hydrogen storage ability and a hydrogen release ability dispersed in a solvent and contains a sedimentation suppressing substance which suppresses the sedimentation of the fine particles. It is characterized by the following.

【0007】[0007]

【発明の実施の形態】本発明においては、水素吸蔵能お
よび水素放出能を有する微粒子としては、水素吸蔵能お
よび水素放出能に富む微粒子を採用することができる。
例えば、公知の水素吸蔵物質(例えば水素吸蔵能および
水素放出能に富む遷移元素、希土類元素の少なくとも1
種)を採用することができる。具体的には水素吸蔵物質
としては、パラジウム、パラジウム系合金、希土類元素
系(La系、Ce系等:ミッシュメタル、Laリッチの
ミッシュメタルを含む)、Fe−Ti系合金、Mg、M
g系合金、Zr、Zr系合金等の水素吸蔵合金の少なく
とも1種を採用することができる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, as the fine particles having a hydrogen absorbing ability and a hydrogen releasing ability, fine particles having a high hydrogen absorbing ability and a hydrogen releasing ability can be employed.
For example, a known hydrogen storage material (for example, at least one of a transition element and a rare earth element that are rich in hydrogen storage capacity and hydrogen release capacity)
Species) can be employed. Specifically, as the hydrogen storage material, palladium, palladium-based alloy, rare earth element-based (La-based, Ce-based, etc .: misch metal, La-rich misch metal), Fe-Ti-based alloy, Mg, M
At least one kind of hydrogen storage alloy such as a g-based alloy, Zr, or a Zr-based alloy can be employed.

【0008】微粒子の平均粒径は、微粒子の水素吸蔵能
および水素放出能、微粒子の製造形態、溶媒の種類、沈
降抑制物質の種類、水素吸蔵放出流体に要請される沈降
抑制能、水素吸蔵放出流体の製造コストなどの要因を考
慮して適宜選択することができる。微粒子成分を含む溶
液から還元反応を利用して微粒子を生成する場合には、
微粒子はオングストローム、ナノメータ(nm)単位に
基づいた超微細形態を形成し易い。水素吸蔵能を備えた
バルク体や粉粒体から物理的粉砕で粉砕して微粒子を生
成する場合には、微粒子はナノメータ(nm)単位、マ
イクロメータ(μm)単位に基づいた微細形態を形成し
易い。
The average particle size of the fine particles is determined by the hydrogen storage capacity and hydrogen release capacity of the fine particles, the production form of the fine particles, the type of the solvent, the type of the sedimentation suppressing substance, the sedimentation suppressing ability required for the hydrogen storage and release fluid, and the hydrogen storage and release. It can be appropriately selected in consideration of factors such as the production cost of the fluid. When using a reduction reaction from a solution containing fine particle components to generate fine particles,
Fine particles are liable to form an ultrafine morphology based on angstrom and nanometer (nm) units. When fine particles are produced by physical pulverization from a bulk material or a granular material having a hydrogen storage ability, the fine particles form a fine morphology based on a nanometer (nm) unit or a micrometer (μm) unit. easy.

【0009】従って、微粒子の平均粒径の下限値として
は、例えば、5オングストローム、10オングストロー
ム、20オングストローム、30オングストローム、5
0オングストローム(=5nm)、10nm、20nm
等を選択することができるが、これに限定されるもので
はない。微粒子の平均粒径の上限値としては、例えば、
20μm、10μm、1μm、500nm、100n
m、50nm、10nm、5nm等を選択することがで
きるが、これに限定されるものではない。
Therefore, the lower limit of the average particle diameter of the fine particles is, for example, 5 Å, 10 Å, 20 Å, 30 Å, 5 Å or 5 Å.
0 Å (= 5 nm), 10 nm, 20 nm
Can be selected, but the present invention is not limited to this. As the upper limit of the average particle diameter of the fine particles, for example,
20 μm, 10 μm, 1 μm, 500 nm, 100 n
m, 50 nm, 10 nm, 5 nm or the like can be selected, but is not limited thereto.

【0010】従って本発明によれば、水素吸蔵能および
水素放出能を有する微粒子としては、1nm〜1μmの
平均粒子径をもつ粒子(コロイド粒子)を採用すること
ができる。溶媒としては、水素吸蔵能および水素放出能
を有する微粒子を分散させ得るものであればよく、水系
溶媒、有機溶媒などを用いることができる。例えば、
水、アルコール(メタノール、エタノール、プロパノー
ル、ブタノール、アミルアルコール、エチレングリコー
ルなど)、オイル(シリコーンオイル、ケロシン等)
等、あるいは、これらの混合物の少なくとも1種を採用
することができる。溶媒としては、微粒子や沈降抑制物
質の種類に応じて、極性が大きな溶媒(極性が大きいO
H基をもつ水、メタノール、エタノールなど)、極性が
小さいか無極性の溶媒を適宜採用することができる。
Therefore, according to the present invention, particles (colloidal particles) having an average particle diameter of 1 nm to 1 μm can be employed as the fine particles having a hydrogen absorbing ability and a hydrogen releasing ability. Any solvent can be used as long as it can disperse fine particles having a hydrogen absorbing ability and a hydrogen releasing ability, and an aqueous solvent, an organic solvent and the like can be used. For example,
Water, alcohol (methanol, ethanol, propanol, butanol, amyl alcohol, ethylene glycol, etc.), oil (silicone oil, kerosene, etc.)
Or at least one of these mixtures. As the solvent, a solvent having a large polarity (O 2 having a large polarity)
Water having an H group, methanol, ethanol, or the like) and a solvent having a small polarity or a non-polarity can be appropriately used.

【0011】例えば、微粒子または沈降抑制物質が極性
を有するときには、極性が大きな溶媒を用いることがで
きる。あるいは、微粒子または沈降抑制物質が無極性ま
たは極性が小さいときには、無極性かまたは極性が小さ
い溶媒を適宜採用することができる。沈降抑制物質は微
粒子の沈降を抑えるものである。沈降抑制物質は、微粒
子を分散する溶媒に対して親和性をもつものが好まし
い。沈降抑制物質は、微粒子の表面に被覆されて複合化
されている形態を採用することができる。このような沈
降抑制物質としては、微粒子を分散させる溶媒に可溶で
あることが好ましく、水系溶媒であれば水に可溶な物
質、有機溶媒であれば有機溶媒に可溶な物質を採用する
ことができる。
For example, when the fine particles or the sedimentation inhibiting substance have a polarity, a solvent having a large polarity can be used. Alternatively, when the fine particles or the sedimentation inhibiting substance are non-polar or low in polarity, a non-polar or low-polarity solvent can be appropriately employed. The sedimentation suppressing substance suppresses sedimentation of fine particles. The sedimentation inhibitor preferably has an affinity for the solvent in which the fine particles are dispersed. The sedimentation-suppressing substance can adopt a form in which the surface of the fine particles is coated and complexed. As such a sedimentation suppressing substance, it is preferable that the substance is soluble in a solvent in which the fine particles are dispersed. In the case of an aqueous solvent, a substance soluble in water, and in the case of an organic solvent, a substance soluble in an organic solvent is used. be able to.

【0012】沈降抑制物質を微粒子の表面に被覆して複
合化する形態としては、モノマーを表面に付着させ、こ
れを重合させてポリマーとする形態、あるいは、微粒子
とポリマーとを物理的に混合することにより複合化する
形態などを採用することができる。ポリマーとしては、
ポリビニルピロリドン、ポリビニルアルコール、ポリア
クリル酸、ポリアクリルアミド、ポリアクリロニトリ
ル、ポリスルホン酸、ポリエーテル等の少なくも1種を
採用することができる。
[0012] The form in which the precipitation-inhibiting substance is coated on the surface of the fine particles to form a composite is as follows: a monomer is attached to the surface and polymerized to form a polymer, or the fine particles and the polymer are physically mixed. Accordingly, a composite form can be adopted. As a polymer,
At least one of polyvinylpyrrolidone, polyvinyl alcohol, polyacrylic acid, polyacrylamide, polyacrylonitrile, polysulfonic acid, polyether and the like can be used.

【0013】また、沈降抑制物質として機能できる界面
活性剤を用い、界面活性剤を微粒子の表面に付着する形
態などを採用することができる。水系溶媒の場合、微粒
子の表面が疎水性をもつときには、界面活性剤の疎水基
が微粒子側に向き、界面活性剤の親水基が溶媒に向くた
め、微粒子の親水性が強くなり、微粒子が分散し易くな
る。
[0013] In addition, it is possible to adopt a form in which a surfactant which can function as a settling inhibitor is used, and the surfactant is attached to the surface of the fine particles. In the case of an aqueous solvent, when the surface of the fine particles has hydrophobicity, the hydrophobic groups of the surfactant face the fine particles, and the hydrophilic groups of the surfactant face the solvent. Easier to do.

【0014】図4は微粒子の代表的な形態を模式化して
示す。図4に示すように、水素吸蔵能および水素放出能
を有する微粒子100の周りに、沈降抑制物質としての
ポリマー200が被覆されている。この場合、沈降抑制
物質としてのポリマー200と、ポリマー200の周囲
の溶媒との相互作用(静電気的相互作用、配位結合な
ど)により、微粒子を溶媒に分散させることができる。
FIG. 4 schematically shows a typical form of the fine particles. As shown in FIG. 4, a polymer 200 as a sedimentation suppressing substance is coated around fine particles 100 having a hydrogen storage ability and a hydrogen release ability. In this case, the fine particles can be dispersed in the solvent by the interaction between the polymer 200 as the precipitation-preventing substance and the solvent around the polymer 200 (electrostatic interaction, coordination bond, etc.).

【0015】水素吸蔵放出流体においては水素吸蔵能は
確保される。殊に、水素を吸蔵させる際に、水素吸蔵放
出流体に水素ガスを吹き込んで水素吸蔵放出流体をバブ
リング処理すれば、ポリマーと微粒子との良好なる相対
変位が期待できるため、水素吸蔵能は確保される。水素
吸蔵放出流体から水素を放出する際には、水素吸蔵放出
流体を所定の加熱温度領域に適宜加熱すれば、微粒子か
らの水素放出能は確保される。微粒子の材質、溶媒の材
質、単位時間当たりに要請されている水素放出量などの
要因に応じて、加熱温度領域は適宜選択できるものの、
例えば、40〜60℃程度、あるいは80〜120℃程
度にできる。但しこれに限定されるものではない。
In the hydrogen storage / release fluid, the hydrogen storage capacity is secured. In particular, when hydrogen is absorbed and hydrogen gas is blown into the hydrogen storage and release fluid to perform a bubbling process on the hydrogen storage and release fluid, good relative displacement between the polymer and the fine particles can be expected, so that the hydrogen storage capacity is secured. You. When releasing hydrogen from the hydrogen storage and release fluid, the hydrogen storage capability can be ensured by appropriately heating the hydrogen storage and release fluid to a predetermined heating temperature range. Depending on factors such as the material of the fine particles, the material of the solvent, and the amount of hydrogen release required per unit time, the heating temperature range can be appropriately selected,
For example, it can be set to about 40 to 60 ° C or about 80 to 120 ° C. However, it is not limited to this.

【0016】[0016]

【実施例】(実施例1)以下、本発明の実施例1を説明
する。塩化パラジウム(PdCl2)を塩酸水溶液に溶
解させ、6mM(M:モル濃度)の塩素化水素パラジウ
ム(H2PdCl4)の水溶液を調整した。また塩化銀
(AgCl)を塩酸水溶液に溶解させ、6mM(M=モ
ル濃度=mol/L)の塩素化水素銀(HAgCl2)の
水溶液を調整した。
(Embodiment 1) Hereinafter, Embodiment 1 of the present invention will be described. Palladium chloride (PdCl 2 ) was dissolved in an aqueous hydrochloric acid solution to prepare a 6 mM (M: molar concentration) aqueous solution of palladium hydrogen chloride (H 2 PdCl 4 ). In addition, silver chloride (AgCl) was dissolved in an aqueous hydrochloric acid solution to prepare an aqueous solution of 6 mM (M = molar concentration = mol / L) of silver hydrogen chloride (HAgCl 2 ).

【0017】塩素化水素パラジウム(H2PdCl4)の
水溶液(Pd換算で480μmol)と、塩素化水素銀
(HAgCl2)の水溶液(Ag換算で120μmo
l)との両者を混合した。更に、後工程で留去される第
1溶媒として水400mlおよびエタノール160ml
とを加え、更に、安定化ポリマーとしてポリビニルピロ
リドン(N−ビニル−2ピロリドンのポリマー:以下、
PVPとも記す)を6mmolを加え、混合溶液を形成
した。そしてその混合溶液をオイルバスで100℃で2
時間、加熱環流した。
An aqueous solution of palladium hydrogen chloride (H 2 PdCl 4 ) (480 μmol in terms of Pd) and an aqueous solution of silver hydrogen chloride (HAgCl 2 ) (120 μmol in terms of Ag)
l) were mixed. Furthermore, 400 ml of water and 160 ml of ethanol are used as the first solvent distilled off in the subsequent step.
Further, as a stabilizing polymer, polyvinylpyrrolidone (a polymer of N-vinyl-2-pyrrolidone: hereinafter,
6 mmol was added to form a mixed solution. Then, the mixed solution is placed in an oil bath at 100 ° C. for 2 hours.
Reflux with heating for hours.

【0018】放冷後に、ホウ素化水素カリウムを20m
ol加え、24時間攪拌した後に、溶媒を留去し、固形
物を形成した。この固形物は、Pd−Ag系の微粒子
に、沈降抑制物質として機能できるPVPのポリマーが
被覆されて構成されている。この微粒子の合金組成はP
d−Ag合金であり、at%でPd:Ag=80:20
であった。
After allowing to cool, potassium borohydride is added to 20 m
After stirring for 24 hours, the solvent was distilled off to form a solid. This solid is composed of Pd-Ag-based fine particles coated with a PVP polymer that can function as a settling inhibitor. The alloy composition of these fine particles is P
It is a d-Ag alloy, and Pd: Ag = 80: 20 at%.
Met.

【0019】その固形物を所定の溶媒(2−ブトキシエ
タノール:極性溶媒)に分散させ、表1に示す4種類の
水素吸蔵放出流体(試料A〜試料E)を形成した。この
場合、金属量は5gであり、水素吸蔵放出流体に占める
濃度として10wt%である。この流体50cm3を以
下のPCT特性測定に供した。4種類の水素吸蔵放出流
体(試料A〜試料E)について、PCT特性を試験し、
水素の最大吸蔵量を求めた。この場合、水素吸蔵操作は
0℃で行い目標水素平衡圧を1MPaとし、水素放出操
作は100℃で行い目標水素平衡圧を0.1MPaとし
た。水素吸蔵操作および水素放出操作を1回づつ行うこ
とを1サイクルとし、このサイクルを繰り返し、最大吸
蔵量の変化を試験した。
The solid was dispersed in a predetermined solvent (2-butoxyethanol: polar solvent) to form four types of hydrogen storage / release fluids shown in Table 1 (Samples A to E). In this case, the amount of metal is 5 g, and the concentration in the hydrogen storage-release fluid is 10 wt%. 50 cm 3 of this fluid was subjected to the following PCT characteristic measurement. PCT characteristics were tested for four types of hydrogen storage / release fluids (Samples A to E).
The maximum storage amount of hydrogen was determined. In this case, the hydrogen storage operation was performed at 0 ° C. to set the target hydrogen equilibrium pressure to 1 MPa, and the hydrogen release operation was performed at 100 ° C. to set the target hydrogen equilibrium pressure to 0.1 MPa. The cycle of performing the hydrogen storage operation and the hydrogen release operation once each was defined as one cycle, and this cycle was repeated to test the change in the maximum storage amount.

【0020】更に比較例1として、上記実施例1の試料
A〜試料Eの微粒子と同様の組成をもつ微粒子粉末(粒
子径は1000nm,合金組成はat%でPd:Ag=
80:20)を用い、その粉末を同様の溶媒に同一濃度
で分散させ、比較例1の水素吸蔵放出流体を形成した。
比較例1の水素吸蔵放出流体についても同様に試験し
た。
Further, as Comparative Example 1, a fine particle powder having the same composition as the fine particles of Samples A to E of Example 1 (particle diameter is 1000 nm, alloy composition is at%, and Pd: Ag =
80:20), and the powder was dispersed in a similar solvent at the same concentration to form a hydrogen storage / release fluid of Comparative Example 1.
The hydrogen storage / release fluid of Comparative Example 1 was similarly tested.

【0021】図1は試験結果を示す。図1の横軸はサイ
クル数を示す、縦軸は水素の最大吸蔵量[H/M]を示
す。[H/M]は1金属原子に対して吸蔵された水素原
子の個数を意味する。図1において、◆印は試料Aの結
果を示し、■印は試料Bを示し、×印は試料Cの結果を
示し、□印は試料Dを示し、*印は比較例1を示す。
FIG. 1 shows the test results. The horizontal axis in FIG. 1 indicates the number of cycles, and the vertical axis indicates the maximum hydrogen storage amount [H / M]. [H / M] means the number of hydrogen atoms absorbed per metal atom. In FIG. 1, the mark “◆” indicates the result of Sample A, the mark “■” indicates the result of Sample B, the mark “X” indicates the result of Sample C, the mark □ indicates Sample D, and the mark “*” indicates Comparative Example 1.

【0022】図1から理解できるように、比較例1で
は、サイクル数が増加するにつれて最大吸蔵量は大幅に
低下した。これに対して本実施例品に係る試料A、試料
B、試料Cおよび試料Dでは、サイクル数が増加して
も、水素の最大吸蔵量はあまり低下しなかった。即ち、
サイクル数が100サイクル、200サイクル、300
サイクル、400サイクル、500サイクルを越えて
も、水素の最大吸蔵量はあまり低下しなかった。
As can be understood from FIG. 1, in Comparative Example 1, the maximum occlusion amount was greatly reduced as the number of cycles was increased. On the other hand, in the samples A, B, C, and D according to the products of the present example, even when the number of cycles was increased, the maximum hydrogen storage amount was not significantly reduced. That is,
100 cycles, 200 cycles, 300 cycles
Even when the number of cycles exceeded 400, 400, and 500, the maximum hydrogen storage amount did not decrease so much.

【0023】更にサイクル劣化度および流体安定性を調
べた。サイクル劣化度とは、[(500サイクル目の水
素吸蔵放出流体の最大吸蔵量)/(1サイクル目の水素
吸蔵放出流体の最大吸蔵量)]×100%を意味する。
従ってサイクル劣化度の数値が小さいことは、劣化し易
いことを意味し、サイクル劣化度の数値が大きいこと
は、劣化しにくいことを意味する。流体安定性は、放置
を継続したとき水素吸蔵放出流体における微粒子の沈降
度合を目視で判定した。
Further, the degree of cycle deterioration and fluid stability were examined. The cycle deterioration degree means [(maximum storage amount of hydrogen storage and release fluid in the 500th cycle) / (maximum storage amount of hydrogen storage and release fluid in the first cycle)] × 100%.
Therefore, a small numerical value of the cycle deterioration degree means that it is easy to deteriorate, and a large numerical value of the cycle deterioration degree means that it is hard to deteriorate. The fluid stability was determined by visually observing the degree of sedimentation of the fine particles in the hydrogen storage / release fluid when standing was continued.

【0024】表1は試料A〜試料Dおよび比較例1に係
る水素吸蔵放出流体の条件、サイクル劣化度および流体
安定性についての試験結果を示す。
Table 1 shows the test results for the conditions, cycle deterioration degree and fluid stability of the hydrogen storage / release fluid according to Samples A to D and Comparative Example 1.

【0025】[0025]

【表1】 表1に示すように、試料Aでは、固形物のうちPVP重
量は92wt%であり、微粒子の平均粒子径は2nmで
あり、サイクル劣化度は88%であり、2週間以上放置
しても水素吸蔵放出流体は安定であり、微粒子の沈降は
認められなかった。
[Table 1] As shown in Table 1, in sample A, the PVP weight of the solid was 92 wt%, the average particle diameter of the fine particles was 2 nm, the degree of cycle deterioration was 88%, and hydrogen was observed even when left for two weeks or more. The occluding and releasing fluid was stable, and no sedimentation of fine particles was observed.

【0026】試料Bでは、固形物のうちPVP重量は8
4wt%であり、微粒子の平均粒子径は5nmであり、
サイクル劣化度は86%であり、2週間以上放置しても
水素吸蔵放出流体は安定であった。試料Cでは、固形物
のうちPVP重量は75wt%であり、微粒子の平均粒
子径は2nmであり、サイクル劣化度は84.5%であ
り、2週間以上放置しても水素吸蔵放出流体は安定であ
った。
In sample B, the PVP weight of the solid material was 8
4 wt%, the average particle diameter of the fine particles is 5 nm,
The cycle deterioration degree was 86%, and the hydrogen storage / release fluid was stable even when left for two weeks or longer. In sample C, the PVP weight of the solid was 75 wt%, the average particle size of the fine particles was 2 nm, the degree of cycle deterioration was 84.5%, and the hydrogen storage / release fluid was stable even after standing for 2 weeks or more. Met.

【0027】試料Dでは、固形物のうちPVP重量は6
3wt%であり、微粒子の平均粒子径は5nmであり、
サイクル劣化度は82.5%であり、2週間以上放置し
ても水素吸蔵放出流体は安定であった。比較例1では、
PVP重量は0%であり、微粒子の平均粒子径は100
0nmであり、サイクル劣化度は35%でありサイクル
劣化性が大きく、更に流体安定性の評価は『×』であ
り、かなりの沈降が確認された。
In sample D, the PVP weight of the solid was 6
3 wt%, the average particle diameter of the fine particles is 5 nm,
The cycle deterioration degree was 82.5%, and the hydrogen storage / release fluid was stable even when left for two weeks or longer. In Comparative Example 1,
The PVP weight was 0%, and the average particle diameter of the fine particles was 100%.
It was 0 nm, the degree of cycle deterioration was 35%, the cycle deterioration was large, and the evaluation of fluid stability was "x", and considerable sedimentation was confirmed.

【0028】上記した試験結果から、本実施例に係る試
料A〜試料Dについては、水素吸蔵操作および水素放出
操作のサイクル数を多数回繰り返しても、水素吸蔵放出
流体の劣化を抑制でき、水素吸蔵能の低下を抑制できる
ことがわかる。更に長期間放置しても、微粒子の沈降を
抑制できることがわかる。長期間放置しても微粒子の沈
降を抑制できるのは、沈降抑制物質としてのPVPが有
する官能基と、溶媒としてのエタノールが有するOH基
との親和力によるものと推察される。
From the above test results, regarding the samples A to D according to the present embodiment, even if the number of cycles of the hydrogen storage operation and the hydrogen release operation is repeated many times, the deterioration of the hydrogen storage and release fluid can be suppressed, It can be seen that a decrease in occlusion ability can be suppressed. It can be seen that the sedimentation of the fine particles can be suppressed even after being left for a long time. It is presumed that the sedimentation of the fine particles can be suppressed even after being left for a long period of time due to the affinity between the functional group of PVP as the sedimentation suppressing substance and the OH group of ethanol as the solvent.

【0029】(実施例2)次に本発明の実施例2につい
て説明する。塩化パラジウム(PdCl2)を塩酸水溶
液に溶解させ、6mM(M:モル濃度)の塩素化水素パ
ラジウム(H2PdCl4)の水溶液を調整した。また塩
化白金(PtCl2)を塩酸水溶液に溶解させ、6mM
(M:モル濃度)の塩素化水素白金(H2PtCl6)の
水溶液を調整した。
(Embodiment 2) Next, Embodiment 2 of the present invention will be described. Palladium chloride (PdCl 2 ) was dissolved in an aqueous hydrochloric acid solution to prepare a 6 mM (M: molar concentration) aqueous solution of palladium hydrogen chloride (H 2 PdCl 4 ). Platinum chloride (PtCl 2 ) is dissolved in an aqueous hydrochloric acid solution and 6 mM
(M: molar concentration) aqueous solution of platinum hydrochloride (H 2 PtCl 6 ) was prepared.

【0030】塩素化水素パラジウム(H2PdCl4)の
水溶液(Pd換算で480μmol)と、塩素化水素白
金(H2PtCl6)の水溶液(Pt換算で120μmo
l)との両者を混合した。更に、後工程で留去される第
1溶媒として水400mlおよびエタノール300ml
を加え、更に安定化高分子としてポリビニルアルコール
(PVAとも記する)を6mmolを加え、混合溶液を
形成した。この混合溶液をオイルバスで100℃で2時
間、加熱環流した。ポリビニルアルコール(PVA)に
代えてポリアクリル酸(PAAとも記する)を6mmo
l加えたものについても、同様に形成した。
An aqueous solution of palladium hydrogen chloride (H 2 PdCl 4 ) (480 μmol in terms of Pd) and an aqueous solution of platinum hydrogen chloride (H 2 PtCl 6 ) (120 μmol in terms of Pt)
l) were mixed. Further, 400 ml of water and 300 ml of ethanol were used as the first solvent distilled off in the subsequent step.
And 6 mmol of polyvinyl alcohol (also referred to as PVA) as a stabilizing polymer was added to form a mixed solution. This mixed solution was heated and refluxed at 100 ° C. for 2 hours in an oil bath. 6 mmo of polyacrylic acid (also referred to as PAA) instead of polyvinyl alcohol (PVA)
The same addition was made in the same manner.

【0031】放冷しながら2時間攪拌した後に、溶媒を
留去し、固形物を形成した。固形物は、微粒子にPVA
またはPAAのポリマーが被覆されて構成されている。
微粒子の合金組成はat%でPd−Pt合金であり、a
t%でPd:Pt=80:20であった。その固形物を
所定の溶媒(2−ブトキシエタノール:極性溶媒)に分
散させ、表1に示す4種類の水素吸蔵放出流体(試料E
〜試料H)を形成した。この場合、金属量は5gであ
り、水素吸蔵放出流体に占める濃度としては10wt%
である。この流体50cm3を以下のPCT特性測定に
供した。
After stirring for 2 hours while allowing to cool, the solvent was distilled off to form a solid. Solid material is PVA
Alternatively, it is constituted by coating a polymer of PAA.
The alloy composition of the fine particles is a Pd-Pt alloy at at%, and a
At t%, Pd: Pt = 80: 20. The solid was dispersed in a predetermined solvent (2-butoxyethanol: polar solvent), and the four types of hydrogen storage / release fluids shown in Table 1 (sample E) were used.
~ Sample H) was formed. In this case, the amount of metal is 5 g, and the concentration in the hydrogen storage-release fluid is 10 wt%.
It is. 50 cm 3 of this fluid was subjected to the following PCT characteristic measurement.

【0032】4種類の水素吸蔵放出流体(試料E〜試料
H)について、PCT特性を試験した。更に、比較例1
で用いた微粒子と同様の微粒子を用意し、これを試料E
〜試料Hと同じ溶媒に同一濃度で分散させ、比較例2の
水素吸蔵放出流体を形成した。比較例2の水素吸蔵放出
流体ついても同様に試験した。図2は試験結果を示す。
図2の横軸はサイクル数を示す、縦軸は水素の最大吸蔵
量[H/M]を示す。図2において、◆印は試料Eの結
果を示し、■印は試料Fを示し、×印は試料Gの結果を
示し、□印は試料Hを示し、*印は比較例2を示す。
PCT characteristics were tested for four types of hydrogen storage / release fluids (Samples E to H). Further, Comparative Example 1
A fine particle similar to the fine particles used in the above was prepared, and this was used as a sample E
-Dispersed in the same solvent as Sample H at the same concentration to form a hydrogen storage-release fluid of Comparative Example 2. The hydrogen storage / release fluid of Comparative Example 2 was similarly tested. FIG. 2 shows the test results.
The horizontal axis in FIG. 2 indicates the number of cycles, and the vertical axis indicates the maximum hydrogen storage amount [H / M]. In FIG. 2, a mark indicates the result of Sample E, a mark indicates the result of Sample F, a mark indicates the result of Sample G, a mark indicates Sample H, and a mark indicates Comparative Example 2.

【0033】図2から理解できるように、比較例2の水
素吸蔵放出流体では、サイクル数が増加するにつれて、
最大吸蔵量は次第に低下し、500サイクル目ではかな
り低下した。これに対して本実施例品に係る試料E、試
料F、試料Gおよび試料Hの各水素吸蔵放出流体では、
サイクル数が増加しても、水素の最大吸蔵量はあまり低
下しなかった。例えばサイクル数が100サイクル、2
00サイクル、300サイクル、400サイクル、50
0サイクルを越えても、水素の最大吸蔵量はあまり低下
しなかった。
As can be understood from FIG. 2, in the hydrogen storage / release fluid of Comparative Example 2, as the number of cycles increases,
The maximum occlusion gradually decreased, and decreased considerably at the 500th cycle. On the other hand, in each of the hydrogen storage / release fluids of Sample E, Sample F, Sample G, and Sample H according to the product of the present embodiment,
As the number of cycles increased, the maximum amount of hydrogen stored did not decrease much. For example, if the number of cycles is 100, 2
00 cycles, 300 cycles, 400 cycles, 50
Even after 0 cycles, the maximum hydrogen storage amount did not decrease so much.

【0034】試料E〜試料Hの水素吸蔵放出流体につい
てサイクル劣化度、流体安定性を試べた。比較例2の水
素吸蔵放出流体についても同様に試べた。表2は、試料
E〜試料Hおよび比較例2に係る水素吸蔵放出流体の条
件、サイクル劣化度および流体安定性についての試験結
果を示す。表2に示すように、試料Eでは、固形物のう
ちPVA重量は85wt%であり、微粒子の平均粒子径
は5nmであり、サイクル劣化度は85%であり、2週
間以上放置しても水素吸蔵放出流体は安定であり、沈降
は認められなかった。
With respect to the hydrogen storage / release fluids of Samples E to H, the cycle deterioration degree and fluid stability were tested. The hydrogen storage / release fluid of Comparative Example 2 was similarly tested. Table 2 shows the test results for the conditions, cycle deterioration degree, and fluid stability of the hydrogen storage / release fluid according to Samples E to H and Comparative Example 2. As shown in Table 2, in Sample E, the PVA weight of the solid was 85 wt%, the average particle diameter of the fine particles was 5 nm, the degree of cycle deterioration was 85%, and hydrogen was observed even when left for two weeks or more. The occluding and releasing fluid was stable and no sedimentation was observed.

【0035】試料Fでは、固形物のうちPVA重量は6
5wt%であり、微粒子の平均粒子径は5nmであり、
サイクル劣化度は80.5%であり、2週間以上放置し
ても水素吸蔵放出流体は安定であった。試料Gでは、固
形物のうちPAA重量は85wt%であり、微粒子の平
均粒子径は5nmであり、サイクル劣化度は84.0%
であり、2週間以上放置しても水素吸蔵放出流体は安定
であった。
In sample F, the PVA weight of the solid was 6
5 wt%, the average particle diameter of the fine particles is 5 nm,
The cycle deterioration degree was 80.5%, and the hydrogen storage / release fluid was stable even after standing for 2 weeks or more. In sample G, the weight of the PAA was 85 wt% of the solid, the average particle diameter of the fine particles was 5 nm, and the degree of cycle deterioration was 84.0%.
The hydrogen storage / release fluid was stable even after standing for 2 weeks or more.

【0036】試料Hでは、固形物のうちPAA重量は6
5wt%であり、微粒子の平均粒子径は5nmであり、
サイクル劣化度は83%であり、2週間以上放置しても
水素吸蔵放出流体は安定であった。比較例2では、サイ
クル劣化度は33.5%でありサイクル劣化性が大き
く、また流体安定性の評価は『×』であり良好ではなか
った。
In sample H, the PAA weight of the solid was 6
5 wt%, the average particle diameter of the fine particles is 5 nm,
The degree of cycle deterioration was 83%, and the hydrogen storage / release fluid was stable even after standing for 2 weeks or more. In Comparative Example 2, the cycle deterioration degree was 33.5% and the cycle deterioration property was large, and the evaluation of the fluid stability was “×”, which was not good.

【0037】上記した試験結果から、本実施例に係る試
料E〜試料Hについては、水素吸蔵操作および水素放出
操作を繰り返しても、水素吸蔵放出流体の劣化は抑制さ
れ、水素吸蔵能の低下を抑制できることがわかる。更に
長期間放置しても、微粒子の沈降を抑制できることがわ
かる。
From the above test results, regarding the samples E to H according to the present embodiment, even if the hydrogen storage operation and the hydrogen release operation are repeated, the deterioration of the hydrogen storage and release fluid is suppressed, and the decrease in the hydrogen storage capacity is suppressed. It can be seen that it can be suppressed. It can be seen that the sedimentation of the fine particles can be suppressed even after being left for a long time.

【0038】[0038]

【表2】 (実施例3)また上記した試料Hに係る固形物を用い、
溶媒をエチレングリコール、水、シリコーンオイル(東
レ SH−200)に変更し、同様に試験を行った。試
験結果を図3に示す。図3において、■印はエチレング
リコールの結果を示し、×印は水の結果を示し、□印は
シリコーンオイルの結果を示し、また、◆印は実施例2
に係る2−ブトキシエタノールの結果(試料H)を示
す。
[Table 2] (Example 3) Further, using the solid matter according to Sample H described above,
The test was performed in the same manner except that the solvent was changed to ethylene glycol, water, and silicone oil (Toray SH-200). The test results are shown in FIG. In FIG. 3, the mark ■ indicates the result of ethylene glycol, the mark × indicates the result of water, the mark □ indicates the result of silicone oil, and the mark ◆ indicates the result of Example 2.
2 shows the results (sample H) of 2-butoxyethanol.

【0039】いずれの溶媒を用いた水素吸蔵放出流体に
ついても、水素吸蔵および水素放出を多数サイクル繰り
返したとき、水素の最大吸蔵量はあまり低下せず、サイ
クル劣化性を低減させ得ることができた。即ち、サイク
ル劣化度としては、2−ブトキシエタノールのときには
83%であり、エチレングリコールのときには81.5
%であり、水のときには77.5%であり、シリコーン
オイルのときには72.5%であった。水素吸蔵放出流
体の流体安定性としては、いずれの溶媒を用いたとき
も、2週間以上放置しても安定であった。
Regarding the hydrogen storage and release fluid using any of the solvents, when the hydrogen storage and release were repeated many times, the maximum storage amount of hydrogen did not decrease so much, and the cycle deterioration was able to be reduced. . That is, the cycle deterioration degree is 83% for 2-butoxyethanol and 81.5 for ethylene glycol.
% For water and 72.5% for silicone oil. Regarding the fluid stability of the hydrogen storage and release fluid, when any of the solvents was used, the fluid was stable even after standing for 2 weeks or more.

【0040】(適用例)図5は適用例を示す。この例
は、水素吸蔵放出流体を用いるシステム装置を示す。水
素吸蔵放出流体を用いるシステム装置は、水素吸蔵放出
流体が収容可能な液体収容室10をもつ収容容器1と、
収容容器1に設けられた入口通路11と、収容容器1の
底付近に設けられた出口通路12と、収容容器1の液体
収容室10の内部に配置された放出促進手段2とを備え
ている。
(Application Example) FIG. 5 shows an application example. This example shows a system device using a hydrogen storage-release fluid. The system device using the hydrogen storage / release fluid includes a storage container 1 having a liquid storage chamber 10 capable of storing the hydrogen storage / release fluid,
The container 1 includes an inlet passage 11 provided in the container 1, an outlet passage 12 provided in the vicinity of the bottom of the container 1, and a discharge promoting unit 2 disposed inside the liquid container 10 of the container 1. .

【0041】放出促進手段2は、液体収容室10内の水
素吸蔵放出流体を加熱する加熱手段として機能するもの
であり、加熱に伴い水素吸蔵放出流体からの水素の放出
を促進するものである。放出促進手段2は、加熱水が流
れるため水素吸蔵放出流体と熱交換する熱交換器として
機能できる加熱管20と、加熱管20に加熱水を送給す
る加熱水生成送給装置22とをもつ。
The release promoting means 2 functions as a heating means for heating the hydrogen storage and release fluid in the liquid storage chamber 10, and promotes the release of hydrogen from the hydrogen storage and release fluid with heating. The release promoting means 2 has a heating pipe 20 that can function as a heat exchanger that exchanges heat with the hydrogen storage / release fluid because the heated water flows, and a heated water generation / supply device 22 that supplies heated water to the heating pipe 20. .

【0042】加熱水生成送給装置22は、加熱水を送給
するポンプ23と、高温水を送給する高温水供給部24
と、高温水より低温の水を送給する冷水供給部25とを
もつ。冷水供給部25からの冷水と高温水供給部24か
らの高温水とが混合され、これにより所定の温度領域を
もつように温度調整された加熱水(例えば50〜100
℃)が形成され、この加熱水が加熱管20に送給され
る。
The heating water generating / sending device 22 includes a pump 23 for feeding heating water, and a high-temperature water feeding unit 24 for feeding high-temperature water.
And a cold water supply unit 25 for supplying water lower in temperature than hot water. The cold water from the cold water supply unit 25 and the high-temperature water from the high-temperature water supply unit 24 are mixed, so that the temperature of the heated water (for example, 50 to 100) is adjusted to have a predetermined temperature range.
C) is formed, and the heated water is supplied to the heating tube 20.

【0043】冷水供給部25からの冷水と高温水供給部
24からの高温水とが混合される割合により、加熱水の
温度が調整される。これにより単位時間における水素放
出率が調整される。従って、加熱水生成送給装置22は
加熱水の水温調整機能をもつ。入口通路11を開閉する
ための開閉弁11aが開放されると、入口通路11から
水素吸蔵放出流体が液体収容室10に送給される。液体
収容室10に水素吸蔵放出流体が収容されている状態
で、放出促進手段2の加熱管20に加熱水が送給される
と、加熱水の熱は収容容器1内の水素吸蔵放出流体に伝
達され、水素吸蔵放出流体が加熱される。これにより水
素吸蔵放出流体から水素が放出される。放出された水素
は、ガス出口通路13、開放状態の開閉弁13aを経て
水素消費部15(例えば水素エンジン、燃料電池)に送
給される。
The temperature of the heated water is adjusted by the mixing ratio of the cold water from the cold water supply unit 25 and the high temperature water from the high temperature water supply unit 24. Thereby, the hydrogen release rate per unit time is adjusted. Therefore, the heating water generation and delivery device 22 has a function of adjusting the temperature of the heating water. When the on-off valve 11 a for opening and closing the inlet passage 11 is opened, the hydrogen storage / release fluid is supplied from the inlet passage 11 to the liquid storage chamber 10. When heating water is supplied to the heating pipe 20 of the release promoting means 2 in a state where the hydrogen storage / release fluid is stored in the liquid storage chamber 10, the heat of the heating water is transferred to the hydrogen storage / release fluid in the storage container 1. The transmitted and heated hydrogen storage and release fluid is heated. As a result, hydrogen is released from the hydrogen storage / release fluid. The released hydrogen is supplied to the hydrogen consuming unit 15 (for example, a hydrogen engine or a fuel cell) via the gas outlet passage 13 and the open / close valve 13a.

【0044】収容容器1内で水素の放出が完了したら、
開閉弁12aを開放する。そして水素を放出した後の水
素吸蔵放出流体を出口通路12から吸蔵部3に送給す
る。吸蔵部3で水素吸蔵放出流体に水素を吸蔵する。吸
蔵部3は、容器30と、容器30内に貯留された水素吸
蔵放出流体に浸漬された水素吹出管32とをもつ。水素
吹出管32から容器30内の水素吸蔵放出流体内に吹き
出された水素ガスによりバブリングが発生する。これに
より水素吸蔵放出流体における微粒子と微粒子を覆って
いるポリマーとの相対変位を期待できる。これにより微
粒子への水素の吸蔵が促進されると推察される。水素を
吸蔵した水素吸蔵放出流体は、ポンプ34により貯蔵タ
ンク4に送給される。
When the release of hydrogen in the storage container 1 is completed,
The on-off valve 12a is opened. Then, the hydrogen storage / release fluid after releasing hydrogen is supplied to the storage unit 3 from the outlet passage 12. The storage unit 3 stores hydrogen in the hydrogen storage and release fluid. The storage unit 3 has a container 30 and a hydrogen blowing pipe 32 immersed in a hydrogen storage / release fluid stored in the container 30. Bubbling is generated by the hydrogen gas blown out of the hydrogen blowing pipe 32 into the hydrogen storage / release fluid in the container 30. Thereby, relative displacement between the fine particles in the hydrogen storage / release fluid and the polymer covering the fine particles can be expected. This is presumed to promote the absorption of hydrogen into the fine particles. The hydrogen storage / release fluid storing the hydrogen is supplied to the storage tank 4 by the pump 34.

【0045】貯蔵タンク4内で水素吸蔵放出流体は貯蔵
される。貯蔵タンク4内の水素吸蔵放出流体は、必要に
応じてポンプ40により、開放状態の開閉弁11a、入
口通路11を経て収容容器1に送給される。この水素吸
蔵放出流体は、再び、水素放出に利用できる。 (付記)上記した記載から次の技術的思想も把握でき
る。 ・請求項1において、水素吸蔵および水素放出を1サイ
クルとし、500サイクル繰り返したとき、サイクル劣
化度が40%以上、50%以上,60%以上,70%以
上,80%以上のいずれかであることを特徴とする水素
吸蔵放出流体。 ・請求項1において、微粒子の組成はパラジウム系(例
えばPd−Ag系,Pd−Pt系)であることを特徴と
する水素吸蔵放出流体。 ・請求項1において、微粒子の平均粒子径は0.5nm
〜20nmあるいは1nm〜20nmであることを特徴
とする水素吸蔵放出流体。 ・水素吸蔵能および水素放出能をもつ微粒子となる物質
(Pd等)を含む溶液と、第1溶媒(水、アルコールな
ど)と、沈降抑制物質となるポリマーとを混合した混合
溶液を形成する工程と、混合溶液から微粒子を生成する
工程と、混合溶液中の溶媒を除去(例えば留去)し、微
粒子にポリマーが被覆されて複合化された固形物を生成
する工程と、固形物を第2溶媒に分散させて水素吸蔵放
出流体を形成する工程とを順に実施することを特徴とす
る水素吸蔵放出流体の製造方法。平均粒子径が極めて小
さい微粒子にポリマーを複合化するのに有利となる。 ・水素吸蔵放出流体が収容可能な液体収容室をもつ収容
容器と、収容容器の液体収容室の内部に配置され水素吸
蔵放出流体の水素放出を促進させる放出促進手段とを備
えていることを特徴とする水素吸蔵放出流体を用いるシ
ステム装置。液体収容室の内部に放出促進手段が配置さ
れているため、水素放出の効率が良好となる。
The hydrogen storage / release fluid is stored in the storage tank 4. The hydrogen storage / release fluid in the storage tank 4 is supplied to the storage container 1 by the pump 40 through the open / close valve 11 a and the inlet passage 11 as needed. This hydrogen storage / release fluid can be used again for hydrogen release. (Supplementary Note) The following technical ideas can be understood from the above description. -In claim 1, when 500 cycles are performed with hydrogen absorption and hydrogen release as one cycle, the cycle deterioration degree is any one of 40% or more, 50% or more, 60% or more, 70% or more, and 80% or more. A hydrogen storage / release fluid characterized by the above-mentioned. -The hydrogen storage / release fluid according to claim 1, wherein the composition of the fine particles is a palladium-based (for example, Pd-Ag-based, Pd-Pt-based). -In claim 1, the average particle diameter of the fine particles is 0.5 nm.
Hydrogen storage / release fluid characterized by having a thickness of 20 nm or 1 nm to 20 nm. A step of forming a mixed solution in which a solution containing a substance (Pd or the like) that becomes fine particles having a hydrogen storage ability and a hydrogen releasing ability, a first solvent (water, alcohol, or the like), and a polymer serving as a precipitation-preventing substance are mixed; A step of generating fine particles from the mixed solution, a step of removing (e.g., distilling off) the solvent in the mixed solution, and forming a solid material in which the polymer is coated on the fine particles to form a composite material; Forming a hydrogen storage and release fluid by dispersing in a solvent. This is advantageous for compounding a polymer with fine particles having an extremely small average particle diameter. A storage container having a liquid storage chamber capable of storing the hydrogen storage and release fluid; and a release promoting means disposed inside the liquid storage chamber of the storage container to promote the release of the hydrogen storage and release fluid from hydrogen. A system device using a hydrogen storage / release fluid. Since the release promoting means is disposed inside the liquid storage chamber, the efficiency of releasing hydrogen is improved.

【0046】[0046]

【発明の効果】本発明の水素吸蔵放出流体によれば、放
置時間が長くなっても、微粒子の沈降を抑制できる。更
に微粒子の酸化等の被毒を抑制でき、水素吸蔵および水
素放出を多数サイクル繰り返したとしても、サイクル劣
化性を低減させるのに有利となる。故に水素吸蔵放出流
体の目標性能を得るのに有利である。
According to the hydrogen storage / release fluid of the present invention, sedimentation of fine particles can be suppressed even when the storage time is long. Further, poisoning such as oxidation of the fine particles can be suppressed, which is advantageous for reducing cycle deterioration even if hydrogen storage and hydrogen release are repeated many times. Therefore, it is advantageous for obtaining the target performance of the hydrogen storage / release fluid.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1に係る試験結果を示すグラフである。FIG. 1 is a graph showing test results according to Example 1.

【図2】実施例2に係る試験結果を示すグラフである。FIG. 2 is a graph showing test results according to Example 2.

【図3】実施例2に係る試験結果を示すグラフである。FIG. 3 is a graph showing test results according to Example 2.

【図4】水素吸蔵放出流体の微粒子付近を模式的に示す
概念図である。
FIG. 4 is a conceptual diagram schematically showing the vicinity of fine particles of a hydrogen storage / release fluid.

【図5】適用例に係る構成図である。FIG. 5 is a configuration diagram according to an application example.

【符号の説明】[Explanation of symbols]

図中、1は収容容器、10は流体収容室、2は放出促進
手段、100は微粒子、200はポリマーを示す。
In the figure, 1 is a storage container, 10 is a fluid storage chamber, 2 is a release promoting means, 100 is fine particles, and 200 is a polymer.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】水素吸蔵能および水素放出能を有する微粒
子を溶媒中に分散させると共に、前記微粒子の沈降を抑
える沈降抑制物質が含まれていることを特徴とする水素
吸蔵放出流体。
1. A hydrogen storage and release fluid comprising fine particles having a hydrogen storage ability and a hydrogen release ability dispersed in a solvent, and a sedimentation-suppressing substance for suppressing the sedimentation of the fine particles.
JP11162599A 1999-06-09 1999-06-09 Hydrogen absorbing and desorbing fluid Pending JP2000351603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11162599A JP2000351603A (en) 1999-06-09 1999-06-09 Hydrogen absorbing and desorbing fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11162599A JP2000351603A (en) 1999-06-09 1999-06-09 Hydrogen absorbing and desorbing fluid

Publications (1)

Publication Number Publication Date
JP2000351603A true JP2000351603A (en) 2000-12-19

Family

ID=15757664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11162599A Pending JP2000351603A (en) 1999-06-09 1999-06-09 Hydrogen absorbing and desorbing fluid

Country Status (1)

Country Link
JP (1) JP2000351603A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014527119A (en) * 2011-06-08 2014-10-09 ユナイテッド テクノロジーズ コーポレイション Removal of surfactant from palladium nanoparticles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014527119A (en) * 2011-06-08 2014-10-09 ユナイテッド テクノロジーズ コーポレイション Removal of surfactant from palladium nanoparticles
US9553318B2 (en) 2011-06-08 2017-01-24 Audi Ag Surfactant removal from palladium nanoparticles

Similar Documents

Publication Publication Date Title
Tappan et al. Nanoporous metal foams
US7175826B2 (en) Compositions and methods for hydrogen storage and recovery
Volkov et al. Metal nanoparticles in catalytic polymer membranes and ion-exchange systems for advanced purification of water from molecular oxygen
KR101978187B1 (en) Method of preparing a catalytic structure
Bozbag et al. Synthesis of nanostructured materials using supercritical CO 2: Part II. Chemical transformations
Si et al. Enhancing hydrogen sorption in MgH2 by controlling particle size and contact of Ni catalysts
JPH0822721B2 (en) Method and apparatus for low-temperature storage of hydrogen by metal-assisted carbon
JP2005097642A (en) Noble metal-metal oxide composite cluster
US9065128B2 (en) Rechargeable fuel cell
Sun et al. Magnesium supported on nickel nanobelts for hydrogen storage: coupling nanosizing and catalysis
US6680043B2 (en) Process for enhancing the kinetics of hydrogenation/dehydrogenation of MAIH4 and MBH4 metal hydrides for reversible hydrogen storage
Huang et al. Thermally-assisted milling and hydrogenolysis for synthesizing ultrafine MgH2 with destabilized thermodynamics
Elçiçek et al. Preparation of highly efficient NiB catalyst via triton‐stabilized for alkaline NaBH4 hydrolysis reaction
JP2000351603A (en) Hydrogen absorbing and desorbing fluid
JP2020164912A (en) Hydrogen storage emission material and method for producing the same, and hydrogen storage release method using hydrogen storage emission material
JP2019030827A (en) Catalyst using palladium-ruthenium composite fine particle, and method of producing the same
CN114849701B (en) Hollow spherical catalyst for fixed bed with internal particle fluidization and preparation method thereof
US20040259725A1 (en) Method for the synthesis of a fuel cell electrocatalyst
JP2004027346A (en) Hydrogen storage body
CN1150998C (en) Method for coating Pt-Ru alloy particles on surface of carbon nano tube
EP3629409A1 (en) Method of treating a platinum-alloy catalyst, and device for carrying out the method of treating a platinum-alloy catalyst
US7250146B2 (en) Method for producing a reversible hydrogen storage medium with high storage capacity and ultrafast kinetics
Erkey et al. Synthesis of nanostructured composites of metals by supercritical deposition (SCD)
JP2008201602A (en) Carbon carrying platinum-bridged nanowire particles and its manufacturing method
CN101798055A (en) Synthesis of rare earth element-containing alumina nanowires

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070302

A61 First payment of annual fees (during grant procedure)

Effective date: 20070410

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees