JP2000348780A - Battery charge state detection device - Google Patents

Battery charge state detection device

Info

Publication number
JP2000348780A
JP2000348780A JP11160018A JP16001899A JP2000348780A JP 2000348780 A JP2000348780 A JP 2000348780A JP 11160018 A JP11160018 A JP 11160018A JP 16001899 A JP16001899 A JP 16001899A JP 2000348780 A JP2000348780 A JP 2000348780A
Authority
JP
Japan
Prior art keywords
soc
battery
voltage
current
electromotive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11160018A
Other languages
Japanese (ja)
Other versions
JP3628912B2 (en
Inventor
Yoshiteru Kikuchi
義晃 菊池
Shigehiro Kawauchi
滋博 川内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP16001899A priority Critical patent/JP3628912B2/en
Publication of JP2000348780A publication Critical patent/JP2000348780A/en
Application granted granted Critical
Publication of JP3628912B2 publication Critical patent/JP3628912B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively correct an SOC-electromotive voltage characteristic. SOLUTION: When an SOC reaches a predetermined low level, a battery ECU 14 sends a charge request to an HVECU 20. Thereby, the HVECU 20 controls a load 22 so that a battery 10 is charged. When the SOC rises to a predetermined value, the battery ECU 14 compares an SOC variation (ΔSOC (electromotive voltage)) during a period in which forcible charging was carried out with the variation amount of the SOC (ΔSOC (accumulation)) provided by accumulating a battery current detected by a current detector 18, and corrects an SOC-electromotive voltage characteristic based on the comparison result.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、所定期間内のバッ
テリ電圧及びバッテリ電流に基づき、予め求められてい
るバッテリ充電状態(以下SOCという)−起電圧特性
を参照して求められた起電圧SOCと、前記所定期間内
のバッテリ電流の積算値から求められた積算SOCとの
比較により、前記SOC−起電圧特性を補正するバッテ
リ充電状態検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromotive voltage SOC obtained by referring to a battery charging state (hereinafter referred to as SOC) -electromotive voltage characteristic which is obtained in advance based on a battery voltage and a battery current within a predetermined period. A battery state-of-charge detecting device that corrects the SOC-electromotive force characteristic by comparing the SOC with the integrated SOC obtained from the integrated value of the battery current within the predetermined period.

【0002】[0002]

【従来の技術】従来より、バッテリの充電状態を検出す
るSOC検出装置が知られている。例えば、電気自動車
のバッテリについてのSOC検出装置は、通常バッテリ
の電流(充放電電流)を積算し、SOCを検出してい
る。電気自動車においては、回生制動による充電は期待
できるが、走行中は基本的にバッテリは放電する。そし
て、走行しないときに充電器によってバッテリを満充電
にすることで充電状態を回復する。従って、SOC検出
装置は、基本的に満充電からの放電電流を積算し、SO
Cを検出している。携帯型のパーソナルコンピュータな
ど各種機器においても、基本的に同様であり、満充電か
らの放電量を積算することでバッテリのSOCを検出し
ている。
2. Description of the Related Art Conventionally, an SOC detecting device for detecting a state of charge of a battery has been known. For example, an SOC detection device for a battery of an electric vehicle normally integrates the current (charge / discharge current) of the battery to detect the SOC. In an electric vehicle, charging by regenerative braking can be expected, but the battery is basically discharged during traveling. Then, when the vehicle is not traveling, the battery is fully charged by the charger to recover the charged state. Therefore, the SOC detection device basically integrates the discharge current from full charge, and
C is detected. The same applies to various devices such as a portable personal computer, and the SOC of the battery is detected by integrating the amount of discharge from full charge.

【0003】エンジン発電機を搭載するハイブリッド車
においても、そのバッテリのSOC検出には、バッテリ
電流の積算を利用する場合が多い。ところが、ハイブリ
ッド車においては、バッテリSOCが50%程度に維持
されるように、充放電を制御する。従って、長期間バッ
テリが満充電とならず、バッテリの充放電電流を長期間
積算し、SOCを検出することになる。充放電電流の検
出の精度はそれ程悪くはないが、長期間充放電電流の検
出を繰り返すと、その誤差がかなり大きくなってしま
う。
[0003] Even in a hybrid vehicle equipped with an engine generator, the SOC of the battery is often detected by using the integration of the battery current. However, in a hybrid vehicle, charging and discharging are controlled so that the battery SOC is maintained at about 50%. Therefore, the battery is not fully charged for a long time, and the SOC is detected by integrating the charge / discharge current of the battery for a long time. Although the accuracy of the detection of the charging / discharging current is not so bad, if the detection of the charging / discharging current is repeated for a long time, the error becomes considerably large.

【0004】一方、バッテリの起電圧と、SOCには一
応の関係がある。SOCが50%に近い範囲では、起電
圧の変化は小さいが、SOCがかなり小さくなったり、
大きくなった場合には、バッテリ起電圧に変化が生じ
る。そこで、このバッテリ起電圧とSOCの関係を予め
調べておき、検出したバッテリ電圧に基づいてSOCを
検出することも行われている。
On the other hand, there is a tentative relationship between the electromotive voltage of the battery and the SOC. In the range where the SOC is close to 50%, the change in the electromotive voltage is small, but the SOC becomes considerably small,
When it becomes large, a change occurs in the battery electromotive voltage. Therefore, the relationship between the battery electromotive voltage and the SOC is checked in advance, and the SOC is detected based on the detected battery voltage.

【0005】なお、ニッケル水素バッテリなどでは、S
OCが50%からかなり離れないと、バッテリ起電圧に
変化がないが、他の検出方法と組み合わせることでバッ
テリ起電圧からのSOC検出が利用される場合も多い。
[0005] In a nickel-metal hydride battery or the like, S
If the OC does not significantly depart from 50%, the battery electromotive voltage does not change, but in many cases, the SOC detection from the battery electromotive voltage is used in combination with another detection method.

【0006】[0006]

【発明が解決しようとする課題】しかし、ニッケル水素
バッテリなどでは、バッテリの充放電を繰り返している
うちに、同じSOCであってもバッテリの起電圧が低下
してくる現象がある。この現象は、バッテリのメモリ効
果として知られている。図2にメモリ効果の例を示す。
このメモリ効果は、予め予測することが難しく、一方こ
れを考慮しないと、検出電圧値から求められるSOCが
大きく異なるものになってしまう。
However, in a nickel-metal hydride battery or the like, there is a phenomenon in which the electromotive voltage of the battery is reduced during repeated charging and discharging of the battery even with the same SOC. This phenomenon is known as the battery memory effect. FIG. 2 shows an example of the memory effect.
This memory effect is difficult to predict in advance, and if not taken into account, the SOC obtained from the detected voltage value will differ greatly.

【0007】本発明は、このメモリ効果などが発生して
もバッテリ電圧に基づいて適切なSOC検出が行えるバ
ッテリ充電状態検出装置を提供することを目的とする。
It is an object of the present invention to provide a battery state-of-charge detecting device capable of performing appropriate SOC detection based on a battery voltage even when the memory effect or the like occurs.

【0008】[0008]

【課題を解決するための手段】本発明は、所定期間内の
バッテリ電圧及びバッテリ電流に基づき、予め求められ
ているバッテリ充電状態(以下SOCという)−起電圧
特性を参照して求められた起電圧SOCと、前記所定期
間内のバッテリ電流の積算値から求められた積算SOC
との比較により、前記SOC−起電圧特性を補正するバ
ッテリ充電状態検出装置において、SOCが所定値以下
になった場合に、その後SOCを一時的に通常の目標値
より高い上限SOCまで強制的に上昇させ、その間のバ
ッテリ電圧及びバッテリ電流に基づき前記SOC−起電
圧特性を補正することを特徴とする。
According to the present invention, there is provided a battery charging state (hereinafter referred to as SOC) -electromotive force characteristic determined in advance based on a battery voltage and a battery current within a predetermined period. Integrated SOC calculated from voltage SOC and the integrated value of the battery current within the predetermined period.
In the battery state-of-charge detecting device that corrects the SOC-electromotive force characteristic, when the SOC falls below a predetermined value, the SOC is temporarily forcibly increased to an upper limit SOC higher than a normal target value. The SOC-electromotive force characteristic is corrected based on the battery voltage and the battery current during that time.

【0009】このように、本発明によれば、SOCが所
定値に至ったときから、強制的な充電を行い、SOC変
化を大きくして、積算によるSOC変化と比較すること
ができる。そこで、SOC−起電圧特性についての高精
度の補正を達成することができる。また、強制的な放電
によっても同様の作用効果が得られる。
As described above, according to the present invention, when the SOC reaches a predetermined value, forcible charging is performed, the SOC change is increased, and the SOC change can be compared with the SOC change by integration. Thus, highly accurate correction of the SOC-electromotive force characteristic can be achieved. Similar effects can be obtained by forced discharge.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態(以下
実施形態という)について、図面に基づいて説明する。
Embodiments of the present invention (hereinafter referred to as embodiments) will be described below with reference to the drawings.

【0011】図1は、本発明のバッテリ充電状態検出装
置をハイブリッド車に適用したシステムの構成を示すブ
ロック図である。バッテリ10は、多数のバッテリセル
からなっている。本実施形態では、このバッテリ10
は、ニッケル水素バッテリであり、20個のバッテリセ
ルをまとめて1ブロックとして、このブロックを12個
接続して、240個のバッテリセルを直列接続した30
0V程度の出力電圧を有している。
FIG. 1 is a block diagram showing the configuration of a system in which the battery state-of-charge detecting device of the present invention is applied to a hybrid vehicle. The battery 10 is composed of a number of battery cells. In the present embodiment, the battery 10
Is a nickel-metal hydride battery, in which 20 battery cells are collectively formed as one block, 12 blocks are connected, and 240 battery cells are connected in series.
It has an output voltage of about 0V.

【0012】バッテリ10の各ブロック毎の電圧及び全
体の電圧は、電圧検出器12で計測され、電池ECU1
4に供給される。また、この電池ECU14には、バッ
テリ温度を検出する温度センサ16、およびバッテリ電
流を検出する電流検出器18が接続されており、バッテ
リ温度及びバッテリ電流が電池ECU14に供給され
る。
The voltage of each block of the battery 10 and the overall voltage are measured by a voltage detector 12 and the battery ECU 1
4 is supplied. A temperature sensor 16 for detecting a battery temperature and a current detector 18 for detecting a battery current are connected to the battery ECU 14, and the battery temperature and the battery current are supplied to the battery ECU 14.

【0013】そして、この電池ECU14は、供給され
る各種データに基づいて、バッテリ10の充電状態(S
OC)を検出し、これをHVECU20に供給する。な
お、電池ECU14は、電圧検出器12から供給される
ブロック毎の電圧値に基づいて、バッテリセルにおける
過放電を検出する。
The battery ECU 14 determines the state of charge of the battery 10 (S
OC) is supplied to the HVECU 20. Note that the battery ECU 14 detects overdischarge in the battery cells based on the voltage value for each block supplied from the voltage detector 12.

【0014】このHVECU20は、アクセル開度、ブ
レーキ踏み込み量、車速などの情報に基づいて決定され
たトルク指令に基づき、負荷22を制御する。負荷22
は、インバータ、モータなどからなり、バッテリ10か
らの直流電力をインバータにより、交流電流に変換して
モータを駆動するものである。そして、HVECU20
からの制御信号によりインバータの動作が制御されるこ
とで、モータよりトルク指令に合致したトルクを出力す
る。また、インバータのスイッチングによって回生制動
も行う。なお、本実施形態は、HV車であるため、エン
ジン及びエンジン駆動のジェネレータを有しており、ジ
ェネレータの発電電力によりバッテリ10の充電ができ
ると共に、エンジンによりモータ出力軸を回転できるよ
うになっている。また、モータとジェネレータは、モー
タジェネレータとし1つの装置として構成してもよい。
The HVECU 20 controls the load 22 based on a torque command determined based on information such as an accelerator opening, a brake depression amount, and a vehicle speed. Load 22
Is composed of an inverter, a motor, and the like, and converts DC power from the battery 10 into AC current by the inverter to drive the motor. And the HVECU 20
The operation of the inverter is controlled by the control signal from the motor, so that the motor outputs a torque that matches the torque command. In addition, regenerative braking is also performed by switching of the inverter. Since the present embodiment is an HV vehicle, it has an engine and an engine-driven generator. The battery 10 can be charged by the power generated by the generator, and the motor output shaft can be rotated by the engine. I have. Further, the motor and the generator may be configured as one device as a motor generator.

【0015】そして、HVECU20は、電池ECU1
4から供給されるバッテリ10のSOCの値に従って、
モータ出力、エンジン出力などを制御して、バッテリ1
0のSOCが50%付近になるように制御している。な
お、バッテリセルの過放電が検出された場合には、バッ
テリ10からの放電を禁止する。
The HVECU 20 is a battery ECU 1
4 according to the SOC value of the battery 10 supplied from
By controlling motor output, engine output, etc., the battery 1
Control is performed so that the SOC of 0 becomes close to 50%. When overdischarge of the battery cell is detected, discharge from the battery 10 is prohibited.

【0016】ここで、電池ECU14においては、電流
検出器18の出力値の積算によって、バッテリ10の充
放電電流量を計算し、SOCを検出している。しかし、
このSOC算出では、上述のように長期間の積算により
SOC検出についての誤差が大きくなる。
Here, the battery ECU 14 calculates the charge / discharge current of the battery 10 by integrating the output values of the current detector 18 and detects the SOC. But,
In the SOC calculation, as described above, the error in the SOC detection increases due to the long-term integration.

【0017】そこで、電圧検出器12において検出した
バッテリ10の電圧値に基づいたSOCの推定も行う。
これは、バッテリ10のSOCと起電圧の関係(SOC
−起電圧特性)を予め求めておき、そのときの起電圧に
応じて、SOCを推定するものである。そして、本実施
形態では、SOC−起電圧特性を利用したSOCの検出
をメインとし、電流積算によるSOCの推定を補助とし
て利用する。
Accordingly, the estimation of the SOC based on the voltage value of the battery 10 detected by the voltage detector 12 is also performed.
This corresponds to the relationship between the SOC of the battery 10 and the electromotive voltage (SOC
-Electromotive voltage characteristic) is obtained in advance, and the SOC is estimated according to the electromotive voltage at that time. In the present embodiment, the detection of the SOC using the SOC-electromotive force characteristic is mainly used, and the estimation of the SOC by current integration is used as an auxiliary.

【0018】ここで、起電圧とは、バッテリ10の出力
電圧から、バッテリ10における内部抵抗に起因する電
圧降下を減算し、そのときのバッテリ電流の影響を排除
した電圧を意味する。すなわち、図3に示すように、バ
ッテリ電圧Vは、電流の増加に伴い減少する。この増減
分は、バッテリ内部抵抗R×電流Iで決定される内部抵
抗に伴う電圧降下分であり、電流Iに対するバッテリ電
圧Vの傾きは内部抵抗値Rに等しくなる。このバッテリ
電流が0の時のバッテリ電圧を起電圧V0という。従っ
て、V0=V+RIにより起電圧を算出できる。なお、
内部抵抗Rは、温度によって変化するため、温度センサ
16により検出したバッテリ温度に応じて補正するとよ
い。すなわち、内部抵抗値Rを温度Tの関数またはマッ
プとして持っておき、検出温度に応じて内部抵抗Rを求
めることが好ましい。
Here, the electromotive voltage means a voltage obtained by subtracting the voltage drop caused by the internal resistance of the battery 10 from the output voltage of the battery 10 and eliminating the effect of the battery current at that time. That is, as shown in FIG. 3, the battery voltage V decreases as the current increases. This increase or decrease is a voltage drop due to the internal resistance determined by the battery internal resistance R × the current I, and the slope of the battery voltage V with respect to the current I becomes equal to the internal resistance value R. The battery voltage when the battery current is 0 is called an electromotive voltage V 0 . Therefore, the electromotive voltage can be calculated from V 0 = V + RI. In addition,
Since the internal resistance R changes depending on the temperature, the internal resistance R may be corrected according to the battery temperature detected by the temperature sensor 16. That is, it is preferable that the internal resistance R be held as a function or a map of the temperature T and the internal resistance R be determined according to the detected temperature.

【0019】そして、図2のように、メモリ効果が発生
すると、この起電圧V0が図3に示すように低くなる。
そこで、起電圧V0により、SOCを推定しようとして
も、同一のSOCに対する起電圧が変化してしまうた
め、正確な推定が行えなくなってしまう。
When the memory effect occurs as shown in FIG. 2, the electromotive voltage V 0 decreases as shown in FIG.
Therefore, even if an attempt is made to estimate the SOC based on the electromotive voltage V 0 , an accurate estimation cannot be performed because the electromotive voltage for the same SOC changes.

【0020】そこで、本実施形態においては、バッテリ
の充電を強制的に行い、そのときのバッテリ電流の積算
に基づくSOCの変化と、SOC−起電圧特性に基づく
SOCを比較して、SOC−起電圧特性を補正する。す
なわち、電池ECU14は、電圧検出器12において検
出したバッテリ電圧及び電流検出器18において検出し
た電流値に基づき起電圧V0を検出する。そして、検出
したSOCが所定の低SOC値(しきい値A)に至った
ときには、電池ECU14は、充電要求を発生する。こ
れによって、HVECU20は、バッテリ10が充電さ
れるように負荷22を制御する。例えば、通常であれば
目標SOCを50%として運転しているところ、目標S
OCを70%(しきい値B)に設定する。これによっ
て、SOCが65%に達するまで、バッテリ10への充
電が行われるように負荷22が制御され、バッテリ10
が強制的にSOC70%まで充電される。そして、SO
Cが70%に至った時点で、目標SOCが50%に戻り
通常の制御に戻る。すなわち、図4において点線で示す
ように、SOCの変動の少ない低負荷運転の場合には、
上述のような制御は行われないが、高負荷運転におい
て、しきい値BにまでSOCが低下したときにはしきい
値Aまでの充電がなされる。
Therefore, in the present embodiment, charging of the battery is forcibly performed, and the SOC change based on the integration of the battery current at that time is compared with the SOC based on the SOC-electromotive force characteristic, and the SOC-electromotive force is compared. Correct the voltage characteristics. That is, the battery ECU 14 detects the electromotive voltage V 0 based on the battery voltage detected by the voltage detector 12 and the current value detected by the current detector 18. Then, when the detected SOC reaches a predetermined low SOC value (threshold A), battery ECU 14 issues a charge request. Accordingly, the HVECU 20 controls the load 22 so that the battery 10 is charged. For example, if the vehicle is normally operated with the target SOC set to 50%, the target S
Set OC to 70% (threshold B). Thus, the load 22 is controlled so that the battery 10 is charged until the SOC reaches 65%, and the battery 10 is charged.
Are forcibly charged to SOC 70%. And SO
When C reaches 70%, the target SOC returns to 50% and returns to normal control. That is, as shown by the dotted line in FIG. 4, in the case of low-load operation with small SOC fluctuation,
Although the above-described control is not performed, in the high load operation, when the SOC decreases to the threshold value B, the charging up to the threshold value A is performed.

【0021】ここで、このSOCがしきい値Aからしき
い値Bに至るまでの電流検出器18で検出したバッテリ
電流を積算する。そして、この積算電流値に基づいてこ
の期間での充電量、すなわちSOCの変化量ΔSOC
(積算)を算出する。なお、充電電流は、必ずしも10
0%充電に利用されるわけではなく一部は熱発生などで
消費される。そこで、積算電流量に、予め求められてい
る充電効率を乗算することでΔSOC(積算)を算出す
る。
Here, the battery current detected by the current detector 18 until the SOC reaches the threshold value B from the threshold value A is integrated. Then, based on this integrated current value, the amount of charge in this period, that is, the amount of change ΔSOC of the SOC
(Integration) is calculated. Note that the charging current is not necessarily 10
It is not used for 0% charging, but partly consumed by heat generation. Therefore, ΔSOC (integrated) is calculated by multiplying the integrated current amount by a previously determined charging efficiency.

【0022】そして、このΔSOC(積算)と、SOC
−起電圧特性から求めたSOCの変化量を比較する。
Then, the ΔSOC (integrated) and the SOC
-Compare the amount of change in SOC obtained from the electromotive force characteristics.

【0023】ここで、積算で求めたSOCの変化量は、
短期間ではかなり正しく、ΔSOC(積算)は、かなり
正しい値である。一方、SOC−起電圧特性から求めた
SOCはメモリ効果などによって、誤差が生じている場
合もある。そこで、電池ECU14において、両SOC
変化、すなわちΔSOC(積算)とΔSOC(起電圧)
を比較する。
Here, the amount of change in SOC obtained by integration is:
It is fairly correct in the short term, and ΔSOC (integration) is a fairly correct value. On the other hand, the SOC obtained from the SOC-electromotive force characteristic may have an error due to a memory effect or the like. Therefore, in the battery ECU 14, both SOCs
Changes, ie, ΔSOC (integrated) and ΔSOC (electromotive force)
Compare.

【0024】SOC−起電圧特性から求めたΔSOC
(起電圧)が正しければ、両SOCは同一であり、図5
に示す理想線に乗る。しかし、ΔSOC(起電圧)に誤
差が生じていた場合には、図5における現実線のよう
に、両者の関係がずれる。
ΔSOC obtained from SOC-electromotive force characteristics
If (electromotive voltage) is correct, both SOCs are the same, and FIG.
Take the ideal line shown in. However, when an error occurs in ΔSOC (electromotive voltage), the relationship between the two shifts as indicated by the solid line in FIG.

【0025】本実施形態では、このようなずれが生じた
場合に、電池ECU14は、SOC−起電圧特性から求
めたSOCが放電量から求めたSOCに近づくように補
正する。これによって、より正しいSOC−起電圧特性
を利用して、SOCの検出が行える。
In the present embodiment, when such a shift occurs, the battery ECU 14 corrects the SOC obtained from the SOC-electromotive force characteristics so as to approach the SOC obtained from the discharge amount. As a result, the SOC can be detected by using the more accurate SOC-electromotive force characteristics.

【0026】ここで、絶対的なSOCが計測できる時点
からの積算値との比較によれば、SOC−起電圧特性を
そのまま訂正できる。すなわち、しきい値AのSOCの
絶対的な値を知ることができれば、その後充電を強制的
に行うことで、SOC−起電圧特性を効果的に補正でき
る。例えば、低SOCにおいては、IV判定(そのとき
の電流と電圧の関係)などによって、絶対的にSOC値
を知ることができる。そこで、その点から強制的な充電
を行いSOC−起電圧特性の学習が行える。
Here, according to the comparison with the integrated value from the time when the absolute SOC can be measured, the SOC-electromotive force characteristic can be corrected as it is. That is, if the absolute value of the SOC of the threshold value A can be known, the SOC-electromotive force characteristic can be effectively corrected by forcibly performing charging thereafter. For example, at low SOC, the SOC value can be absolutely known by IV determination (the relationship between current and voltage at that time). Therefore, forcible charging is performed from that point, and learning of the SOC-electromotive force characteristic can be performed.

【0027】なお、上述の説明においては、充電電流の
積算を利用した。これは、HV車などでは、SOCを低
くすると、その後の運転において、バッテリ10の容量
不足を来す危険があるからである。しかし、目的地を設
定しての走行であって、この先下り坂が継続することが
わかっている場合や、その後停車して充電が行える場合
などでは、強制的な放電を行うこともできる。すなわ
ち、所定の高SOCになった時点から、エンジンを停止
するなどして強制的な放電を行い、所定のSOCに至っ
たときに、通常の運転に戻ることで、上述の充電と同様
の強制的なSOC変化を得ることができ、その際のΔS
OC(積算)と、SOC−起電圧特性から求めたΔSO
C(起電圧)の変化から所望の補正が行える。また、こ
のような放電電流の積算では、放電電流の積算値は、1
00%バッテリ10の容量減少につながるため、放電電
流の積算によるΔSOC(積算)は、非常に正しいもの
であり、SOC−起電圧特性についてより精度の高い補
正が行える。
In the above description, the integration of the charging current is used. This is because, in an HV vehicle or the like, if the SOC is lowered, there is a risk that the capacity of the battery 10 will be insufficient in the subsequent operation. However, when the vehicle is traveling with the destination set and it is known that the downhill is to be continued, or when the vehicle is stopped and then charged, the forced discharge can be performed. That is, when the SOC reaches a predetermined high SOC, forcible discharge is performed by stopping the engine or the like, and when the SOC reaches the predetermined SOC, the normal operation is resumed. SOC change can be obtained, and ΔS
ΔSO calculated from OC (integrated) and SOC-electromotive force characteristics
A desired correction can be made from a change in C (electromotive force). In such integration of the discharge current, the integrated value of the discharge current is 1
Since the capacity of the battery 10 is reduced by 00%, the ΔSOC (integration) based on the integration of the discharge current is very correct, and the SOC-electromotive force characteristic can be corrected with higher accuracy.

【0028】次に、図6のフローチャートに基づいて、
本実施形態の動作について説明する。まず、SOCが所
定のしきい値(しきい値A)を下回ったかを判定する
(S11)。この判定で、NOであれば本実施形態の学
習は行わないため、S11の判定を繰り返す。S11の
判定で、YESであれば、学習用のパラメータを初期化
する(S12)。具体的には、変数SOC1にSOC−
起電圧特性から求めたしきい値Aを入力し、また電流量
の積算値についての変数Q=0とする。そして、このよ
うなセットが終わった場合には、学習を制御する(S1
3)。すなわち、SOC−起電圧特性に基づく、SOC
の算出を行うとともに、積算電流量Qの積算を行う。す
なわち、そのときの検出起電圧に基づき、SOCを求め
るとともに、Qに対し、電流量の積算値を順次加算す
る。
Next, based on the flowchart of FIG.
The operation of the present embodiment will be described. First, it is determined whether the SOC has fallen below a predetermined threshold (threshold A) (S11). If the determination is NO, the learning of the present embodiment is not performed, and thus the determination of S11 is repeated. If the determination in S11 is YES, the learning parameters are initialized (S12). Specifically, SOC- is set to the variable SOC1.
The threshold value A obtained from the electromotive voltage characteristics is input, and a variable Q = 0 for the integrated value of the current amount. When such a set is completed, learning is controlled (S1).
3). That is, the SOC based on the SOC-electromotive force characteristic
Is calculated, and the integrated current amount Q is integrated. That is, based on the detected electromotive voltage at that time, the SOC is obtained, and the integrated value of the current amount is sequentially added to Q.

【0029】そして、システムに充電要求を出力し(S
14)、SOCが所定値(しきい値B)に至ったかを判
定する(S15)。すなわち、SOC−起電圧特性から
求めたSOCが予め定めた値に至ったか否かを判定し、
至っていなかった場合にはS13に戻り処理を繰り返
す。
Then, a charge request is output to the system (S
14) It is determined whether the SOC has reached a predetermined value (threshold B) (S15). That is, it is determined whether or not the SOC obtained from the SOC-electromotive force characteristic has reached a predetermined value,
If not, the process returns to S13 to repeat the processing.

【0030】S15において、YESであれば、最終的
なΔSOCと、ΔSOC(積算)の関係から、SOC−
起電圧特性を修正し学習を終了する(S16)。このよ
うに、ΔSOC(積算)によりSOC−起電圧特性を修
正することができるため、SOC−起電圧特性を正しい
ものに修正することができる。特に、強制的な充電によ
り、SOC変化を大きくして、ΔSOC(積算)と比較
することができる。そこで、SOC−起電圧特性につい
ての高精度の補正を達成することができる。
If YES in step S15, the SOC-SOC (accumulated) relationship is determined based on the relationship between the final .DELTA.SOC and .DELTA.SOC (integrated).
The electromotive force characteristic is corrected, and the learning ends (S16). As described above, since the SOC-electromotive force characteristic can be corrected by ΔSOC (integration), the SOC-electromotive force characteristic can be corrected to a correct one. In particular, it is possible to make the SOC change large by forcible charging and to compare it with ΔSOC (integrated). Thus, highly accurate correction of the SOC-electromotive force characteristic can be achieved.

【0031】なお、強制的な放電を行うフローチャート
も実質的に同一であり、これによっても同様の効果が得
られる。
The flow chart for forcibly discharging is substantially the same, and a similar effect can be obtained.

【0032】[0032]

【発明の効果】以上説明したように、本発明によれば、
強制的な充電により、SOC変化を大きくして、ΔSO
C(積算)と比較することができる。そこで、SOC−
起電圧特性についての高精度の補正を達成することがで
きる。
As described above, according to the present invention,
Due to the forcible charging, the SOC change is increased and ΔSO
It can be compared with C (integration). Therefore, SOC-
Highly accurate correction of the electromotive force characteristic can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施形態の装置の構成を示す図である。FIG. 1 is a diagram illustrating a configuration of an apparatus according to an embodiment.

【図2】 メモリ効果を説明する図である。FIG. 2 is a diagram illustrating a memory effect.

【図3】 起電圧を説明する図である。FIG. 3 is a diagram illustrating an electromotive voltage.

【図4】 SOCの変化を示す図である。FIG. 4 is a diagram showing a change in SOC.

【図5】 ΔSOC(積算)とΔSOC(起電圧)の関
係を示す図である。
FIG. 5 is a diagram showing a relationship between ΔSOC (integrated) and ΔSOC (electromotive force).

【図6】 実施形態の動作を示すフローチャートであ
る。
FIG. 6 is a flowchart illustrating the operation of the embodiment.

【符号の説明】 10 バッテリ、12 電圧検出器、14 電池EC
U、16 温度センサ、18 電流検出器、20 HV
ECU、22 負荷。
[Description of Signs] 10 Battery, 12 Voltage Detector, 14 Battery EC
U, 16 temperature sensor, 18 current detector, 20 HV
ECU, 22 load.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川内 滋博 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 Fターム(参考) 2G016 CA03 CB12 CB13 CB22 CB32 CC01 CC04 CC27 5G003 AA07 BA03 CA06 CC02 DA07 EA05 FA06 GC05 5H030 AA08 AS08 FF42 FF43 FF44 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Shigehiro Kawauchi 41-cho, Yokomichi, Nagakute-cho, Aichi-gun, Aichi F-1 term in Toyota Central R & D Laboratories Co., Ltd. 2G016 CA03 CB12 CB13 CB22 CB32 CC01 CC04 CC27 5G003 AA07 BA03 CA06 CC02 DA07 EA05 FA06 GC05 5H030 AA08 AS08 FF42 FF43 FF44

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 所定期間内のバッテリ電圧及びバッテリ
電流に基づき、予め求められているバッテリ充電状態
(以下SOCという)−起電圧特性を参照して求められ
た起電圧SOCと、前記所定期間内のバッテリ電流の積
算値から求められた積算SOCとの比較により、前記S
OC−起電圧特性を補正するバッテリ充電状態検出装置
において、 SOCが所定値以下になった場合に、その後SOCを一
時的に通常の目標値より高い上限SOCまで強制的に上
昇させ、その間のバッテリ電圧及びバッテリ電流に基づ
き前記SOC−起電圧特性を補正することを特徴とする
バッテリ充電状態検出装置。
1. An electromotive voltage SOC obtained by referring to a battery charging state (hereinafter referred to as SOC) -electromotive voltage characteristic obtained in advance based on a battery voltage and a battery current within a predetermined period, and By comparing with the integrated SOC obtained from the integrated value of the battery current of
In a battery state-of-charge detecting device that corrects an OC-electromotive force characteristic, when the SOC becomes equal to or less than a predetermined value, the SOC is temporarily forcibly increased to an upper limit SOC that is higher than a normal target value. A battery state-of-charge detecting device for correcting the SOC-electromotive force characteristic based on a voltage and a battery current.
【請求項2】 所定期間内のバッテリ電圧及びバッテリ
電流に基づき、予め求められているバッテリ充電状態
(以下SOCという)−起電圧特性を参照して求められ
た起電圧SOCと、前記所定期間内のバッテリ電流の積
算値から求められた積算SOCとの比較により、前記S
OC−起電圧特性を補正するバッテリ充電状態検出装置
において、 SOCが所定値を越えた場合、その後SOCを一時的に
通常の目標値より低い下限SOCまで強制的に下降さ
せ、その間のバッテリ電圧及びバッテリ電流に基づきS
OC−起電圧特性を補正することを特徴とするバッテリ
充電状態検出装置。
2. An electromotive voltage SOC obtained by referring to a battery charging state (hereinafter referred to as SOC) -electromotive voltage characteristic obtained in advance based on a battery voltage and a battery current within a predetermined period, and By comparing with the integrated SOC obtained from the integrated value of the battery current of
In the battery state-of-charge detecting device for correcting the OC-electromotive force characteristic, when the SOC exceeds a predetermined value, the SOC is then temporarily lowered to a lower limit SOC lower than a normal target value, and the battery voltage and the battery voltage during that period are forcibly reduced. S based on battery current
A battery state-of-charge detecting device for correcting an OC-electromotive force characteristic.
JP16001899A 1999-06-07 1999-06-07 Battery charge state detection device Expired - Fee Related JP3628912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16001899A JP3628912B2 (en) 1999-06-07 1999-06-07 Battery charge state detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16001899A JP3628912B2 (en) 1999-06-07 1999-06-07 Battery charge state detection device

Publications (2)

Publication Number Publication Date
JP2000348780A true JP2000348780A (en) 2000-12-15
JP3628912B2 JP3628912B2 (en) 2005-03-16

Family

ID=15706208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16001899A Expired - Fee Related JP3628912B2 (en) 1999-06-07 1999-06-07 Battery charge state detection device

Country Status (1)

Country Link
JP (1) JP3628912B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6700383B2 (en) 2001-06-20 2004-03-02 Matsushita Electric Industrial Co., Ltd. Method of detecting and resolving memory effect
WO2012078613A2 (en) * 2010-12-06 2012-06-14 Coda Automotive, Inc. Electrochemical cell monitoring and balancing circuit with self-diagnostic feature
JP2015119585A (en) * 2013-12-19 2015-06-25 プライムアースEvエナジー株式会社 Battery system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9404956B2 (en) * 2011-12-19 2016-08-02 Ford Global Technologies, Llc Vehicle with selectable battery pack isolation detection circuitry using precision resistors

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6700383B2 (en) 2001-06-20 2004-03-02 Matsushita Electric Industrial Co., Ltd. Method of detecting and resolving memory effect
WO2012078613A2 (en) * 2010-12-06 2012-06-14 Coda Automotive, Inc. Electrochemical cell monitoring and balancing circuit with self-diagnostic feature
WO2012078613A3 (en) * 2010-12-06 2012-08-30 Coda Automotive, Inc. Electrochemical cell monitoring and balancing circuit with self-diagnostic feature
CN102803979A (en) * 2010-12-06 2012-11-28 科达汽车公司 Electrochemical cell monitoring and balancing circuit with self-diagnostic feature
US9007066B2 (en) 2010-12-06 2015-04-14 Coda Energy Holdings Llc Measuring isolated high voltage and detecting isolation breakdown with measures for self-detection of circuit faults
US9568555B2 (en) 2010-12-06 2017-02-14 Peter Fredrick Nortman Electrochemical cell monitoring and balancing circuit with self-diagnostic feature
US9588181B2 (en) 2010-12-06 2017-03-07 Coda Energy Holdings Llc Electrochemical cell monitoring and balancing circuit with self-diagnostic feature
US10416238B2 (en) 2010-12-06 2019-09-17 Exergonix, Inc. Electrochemical cell monitoring and balancing circuit with self-diagnostic feature
JP2015119585A (en) * 2013-12-19 2015-06-25 プライムアースEvエナジー株式会社 Battery system

Also Published As

Publication number Publication date
JP3628912B2 (en) 2005-03-16

Similar Documents

Publication Publication Date Title
JP3864590B2 (en) Battery charge state detection device
JP3964635B2 (en) Memory effect detection method and solution
JP4523738B2 (en) Secondary battery remaining capacity control method and apparatus
US9236745B2 (en) Vehicle control device and vehicle control method
US9973018B2 (en) Electric storage system
JP5397013B2 (en) Battery control device
US20100289452A1 (en) Power supply apparatus for vehicles
US20120161709A1 (en) Secondary-battery control apparatus
JP2003303627A (en) Status detecting device and various devices using the same
US6597072B2 (en) System and method for charging a high voltage bus within a hybrid electric vehicle
JPH10288654A (en) Device for detecting remaining battery capacity
US8947051B2 (en) Storage capacity management system
JP2000357541A (en) Battery management device
US8180508B2 (en) Electricity storage control apparatus and method of controlling electricity storage
JP2010220380A (en) Device for adjusting capacity of battery pack
JP6186248B2 (en) Inverter abnormality determination device
JP2000069606A (en) Battery control unit
JP2000258514A (en) Charged state detector for battery
JP2000166105A (en) Charged state controller for battery
JP2003068370A (en) Detector of charged state of battery
JP2001147260A (en) Remaining capacity detecting device for accumulator battery
JP4144116B2 (en) Battery charge state detection device
JP3628912B2 (en) Battery charge state detection device
JP4165268B2 (en) Battery charge state detection method
JP2001186682A (en) Method of controlling discharge of battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040903

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041209

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121217

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121217

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121217

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121217

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees