JP2000348691A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2000348691A
JP2000348691A JP11154404A JP15440499A JP2000348691A JP 2000348691 A JP2000348691 A JP 2000348691A JP 11154404 A JP11154404 A JP 11154404A JP 15440499 A JP15440499 A JP 15440499A JP 2000348691 A JP2000348691 A JP 2000348691A
Authority
JP
Japan
Prior art keywords
battery
electrolyte
secondary battery
electrolyte secondary
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11154404A
Other languages
Japanese (ja)
Inventor
Hidetoshi Ito
秀俊 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP11154404A priority Critical patent/JP2000348691A/en
Publication of JP2000348691A publication Critical patent/JP2000348691A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To reduce weight without decreasing battery capacity by forming a battery container storing and sealing a positive electrode, a negative electrode, and electrolyte as a compact containing organic high molecular material, as a component material, where the lowest of a softening point, a melting point, and a thermal decomposition temperature is not less than 100 deg.C. SOLUTION: This nonaqueous electrolyte secondary battery is formed by storing a spiral electrode comprising a spiral-type winding body of a layered product of a strip negative electrode 1, a separator 3, a strip positive electrode 2, a separator 3 in a battery container 5, injecting liquid electrolyte, providing a safety valve device 6 over the spiral electrode, and covering a battery lid 7 over it. An organic high molecular material forming the battery container 5 has chemical stability to compound constructing the electrolyte and a mechanical strength enough to keep a battery configuration, and is not decomposed, softened, and melted at 100 deg.C, especially as thermal stability. Specifically, polyethylene, polypropylene, polytetrafluoroethylene, polycarbonate, phenol resin, polyimide or the like is used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は正極、負極、及び非
水電解質を電池容器内に収容・密閉する非水電解質二次
電池に関する。
The present invention relates to a non-aqueous electrolyte secondary battery in which a positive electrode, a negative electrode, and a non-aqueous electrolyte are housed and sealed in a battery container.

【0002】[0002]

【従来の技術】従来、一般用途の二次電池としては、鉛
蓄電池、ニッケル・カドミウム電池等の水溶液系電池が
主流であった。これらの電池は出力密度やサイクル特性
には優れるが、電池重量やエネルギー密度の点では十分
満足できる特性とはいえなかった。
2. Description of the Related Art Conventionally, aqueous secondary batteries such as lead-acid batteries and nickel-cadmium batteries have been the mainstream as general-purpose secondary batteries. These batteries are excellent in output density and cycle characteristics, but are not sufficiently satisfactory in terms of battery weight and energy density.

【0003】近年、リチウム又はリチウム合金を負極に
用いた非水電解質二次電池の研究・開発が盛んにおこな
われている。この電池は軽量で高いエネルギー密度を有
し、自己放電も少ないという優れた特性を有するが、充
放電サイクルの進行に伴い、充電時にリチウムがデンド
ライト状に析出してしまい、これがセパレータを突き破
り、正極に到達して内部短絡を引き起こすことから、実
用化が困難となっている。
In recent years, research and development of non-aqueous electrolyte secondary batteries using lithium or a lithium alloy for a negative electrode have been actively conducted. This battery has excellent characteristics of light weight, high energy density, and low self-discharge.However, with the progress of the charge / discharge cycle, lithium precipitates in a dendrite shape during charging, which breaks through the separator, and To cause an internal short circuit, making practical use difficult.

【0004】これに対し、負極活物質にリチウムイオン
を可逆的にドープ/脱ドープすることのできる材料を用
いた非水電解質二次電池は、化学的、物理的に予め負極
活物質または正極活物質にドープしたリチウムイオン非
水電解質中に溶解しているリチウムイオン等がドープ/
脱ドープすることにより電池の充放電反応が進行するた
め、充電時の負極上へのリチウムのデンドライト状析出
がなく、優れた充放電サイクル特性を示す。
On the other hand, a non-aqueous electrolyte secondary battery using a material capable of reversibly doping / dedoping lithium ions into a negative electrode active material is chemically and physically preliminarily prepared with a negative electrode active material or a positive electrode active material. Lithium ions and the like dissolved in the lithium ion non-aqueous electrolyte doped into the substance
Since the charge / discharge reaction of the battery proceeds by undoping, there is no lithium dendrite-like deposition on the negative electrode during charging, and excellent charge / discharge cycle characteristics are exhibited.

【0005】これらの材料を用いた非水電解質二次電池
の用途としては、ノートパソコン、カムコーダ、携帯式
オーディオ機器、携帯電話等が挙げられるが、このよう
な機器は電子技術の進歩により小型・軽量化が進み、使
用感としてその重量が重視される傾向にある。
[0005] Applications of non-aqueous electrolyte secondary batteries using these materials include notebook personal computers, camcorders, portable audio devices, mobile phones, and the like. Such devices are becoming smaller and smaller due to advances in electronic technology. As the weight is reduced, the weight tends to be emphasized as a feeling of use.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、機器の
小型化、軽量化に伴い、機器全体に対しての電池の占め
る重量が非常に大きくなり、使用感に不都合をもたらし
ていた。このため、電池の軽量化、高エネルギー密度化
が求められているが、電池の軽量化のために正極、負極
の充填量を減少させると、同時に電池容量も減少してし
まうため、電極以外の電池構成部品を軽量化する必要が
ある。特に、正極、負極、電解質を収容・密閉するため
の電池容器は、鉄、ニッケル、アルミニウム等の比重の
大きい金属製であったため、電池総重量の軽量化を妨げ
ていた。
However, with the miniaturization and weight reduction of the equipment, the weight occupied by the battery with respect to the entire equipment has become extremely large, causing a problem in the usability. For this reason, batteries are required to have a lighter weight and a higher energy density.However, when the filling amount of the positive electrode and the negative electrode is reduced to reduce the weight of the battery, the battery capacity is also reduced at the same time. It is necessary to reduce the weight of battery components. In particular, since the battery container for containing and sealing the positive electrode, the negative electrode, and the electrolyte is made of a metal having a large specific gravity, such as iron, nickel, and aluminum, it has been difficult to reduce the total weight of the battery.

【0007】そこで、本発明は、このような従来の実情
に鑑みて提案されたものであり、電池容量を減少させず
に軽量化された非水電解質二次電池を提供することを目
的とする。
Accordingly, the present invention has been proposed in view of such conventional circumstances, and has as its object to provide a non-aqueous electrolyte secondary battery which is reduced in weight without reducing the battery capacity. .

【0008】[0008]

【課題を解決するための手段】上述の目的を達成するた
めに、本発明にかかる非水電解質二次電池は、少なくと
も正極、負極及び電解質が電池容器内に収容・密閉され
てなり、上記電池容器は、軟化点、融点、熱分解温度の
うち最も低いものが100℃以上である有機高分子材料
をその構成材料として含む成形体よりなることを特徴と
する。
In order to achieve the above-mentioned object, a non-aqueous electrolyte secondary battery according to the present invention comprises at least a positive electrode, a negative electrode and an electrolyte housed and sealed in a battery container. The container is characterized in that it is made of a molded article containing, as a constituent material, an organic polymer material whose lowest one among the softening point, melting point and thermal decomposition temperature is 100 ° C. or higher.

【0009】以上のように構成された本発明にかかる非
水電解質二次電池では、電池容器として金属の代わりに
比重の小さい有機高分子材料を使用しているため、電池
重量が軽量化される。
In the non-aqueous electrolyte secondary battery according to the present invention configured as described above, the weight of the battery is reduced because an organic polymer material having a small specific gravity is used instead of a metal for the battery container. .

【0010】また、上記有機高分子材料として、軟化
点、融点、熱分解温度のうち最も低いものが100℃以
上のものを用いることで、電池容器に熱安定性が付与さ
れる。
The use of the organic polymer material having a softening point, a melting point and a thermal decomposition temperature of 100 ° C. or lower has thermal stability to the battery container.

【0011】[0011]

【発明の実施の形態】以下、本発明にかかる好ましい実
施の形態について、図面を参照しながら詳細に説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments according to the present invention will be described below in detail with reference to the drawings.

【0012】本発明を適用した非水電解質二次電池の渦
巻式電極と、本発明を適用した非水電解質二次電池は、
図1と図2に示すように、負極集電体8の両面に負極活
物質層9が形成されてなる帯状負極1、セパレータ3、
正極集電体10の両面に正極活物質層11が形成されて
なる帯状正極2、セパレータ3の順に4層積層し、この
積層体を、帯状負極1を帯状正極2よりも外側となるよ
うに長手方向に沿って渦巻き型に多数回巻回してなる巻
回体を作り、この巻回体の巻き終わり部分に粘着テープ
15を張り付けてなる渦巻型電極14を、電池容器5に
収容し、負極リード12を負極集電体8から導出して電
池容器5の底部に設けた穴に通し、この穴をリベット1
4を用いて塞ぎ、渦巻式電極16の上部に絶縁板4を設
け、帯状正極2と電池蓋7とを電気的に接続するための
正極リード13を正極集電体10から導出して電池蓋7
に溶接し、渦巻式電極16を収容した電池容器5に液体
電解質を注入し、渦巻式電極16の上部に安全弁装置6
を設け、さらにその上に電池蓋7をかぶせてなるもので
ある。
A spiral electrode of a non-aqueous electrolyte secondary battery to which the present invention is applied, and a non-aqueous electrolyte secondary battery to which the present invention is applied,
As shown in FIGS. 1 and 2, a strip-shaped negative electrode 1 in which a negative electrode active material layer 9 is formed on both surfaces of a negative electrode current collector 8, a separator 3,
Four layers of a band-shaped positive electrode 2 having a positive electrode active material layer 11 formed on both surfaces of a positive electrode current collector 10 and a separator 3 are laminated in this order so that the band-shaped negative electrode 1 is located outside the band-shaped positive electrode 2. A spirally wound electrode is formed by winding a number of turns in a spiral shape along the longitudinal direction, and a spirally wound electrode 14 in which an adhesive tape 15 is adhered to a winding end portion of the wound body is accommodated in a battery container 5, The lead 12 is led out of the negative electrode current collector 8 and passed through a hole provided at the bottom of the battery container 5.
4, the insulating plate 4 is provided on the spiral electrode 16, and a positive electrode lead 13 for electrically connecting the belt-shaped positive electrode 2 and the battery cover 7 is led out from the positive electrode current collector 10 to remove the battery cover. 7
And the liquid electrolyte is injected into the battery container 5 containing the spiral electrode 16, and the safety valve device 6 is mounted on the upper part of the spiral electrode 16.
And a battery cover 7 is further placed thereon.

【0013】しかしながら、電池容器5の形状は、上述
のような円筒型に限定されず、楕円筒型渦巻式電極、積
層型電極等の電極の形状に応じて、直方体型、コイン
型、カード型等、様々な形状に成型する事が可能であ
る。
However, the shape of the battery container 5 is not limited to the cylindrical shape as described above, but may be a rectangular parallelepiped shape, a coin shape, or a card shape depending on the shape of the elliptic cylindrical spiral electrode, the laminated electrode and the like. It can be molded into various shapes.

【0014】上記の構成の非水電解質二次電池におい
て、電池容器5を形成する有機高分子材料は、電解質を
構成する化合物に対する化学的安定性、電池形状を維持
するのに十分な機械的強度を有し、特に、非常時におけ
る電池の安全性を保つための熱安定性として、100℃
にて分解、軟化、融解しないことを特徴とする。具体的
な例として、ポリエチレン、ポリプロピレン、ポリテト
ラフルオロエチレン及びその誘導体であるフッ素樹脂、
ポリカーボネート、フェノール樹脂、ポリイミド等が挙
げられる。
In the non-aqueous electrolyte secondary battery having the above-described structure, the organic polymer material forming the battery container 5 has a sufficient chemical stability to the compounds constituting the electrolyte and a sufficient mechanical strength to maintain the battery shape. In particular, 100 ° C. as thermal stability for maintaining the safety of the battery in an emergency
Characterized in that it does not decompose, soften or melt. As specific examples, polyethylene, polypropylene, polytetrafluoroethylene and its derivatives fluororesins,
Examples include polycarbonate, phenolic resin, and polyimide.

【0015】また、電池容器5としては、複数種の有機
高分子や金属薄膜層を多層化したもの、有機高分子に金
属酸化物等の無機化合物を混合したもの、有機高分子表
面に金属蒸着を施したもの等も使用可能である。これに
より、化学的安定性、機械的強度、熱安定性等が高めら
れる。
The battery container 5 includes a plurality of types of organic polymer or metal thin film layers, a mixture of an organic polymer and an inorganic compound such as a metal oxide, or a metal deposition on the surface of the organic polymer. Can be used. Thereby, chemical stability, mechanical strength, thermal stability, etc. are improved.

【0016】また、電池容器5は、上述の有機高分子材
料の層と、金属層とを二層以上に積層した構造をとるこ
とができる。この金属層に用いることのできる材質とし
て、鉄、ニッケル、銅、アルミニウム、スズ等が挙げら
れ、特にアルミニウムが好ましい。電池容器5の壁面厚
さに占める金属層の厚さは様々にとることができるが、
金属層の厚さは、電池容器5の壁面厚さの90%以下と
することが好ましい。
The battery case 5 can have a structure in which two or more layers of the above-mentioned organic polymer material layer and a metal layer are laminated. Materials that can be used for the metal layer include iron, nickel, copper, aluminum, tin, and the like, with aluminum being particularly preferred. The thickness of the metal layer occupying the wall thickness of the battery container 5 can be variously set.
It is preferable that the thickness of the metal layer be 90% or less of the wall thickness of the battery container 5.

【0017】金属層の厚さが90%を上回る場合には、
電池の総重量が大きくなり、軽量化されない虞がある。
そこで、金属層の厚さを90%以下とすることで、電池
は軽量化され、電池内部への水分侵入も防ぐことができ
る。
When the thickness of the metal layer exceeds 90%,
The total weight of the battery may increase, and the battery may not be reduced in weight.
Therefore, by setting the thickness of the metal layer to 90% or less, the battery can be reduced in weight and the intrusion of moisture into the battery can be prevented.

【0018】巻回体が緩まぬように固定するため最外周
に張り付ける粘着テープ15及び粘着剤の材質は、電解
質に用いる有機溶媒や支持電解質塩等の化合物に対する
物理的及び化学的安定性、粘着テープ15の最外周に巻
回されるセパレータ3に対しての十分な粘着強度等を要
求される。特に、非水電解質二次電池に一般的に用いら
れている電解液やセパレータ3に対しては、ポリエチレ
ン、ポリプロピレン、ポリ塩化ビニル、ポリエステル、
ポリイミド、フッ素樹脂系のテープ、及びシリコン系の
粘着剤の使用が望ましい。
The material of the pressure-sensitive adhesive tape 15 and the pressure-sensitive adhesive adhered to the outermost periphery for fixing the wound body so as not to be loosened is physical and chemical stability with respect to compounds such as an organic solvent and a supporting electrolyte salt used for the electrolyte; Sufficient adhesive strength or the like to the separator 3 wound around the outermost periphery of the adhesive tape 15 is required. In particular, for electrolytes and separators 3 generally used for non-aqueous electrolyte secondary batteries, polyethylene, polypropylene, polyvinyl chloride, polyester,
It is desirable to use polyimide, fluororesin-based tapes, and silicone-based adhesives.

【0019】負極活物質層9に用いる負極活物質として
は、アルカリ金属やアルカリ金属合金、充放電反応に伴
いリチウムなどのアルカリ金属イオンをドープ/脱ドー
プ可能な炭素材料、有機高分子材料、金属酸化物、金属
硫化物、リチウム含有遷移金属窒化物等を使用できる。
例として、リチウム、リチウム―アルミニウム合金、黒
鉛、熱分解炭素類、コークス類(石油コークス、ピッチ
コークス、石炭コークス等)、カーボンブラック(アセ
チレンブラック等)、ガラス状炭素、有機高分子材料焼
成体(有機高分子材料を不活性ガス気流中、あるいは真
空中で500℃以上の適当な温度で焼成したもの)、炭
素繊維、ポリアセチレン、ポリアセン、ポリパラフェニ
レン、MoO2、TiS2、LiCo0.5N等が挙げられ
る。また、これらの材料は単独で用いる他、複合体や混
合物としても用いることができる。
Examples of the negative electrode active material used for the negative electrode active material layer 9 include alkali metals, alkali metal alloys, carbon materials capable of doping / dedoping alkali metal ions such as lithium during charge / discharge reactions, organic polymer materials, and metals. Oxides, metal sulfides, transition metal nitrides containing lithium and the like can be used.
Examples include lithium, lithium-aluminum alloy, graphite, pyrolytic carbons, cokes (petroleum coke, pitch coke, coal coke, etc.), carbon black (acetylene black, etc.), glassy carbon, and organic polymer material ( Organic polymer materials fired at an appropriate temperature of 500 ° C. or more in an inert gas stream or vacuum), carbon fiber, polyacetylene, polyacene, polyparaphenylene, MoO 2 , TiS 2 , LiCo 0.5 N, etc. No. In addition, these materials can be used alone or as a composite or a mixture.

【0020】特に、石油コークスを原料として、不活性
ガス気流中にて2800℃〜3100℃で合成した炭素
材料が好ましい。又、炭素化の際にリン化合物、または
ホウ素化合物を添加することにより、ドープ/脱ドープ
可能なリチウム量を大きなものとした炭素材料も使用可
能である。
In particular, a carbon material synthesized from petroleum coke at 2800 ° C. to 3100 ° C. in an inert gas stream is preferable. It is also possible to use a carbon material in which the amount of lithium that can be doped / undoped is increased by adding a phosphorus compound or a boron compound during carbonization.

【0021】正極活物質層11に用いる正極活物質とし
ては、LiαMβOγ(ただし、Mは1種以上の遷移金
属で、好ましくはMn、Co、Ni、Crの少なくとも
1種を表す。)を含んだものを使用できる。例として、
LiMn24、Li1+xMn2 -x4、LiMn2-xCrx
4、LiMn2-xCox4、LiCoO2、LiNi
2、LiNixCo1-x2(ただし0<x<1)で表さ
れる複合酸化物が挙げられる。特に、これらの中でも、
広い温度範囲、特に100℃以上の高温にて化学的安定
性に優れたスピネル構造のLiMn24、及びこれに他
の元素を置換導入した誘導体が好ましい。
The positive electrode active material used for the positive electrode active material layer 11 includes LiαMβOγ (where M is one or more transition metals, and preferably represents at least one of Mn, Co, Ni, and Cr). Anything can be used. As an example,
LiMn 2 O 4 , Li 1 + x Mn 2 -x O 4 , LiMn 2-x Cr x
O 4 , LiMn 2-x Co x O 4 , LiCoO 2 , LiNi
O 2 and a composite oxide represented by LiNi x Co 1-x O 2 (where 0 <x <1). In particular, among these,
LiMn 2 O 4 having a spinel structure excellent in chemical stability over a wide temperature range, particularly at a high temperature of 100 ° C. or higher , and derivatives obtained by substituting and introducing other elements into them are preferable.

【0022】電池容器5内に注入される液体電解質とし
ては、支持電解質塩を有機溶媒に溶解させた溶液を使用
できる。この有機溶媒として、特に限定されるものでは
ないが、例えばプロピレンカーボネート、エチレンカー
ボネート、ジエチルカーボネート、ジメチルカーボネー
ト、メチルエチルカーボネート、1,2―ジメトキシエ
タン、1,2―ジエトキシエタン、γ―ブチルラクト
ン、テトラヒドロフラン、1,3―ジオキソラン、ジエ
チルエーテル、スルホラン、メチルスルホラン、アセト
ニトリル、プロピオニトリル等の単独もしくは2種類以
上の混合溶媒が使用できる。
As the liquid electrolyte injected into the battery container 5, a solution in which a supporting electrolyte salt is dissolved in an organic solvent can be used. Examples of the organic solvent include, but are not limited to, propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, and γ-butyl lactone. , Tetrahydrofuran, 1,3-dioxolane, diethyl ether, sulfolane, methylsulfolane, acetonitrile, propionitrile and the like, alone or in combination of two or more.

【0023】支持電解質塩としては、従来公知のものを
いずれも使用できる。具体的には、LiClO4、Li
AsF6、LiPF6、LiB(C654、LiCl、
LiBr、CH3SO3Li、CF3SO3Li等が挙げら
れる。
As the supporting electrolyte salt, any conventionally known one can be used. Specifically, LiClO 4 , Li
AsF 6 , LiPF 6 , LiB (C 6 H 5 ) 4 , LiCl,
LiBr, CH 3 SO 3 Li, CF 3 SO 3 Li, and the like.

【0024】また、上記液体電解質に代わり、高分子ゲ
ル電解質もしくは高分子固体電解質を用いることができ
る。高分子ゲル電解質もしくは高分子固体電解質に用い
ることのできる高分子としては、ポリフッ化ビニリデ
ン、ポリアクリロニトリル、ポリエチレンオキシド、ポ
リプロピレンオキシド、ポリメタクリル酸メチル、ニト
リル―ブタジエンゴム及びこれらの共重合体等が挙げら
れる。
In place of the above liquid electrolyte, a polymer gel electrolyte or a polymer solid electrolyte can be used. Examples of the polymer that can be used for the polymer gel electrolyte or the polymer solid electrolyte include polyvinylidene fluoride, polyacrylonitrile, polyethylene oxide, polypropylene oxide, polymethyl methacrylate, nitrile-butadiene rubber, and copolymers thereof. Can be

【0025】上述の高分子に膨潤させる液体電解質とし
て、リチウム塩などの電解質が有機溶媒に溶解した溶液
を用いることができる。この有機溶媒として、特に限定
されるものではないが、例えばプロピレンカーボネー
ト、エチレンカーボネート、ジエチルカーボネート、ジ
メチルカーボネート、メチルエチルカーボネート、1,
2―ジメトキシエタン、1,2―ジエトキシエタン、γ
―ブチルラクトン、テトラヒドロフラン、1,3―ジオ
キソラン、ジエチルエーテル、スルホラン、メチルスル
ホラン、アセトニトリル、プロピオニトリル等の単独も
しくは2種類以上の混合溶媒が使用できる。
As the liquid electrolyte for swelling the polymer, a solution in which an electrolyte such as a lithium salt is dissolved in an organic solvent can be used. Examples of the organic solvent include, but are not particularly limited to, propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate,
2-dimethoxyethane, 1,2-diethoxyethane, γ
-Single solvent such as -butyllactone, tetrahydrofuran, 1,3-dioxolane, diethylether, sulfolane, methylsulfolane, acetonitrile, propionitrile, or a mixture of two or more solvents can be used.

【0026】[0026]

【実施例】次に、本発明を適用した具体的な実施例につ
いて述べる。
Next, specific examples to which the present invention is applied will be described.

【0027】<実施例1>負極活物質層9に用いる負極
活物質としては、石油コークスを、不活性ガス気流中に
3100℃にて焼成し、これを粉砕して得られた平均粒
径20μmの炭素材料粉末を用いた。このようにして得
た負極活物質を90重量部と、結着剤としてフッ化ビニ
リデン樹脂を10重量部とを混合し、負極合剤を調製し
た。この負極合剤を、溶剤としてN―メチルピロリドン
を用いて分散させ、スラリー(ペースト)にした。負極
集電体8として厚さ15μmの帯状の銅箔を用い、この
負極集電体8の両面に負極合剤スラリーを塗布し、負極
活物質層9を形成した。負極合剤スラリー中の溶剤を乾
燥除去した後、圧縮成型して、負極活物質層9の厚さを
両面ともに80μmとし、帯状負極1を作製した。帯状
負極1の幅は54.5mm、長さは520mmとした。
<Example 1> As a negative electrode active material used for the negative electrode active material layer 9, petroleum coke was baked at 3100 ° C in an inert gas stream, and this was pulverized to obtain an average particle diameter of 20 µm. Was used. 90 parts by weight of the negative electrode active material thus obtained and 10 parts by weight of vinylidene fluoride resin as a binder were mixed to prepare a negative electrode mixture. This negative electrode mixture was dispersed using N-methylpyrrolidone as a solvent to form a slurry (paste). A 15 μm-thick strip-shaped copper foil was used as the negative electrode current collector 8, and a negative electrode mixture slurry was applied to both surfaces of the negative electrode current collector 8 to form a negative electrode active material layer 9. After drying and removing the solvent in the negative electrode mixture slurry, compression molding was performed to make the thickness of the negative electrode active material layer 9 on both sides 80 μm, thereby producing the belt-shaped negative electrode 1. The width of the strip-shaped negative electrode 1 was 54.5 mm, and the length was 520 mm.

【0028】正極活物質層11に用いる正極活物質とし
ては、スピネル構造の15μmのLiMn24粉末を用
いた。この正極活物質を91重量部と、導電剤としてグ
ラファイト6重量部と、結着剤としてフッ化ビニリデン
樹脂3重量部とを混合して正極合剤を調製した。この正
極合剤を、溶剤としてN―メチルピロリドンを用いて分
散させ、スラリー(ペースト)にした。正極集電体10
として厚さ20μmの帯状のアルミニウム箔を用い、こ
の正極集電体10の両面に正極合剤スラリーを塗布し、
正極活物質層11を形成した。正極合剤スラリー中の溶
剤を乾燥除去した後、圧縮成型して、正極活物質層11
の厚さを両面ともに80μmとし、帯状正極2を作製し
た。帯状正極2の幅は53.5mm、長さは470mm
とした。
As a positive electrode active material used for the positive electrode active material layer 11, LiMn 2 O 4 powder having a spinel structure of 15 μm was used. 91 parts by weight of this positive electrode active material, 6 parts by weight of graphite as a conductive agent, and 3 parts by weight of vinylidene fluoride resin as a binder were mixed to prepare a positive electrode mixture. This positive electrode mixture was dispersed using N-methylpyrrolidone as a solvent to form a slurry (paste). Positive electrode current collector 10
A positive electrode mixture slurry is applied to both surfaces of the positive electrode current collector 10 using a 20 μm-thick strip-shaped aluminum foil as
The positive electrode active material layer 11 was formed. After the solvent in the positive electrode mixture slurry is removed by drying, compression molding is performed to form the positive electrode active material layer 11.
Was 80 μm on both sides to produce a belt-shaped positive electrode 2. The width of the belt-shaped positive electrode 2 is 53.5 mm and the length is 470 mm
And

【0029】帯状負極1と帯状正極2との間に介在させ
るセパレータ3として、厚さ25μm、幅58mmの微
多孔性ポリプロピレンフィルムを使用した。
As the separator 3 interposed between the strip-shaped negative electrode 1 and the strip-shaped positive electrode 2, a microporous polypropylene film having a thickness of 25 μm and a width of 58 mm was used.

【0030】帯状負極1、セパレータ3、帯状正極2、
セパレータ3の順に4層積層し、この積層体を、帯状負
極1が帯状正極2よりも外側となるように長さ方向に沿
って渦巻型に多数回巻回した。この巻回体が緩まぬよう
に固定するため、上記粘着テープ15を巻回体の巻き終
わり部分に粘着テープ15の長手方向を沿わせて貼り付
け、外形16.5mmの渦巻式電極16とした。
A strip-shaped negative electrode 1, a separator 3, a strip-shaped positive electrode 2,
Four layers were laminated in the order of the separator 3, and the laminate was spirally wound many times along the length direction such that the strip-shaped negative electrode 1 was located outside the strip-shaped positive electrode 2. In order to fix the wound body so as not to be loosened, the adhesive tape 15 is attached to the end portion of the wound body along the longitudinal direction of the adhesive tape 15 to form a spiral electrode 16 having an outer diameter of 16.5 mm. .

【0031】粘着テープ15としては、厚さ25μmの
ポリエステルフィルムを支持体としてシリコン系の粘着
剤を塗布したものを、幅4.9mm、長さ45.5mm
に切り出したものを用いた。
The adhesive tape 15 is a polyester film having a thickness of 25 μm coated with a silicone-based adhesive on a support, and has a width of 4.9 mm and a length of 45.5 mm.
The cut out was used.

【0032】上述のように作製した渦巻式電極16を、
電池容器5に収容した。この電池容器5は、軟化点26
0℃、融点320℃のポリテトラフルオロエチレンを、
内径17.5ミリ、外径17.9ミリに圧縮成型するこ
とにより作製された。
The spiral electrode 16 manufactured as described above is
It was housed in a battery container 5. This battery container 5 has a softening point 26
0 ° C., polytetrafluoroethylene having a melting point of 320 ° C.
It was produced by compression molding to an inner diameter of 17.5 mm and an outer diameter of 17.9 mm.

【0033】次に、ニッケル製負極リード12を負極集
電体8から導出して電池容器5の底部に設けた穴に通
し、この穴をポリテトラフルオロエチレン製のリベット
14を用いて熱融着により塞いだ。渦巻式電極16上部
には絶縁板4を配し、また帯状正極2と電池蓋7とを電
気的に接続するためアルミニウム製正極リード13を正
極集電体10から導出して電池蓋7に、それぞれ溶接し
た。
Next, the negative electrode lead 12 made of nickel was led out of the negative electrode current collector 8 and passed through a hole provided at the bottom of the battery container 5, and this hole was heat-sealed using a rivet 14 made of polytetrafluoroethylene. Blocked by. The insulating plate 4 is disposed on the spiral electrode 16, and an aluminum positive electrode lead 13 for electrically connecting the belt-shaped positive electrode 2 and the battery lid 7 is led out from the positive electrode current collector 10 to the battery lid 7. Each was welded.

【0034】電解質としては、エチレンカーボネートと
ジエチルカーボネートとを重量比率3:7で混合した溶
媒中に、支持電解質塩としてLiPF6を1mol/d
3の割合で溶解した溶液を作製し、これを液体電解質
として上述の渦巻式電極16を収容した電池容器5の中
に注入した。
As the electrolyte, 1 mol / d of LiPF 6 was used as a supporting electrolyte salt in a solvent in which ethylene carbonate and diethyl carbonate were mixed at a weight ratio of 3: 7.
A solution dissolved at a rate of m 3 was prepared, and the solution was injected as a liquid electrolyte into the battery container 5 containing the above-mentioned spiral electrode 16.

【0035】渦巻式電極16の上部に電流遮断機構を有
する安全弁装置6を設置し、さらに電池容器5の上部に
電池蓋7をかぶせ、この電池蓋7の周囲を円筒断面の中
心に向かって圧縮変形させることで固定して電池内の気
密性を保持させた。以上の工程により、直径17.9m
m、高さ64mmの円筒型非水電解質二次電池を作製し
た。
A safety valve device 6 having a current cut-off mechanism is installed above the spiral electrode 16, and a battery cover 7 is placed over the battery container 5, and the periphery of the battery cover 7 is compressed toward the center of the cylindrical section. The battery was fixed by deformation to maintain the airtightness in the battery. By the above steps, the diameter is 17.9m
m, a cylindrical non-aqueous electrolyte secondary battery having a height of 64 mm was produced.

【0036】<実施例2>電池容器5として、溶融鋳型
成型により作製した軟化点140℃、融点160℃のポ
リプロピレン製容器を用いた以外は、実施例1と同様に
して非水電解質二次電池を作製した。
<Example 2> A non-aqueous electrolyte secondary battery was manufactured in the same manner as in Example 1 except that a polypropylene container having a softening point of 140 ° C and a melting point of 160 ° C was used as the battery container 5 and produced by melt molding. Was prepared.

【0037】<実施例3>電池容器5として、ポリテト
ラフルオロエチレン0.08mm/アルミニウム0.0
4mm/ポリテトラフルオロエチレン0.08mmの3
層積層構造の容器を用いた以外は、実施例1と同様にし
て非水電解質二次電池を作製した。
<Embodiment 3> As the battery container 5, polytetrafluoroethylene 0.08 mm / aluminum 0.0
4mm / polytetrafluoroethylene 0.08mm3
A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1, except that a container having a layered structure was used.

【0038】<実施例4>帯状負極1と帯状正極2の間
に介在させるセパレータ3及び液体電解質に代わり、高
分子ゲル電解質を用いた以外は、実施例1と同様にして
非水電解質二次電池を作製した。この高分子ゲル電解質
は、ポリフッ化ビニリデン20重量部と、実施例1と同
様の液体電解質80重量部とを混合し、この混合物をテ
トラヒドロフランで希釈した後に金属板上に流延し、常
温でテトラヒドロフランを乾燥除去することにより厚さ
25μmのゲル膜として作製した。
Example 4 A non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 except that a polymer gel electrolyte was used instead of the separator 3 and the liquid electrolyte interposed between the strip-shaped negative electrode 1 and the strip-shaped positive electrode 2. A battery was manufactured. This polymer gel electrolyte was prepared by mixing 20 parts by weight of polyvinylidene fluoride and 80 parts by weight of the same liquid electrolyte as in Example 1, diluting this mixture with tetrahydrofuran, casting the mixture on a metal plate, and adding tetrahydrofuran at room temperature. Was dried and removed to prepare a gel film having a thickness of 25 μm.

【0039】<比較例1>実施例1と同様に作製した渦
巻式電極16を、図3に示すようなニッケルめっきを施
した内径17.5mm、外径17.9mmの鉄製電池容
器20に収容した。渦巻式電極16上下両面には絶縁板
4を配設し、帯状負極1と電池容器20とを電気的に接
続するためニッケル製負極リード12を負極集電体8か
ら導出して電池容器20に、また帯状正極2と電池蓋2
3とを電気的に接続するためアルミニウム製正極リード
13を正極集電体10から導出して電池蓋23に、それ
ぞれ溶接した。この電池容器20に実施例1と同一の液
体電解質を注入し、電池容器20の開口部を電池内の気
密性を保持するための絶縁封口ガスケット22を介し
て、電流遮断機構を有する安全弁装置21並びに電池蓋
23を固定し、直径17.9mm、高さ64mmの円筒
型非水電解質二次電池を作製した。
<Comparative Example 1> A spiral electrode 16 manufactured in the same manner as in Example 1 was housed in a nickel-plated iron battery container 20 having an inner diameter of 17.5 mm and an outer diameter of 17.9 mm as shown in FIG. did. The insulating plate 4 is disposed on both upper and lower surfaces of the spiral electrode 16, and the nickel negative electrode lead 12 is led out from the negative electrode current collector 8 to electrically connect the strip-shaped negative electrode 1 to the battery container 20. And the belt-shaped positive electrode 2 and the battery lid 2
The aluminum positive electrode lead 13 was drawn out of the positive electrode current collector 10 and electrically welded to the battery lid 23 to electrically connect the battery 3 to the battery. The same liquid electrolyte as in the first embodiment is injected into this battery container 20, and the opening of the battery container 20 is passed through an insulating sealing gasket 22 for maintaining the airtightness of the battery, and a safety valve device 21 having a current cutoff mechanism is provided. The battery cover 23 was fixed, and a cylindrical nonaqueous electrolyte secondary battery having a diameter of 17.9 mm and a height of 64 mm was produced.

【0040】<比較例2>実施例4と同様に作製した渦
巻式電極16を、ニッケルめっきを施した内径17.5
mm、外径17.9mmの鉄製電池容器20に収容し
た。渦巻式電極16上下両面には絶縁板4を配設し、帯
状負極1と電池容器20とを電気的に接続するためニッ
ケル製負極リード12を負極集電体8から導出して電池
容器20に、また帯状正極2と電池蓋23とを電気的に
接続するためアルミニウム製正極リード13を正極集電
体10から導出して電池蓋23に、それぞれ溶接した。
この電池容器20の開口部を、電池内の気密性を保持す
るための絶縁封口ガスケット22を介して、電流遮断機
構を有する安全弁装置21並びに電池蓋23を固定し、
直径17.9mm、高さ64mmの円筒型非水電解質二
次電池を作製した。
<Comparative Example 2> A spiral electrode 16 manufactured in the same manner as in Example 4 was obtained by plating a nickel-plated inner diameter of 17.5.
mm and an outer diameter of 17.9 mm. The insulating plate 4 is disposed on both upper and lower surfaces of the spiral electrode 16, and the nickel negative electrode lead 12 is led out from the negative electrode current collector 8 to electrically connect the strip-shaped negative electrode 1 to the battery container 20. Further, in order to electrically connect the belt-shaped positive electrode 2 and the battery cover 23, an aluminum positive electrode lead 13 was led out from the positive electrode current collector 10 and was welded to the battery cover 23, respectively.
A safety valve device 21 having a current cutoff mechanism and a battery lid 23 are fixed to the opening of the battery container 20 via an insulating sealing gasket 22 for maintaining airtightness in the battery,
A cylindrical nonaqueous electrolyte secondary battery having a diameter of 17.9 mm and a height of 64 mm was produced.

【0041】<比較例3>電池容器5として、溶融鋳型
成型により作製した軟化点70℃、融点150℃のポリ
塩化ビニル製容器を用いた以外は、実施例1と同様にし
て非水電解質二次電池を作製した。
Comparative Example 3 A non-aqueous electrolyte was prepared in the same manner as in Example 1 except that a polyvinyl chloride container having a softening point of 70 ° C. and a melting point of 150 ° C. was used as the battery container 5. A secondary battery was manufactured.

【0042】次に、上述の電池を各々30本ずつ作製
し、上限電圧を4.2Vとして1Aの定電流で7時間充
電後、400mAの定電流で2.75Vまで放電する充
放電サイクルを繰り返した。また、上限電圧を4.2V
として1Aの定電流で7時間充電した後に、100℃の
高温層に5時間放置し、この時の電池外観変化を目視に
て観察した。
Next, a charge / discharge cycle was repeated, in which 30 batteries each described above were produced, charged at a constant current of 1 A for 7 hours at an upper limit voltage of 4.2 V, and then discharged at a constant current of 400 mA to 2.75 V. Was. The upper limit voltage is 4.2V
After charging at a constant current of 1 A for 7 hours, the battery was allowed to stand in a high-temperature layer at 100 ° C. for 5 hours, and the appearance change of the battery at this time was visually observed.

【0043】各実施例、比較例における電池の電池総重
量、10サイクル目と500サイクル目の放電容量、及
び電池総重量あたりのエネルギー密度について、電池3
0本の平均値を表1に示す。
The total weight of the batteries in each of the examples and comparative examples, the discharge capacity at the 10th and 500th cycles, and the energy density per the total weight of the batteries were as follows.
Table 1 shows the average value of 0 pieces.

【0044】[0044]

【表1】 [Table 1]

【0045】比重の小さい有機高分子材料製の電池容器
を使用しているため、電池総重量に関して、実施例1〜
4及び比較例3は、比較例1,2と比較して小さい。こ
れは、比較例1,2では鉄製の電池容器を使用している
ためである。実施例1〜4及び比較例3のように、電池
容器の材質を有機高分子とすることで、電池総重量当た
りのエネルギー密度は20Wh/kg以上向上できる。
Since a battery container made of an organic polymer material having a small specific gravity is used, the batteries of Examples 1 to 4 were used with respect to the total weight of the battery.
4 and Comparative Example 3 are smaller than Comparative Examples 1 and 2. This is because iron battery containers are used in Comparative Examples 1 and 2. As in Examples 1 to 4 and Comparative Example 3, when the material of the battery container is an organic polymer, the energy density per battery total weight can be improved by 20 Wh / kg or more.

【0046】一方、500サイクル目の放電容量は実施
例3及び比較例1,2に比べ、実施例1,2,4,及び
比較例3が小さい。そこで、これらの電池を解体し、電
池内の電解質を取り出して含有水分量を測定したとこ
ろ、実施例1,2,4及び比較例3からは実施例3及び
比較例1,2に比べ多量の水分が検出された。このこと
から、500サイクル目における放電容量の減少は、電
池内への水分侵入によるものと考えられる。水分侵入が
少ないのは、鉄製容器を使用した比較例1,2及びアル
ミニウム層を有する容器を使用した実施例3の電池であ
ることから、金属層を有する容器は電池内への水分侵入
遮断に有効であるといえる。
On the other hand, the discharge capacity at the 500th cycle is smaller in Examples 1, 2, 4, and 3 than in Example 3 and Comparative Examples 1 and 2. Therefore, these batteries were disassembled, the electrolyte in the batteries was taken out, and the water content was measured. Moisture was detected. From this, it is considered that the decrease in the discharge capacity at the 500th cycle is due to the intrusion of moisture into the battery. Since the batteries with low moisture penetration are the batteries of Comparative Examples 1 and 2 using the iron container and the battery of Example 3 using the container with the aluminum layer, the container with the metal layer is used to block moisture penetration into the battery. It can be said that it is effective.

【0047】しかしながら、電池容器に金属を使用する
と、金属は比重が大きいために容器重量が大きくなって
しまう。そこで、実施例3のように金属層を有機高分子
と多層化し、好ましくは金属層の厚さを容器壁面厚さの
90%以下とすることで、電池の重量当たりのエネルギ
ー密度の向上が可能になる。
However, when metal is used for the battery container, the metal has a large specific gravity, so that the weight of the container increases. Therefore, as in Example 3, the energy density per unit weight of the battery can be improved by forming the metal layer into a multilayer with an organic polymer and preferably setting the thickness of the metal layer to 90% or less of the wall thickness of the container. become.

【0048】次に、各実施例、比較例における電池を、
100℃雰囲気下に5時間放置した後の電池外観変化を
図2に示す。
Next, the batteries in each of Examples and Comparative Examples were
FIG. 2 shows a change in appearance of the battery after being left in an atmosphere of 100 ° C. for 5 hours.

【0049】[0049]

【表2】 [Table 2]

【0050】実施例4及び比較例1,2の電池では外観
の変化が全くなかった。また、電池容器として、軟化
点、融点が100℃以上の有機高分子材料、もしくはこ
れらの有機高分子材料と金属層との多層化されたものを
使用し、電解質として液体電解質を使用した実施例1〜
3では、容器の円筒長さ方向の中心付近で生じた膨張は
わずかであった。この膨張は、電池内の液体電解質が一
部気化し、電池内部圧力が上昇したため引き起こされた
と考えられる。比較例1の電池は、有機高分子製容器に
比べ高い機械的強度を持つ鉄製容器を使用しているため
に、また実施例4の電池は液体電解質に比べ気化しにく
く内圧上昇が小さい高分子ゲル電解質を使用しているた
めに、そして比較例2の電池はこれら両方の理由で、膨
張による外観変化を生じないと考えられる。
The batteries of Example 4 and Comparative Examples 1 and 2 had no change in appearance. Further, an example in which an organic polymer material having a softening point and a melting point of 100 ° C. or more, or a multilayered product of these organic polymer materials and a metal layer is used as a battery container, and a liquid electrolyte is used as an electrolyte. 1 to
In No. 3, the expansion that occurred near the center in the cylinder length direction of the container was slight. It is considered that this expansion was caused by a partial vaporization of the liquid electrolyte in the battery and an increase in the battery internal pressure. Since the battery of Comparative Example 1 uses an iron container having higher mechanical strength than that of the organic polymer container, the battery of Example 4 is a polymer that is less likely to vaporize and has a smaller internal pressure rise than the liquid electrolyte. Due to the use of the gel electrolyte, and the cell of Comparative Example 2, for both of these reasons, it is believed that the appearance does not change due to swelling.

【0051】一方、比較例3の電池では容器全体に波状
のゆがみが生じており、また円筒底面の円周部に亀裂が
観察され、ここから液体電解質が少量漏液していた。比
較例3の電池容器は軟化点70℃のポリ塩化ビニル製で
あるため、100℃にて容器材質が軟化し、変形や亀裂
を生じたと考えられる。
On the other hand, in the battery of Comparative Example 3, a wavy distortion was generated in the whole container, and a crack was observed on the circumferential portion of the bottom surface of the cylinder, and a small amount of the liquid electrolyte leaked therefrom. Since the battery container of Comparative Example 3 was made of polyvinyl chloride having a softening point of 70 ° C., it is considered that the material of the container softened at 100 ° C., causing deformation and cracking.

【0052】なお、比較例3の電池を除いた他の電池
は、常温にて放冷した後は形状も元の状態に復元し、1
00℃に昇温していない電池と同様に充放電可能であっ
た。
The batteries other than the battery of Comparative Example 3 were allowed to cool at room temperature, and then restored to their original shapes.
Charging / discharging was possible as in the case of the battery not heated to 00 ° C.

【0053】したがって、電池の総重量当たりのエネル
ギー密度を向上しつつ、100℃といった非常環境にお
ける信頼性を保つには、電解質として液体電解質よりも
高分子ゲル電解質もしくは高分子固体電解質を使用する
のがよく、さらに電池容器の構成材料として、軟化点、
融点、熱分解温度のうちの最も低いものが100℃以上
の有機高分子材料を用いるのが好ましいことがわかっ
た。
Therefore, in order to improve the energy density per unit weight of the battery and maintain the reliability in an emergency environment such as 100 ° C., it is necessary to use a polymer gel electrolyte or a polymer solid electrolyte rather than a liquid electrolyte as the electrolyte. Is good, and further, as a constituent material of the battery container, a softening point,
It was found that it is preferable to use an organic polymer material having the lowest melting point and thermal decomposition temperature of 100 ° C. or higher.

【0054】[0054]

【発明の効果】以上の説明からも明らかなように、本発
明によれば、電池容器として比重の小さい有機高分子材
料を使用することで、電池容量を減少させることなく軽
量化、高エネルギー密度化が実現され、且つ、上記の有
機高分子材料として、軟化点、融点、熱分解温度のう
ち、最も低いものが100℃以上のものを用いること
で、熱安定性等を備えた安全性の高い非水電解質二次電
池を提供することができる。
As is clear from the above description, according to the present invention, by using an organic polymer material having a low specific gravity as a battery container, it is possible to reduce the weight without reducing the battery capacity and to increase the energy density. And the lowest organic material among the softening point, melting point, and thermal decomposition temperature is 100 ° C. or higher, and the organic polymer material has thermal stability and the like. A high non-aqueous electrolyte secondary battery can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用した非水電解質二次電池の内部渦
巻式電極の構成を示す要部斜視図である。
FIG. 1 is a perspective view of a main part showing a configuration of an internal spiral electrode of a nonaqueous electrolyte secondary battery to which the present invention is applied.

【図2】本発明を適用した非水電解質二次電池の要部断
面図である。
FIG. 2 is a sectional view of a main part of a nonaqueous electrolyte secondary battery to which the present invention is applied.

【図3】比較例1,2の非水電解質二次電池の要部断面
図である。
FIG. 3 is a sectional view of a main part of the nonaqueous electrolyte secondary batteries of Comparative Examples 1 and 2.

【符号の説明】[Explanation of symbols]

1 帯状負極、2 帯状正極、3 セパレータ、4 絶
縁板、5 電池容器、6安全弁装置、7 電池蓋、8
負極集電体、9 負極活物質層、10 正極集電体、1
1 正極活物質層、12 負極リード、13 正極リー
ド、14 リベット、15 粘着テープ、16 渦巻式
電極、20 電池容器、21 安全弁装置、22 封口
ガスケット、23 電池蓋
DESCRIPTION OF REFERENCE NUMERALS 1 strip-shaped negative electrode, 2 strip-shaped positive electrode, 3 separator, 4 insulating plate, 5 battery container, 6 safety valve device, 7 battery cover, 8
Negative electrode current collector, 9 Negative electrode active material layer, 10 Positive electrode current collector, 1
REFERENCE SIGNS LIST 1 positive electrode active material layer, 12 negative electrode lead, 13 positive electrode lead, 14 rivet, 15 adhesive tape, 16 spiral electrode, 20 battery container, 21 safety valve device, 22 sealing gasket, 23 battery cover

フロントページの続き Fターム(参考) 5H003 AA07 BB01 BB05 BB12 5H011 AA00 AA09 CC02 CC06 CC08 CC10 KK01 KK04 5H014 AA01 AA06 EE08 EE10 5H029 AJ14 AK03 AL02 AL04 AL06 AL07 AL08 AL12 AL16 AM00 AM02 AM03 AM04 AM05 AM07 AM16 DJ02 EJ01 EJ12 HJ04 HJ14 Continued on the front page F-term (reference) 5H003 AA07 BB01 BB05 BB12 5H011 AA00 AA09 CC02 CC06 CC08 CC10 KK01 KK04 5H014 AA01 AA06 EE08 EE10 5H029 AJ14 AK03 AL02 AL04 AL06 AL07 AL08 AL12 AL16 AM02 AM04 AM02 AM03 AM04 DJ04

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも正極、負極及び電解質が電池
容器内に収容・密閉されてなり、 上記電池容器は、軟化点、融点、熱分解温度のうち最も
低いものが100℃以上である有機高分子材料をその構
成材料として含む成形体よりなることを特徴とする非水
電解質二次電池。
At least a positive electrode, a negative electrode, and an electrolyte are housed and sealed in a battery container, and the battery container has an organic polymer having a lowest softening point, melting point, and thermal decomposition temperature of 100 ° C. or higher. A non-aqueous electrolyte secondary battery comprising a molded body containing a material as a constituent material.
【請求項2】 上記電池容器は、軟化点、融点、熱分解
温度のうち最も低いものが100℃以上である有機高分
子材料のみにより形成されていることを特徴とする請求
項1記載の非水電解質二次電池。
2. The battery according to claim 1, wherein the battery container is formed only of an organic polymer material having a lowest softening point, melting point and thermal decomposition temperature of 100 ° C. or higher. Water electrolyte secondary battery.
【請求項3】 上記電池容器は、軟化点、融点、熱分解
温度のうち最も低いものが100℃以上である有機高分
子材料と他の材料との複合材料により形成されているこ
とを特徴とする請求項1記載の非水電解質二次電池。
3. The battery container according to claim 1, wherein the lowest of the softening point, melting point, and thermal decomposition temperature is 100 ° C. or higher, and is formed of a composite material of an organic polymer material and another material. The non-aqueous electrolyte secondary battery according to claim 1.
【請求項4】 上記複合材料は、軟化点、融点、熱分解
温度のうち最も低いものが100℃以上である有機高分
子材料の層と金属層との積層体であることを特徴とする
請求項3記載の非水電解質二次電池。
4. The composite material according to claim 1, wherein the lowest one of the softening point, melting point, and thermal decomposition temperature is 100 ° C. or higher, and is a laminate of a layer of an organic polymer material and a metal layer. Item 4. A non-aqueous electrolyte secondary battery according to Item 3.
【請求項5】 上記金属層の厚さが、積層体全体の厚さ
の90%以下であることを特徴とする請求項4記載の非
水電解質二次電池。
5. The non-aqueous electrolyte secondary battery according to claim 4, wherein the thickness of the metal layer is 90% or less of the total thickness of the laminate.
【請求項6】 上記正極は、活物質としてマンガン酸化
物又はこれに他の元素を置換導入したマンガン酸化物誘
導体を含み、上記負極は、活物質として炭素材料を含む
ことを特徴とする請求項1記載の非水電解質二次電池。
6. The positive electrode includes manganese oxide or a manganese oxide derivative obtained by substituting and introducing another element into the active material, and the negative electrode includes a carbon material as an active material. 2. The non-aqueous electrolyte secondary battery according to 1.
【請求項7】 上記電解質は、高分子に支持電解質塩を
固溶させた高分子固体電解質、又は高分子を有機溶媒と
支持電解質塩を含む有機電解液で膨潤させた高分子ゲル
電解質であることを特徴とする請求項1記載の非水電解
質二次電池。
7. The electrolyte is a solid polymer electrolyte in which a supporting electrolyte salt is dissolved in a polymer or a polymer gel electrolyte in which a polymer is swollen with an organic electrolyte containing an organic solvent and a supporting electrolyte salt. The non-aqueous electrolyte secondary battery according to claim 1, wherein:
JP11154404A 1999-06-01 1999-06-01 Nonaqueous electrolyte secondary battery Withdrawn JP2000348691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11154404A JP2000348691A (en) 1999-06-01 1999-06-01 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11154404A JP2000348691A (en) 1999-06-01 1999-06-01 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2000348691A true JP2000348691A (en) 2000-12-15

Family

ID=15583417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11154404A Withdrawn JP2000348691A (en) 1999-06-01 1999-06-01 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2000348691A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006172807A (en) * 2004-12-14 2006-06-29 Dainippon Printing Co Ltd Method of manufacturing electrode plate
WO2010113549A1 (en) * 2009-03-31 2010-10-07 日立ビークルエナジー株式会社 Nonaqueous-electrolyte secondary battery and lithium secondary battery
JP2016035900A (en) * 2014-07-31 2016-03-17 株式会社東芝 Non-aqueous electrolyte battery and battery pack
JP2022534812A (en) * 2019-07-08 2022-08-03 江▲蘇▼▲時▼代新能源科技有限公司 secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006172807A (en) * 2004-12-14 2006-06-29 Dainippon Printing Co Ltd Method of manufacturing electrode plate
WO2010113549A1 (en) * 2009-03-31 2010-10-07 日立ビークルエナジー株式会社 Nonaqueous-electrolyte secondary battery and lithium secondary battery
JP2010238462A (en) * 2009-03-31 2010-10-21 Hitachi Vehicle Energy Ltd Nonaqueous electrolyte secondary battery, and lithium secondary battery
JP2016035900A (en) * 2014-07-31 2016-03-17 株式会社東芝 Non-aqueous electrolyte battery and battery pack
JP2022534812A (en) * 2019-07-08 2022-08-03 江▲蘇▼▲時▼代新能源科技有限公司 secondary battery

Similar Documents

Publication Publication Date Title
US8828605B2 (en) Lithium-ion secondary battery
EP2178137B1 (en) Lithium-Ion secondary battery
JP4038699B2 (en) Lithium ion battery
JP4752574B2 (en) Negative electrode and secondary battery
JP3321853B2 (en) Non-aqueous electrolyte secondary battery
KR20000076975A (en) Secondary battery
JP2004227818A (en) Nonaqueous electrolyte battery
EP1445806B1 (en) Electric cell
JP2017168255A (en) Nonaqueous electrolyte secondary battery, battery pack, and vehicle
JP4710099B2 (en) Nonaqueous electrolyte secondary battery
JP2001185213A5 (en)
JP5793411B2 (en) Lithium secondary battery
JPH07153488A (en) Manufacture of cylindrical nonaqueous electrolyte battery
JP2004265792A (en) Battery
JPH10228930A (en) Electrode sheet and battery
JP2001176549A (en) Non-aqueous electrolytic battery
JPH04329269A (en) Nonaqueous electrolyte secondary battery
JPH11273743A (en) Cylindrical nonaqueous electrolyte secondary battery
JP2000348691A (en) Nonaqueous electrolyte secondary battery
JP3381070B2 (en) Manufacturing method of laminated battery
JPH11273738A (en) Nonaqueous electrolyte secondary battery
JP4952968B2 (en) Negative electrode for secondary battery and secondary battery
JP3309449B2 (en) Non-aqueous electrolyte secondary battery
JP2000357536A (en) Nonaqueous electrolyte battery
JP2004095333A (en) Laminate film for battery and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060801