JP2000348782A - Positive electrode material recovery method from secondary battery waste material and nonaqueous electrolyte secondary battery using it - Google Patents

Positive electrode material recovery method from secondary battery waste material and nonaqueous electrolyte secondary battery using it

Info

Publication number
JP2000348782A
JP2000348782A JP15419399A JP15419399A JP2000348782A JP 2000348782 A JP2000348782 A JP 2000348782A JP 15419399 A JP15419399 A JP 15419399A JP 15419399 A JP15419399 A JP 15419399A JP 2000348782 A JP2000348782 A JP 2000348782A
Authority
JP
Japan
Prior art keywords
secondary battery
electrode material
positive electrode
recovering
metal compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15419399A
Other languages
Japanese (ja)
Other versions
JP4491085B2 (en
Inventor
Yoshiro Ota
好郎 太田
Katsuhiro Kato
勝弘 加藤
Yasuhiro Shirakawa
康博 白川
Akira Sakai
亮 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tama Kagaku Kogyo Co Ltd
Original Assignee
Toshiba Corp
Tama Kagaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tama Kagaku Kogyo Co Ltd filed Critical Toshiba Corp
Priority to JP15419399A priority Critical patent/JP4491085B2/en
Publication of JP2000348782A publication Critical patent/JP2000348782A/en
Application granted granted Critical
Publication of JP4491085B2 publication Critical patent/JP4491085B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Secondary Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode material recovery method from a secondary battery waste material capable of effectively recovering a metal compound useful as a positive electrode material from the secondary battery waste material at a low cost in a reusable form as it is and to provide a nonaqueous electrolyte secondary wherein the metal compound recovered like this is used for a part or all of its positive electrode material. SOLUTION: This positive electrode material recovery method from a secondary battery waste material is used for recovering a metal compound in an electrode material by thermally decomposing the secondary battery waste material in which the electrode material is applied to metal foil. The method comprises: a peeling process for peeling the electrode material from the metal foil by heating the secondary battery waste material to 300-500 deg.C in an oxygen- containing gas current; a separation process for recovering a powder substance by separating and removing the metal foil from the provided peeled material; a roasting process for burning a combustible substance in the powder substance by heating the recovered powder substance to 500-650 deg.C in the oxygen-containing gas current; and a recovery process for recovering the provided roasted substance as the metal compound for the positive electrode material. This nonaqueous electrolyte secondary includes the metal compound recovered like this as a part or all of its positive electrode material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、金属箔に電極材
料が塗着されている二次電池廃材から正極材を回収する
方法及びこれを用いた非水電解液二次電池に係り、特
に、二次電池廃材から再び非水電解液二次電池の電極材
としてそのまま再利用可能な状態で金属化合物を効率的
に回収することができる方法及びこれを用いた非水電解
液二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for recovering a positive electrode material from a secondary battery waste material in which an electrode material is coated on a metal foil, and a nonaqueous electrolyte secondary battery using the same. The present invention relates to a method for efficiently recovering a metal compound from a waste material of a secondary battery again as an electrode material of a nonaqueous electrolyte secondary battery as it is, and a nonaqueous electrolyte secondary battery using the same.

【0002】[0002]

【従来の技術】例えば、リチウムイオン二次電池にはそ
の正極材としてコバルト酸リチウム(LiCoO2 )が
用いられており、また、ニッケル水素電池にはその正極
の活物質である水素化ニッケル中に容量利用率向上を目
的として酸化コバルトが添加されており、更に、ニカド
電池にはその正極(ニッケル)中に耐腐蝕性向上や高容
量化を目的として硝酸コバルトが添加されている。
2. Description of the Related Art For example, lithium cobalt oxide (LiCoO 2 ) is used as a cathode material in a lithium ion secondary battery, and nickel hydride which is an active material of the cathode is used in a nickel hydrogen battery. Cobalt oxide is added for the purpose of improving capacity utilization, and cobalt nitrate is further added to the positive electrode (nickel) of the NiCd battery for the purpose of improving corrosion resistance and increasing capacity.

【0003】そして、このような正極材は、例えばリチ
ウムイオン二次電池の場合には、炭酸リチウムと酸化コ
バルトとを混合し、焙焼してコバルト酸リチウムとし、
次いでこのコバルト酸リチウムとグラファイト等の導電
剤及びフッ素樹脂バインダー等の結着剤とを配合し、こ
れを有機溶剤によりスラリー状に混練し、この混練物を
アルミニウム箔(以下、単に「アルミ箔」という)等の
金属箔上に均一に塗布し、乾燥して溶剤を除去し、金属
箔に導電剤2〜10重量%及び結着剤2〜10重量%を
含む正極材が塗着された金属箔塗着材を形成し、この金
属箔塗着材を所定の形状に裁断し、二次電池の正極を形
成している。
[0003] In the case of a lithium ion secondary battery, for example, such a positive electrode material is prepared by mixing lithium carbonate and cobalt oxide and roasting the mixture into lithium cobalt oxide.
Next, this lithium cobaltate is mixed with a conductive agent such as graphite and a binder such as a fluororesin binder, and the mixture is kneaded in a slurry state with an organic solvent, and the kneaded product is aluminum foil (hereinafter simply referred to as “aluminum foil”). A metal coated with a positive electrode material containing 2 to 10% by weight of a conductive agent and 2 to 10% by weight of a binder on the metal foil. A foil coating material is formed, and this metal foil coating material is cut into a predetermined shape to form a positive electrode of a secondary battery.

【0004】このような二次電池は、ノート型パソコ
ン、携帯電話、簡易携帯電話(PHS)、電気シェーバ
ー、ヘッドホンステレオ、VTR等のポータブル電気機
器の普及に伴ってその需要が急速に高まっているが、そ
の生産量が増加するにつれて、二次電池製造時に発生す
る金属箔塗着材のスクラップや使用不能になって回収さ
れる二次電池から出る金属箔塗着材の廃棄物処理が社会
的な問題になり始めている。以下、これら二次電池製造
時に発生する金属箔塗着材のスクラップや、使用不能に
なった二次電池から出てくる金属箔塗着材の廃棄物を一
括して「二次電池廃材」という。
The demand for such secondary batteries is rapidly increasing with the spread of portable electric devices such as notebook personal computers, portable telephones, portable cellular phones (PHS), electric shavers, headphone stereos and VTRs. However, as the production volume increases, the scrap disposal of metal foil coating materials generated during secondary battery manufacturing and the waste disposal of metal foil coating materials from secondary batteries that are collected after they become unusable are becoming more social. Is starting to be a problem. Hereinafter, the scrap of the metal foil coating material generated during the production of the secondary battery and the waste of the metal foil coating material coming out of the unusable secondary battery are collectively referred to as “secondary battery waste material”. .

【0005】その一方で、特にコバルトはその資源に乏
しく、我が国ではそのほとんどを外国に依存しているに
もかかわらず、その用途は、二次電池の電極材料、顔
料、窯業、フェライト、触媒、超硬合金等の日用品から
ハイテク製品に至るまで極めて広範に亘っており、特に
リチウムイオン二次電池にはその1個当たり酸化コバル
トとして約7gも使用されている。このため、コバルト
は元々高価であると共にその需要が増大して益々高価に
なりつつある。
[0005] On the other hand, in particular, cobalt is scarce in its resources, and despite its dependence on foreign countries in Japan, its use is limited to electrode materials for secondary batteries, pigments, ceramics, ferrite, catalysts, It covers an extremely wide range from daily necessities such as cemented carbides to high-tech products. In particular, about 7 g of cobalt oxide is used per lithium ion secondary battery. For this reason, cobalt is inherently expensive and its demand is increasing, and it is becoming more and more expensive.

【0006】そこで、これまでにも廃棄物の二次電池廃
材からコバルト化合物を回収する幾つかの試みがなさ
れ、アルキル燐酸を含む有機溶剤でコバルト化合物を抽
出する方法(特開平3−10032号、特公昭56−1
1371号、特公平5−14013号、特開平7−26
8881号、特開平9−111360号、特開平9−1
95071号の各公報)等の溶剤抽出法や、二次電池廃
材を酸素含有ガス気流中300〜600℃で熱分解処理
して得られた焙焼物からコバルト化合物を回収する方法
(特開平10−8150号公報)等の熱分解処理法や、
この熱分解処理法と溶剤抽出法とを組み合わせた方法
(特開平10−46266号公報)等が提案されてい
る。
Therefore, some attempts have been made to recover a cobalt compound from waste secondary battery waste, and a method of extracting the cobalt compound with an organic solvent containing alkyl phosphoric acid (JP-A-3-10032, 56-1
No. 1371, Japanese Patent Publication No. 5-14013, JP-A-7-26
8881, JP-A-9-111360, JP-A-9-19-1
No. 95071) or a method of recovering a cobalt compound from a roasted material obtained by thermally decomposing a secondary battery waste material in an oxygen-containing gas stream at 300 to 600 ° C. No. 8150) and the like,
A method combining this thermal decomposition method and a solvent extraction method (Japanese Patent Application Laid-Open No. 10-46266) has been proposed.

【0007】しかしながら、コバルト化合物をアルキル
燐酸に溶解して回収する溶剤抽出法では、溶液の状態で
回収されることからこの溶液から金属コバルト等の形で
析出させる必要があり、そのための薬剤や溶剤が必要に
なるほか、使用した薬剤や溶剤の廃液が発生してその処
理が必要になり、しかも、リチウムイオン二次電池の製
造に再利用するためには得られた金属コバルト等を再び
コバルト酸リチウムにしなければならず、回収して再利
用するコストが嵩んで経済的でないという問題がある。
However, in the solvent extraction method in which the cobalt compound is dissolved in alkylphosphoric acid and recovered, it is necessary to precipitate the solution in the form of metallic cobalt or the like since it is recovered in the form of a solution. In addition, the used chemicals and solvent waste liquids are generated and need to be treated. In addition, in order to reuse them in the production of lithium ion secondary batteries, the obtained metallic cobalt etc. must be re-cobaltized. Lithium has to be used, and there is a problem that the cost of recovering and reusing is increased and is not economical.

【0008】これに対して、熱分解処理法による場合に
は、上記溶剤抽出法のように回収して再利用するために
コストがかかりすぎるという問題はないが、加熱温度が
600℃を超えて高くなると、アルミ箔が酸化されてア
ルミナ(Al2 3 )が発生し、これが回収される金属
化合物、特にコバルト酸リチウム中に不純物として入り
込み、この不純物のアルミナが回収されたコバルト酸リ
チウムを二次電池の電極材料として用いた際に二次電池
の性能を低下せしめるという問題があり、反対に、この
加熱温度が300℃より低いとフッ素樹脂バインダー等
の結着剤が充分に分解されずにアルミ箔から電極材料が
充分に剥離しないという問題が生じる。
On the other hand, in the case of the thermal decomposition method, there is no problem that the cost is too high to collect and reuse as in the above-mentioned solvent extraction method, but the heating temperature exceeds 600 ° C. When the height is increased, the aluminum foil is oxidized to generate alumina (Al 2 O 3 ), which enters the recovered metal compound, particularly lithium cobaltate, as an impurity, and the recovered alumina, which is the impurity alumina, forms the lithium cobalt oxide. There is a problem that the performance of the secondary battery is deteriorated when used as an electrode material of the secondary battery. Conversely, if the heating temperature is lower than 300 ° C., the binder such as the fluororesin binder is not sufficiently decomposed. There is a problem that the electrode material is not sufficiently peeled from the aluminum foil.

【0009】しかも、この熱分解処理法において、加熱
温度が400℃を超えて比較的高く、かつ、供給される
酸素量が不足すると、電極材料中に導電剤として配合さ
れているグラファイトがコバルト酸リチウム中の酸素を
引き抜く還元反応が起こるためと考えられるが、回収さ
れるコバルト酸リチウムが二次凝集を起こして当初の粒
径よりも大きくなり(焼結現象)、この場合も二次電池
の性能を低下させる原因になって、せっかくコバルト酸
リチウムの形で回収しても、そのままでは電極材料とし
て再利用できないという問題がある。この焼結現象は、
熱分解処理操作中酸素を充分に供給した場合でも完全に
は避けられず、特に加熱温度が500℃を超えた場合に
はこの現象が顕著になる。
Further, in this thermal decomposition treatment method, if the heating temperature is relatively high, exceeding 400 ° C., and if the amount of supplied oxygen is insufficient, the graphite compounded as a conductive agent in the electrode material will be reduced to cobalt oxide. This is thought to be due to the reduction reaction that pulls out oxygen in the lithium. However, the recovered lithium cobalt oxide undergoes secondary aggregation and becomes larger than the initial particle size (sintering phenomenon). There is a problem that even if it is recovered in the form of lithium cobalt oxide, it cannot be reused as it is as an electrode material as it is a cause of lowering the performance. This sintering phenomenon
Even when oxygen is sufficiently supplied during the thermal decomposition treatment operation, it cannot be completely avoided. This phenomenon becomes remarkable particularly when the heating temperature exceeds 500 ° C.

【0010】[0010]

【発明が解決しようとする課題】そこで、本発明者ら
は、二次電池廃材から正極材として有用な金属化合物を
如何にしてそのまま再利用可能な状態で分離して回収す
るかについて鋭意研究を重ねた結果、二次電池廃材を酸
素含有ガス気流中で熱分解処理する際に、この熱分解処
理を二段回で行い、第一段階の金属箔から電極材料を剥
離させるまでは電極材料中のグラファイトの分解を極力
抑制し、また、金属箔を分離除去した後の第二段階では
グラファイトの分解を行うことにより、回収される金属
化合物についてその粒径が大きくなる焼結現象を可及的
に抑制できることを見出し、本発明を完成した。
Accordingly, the present inventors have conducted intensive studies on how to separate and recover a metal compound useful as a cathode material from a waste secondary battery in a reusable state. As a result of stacking, when the secondary battery waste material is subjected to pyrolysis treatment in an oxygen-containing gas stream, this pyrolysis treatment is performed in two stages, and the electrode material remains in the electrode material until the electrode material is separated from the first-stage metal foil. In the second stage after the metal foil is separated and removed, the decomposition of graphite is suppressed as much as possible, and the sintering phenomenon that increases the particle size of the recovered metal compound as much as possible And found that the present invention was completed.

【0011】従って、本発明の目的は、二次電池廃材か
ら正極材として有用な金属化合物をそのまま再利用可能
な状態で効率良く、しかも、安価に回収することができ
る二次電池廃材からの正極材回収方法を提供することに
ある。
Accordingly, it is an object of the present invention to provide a method for recovering a positive electrode material from a secondary battery waste material, which can efficiently and inexpensively recover a useful metal compound as a positive electrode material from the secondary battery waste material. An object of the present invention is to provide a method for recovering material.

【0012】また、本発明の他の目的は、二次電池廃材
からそのまま再利用可能な状態で回収された金属化合物
が正極材の一部又は全部として用いられている非水電解
液二次電池を提供することにある。
Another object of the present invention is to provide a non-aqueous electrolyte secondary battery in which a metal compound recovered from waste secondary battery in a reusable state is used as part or all of a positive electrode material. Is to provide.

【0013】[0013]

【課題を解決するための手段】すなわち、本発明は、金
属箔に電極材料が塗着されている二次電池廃材を熱分解
処理して電極材料中の金属化合物を回収する二次電池廃
材からの正極材回収方法であり、二次電池廃材を酸素含
有ガス気流中300℃以上500℃未満に加熱して金属
箔から電極材料を剥離させる剥離工程と、得られた剥離
処理物から金属箔を分離除去して粉体物を回収する分離
工程と、回収された粉体物を酸素含有ガス気流中500
℃以上650℃以下に加熱して粉体物中の燃焼性物質を
焼却する焙焼工程と、得られた焙焼物を正極材用途の金
属化合物として回収する回収工程とを含む、二次電池廃
材からの正極材回収方法である。
That is, the present invention is directed to a secondary battery waste material in which a metal foil is coated with an electrode material to thermally decompose a secondary battery waste material to recover a metal compound in the electrode material. A positive electrode material recovery method, wherein a secondary battery waste material is heated to 300 ° C. or more and less than 500 ° C. in an oxygen-containing gas stream to peel off the electrode material from the metal foil, and removing the metal foil from the obtained peeled product. A separation step of separating and removing the powder, and collecting the collected powder in an oxygen-containing gas stream at 500
Waste battery for a secondary battery, comprising: a roasting step of heating to 650 ° C. or higher and incinerating a combustible substance in a powder material; and a recovery step of recovering the obtained roasted product as a metal compound for a cathode material. This is a method of recovering the positive electrode material from the raw material.

【0014】また、本発明は、二次電池廃材から回収さ
れた金属化合物を正極材の一部又は全部として含む非水
電解液二次電池である。
Further, the present invention is a non-aqueous electrolyte secondary battery including a metal compound recovered from waste secondary battery as a part or all of a positive electrode material.

【0015】本発明において、処理の対象となる二次電
池廃材は、二次電池製造時に発生する金属箔塗着材のス
クラップや使用不能になった二次電池から出てくる金属
箔塗着材の廃棄物等の、金属化合物を含む電極材料が金
属箔に塗着されているものである。
In the present invention, the waste material of the secondary battery to be treated is a scrap of the metal foil coating material generated during the manufacture of the secondary battery or a metal foil coating material coming out of the unusable secondary battery. An electrode material containing a metal compound, such as a waste, is applied to a metal foil.

【0016】また、このような二次電池廃材中に含まれ
る電極材料としては、その成分として酸化コバルトや硝
酸コバルト等のコバルト化合物やリチウム化合物等を含
むものであればよく、その電極材料が正極材であって
も、また、負極材料であってもかまわない。この電極材
料については、代表的には、コバルト化合物の含有量が
多いリチウムイオン二次電池、ニッケル水素電池、ニカ
ド電池等の正極材を挙げることができる。
The electrode material contained in such waste material of the secondary battery may be a material containing a cobalt compound such as cobalt oxide or cobalt nitrate, a lithium compound, or the like as a component thereof. It may be a material or a negative electrode material. Representative examples of the electrode material include a positive electrode material such as a lithium ion secondary battery, a nickel hydrogen battery, and a nickel oxide battery having a large content of a cobalt compound.

【0017】更に、このような電極材料と共に二次電池
廃材を形成する金属箔についても、特に制限されるもの
ではなく、代表的にはアルミ箔等が挙げられる。
Further, the metal foil which forms the secondary battery waste together with such an electrode material is not particularly limited, and a typical example is an aluminum foil.

【0018】本発明方法においては、金属箔から電極材
料を剥離させる剥離工程に先駆けて、好ましくは二次電
池廃材を所定の大きさに裁断して裁断物とするのがよ
く、この裁断工程では、二次電池廃材を以後の工程で取
り扱い易い大きさ、通常0.5〜5cm角程度の大きさ
の裁断物にするのがよい。
In the method of the present invention, prior to the stripping step of stripping the electrode material from the metal foil, it is preferable that the secondary battery waste material is cut into a predetermined size to obtain a cut product. The secondary battery waste material is preferably cut into a size that is easy to handle in the subsequent steps, usually about 0.5 to 5 cm square.

【0019】また、二次電池廃材又はその裁断物につい
て、金属箔から電極材料を剥離させる剥離工程は、酸素
含有ガス気流中300℃以上500℃未満、好ましくは
350〜450℃の加熱温度で熱分解処理することによ
り行う。この剥離工程における加熱温度が300℃より
低いと、金属箔からの電極材料の剥離が完全でなくなる
場合が生じ、また、500℃以上になると、フッ素樹脂
バインダー等の結着剤が分解され、グラファイト等の導
電剤の一部が分解されるだけでなく、これらグラファイ
ト等の導電剤が還元剤として作用し、回収目的の金属化
合物、特にコバルト酸リチウムの一部が還元される虞が
生じる。
[0019] The peeling step of peeling the electrode material from the metal foil with respect to the secondary battery waste material or the cut material thereof is performed in an oxygen-containing gas stream at a heating temperature of 300 ° C or more and less than 500 ° C, preferably 350-450 ° C. This is performed by a decomposition process. If the heating temperature in this peeling step is lower than 300 ° C., the peeling of the electrode material from the metal foil may not be complete, and if the heating temperature is 500 ° C. or higher, the binder such as a fluororesin binder is decomposed and the graphite is decomposed. In addition to decomposing a part of the conductive agent such as graphite, the conductive agent such as graphite acts as a reducing agent, and there is a possibility that a metal compound to be recovered, in particular, a part of lithium cobalt oxide may be reduced.

【0020】この剥離工程で用いる装置としては、必要
な熱分解処理を行うことができれば、ロータリーキル
ン、流動床式加熱炉、箱型高温乾燥機等、特に制限され
ないが、攪拌条件下で連続的な操業が可能なロータリー
キルンを用いるのがよい。そして、この剥離工程での熱
分解処理に用いる酸素含有ガスとしては、空気や、酸素
ガスに窒素ガスを適当な割合で混合した混合ガス等、酸
素を適当な割合で含むものであればよく、特に限定され
るものではないが、安価で取扱い易い空気を用いるのが
よい。
The apparatus used in this peeling step is not particularly limited, such as a rotary kiln, a fluidized-bed heating furnace, a box-type high-temperature dryer, etc., as long as the necessary thermal decomposition treatment can be performed. It is preferable to use a rotary kiln that can operate. As the oxygen-containing gas used for the thermal decomposition treatment in this stripping step, air or a mixed gas obtained by mixing nitrogen gas with oxygen gas at an appropriate ratio may be used as long as it contains oxygen at an appropriate ratio. Although not particularly limited, air that is inexpensive and easy to handle is preferably used.

【0021】特に、例えば二次電池廃材又はその裁断物
について送り量10〜200リットル/時間、好ましく
は20〜30リットル/時間の能力を有するロータリー
キルンを用いて剥離工程を連続的に操業する場合には、
好ましくは、加熱温度200〜500℃、より好ましく
は400〜450℃、滞留時間10〜120分、より好
ましくは20〜30分、及び空気導入量10〜1000
リットル/分、より好ましくは100〜200リットル
/分の条件で行うのがよい。このような条件で剥離工程
を操業することにより、この剥離工程での金属箔からの
電極材料の剥離をほぼ完全に遂行できるほか、金属化合
物の還元を抑制して粒度が大きくなる現象を抑制するこ
とができる。
In particular, for example, when the peeling process is continuously operated using a rotary kiln having a feed rate of 10 to 200 liters / hour, preferably 20 to 30 liters / hour, for secondary battery waste materials or cut pieces thereof. Is
Preferably, the heating temperature is 200 to 500 ° C, more preferably 400 to 450 ° C, the residence time is 10 to 120 minutes, more preferably 20 to 30 minutes, and the air introduction amount is 10 to 1000.
It is preferable to perform the reaction at a rate of 1 liter / minute, more preferably 100 to 200 liter / minute. By operating the peeling step under such conditions, the peeling of the electrode material from the metal foil in the peeling step can be almost completely performed, and the phenomenon of increasing the particle size by suppressing the reduction of the metal compound is suppressed. be able to.

【0022】上記剥離工程で得られた剥離処理物は、次
の分離工程で金属箔が可及的に分離除去される。この分
離工程で用いる分離手段としては、篩等の手段、好まし
くは振動篩が用いられ、粉体物が回収される。この粉体
物は、電極材料中の金属化合物を主成分とし、これに導
電剤として添加されたグラファイト等のほか、燃焼しき
れずに残留した結着剤のフッ素樹脂バインダー等が含ま
れている。
In the peeled product obtained in the above peeling step, the metal foil is separated and removed as much as possible in the next separating step. As a separation means used in this separation step, means such as a sieve, preferably a vibrating sieve is used, and the powder is collected. This powder material contains, as a main component, a metal compound in the electrode material, and in addition to graphite and the like added thereto as a conductive agent, a fluorine resin binder as a binder remaining without being completely burned, and the like.

【0023】このようにして回収された粉体物は、焙焼
工程に送られて酸素含有ガス気流中500℃以上650
℃以下、好ましくは550〜600℃の加熱温度で熱分
解処理され、この粉体物中に含まれているグラファイ
ト、フッ素樹脂バインダー等の燃焼性物質が完全に酸化
される。
The powder recovered in this way is sent to a roasting step and is heated to a temperature of 500 ° C. to 650 in an oxygen-containing gas stream.
Thermal decomposition treatment is performed at a heating temperature of not more than 550C, preferably 550 to 600C, and combustible substances such as graphite and fluororesin binder contained in the powder are completely oxidized.

【0024】この焙焼工程における加熱温度が500℃
より低いと、粉体物中の特にグラファイト等が完全に酸
化されず、消失しない場合が生じ、また、650℃を超
えて加熱すると、回収目的の金属化合物、例えばコバル
ト酸リチウムが焼結してその粒径が大きくなる虞が生じ
る。また、この焙焼工程では、粉体物中に存在する導電
剤由来のグラファイト等が還元剤として作用し、金属化
合物が還元されてその粒径が大きくなる虞があるので、
充分に酸素を供給して攪拌条件下に熱分解処理を行う必
要がある。
The heating temperature in this roasting step is 500 ° C.
If it is lower, especially graphite or the like in the powder material is not completely oxidized and does not disappear, and when heated above 650 ° C., the metal compound for recovery, for example, lithium cobalt oxide is sintered. There is a possibility that the particle size becomes large. Further, in this roasting step, graphite or the like derived from the conductive agent present in the powder material acts as a reducing agent, and the metal compound may be reduced and its particle size may be increased.
It is necessary to supply a sufficient amount of oxygen to perform the thermal decomposition treatment under stirring conditions.

【0025】この焙焼工程で用いる装置としては、上記
剥離工程と同様に、必要な熱分解処理を行うことができ
れば特に制限されないが、攪拌条件下で連続的な操業が
可能なロータリーキルンを用いるのがよい。そして、こ
の焙焼工程での熱分解処理に用いる酸素含有ガスについ
ても、空気や、酸素ガスに窒素ガスを適当な割合で混合
した混合ガス等、酸素を適当な割合で含むものであれば
よく、特に限定されるものではないが、安価で取扱い易
い空気を用いるのがよい。
The apparatus used in the roasting step is not particularly limited as long as the necessary thermal decomposition treatment can be performed as in the above-mentioned stripping step, but a rotary kiln capable of continuous operation under stirring conditions is used. Is good. The oxygen-containing gas used in the pyrolysis process in the roasting step may be air or a gas mixture of oxygen gas and nitrogen gas at an appropriate ratio, as long as it contains oxygen at an appropriate ratio. Although not particularly limited, air that is inexpensive and easy to handle is preferably used.

【0026】特に、例えば粉体物送り量5〜10kg/
時間の能力を有するロータリーキルンを用いて焙焼工程
を連続的に操業する場合には、好ましくは、加熱温度が
550〜600℃、滞留時間30〜60分、及び空気導
入量200〜400リットル/分の条件で行うのがよ
い。このように焙焼工程で空気を送り込みながら熱分解
処理することにより、熱分解中温度が角に上昇するのが
防止され、また、粉体物中のグラファイト等が効率良く
酸素と接触して酸化されるので、粉体物中の金属化合物
以外の導電剤や結着剤由来の物質を完全に酸化させて消
失せしめることができるほか、金属化合物の還元を抑制
してその粒度が大きくなる焼結現象を可及的に抑制する
ことができる。
In particular, for example, when the amount of powder fed is 5 to 10 kg /
When the roasting process is continuously operated using a rotary kiln having a time capability, preferably, the heating temperature is 550 to 600 ° C., the residence time is 30 to 60 minutes, and the air introduction amount is 200 to 400 liter / min. It is better to perform under the following conditions. By performing the pyrolysis process while blowing air in the roasting process, the temperature during the pyrolysis is prevented from rising to a corner, and the graphite and the like in the powder material are efficiently oxidized by contact with oxygen. In addition to sintering, it is possible to completely oxidize and eliminate substances derived from conductive agents and binders other than metal compounds in the powder material, and to suppress reduction of metal compounds to increase the particle size. The phenomenon can be suppressed as much as possible.

【0027】この焙焼工程で得られた焙焼物は、次の回
収工程で正極材用途の金属化合物として回収されるが、
この回収工程の際に、必要により振動篩等の手段により
篩分けし、得られた金属化合物中に残存する金属箔残留
物や粗大粒子等を分離除去してもよい。
The roasted product obtained in this roasting step is recovered as a metal compound for a positive electrode material in the next recovery step.
In this recovery step, if necessary, the metal compound may be sieved by means such as a vibrating sieve to separate and remove metal foil residues and coarse particles remaining in the obtained metal compound.

【0028】この回収工程で得られる金属化合物は、通
常、そのカーボン除去率が99重量%以上に達してお
り、カーボンフリーの金属化合物が得られる。このた
め、回収されたコバルト酸リチウム等の金属化合物は、
そのまま正極材製造用原料の一部又は全部としてリサイ
クルすることができ、この場合には二次電池製造時に高
価なコバルト酸リチウム等の金属化合物を無駄なく利用
することができる。
The metal compound obtained in this recovery step usually has a carbon removal rate of 99% by weight or more, and a carbon-free metal compound can be obtained. Therefore, the recovered metal compound such as lithium cobaltate is
It can be recycled as a part or all of the raw material for producing the positive electrode material as it is, and in this case, an expensive metal compound such as lithium cobalt oxide can be used without waste at the time of producing the secondary battery.

【0029】本発明の方法で得られた金属化合物は、こ
れを正極材の一部として用いる場合には、組み合わせる
材料について特に制限はなく、例えばコバルト酸リチウ
ム(LiCoO2)を主体とする活物質、ニッケル酸リチウム(L
iNiO2)、マンガン酸リチウム(LiMn2O4) 等と共に広く用
いることができる。
When the metal compound obtained by the method of the present invention is used as a part of a positive electrode material, there is no particular limitation on a material to be combined. For example, an active material mainly composed of lithium cobalt oxide (LiCoO 2 ) , Lithium nickelate (L
It can be widely used with iNiO 2 ), lithium manganate (LiMn 2 O 4 ) and the like.

【0030】本発明の方法で得られた金属化合物を正極
材の一部又は全部として用いた場合であっても、従来と
同様にして非水電解液二次電池を製造することができ
る。すなわち、負極材料としては、リチウムをドープ、
脱ドープ可能なものであれば、例えば、熱分解炭素、コ
ークス、グラファイト、ガラス繊維状炭素、炭素繊維、
あるいは金属リチウム、リチウム合金等が使用可能であ
り、また、電解液としては、リチウム塩を電解質として
これを有機溶媒に溶解させた電解液が用いられる。ここ
で、有機溶媒としては、特に限定されるものではない
が、例えば、プロピレンカーボネート(PC)、エチレ
ンカーボネート(EC)等の環状カーボネートや、ジメ
チルカーボネート(DMC)、メチルエチルカーボネー
ト(MEC)等の鎖状カーボネートや、1,2-ジメトキシ
エタン(DME)、ジエトキシエタン(DEE)等の鎖
状エーテル等から選ばれる少なくとも1種を用いること
ができ、また、電解質としては、例えば、過塩素酸リチ
ウム(LiClO4)、六弗化リン酸リチウム(LiPF6) 、ホウ弗
化リチウム(LiBF4) 等のリチウム塩を用いることができ
る。
Even when the metal compound obtained by the method of the present invention is used as a part or all of a positive electrode material, a non-aqueous electrolyte secondary battery can be manufactured in the same manner as in the prior art. That is, as the negative electrode material, lithium is doped,
If undoped, for example, pyrolytic carbon, coke, graphite, glass fibrous carbon, carbon fiber,
Alternatively, metal lithium, a lithium alloy, or the like can be used. As the electrolyte, an electrolyte obtained by dissolving a lithium salt in an organic solvent as an electrolyte is used. Here, the organic solvent is not particularly limited, but for example, cyclic carbonates such as propylene carbonate (PC) and ethylene carbonate (EC), dimethyl carbonate (DMC), methyl ethyl carbonate (MEC) and the like. At least one selected from chain carbonates and chain ethers such as 1,2-dimethoxyethane (DME) and diethoxyethane (DEE) can be used. As the electrolyte, for example, perchloric acid Lithium salts such as lithium (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), and lithium borofluoride (LiBF 4 ) can be used.

【0031】なお、本発明の上記剥離工程で回収された
金属箔は、それが酸化されていなくて再生可能なもので
あれば、そのまま金属箔の製造原料としてリサイクルし
てもよく、また、一部酸化されているような場合には、
塩酸、硫酸等の適当な酸やアルカリに溶解して有用な金
属化合物として回収することができる。
The metal foil recovered in the above-mentioned peeling step of the present invention may be recycled as it is as a raw material for producing the metal foil as long as it is not oxidized and can be regenerated. If it is partially oxidized,
It can be recovered as a useful metal compound by dissolving in a suitable acid or alkali such as hydrochloric acid or sulfuric acid.

【0032】[0032]

【発明の実施の形態】以下、実施例及び比較例に基づい
て、本発明の好適な実施の形態を具体的に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be specifically described below based on examples and comparative examples.

【0033】実施例1 試料として、コバルト酸リチウム82重量%、導電剤と
してのカーボン4重量%、及び結着剤としてのフッ素樹
脂バインダー2重量%の組成を有する正極材がアルミ箔
に塗着されたアルミ箔塗着材のスクラップ(アルミ箔塗
着廃材)を用いた。
Example 1 As a sample, a positive electrode material having a composition of 82% by weight of lithium cobalt oxide, 4% by weight of carbon as a conductive agent, and 2% by weight of a fluororesin binder as a binder was applied to an aluminum foil. A scrap of aluminum foil coating material (aluminum foil coating waste material) was used.

【0034】このアルミ箔塗着廃材を約10〜100m
m角に裁断して嵩比重0.1〜0.5の裁断物を調製し
た(裁断工程)。得られた裁断物20〜30リットル/
時間を直径30cm×長さ4m及び傾斜角1/100度
のSUS−310S製のロータリーキルン(高砂工業社
製)の投入口から装入し、回転速度2rpm、加熱温度
400〜450℃、滞留時間20〜30分、及び空気導
入量100〜200リットル/分の条件で熱分解処理を
行い、その排出口から剥離処理物を抜き出した(剥離工
程)。
[0034] About 10 to 100 m
It was cut into m-squares to prepare a cut product having a bulk specific gravity of 0.1 to 0.5 (cutting step). 20 to 30 liters of cut material obtained /
The time was charged from the inlet of a SUS-310S rotary kiln (manufactured by Takasago Industry Co., Ltd.) having a diameter of 30 cm x a length of 4 m and an inclination angle of 1/100 degrees, a rotation speed of 2 rpm, a heating temperature of 400 to 450 ° C, and a residence time of 20. The thermal decomposition treatment was performed under the conditions of 30 to 30 minutes and the air introduction amount of 100 to 200 l / min, and the peeled product was extracted from the outlet (peeling step).

【0035】この剥離工程で得られた剥離処理物を冷却
した後、この剥離処理物9〜20kg/時間を250メ
ッシュの篩目を有する自動振動篩(西村機械社製)に導
入し、振動モータ回転数1800rpm、振幅水平2.
1mm及び垂直3.1mmの条件で篩分けし、篩上から
アルミ箔を分離除去すると共に、篩下から粉体物17k
g/時間を回収した(分離工程)。この粉体物の組成は
リチウム酸コバルト及びカーボンからなり、その平均粒
径(測定法:レーザ回折散乱法)は3.5μmであっ
た。
After cooling the peeled product obtained in this peeling step, 9 to 20 kg / hour of the peeled product is introduced into an automatic vibrating sieve (manufactured by Nishimura Kikai Co., Ltd.) having a 250 mesh sieve, and a vibration motor 1. Rotation speed 1800 rpm, amplitude horizontal
1 mm and vertical 3.1 mm, and the aluminum foil is separated and removed from the top of the sieve, and the powder material 17 k is placed under the sieve.
g / h was recovered (separation step). The composition of the powder was composed of cobalt lithium oxide and carbon, and the average particle size (measuring method: laser diffraction scattering method) was 3.5 μm.

【0036】この分離工程で回収された粉体物10kg
/時間を、直径31mm×長さ4m、有効加熱部2.4
m、及び傾斜角2/100度のインコネル(SUS31
0)製ロータリーキルン(高砂工業社製)の投入口から
装入し、回転速度6rpm、加熱温度570〜630
℃、投入口側から最高温度域への温度勾配30℃/m、
滞留時間29分、及び空気導入量399リットル/分の
条件で熱分解処理を行い、その排出口から焙焼物9kg
/時間を抜き出した(焙焼工程)。
10 kg of powder collected in this separation step
/ Hour, diameter 31 mm x length 4 m, effective heating part 2.4
m, and Inconel (SUS31
0) The rotary kiln (manufactured by Takasago Industry Co., Ltd.) is charged from the inlet, and the rotation speed is 6 rpm and the heating temperature is 570-630
° C, temperature gradient from the inlet side to the highest temperature range 30 ° C / m,
Pyrolysis is performed under the conditions of a residence time of 29 minutes and an air introduction rate of 399 liters / minute, and 9 kg of the roasted product is discharged from the outlet.
/ Time was extracted (roasting step).

【0037】この焙焼工程で得られた焙焼物を冷却した
後、この焙焼物3kg/時間を250メッシュの篩目を
有する自動振動篩(西村機械社製)に導入し、振動モー
タ回転数1800rpm、振幅水平2.1mm及び垂直
3.1mmの条件で篩分けし、篩上から粒径の大きい焼
結物を分離除去すると共に、篩下からコバルト酸リチウ
ムの粉体2.8〜2.9kg/時間を回収した(回収工
程)。
After cooling the roasted product obtained in the roasting step, 3 kg / hour of the roasted product was introduced into an automatic vibrating sieve having a mesh of 250 mesh (manufactured by Nishimura Kikai Co., Ltd.), and the rotational speed of the vibration motor was set at 1800 rpm. , Sieved under the conditions of amplitude 2.1 mm horizontally and 3.1 mm vertically to separate and remove sintered products having a large particle size from above the sieve, and 2.8 to 2.9 kg of lithium cobaltate powder from below the sieve. / Hour was collected (collection step).

【0038】実施例2 上記実施例1で得られたコバルト酸リチウムの回収粉体
90重量%、グラファイト6重量%、及びポリ弗化ビニ
リデン4重量%を混合して正極合剤を調製し、これをN-
メチル−2-ピロリドンに分散せしめてスラリー状とし、
アルミニウム箔に塗布し、乾燥させた後、ローラープレ
スで圧縮成形して帯状の正極を得た。
Example 2 A positive electrode mixture was prepared by mixing 90% by weight of the recovered powder of lithium cobaltate obtained in Example 1 above, 6% by weight of graphite, and 4% by weight of polyvinylidene fluoride. N-
Dispersed in methyl-2-pyrrolidone to make a slurry,
After coating on an aluminum foil and drying, it was compression-molded by a roller press to obtain a belt-shaped positive electrode.

【0039】また、炭素材料93重量%とポリ弗化ビニ
リデン7重量%を混合して負極合剤を調製し、アルミニ
ウム箔に代えて銅箔を使用し、上記正極と同様な方法で
帯状の負極を得た。
Also, 93% by weight of a carbon material and 7% by weight of polyvinylidene fluoride were mixed to prepare a negative electrode mixture, and a copper foil was used in place of the aluminum foil. I got

【0040】このようにして得られた帯状の正極と負極
を、微孔性ポリプロピレンフィルムからなるセパレータ
を介して、巻き付けて捲回体とし、この捲回体に電極リ
ードを取り付け、缶に挿入した後、ECとMECの1対
1混合溶剤にホウ弗化リチウム(LiBF4) 1モルを溶解さ
せて得られた電解液を上記缶中に注入し、缶開口部を封
止して円筒形の非水電解液二次電池を作製した。
The strip-shaped positive electrode and negative electrode thus obtained were wound into a wound body via a separator made of a microporous polypropylene film, and an electrode lead was attached to the wound body and inserted into a can. Thereafter, an electrolyte obtained by dissolving 1 mol of lithium borofluoride (LiBF 4 ) in a one-to-one mixed solvent of EC and MEC is poured into the can, and the opening of the can is sealed to form a cylindrical shape. A non-aqueous electrolyte secondary battery was manufactured.

【0041】得られた二次電池について、環境温度20
℃及び電流制限1Aの下で4.2Vまで定電圧充電を行
い、1時間休止後に2.7Vまで放電させた。次に、1
時間休止後に電流制限1Aの下で4.2Vまで定電圧充
電を行い、その後、−20℃で2.7Vまで放電させ
た。−20℃での放電容量〔Cap(-20)〕を20℃での放
電容量〔Cap(20) 〕で割った容量比〔Cap(-20)/Cap(2
0)〕を求め、放電容量の温度特性を調べた。結果を表1
に示す。
With respect to the obtained secondary battery, an ambient temperature of 20
The battery was charged at a constant voltage of 4.2 V under a temperature limit of 1 ° C. and a current limit of 1 A. After a pause of 1 hour, the battery was discharged to 2.7 V. Then, 1
After a pause, the battery was charged at a constant voltage of 4.2 V under a current limit of 1 A, and then discharged at -20 ° C. to 2.7 V. The capacity ratio [Cap (-20) / Cap (2) obtained by dividing the discharge capacity at 20 ° C [Cap (-20)] by the discharge capacity at 20 ° C [Cap (20)].
0)], and the temperature characteristics of the discharge capacity were examined. Table 1 shows the results
Shown in

【0042】実施例3 炭酸リチウム(Li2CO3)と酸化コバルト(Co3O4) をモル比
(Li/Co)1.0となるように混合し、空気中で900
℃、5時間焼成し、コバルト酸リチウム(LiCoO 2)を得
た。この新鮮なコバルト酸リチウムと上記実施例1で得
られたコバルト酸リチウムの回収粉体とを1:1の割合
で混合し、得られた混合物90重量%、グラファイト6
重量%、及びポリ弗化ビニリデン4重量%の割合で混合
して正極合剤を調製し、上記実施例2と同様にして非水
電解液二次電池を作製した。得られた二次電池につい
て、上記実施例2と同様にして放電容量の温度特性を調
べた。結果を表1に示す。
Example 3 Lithium carbonate (Li)TwoCOThree) And cobalt oxide (CoThreeOFour) Is the molar ratio
(Li / Co) mixed to 1.0 and 900 in air
C. for 5 hours, and lithium cobaltate (LiCoO TwoGet
Was. This fresh lithium cobaltate was obtained in Example 1 above.
Of the recovered lithium cobaltate powder in a ratio of 1: 1
90% by weight of the resulting mixture, graphite 6
% By weight and 4% by weight of polyvinylidene fluoride
To prepare a positive electrode mixture.
An electrolyte secondary battery was manufactured. About the obtained secondary battery
The temperature characteristics of the discharge capacity were adjusted in the same manner as in Example 2 above.
Solid. Table 1 shows the results.

【0043】比較例1 上記実施例3で得られた新鮮なコバルト酸リチウム90
重量%、グラファイト6重量%、及びポリ弗化ビニリデ
ン4重量%の割合で混合して正極合剤を調製し、上記実
施例2と同様にして非水電解液二次電池を作製した。得
られた二次電池について、上記実施例2と同様にして放
電容量の温度特性を調べた。結果を表1に示す。
Comparative Example 1 Fresh lithium cobaltate 90 obtained in Example 3 above
A positive electrode mixture was prepared by mixing at a ratio of 6% by weight of graphite, 6% by weight of graphite and 4% by weight of polyvinylidene fluoride, and a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 2 above. With respect to the obtained secondary battery, the temperature characteristics of the discharge capacity were examined in the same manner as in Example 2 above. Table 1 shows the results.

【0044】[0044]

【表1】 [Table 1]

【0045】上記表1に示す結果から明らかなように、
実施例1で得られたコバルト酸リチウムの回収粉体を用
いた場合には、室温での放電容量は多少低下するもの
の、低温での容量現象は逆に少なく、放電容量の温度依
存性が改善された非水電解液二次電池が得られる。
As is clear from the results shown in Table 1 above,
When the recovered powder of lithium cobaltate obtained in Example 1 was used, although the discharge capacity at room temperature was somewhat reduced, the capacity phenomenon at low temperature was conversely small, and the temperature dependence of the discharge capacity was improved. The obtained non-aqueous electrolyte secondary battery is obtained.

【発明の効果】本発明によれば、二次電池廃材中の電極
材料中の有用な金属化合物をそのまま再利用可能な状態
で効率良く、しかも、安価に回収することができ、工業
的価値の高いものである。
According to the present invention, a useful metal compound in an electrode material in a secondary battery waste can be efficiently recovered as it is in a state where it can be reused as it is, and at a low cost. It is expensive.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 10/40 H01M 10/40 Z (72)発明者 加藤 勝弘 神奈川県川崎市川崎区塩浜3−22−9、多 摩化学工業株式会社川崎研究所内 (72)発明者 白川 康博 神奈川県横浜市磯子区新杉田町8番地、株 式会社東芝内 (72)発明者 酒井 亮 神奈川県横浜市磯子区新杉田町8番地、株 式会社東芝内 Fターム(参考) 4G048 AA04 AB01 AB05 AB08 AC06 AE02 4K001 BA22 CA01 CA11 5H003 AA00 BA01 BA04 BB05 BD01 5H029 AJ00 AK03 5H031 AA09 BB00 BB03 EE01 EE03 RR02 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01M 10/40 H01M 10/40 Z (72) Inventor Katsuhiro Kato 3-22- Shiohama, Kawasaki-ku, Kawasaki-ku, Kanagawa Prefecture 9.Tama Chemical Industry Co., Ltd., Kawasaki Research Laboratory Co., Ltd. Address, Toshiba F-term (reference) 4G048 AA04 AB01 AB05 AB08 AC06 AE02 4K001 BA22 CA01 CA11 5H003 AA00 BA01 BA04 BB05 BD01 5H029 AJ00 AK03 5H031 AA09 BB00 BB03 EE01 EE03 RR02

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 金属箔に電極材料が塗着されている二次
電池廃材を熱分解処理して電極材料中の金属化合物を回
収する二次電池廃材からの正極材回収方法であり、二次
電池廃材を酸素含有ガス気流中300℃以上500℃未
満に加熱して金属箔から電極材料を剥離させる剥離工程
と、得られた剥離処理物から金属箔を分離除去して粉体
物を回収する分離工程と、回収された粉体物を酸素含有
ガス気流中500℃以上650℃以下に加熱して粉体物
中の燃焼性物質を焼却する焙焼工程と、得られた焙焼物
を正極材用途の金属化合物として回収する回収工程とを
含むことを特徴とする二次電池廃材からの正極材回収方
法。
1. A method for recovering a cathode material from a secondary battery waste material in which a secondary battery waste material in which an electrode material is coated on a metal foil is subjected to a thermal decomposition treatment to recover a metal compound in the electrode material. A separation step of heating the battery waste material in an oxygen-containing gas stream at a temperature of 300 ° C. or more and less than 500 ° C. to separate the electrode material from the metal foil, and separating and removing the metal foil from the obtained stripped product to collect a powder material A separating step, a roasting step of heating the recovered powder to 500 ° C. or more and 650 ° C. or lower in an oxygen-containing gas stream to incinerate combustible substances in the powder; A method of recovering cathode material from waste secondary battery material, comprising: a recovery step of recovering as a metal compound for use.
【請求項2】 金属箔から電極材料を剥離させる剥離工
程に先駆けて行なわれ、二次電池廃材を所定の大きさに
裁断する裁断工程を有する請求項1に記載の二次電池廃
材からの正極材回収方法。
2. The positive electrode from waste secondary battery material according to claim 1, further comprising a cutting step of cutting the secondary battery waste material into a predetermined size, which is performed prior to a peeling step of peeling the electrode material from the metal foil. Material collection method.
【請求項3】 焙焼工程では、ロータリーキルンを用い
て攪拌下に加熱する請求項1又は2に記載の二次電池廃
材からの正極材回収方法。
3. The method for recovering positive electrode material from waste secondary battery according to claim 1, wherein in the roasting step, heating is performed with stirring using a rotary kiln.
【請求項4】 剥離工程及び/又は焙焼工程では、酸素
含有ガスとして空気を導入しながら加熱する請求項1〜
3のいずれかに記載の二次電池廃材からの正極材回収方
法。
4. The heating step in which air is introduced as an oxygen-containing gas in the peeling step and / or the roasting step.
4. The method for recovering a positive electrode material from secondary battery waste according to any one of the above items 3.
【請求項5】 回収される金属化合物がコバルト酸リチ
ウムである請求項1〜4のいずれかに記載の二次電池廃
材からの正極材回収方法。
5. The method for recovering positive electrode material from waste secondary battery according to claim 1, wherein the recovered metal compound is lithium cobalt oxide.
【請求項6】 請求項1〜5のいずれかの方法で回収さ
れた金属化合物を正極材の一部又は全部として含むこと
を特徴とする非水電解液二次電池。
6. A non-aqueous electrolyte secondary battery comprising the metal compound recovered by the method according to claim 1 as a part or all of a positive electrode material.
JP15419399A 1999-06-01 1999-06-01 Method for recovering positive electrode material from waste secondary battery and method for producing non-aqueous electrolyte secondary battery using the same Expired - Lifetime JP4491085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15419399A JP4491085B2 (en) 1999-06-01 1999-06-01 Method for recovering positive electrode material from waste secondary battery and method for producing non-aqueous electrolyte secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15419399A JP4491085B2 (en) 1999-06-01 1999-06-01 Method for recovering positive electrode material from waste secondary battery and method for producing non-aqueous electrolyte secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2000348782A true JP2000348782A (en) 2000-12-15
JP4491085B2 JP4491085B2 (en) 2010-06-30

Family

ID=15578879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15419399A Expired - Lifetime JP4491085B2 (en) 1999-06-01 1999-06-01 Method for recovering positive electrode material from waste secondary battery and method for producing non-aqueous electrolyte secondary battery using the same

Country Status (1)

Country Link
JP (1) JP4491085B2 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007088617A1 (en) * 2006-02-02 2007-08-09 Kawasaki Plant Systems Kabushiki Kaisha Method of recovering valuable substance from lithium secondary battery, and recovery apparatus therefor
WO2010002019A1 (en) * 2008-07-03 2010-01-07 住友化学株式会社 Method for recovering oxide-containing battery material from waste battery material
CN102101701A (en) * 2010-12-31 2011-06-22 湖南邦普循环科技有限公司 Method for recovering cobalt and lithium from waste lithium cobaltite and preparing lithium cobaltite
JP2012195073A (en) * 2011-03-15 2012-10-11 Mitsui Mining & Smelting Co Ltd Method for producing recycled material
JP2013182709A (en) * 2012-02-29 2013-09-12 Jx Nippon Mining & Metals Corp Method of separating and recovering collector and positive electrode active material from positive electrode material for lithium ion battery
JP2013211234A (en) * 2012-03-30 2013-10-10 Jx Nippon Mining & Metals Corp Method for separating and recovering positive electrode active material from lithium ion battery positive electrode material
CN103459624A (en) * 2011-06-03 2013-12-18 住友金属矿山株式会社 Method for recovering valuable metals
CN103915661A (en) * 2013-01-09 2014-07-09 中国科学院过程工程研究所 Method for direct recovery and restoration of lithium ion battery positive electrode material
CN105489959A (en) * 2014-09-30 2016-04-13 上海比亚迪有限公司 Recycling method for lithium ion secondary battery negative electrode material
US9394585B2 (en) 2011-02-15 2016-07-19 Sumitomo Chemical Company, Limited Method for recovering active material from waste battery material
JP2017037807A (en) * 2015-08-11 2017-02-16 学校法人早稲田大学 Processing method of lithium ion battery
FR3041820A1 (en) * 2015-09-25 2017-03-31 Eco'ring METHOD AND APPARATUS FOR PRETREATMENT AND FUSION OF PORTABLE BATTERIES OR ACCUMULATORS USED OR FALLEN
KR20170100861A (en) * 2016-02-26 2017-09-05 한국전기연구원 The positive electrode active materical recovery unit and a recovery method using the same
CN108400399A (en) * 2018-02-02 2018-08-14 昆明理工大学 A kind of method that waste lithium manganese oxide battery prepares lithium manganese phosphate/carbon positive electrode
CN109742476A (en) * 2019-01-09 2019-05-10 东北师范大学 A kind of recoverying and utilizing method of waste lithium ion cell anode material
CN112490527A (en) * 2020-12-03 2021-03-12 东莞理工学院 Method for regenerating lithium ion battery positive electrode material, positive electrode material and lithium ion battery
WO2021177200A1 (en) 2020-03-06 2021-09-10 Dowaエコシステム株式会社 Method for concentrating valuable metal contained in lithium ion secondary battery
JP2022506626A (en) * 2018-11-07 2022-01-17 エスケー イノベーション カンパニー リミテッド Lithium precursor regeneration method and lithium precursor regeneration system
CN113948787A (en) * 2021-10-15 2022-01-18 广东瑞科美电源技术有限公司 Recycling and regenerating method and application of retired cobalt acid lithium battery and anode material
WO2022039436A1 (en) * 2020-08-18 2022-02-24 에스케이이노베이션 주식회사 Method for recovering active metal of lithium secondary battery
CN114335782A (en) * 2021-12-27 2022-04-12 上海电力大学 Method for stripping anode material and aluminum foil of waste lithium battery
JP2022545205A (en) * 2020-05-29 2022-10-26 エルジー エナジー ソリューション リミテッド Method for reusing active material using positive electrode scrap
WO2023087800A1 (en) * 2021-11-18 2023-05-25 广东邦普循环科技有限公司 Method for recycling and preparing positive electrode material from waste lithium iron phosphate batteries
EP4164026A4 (en) * 2020-08-24 2023-12-20 LG Energy Solution, Ltd. Apparatus for recovering active material and method for reusing active material by using same
WO2024091795A1 (en) * 2022-10-26 2024-05-02 Battelle Memorial Institute Direct recycling and converting cathode materials into high-performance single crystal cathode materials
US12009492B2 (en) 2021-11-18 2024-06-11 Guangdong Brunp Recycling Technology Co., Ltd. Method for recycling and preparing positive electrode material from waste lithium iron phosphate batteries

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1046266A (en) * 1996-07-31 1998-02-17 Tama Kagaku Kogyo Kk Method for recovering cobalt from spent secondary battery
JPH10255861A (en) * 1997-03-13 1998-09-25 Toshiba Corp Disposal method for waste

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1046266A (en) * 1996-07-31 1998-02-17 Tama Kagaku Kogyo Kk Method for recovering cobalt from spent secondary battery
JPH10255861A (en) * 1997-03-13 1998-09-25 Toshiba Corp Disposal method for waste

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8858677B2 (en) 2006-02-02 2014-10-14 Kawasaki Jukogyo Kabushiki Kaisha Method and apparatus for recovering valuable substance from lithium secondary battery
JP4909907B2 (en) * 2006-02-02 2012-04-04 川崎重工業株式会社 Recovery method and recovery device for recovering valuable material from lithium secondary battery
WO2007088617A1 (en) * 2006-02-02 2007-08-09 Kawasaki Plant Systems Kabushiki Kaisha Method of recovering valuable substance from lithium secondary battery, and recovery apparatus therefor
WO2010002019A1 (en) * 2008-07-03 2010-01-07 住友化学株式会社 Method for recovering oxide-containing battery material from waste battery material
JP2010034021A (en) * 2008-07-03 2010-02-12 Sumitomo Chemical Co Ltd Method of recycling oxide-containing battery material from waste battery material
CN102101701A (en) * 2010-12-31 2011-06-22 湖南邦普循环科技有限公司 Method for recovering cobalt and lithium from waste lithium cobaltite and preparing lithium cobaltite
US9394585B2 (en) 2011-02-15 2016-07-19 Sumitomo Chemical Company, Limited Method for recovering active material from waste battery material
JP2012195073A (en) * 2011-03-15 2012-10-11 Mitsui Mining & Smelting Co Ltd Method for producing recycled material
CN103459624A (en) * 2011-06-03 2013-12-18 住友金属矿山株式会社 Method for recovering valuable metals
US8992662B2 (en) 2011-06-03 2015-03-31 Sumitomo Metal Mining Co. Ltd. Method for recovering valuable metals
JP2013182709A (en) * 2012-02-29 2013-09-12 Jx Nippon Mining & Metals Corp Method of separating and recovering collector and positive electrode active material from positive electrode material for lithium ion battery
JP2013211234A (en) * 2012-03-30 2013-10-10 Jx Nippon Mining & Metals Corp Method for separating and recovering positive electrode active material from lithium ion battery positive electrode material
CN103915661A (en) * 2013-01-09 2014-07-09 中国科学院过程工程研究所 Method for direct recovery and restoration of lithium ion battery positive electrode material
CN105489959A (en) * 2014-09-30 2016-04-13 上海比亚迪有限公司 Recycling method for lithium ion secondary battery negative electrode material
JP2017037807A (en) * 2015-08-11 2017-02-16 学校法人早稲田大学 Processing method of lithium ion battery
FR3041820A1 (en) * 2015-09-25 2017-03-31 Eco'ring METHOD AND APPARATUS FOR PRETREATMENT AND FUSION OF PORTABLE BATTERIES OR ACCUMULATORS USED OR FALLEN
KR20170100861A (en) * 2016-02-26 2017-09-05 한국전기연구원 The positive electrode active materical recovery unit and a recovery method using the same
KR102581658B1 (en) * 2016-02-26 2023-09-21 한국전기연구원 The positive electrode active materical recovery unit and a recovery method using the same
CN108400399A (en) * 2018-02-02 2018-08-14 昆明理工大学 A kind of method that waste lithium manganese oxide battery prepares lithium manganese phosphate/carbon positive electrode
CN108400399B (en) * 2018-02-02 2020-07-07 昆明理工大学 Method for preparing lithium manganese phosphate/carbon cathode material from waste lithium manganate battery
JP2022506626A (en) * 2018-11-07 2022-01-17 エスケー イノベーション カンパニー リミテッド Lithium precursor regeneration method and lithium precursor regeneration system
CN109742476A (en) * 2019-01-09 2019-05-10 东北师范大学 A kind of recoverying and utilizing method of waste lithium ion cell anode material
KR20220148201A (en) 2020-03-06 2022-11-04 도와 에코 시스템 가부시키가이샤 Valuable metal concentration method included in lithium ion secondary battery
WO2021177200A1 (en) 2020-03-06 2021-09-10 Dowaエコシステム株式会社 Method for concentrating valuable metal contained in lithium ion secondary battery
JP7451683B2 (en) 2020-05-29 2024-03-18 エルジー エナジー ソリューション リミテッド How to reuse active materials using cathode scraps
JP2022545205A (en) * 2020-05-29 2022-10-26 エルジー エナジー ソリューション リミテッド Method for reusing active material using positive electrode scrap
WO2022039436A1 (en) * 2020-08-18 2022-02-24 에스케이이노베이션 주식회사 Method for recovering active metal of lithium secondary battery
EP4164026A4 (en) * 2020-08-24 2023-12-20 LG Energy Solution, Ltd. Apparatus for recovering active material and method for reusing active material by using same
CN112490527A (en) * 2020-12-03 2021-03-12 东莞理工学院 Method for regenerating lithium ion battery positive electrode material, positive electrode material and lithium ion battery
CN113948787A (en) * 2021-10-15 2022-01-18 广东瑞科美电源技术有限公司 Recycling and regenerating method and application of retired cobalt acid lithium battery and anode material
WO2023087800A1 (en) * 2021-11-18 2023-05-25 广东邦普循环科技有限公司 Method for recycling and preparing positive electrode material from waste lithium iron phosphate batteries
GB2620690A (en) * 2021-11-18 2024-01-17 Guangdong Brunp Recycling Technology Co Ltd Method for recycling and preparing positive electrode material from waste lithium iron phosphate batteries
GB2620690B (en) * 2021-11-18 2024-06-05 Guangdong Brunp Recycling Technology Co Ltd Method for recycling and preparing positive electrode material from waste lithium iron phosphate batteries
US12009492B2 (en) 2021-11-18 2024-06-11 Guangdong Brunp Recycling Technology Co., Ltd. Method for recycling and preparing positive electrode material from waste lithium iron phosphate batteries
CN114335782B (en) * 2021-12-27 2023-12-15 上海电力大学 Method for stripping waste lithium battery anode material from aluminum foil
CN114335782A (en) * 2021-12-27 2022-04-12 上海电力大学 Method for stripping anode material and aluminum foil of waste lithium battery
WO2024091795A1 (en) * 2022-10-26 2024-05-02 Battelle Memorial Institute Direct recycling and converting cathode materials into high-performance single crystal cathode materials

Also Published As

Publication number Publication date
JP4491085B2 (en) 2010-06-30

Similar Documents

Publication Publication Date Title
JP4491085B2 (en) Method for recovering positive electrode material from waste secondary battery and method for producing non-aqueous electrolyte secondary battery using the same
KR101349900B1 (en) Recycling method of electrode active material of metal oxide, electrode active material of metal oxide for lithium secondary battery, electrode for lithium secondary battery, and lithium secondary battery fabricated thereby
JP2023510361A (en) Method for reusing active material using positive electrode scrap
JP7278475B2 (en) Method for reusing active material using positive electrode scrap
JP2023510563A (en) Method for reusing active material using positive electrode scrap
JP2022542637A (en) Relithiation under oxidizing conditions
EP4145590A1 (en) Method for reusing active material by using positive electrode scrap
EP4120431A1 (en) Apparatus for recovering active material and method for reusing active material by using same
JP7451683B2 (en) How to reuse active materials using cathode scraps
JP7348405B2 (en) How to reuse active materials using cathode scraps
KR20220042659A (en) Reuse method of active material of positive electrode scrap
EP4164027A1 (en) Active material reuse method using cathode scraps
JP7357801B2 (en) How to reuse active materials using cathode scraps
US20240047775A1 (en) Lithium ion battery recycling process utilizing magnetic separation of electrode materials
EP4152477A1 (en) Method for reusing active material by using positive electrode scrap
EP4287353A1 (en) Reuse method of active material of positive electrode scrap
EP4178005A1 (en) Active material reuse method using cathode scraps
KR20230042933A (en) Recovery method of lithium precursor from lithium secondary battery
JP2023510900A (en) Method for reusing active material using positive electrode scrap

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4491085

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term