JP2000344546A - Hydrophilic and antifogging base material and its production - Google Patents

Hydrophilic and antifogging base material and its production

Info

Publication number
JP2000344546A
JP2000344546A JP11153438A JP15343899A JP2000344546A JP 2000344546 A JP2000344546 A JP 2000344546A JP 11153438 A JP11153438 A JP 11153438A JP 15343899 A JP15343899 A JP 15343899A JP 2000344546 A JP2000344546 A JP 2000344546A
Authority
JP
Japan
Prior art keywords
hydrophilic
coating
film
ultrafine particles
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11153438A
Other languages
Japanese (ja)
Inventor
Seiji Yamazaki
誠司 山崎
Hideki Yamamoto
秀樹 山本
Yoshihiro Nishida
佳弘 西田
Keiji Honjo
啓司 本城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP11153438A priority Critical patent/JP2000344546A/en
Publication of JP2000344546A publication Critical patent/JP2000344546A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Glass (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a hydrophilic and antifogging base material that hydrophilic and antifogging properties can be maintained over a long period and which is excellent in wear resistance and durability. SOLUTION: This base material is provided with a coating film which consists of a 30-90 wt.% content of a matrix metal oxide and a 10-70 wt.% content of unreactive oxide superfine particles and in which the superfine particles are dispersed in such a state in which the coating film comprises at least three layers, i.e., a surface layer, its underlayer and an inner layer and the surface layer contains the superfine particles more densely dispersed as compared with those in the underlayer and also, the inner layer contains the superfine particles densely dispersed similarly to those in the surface layer and further, the uppermost surface of the coating film has an uneven shape having a number of minute recessed and projecting parts.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、建築用、産業用、
自動車用等の窓材さらには鏡等の各種の分野の物品にお
いて用いられる親水性・防曇性基材およびその製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to
The present invention relates to a hydrophilic / anti-fog base material used in window materials for automobiles and various other articles such as mirrors and a method for producing the same.

【0002】[0002]

【従来の技術】近年、基材に親水性、防曇性または防汚
性等を付与するために、基材の表面に光触媒機能を有す
る被膜を形成することが盛んに行われている。例えば、
特開平5ー253544号公報に記載のアナターゼ型チ
タニアを主体とする光触媒微粉末をその一部がバインダ
層表面から露出するようにした板状部材、特開平7−2
32080号公報に記載の光触媒微粒子がチタニア、酸
化亜鉛、チタン酸ストロンチウム、酸化鉄、酸化タング
ステン、チタン酸鉄、酸化ビスマス、酸化錫等であり、
光触媒粒子の間隙充填粒子が錫、チタン、銀、銅、亜
鉛、鉄、白金、コバルト、ニッケルの金属または酸化物
である光触媒機能を有する多機能材、特開平9−590
42号公報記載の光触媒性の平均結晶粒子径が約0.1
μm以下のチタニアの粒子を含有する親水性被膜で覆わ
れた透明基材等が知られている。
2. Description of the Related Art In recent years, in order to impart hydrophilicity, antifogging property, antifouling property and the like to a substrate, formation of a film having a photocatalytic function on the surface of the substrate has been actively performed. For example,
JP-A-5-253544, a plate-like member in which a photocatalyst fine powder mainly composed of anatase titania is partially exposed from the surface of a binder layer;
The photocatalyst fine particles described in No. 32080 are titania, zinc oxide, strontium titanate, iron oxide, tungsten oxide, iron titanate, bismuth oxide, tin oxide and the like,
A multifunctional material having a photocatalytic function in which the gap filling particles of the photocatalytic particles are a metal or oxide of tin, titanium, silver, copper, zinc, iron, platinum, cobalt, or nickel.
No. 42, a photocatalytic average crystal particle size of about 0.1
A transparent substrate or the like covered with a hydrophilic coating containing titania particles of μm or less is known.

【0003】また、光触媒以外の微粒子を用い親水性あ
るいは防曇性を付与させるものとして、例えば、特開平
5−302173号公報記載の平均粒径5μm以下の無
機物質および少なくともシリカを含有する親水性被膜、
特開平8−119673号公報記載の硬化性珪素樹脂溶
液に金属酸化物を配合してなるガラス用親水化処理剤を
ガラス表面に塗布後焼き付け硬化させたガラスの親水化
処理方法、特開平10−114543号公報記載の基材
表面にシリカとアルミナ系の複合酸化物膜を形成後、加
温した状態で純水の熱水に浸漬処理した防曇性被膜及び
その製造方法等が知られている。
In order to impart hydrophilicity or anti-fogging property by using fine particles other than a photocatalyst, for example, Japanese Unexamined Patent Publication No. 5-302173 discloses an inorganic substance having an average particle diameter of 5 μm or less and a hydrophilic substance containing at least silica. Coating,
Japanese Patent Application Laid-Open No. HEI 8-119673 discloses a method for hydrophilizing glass by applying a hydrophilizing agent for glass obtained by mixing a metal oxide to a curable silicon resin solution onto a glass surface and then baking and curing the glass surface. JP-A No. 114543 discloses an antifogging film formed by forming a silica-alumina-based composite oxide film on the surface of a base material and then immersing the film in heated hot water after heating. .

【0004】また従来、界面活性剤を基材表面に塗布す
ることで表面を親水性に改質することは古くから知られ
ており、界面活性剤にポリアクリル酸やポリビニルアル
コールなどの水溶性有機高分子を添加・配合すること
で、親水性の持続性を上げることが特開昭52−101
680号公報等で知られている。
Conventionally, it has been known for a long time to apply a surfactant to the surface of a base material to modify the surface to be hydrophilic, and the surfactant may be a water-soluble organic compound such as polyacrylic acid or polyvinyl alcohol. Japanese Patent Application Laid-Open No. 52-101 discloses that the durability of hydrophilicity can be increased by adding and blending a polymer.
680 and the like.

【0005】さらに、疎水性ポリマーよりなる多孔質膜
の表面および内部にポリビニルアルコールと酢酸ビニル
の共重合体の被膜を介して、セルロースやグリコール類
およびグリセリンなどの親水性ポリマーを被膜固定化す
る方法が特公平5ー67330号公報等で知られてい
る。
Further, a method of immobilizing a hydrophilic polymer such as cellulose, glycols and glycerin on the surface and inside of a porous membrane made of a hydrophobic polymer through a film of a copolymer of polyvinyl alcohol and vinyl acetate. Is known from Japanese Patent Publication No. 5-67330.

【0006】またさらに、物理的方法では、プラズマ処
理、レーザー照射処理などの親水化処理が実用化されて
いるが、一般に処理後短期間では効果があるが、持続性
に問題点があるとされている。
Further, in the physical method, a hydrophilic treatment such as a plasma treatment or a laser irradiation treatment has been put to practical use. Generally, it is effective for a short period after the treatment, but there is a problem in sustainability. ing.

【0007】さらに、化学的方法には、表面にラジカル
を発生させ親水性の残基を有する重合性化合物をグラフ
ト重合させる方法や、酸、塩基性物質などの表面の結合
を切断し、親水性の残基に変化させる方法などが行われ
ている。
Further, the chemical method includes a method of generating radicals on the surface and graft-polymerizing a polymerizable compound having a hydrophilic residue, and a method of cutting a bond of a surface such as an acid or a basic substance to obtain a hydrophilic compound. And the like.

【0008】[0008]

【発明が解決しようとする課題】上記の光触媒機能を利
用した親水性膜においては、紫外線が当たることが必須
であり、特に防汚性を発現するためには紫外線+水洗
(太陽光+雨水)が必要となり、紫外線が当たらない場
合は、親水性は発現されない。また紫外線が当たって一
旦親水性となっても親水性を維持できるのは短時間であ
り、数時間後には親水性は失われる。さらに、防曇性を
発現するには、一般に水の接触角が数度以下の場合に限
られ、10゜付近では防曇性は失われる。また光触媒膜
を基材に被覆した場合、光触媒膜機能を持つチタニアは
高屈折率膜であるため反射率が高くなったり着色し、意
匠性を損なう場合もある。一方、物理的な処理による親
水性も短期的にしか効果を維持することができず、また
ポリエチレンオキシド系有機ポリマー膜では、耐水性や
機械的強度が低いために用途によっては実用上十分なも
のとは言えない。
In the above-mentioned hydrophilic film utilizing the photocatalytic function, it is essential to be exposed to ultraviolet rays. In particular, in order to exhibit antifouling properties, ultraviolet rays + water washing (sunlight + rainwater) Is required, and when no ultraviolet light is applied, no hydrophilicity is exhibited. Further, even if it becomes hydrophilic once exposed to ultraviolet rays, the hydrophilicity can be maintained for a short time, and the hydrophilicity is lost after several hours. Further, in order to exhibit the anti-fogging property, generally, only when the contact angle of water is several degrees or less, the anti-fogging property is lost around 10 °. When a photocatalytic film is coated on a substrate, titania having a photocatalytic film function is a high-refractive-index film, so that the reflectivity may be increased or colored, thereby impairing the design. On the other hand, hydrophilicity due to physical treatment can only maintain its effect for a short period of time, and polyethylene oxide organic polymer membranes are practically sufficient for some applications due to low water resistance and mechanical strength. It can not be said.

【0009】また、光触媒以外の微粒子を用いた親水性
被膜の場合には、短い時間での親水性あるいは防曇性効
果はあるが、長時間にわたり親水性あるいは防曇性を持
続することは難しいという欠点がある。
In the case of a hydrophilic film using fine particles other than a photocatalyst, a hydrophilic or anti-fogging effect is obtained in a short time, but it is difficult to maintain the hydrophilic or anti-fogging property for a long time. There is a disadvantage that.

【0010】また、例えば多孔質膜の表面および内部に
ポリビニルアルコールと酢酸ビニルの共重合体の被膜を
介してセルロースなどの被膜を固定化する方法において
も、被膜は極めて柔らかいものであり、しかも化学的耐
久性も期待でき難いものであり、使用する用途が限定さ
れるようなものである。
Also, for example, in a method of immobilizing a film such as cellulose on the surface and inside of a porous film via a film of a copolymer of polyvinyl alcohol and vinyl acetate, the film is extremely soft, It is also difficult to expect high durability, and the use of the material is limited.

【0011】さらに、例えば無機物質からなる被膜は、
膜の強度は比較的高いが親水性を呈する物質は水に対す
る溶解性も高く被膜は容易に消失するもので、実用上そ
の用途は限られたものとなる。
Furthermore, for example, a coating made of an inorganic substance
Substances having relatively high film strength but exhibiting hydrophilicity have high solubility in water and the coating easily disappears, which limits the practical use thereof.

【0012】以上のこれらの方法は、いずれの方法も一
時的もしくは比較的短時間の間だけ親水性、防曇性を付
与するのみであり、親水性および防曇効果の十分な持続
性は期待し難いばかりでなく、水膜が均一となり難く透
視像や反射像が歪み、親水性はあっても防曇性があると
は言い難く、実用化においては採用が困難なものであっ
た。
These methods only provide hydrophilicity and anti-fogging property temporarily or for a relatively short period of time, and are expected to have sufficient hydrophilicity and anti-fogging effect. In addition, it is difficult to form a uniform water film, distorting a see-through image and a reflected image, and it is difficult to say that the film has hydrophilicity but does not have anti-fogging property, and that it is difficult to adopt it in practical use.

【0013】[0013]

【課題を解決するための手段】本発明は、従来のこのよ
うな事情に鑑みてなされたものであって、非反応性酸化
物微粒子とマトリックス金属酸化物よりなる複合金属酸
化物被膜の膜内部から表面にかけての非反応性酸化物超
微粒子の分布状態に疎密の濃度(表層>内層)をもた
せ、さらに該被膜を数回の成膜操作で積層して内層にも
非反応性酸化物超微粒子の密な層を形成し、且つ最表面
を凹凸形状とすることにより、高硬度で透明性に優れ、
且つ基材の色調を損なうことがなく、長期にわたり親水
性、防曇性効果を発揮でき像歪みのない高耐久性の親水
性・防曇性基材およびその製造方法を提供するものであ
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and has been made in consideration of the above circumstances, and has been developed in view of the inside of a composite metal oxide film comprising non-reactive oxide fine particles and a matrix metal oxide. The distribution of the non-reactive oxide ultra-fine particles from the surface to the surface is provided with a sparse and dense concentration (surface layer> inner layer), and the coating is laminated by several film forming operations, and the non-reactive oxide ultra-fine particles are also formed in the inner layer. By forming a dense layer and making the outermost surface uneven, high hardness and excellent transparency,
It is also an object of the present invention to provide a highly durable hydrophilic / anti-fogging base material capable of exhibiting hydrophilicity and anti-fogging effects over a long period of time without impairing the color tone of the base material and free from image distortion, and a method for producing the same.

【0014】すなわち、本発明の親水性・防曇性基材
は、マトリックス金属酸化物中に非反応性酸化物超微粒
子が分散された複合金属酸化物よりなる被膜が被覆され
た基材において、該被膜のマトリックス金属酸化物の含
有量は30〜90重量%、非反応性酸化物超微粒子の含
有量が10〜70重量%であり、被膜中の非反応性酸化
物超微粒子の分散状態は、被膜の表層はその下層より密
であって、さらに膜の内層にも非反応性酸化物超微粒子
の密な層を少なくとも1層形成するとともに、且つ該被
膜の最表面は凹凸形状となっていることを特徴とする。
That is, the hydrophilic / anti-fog substrate of the present invention is a substrate coated with a coating of a composite metal oxide in which non-reactive oxide ultrafine particles are dispersed in a matrix metal oxide. The content of the matrix metal oxide in the coating is 30 to 90% by weight, the content of the non-reactive oxide ultrafine particles is 10 to 70% by weight, and the dispersion state of the non-reactive oxide ultrafine particles in the coating is The surface layer of the film is denser than the lower layer, and at least one dense layer of non-reactive oxide ultrafine particles is formed also on the inner layer of the film, and the outermost surface of the film has an uneven shape. It is characterized by being.

【0015】また、本発明の親水性・防曇性基材は、非
反応性酸化物超微粒子の分散状態が密である層は、吸水
性酸化物超微粒子とマトリックス金属酸化物の原子比
(超微粒子/マトリックス)が2.3以上であり、疎で
ある層の原子比(超微粒子/マトリックス)は1.5以
下であることを特徴とする。
In the hydrophilic / anti-fogging base material of the present invention, the layer in which the non-reactive oxide ultrafine particles are densely dispersed has an atomic ratio of the superabsorbent oxide ultrafine particles to the matrix metal oxide ( (Ultrafine particles / matrix) is 2.3 or more, and the atomic ratio (ultrafine particles / matrix) of the sparse layer is 1.5 or less.

【0016】さらに、本発明の親水性・防曇性基材は、
被膜の最表面の凹凸は、高さ方向での山と谷との段差が
10〜30nm、幅方向での山と山とのピッチが20〜
50nmの規則性のある凹凸形状を有することを特徴と
する。
Further, the hydrophilic / anti-fog base material of the present invention comprises:
The unevenness of the outermost surface of the film is such that the step between the peak and the valley in the height direction is 10 to 30 nm, and the pitch between the peak and the peak in the width direction is 20 to
It is characterized by having an irregular shape having a regularity of 50 nm.

【0017】さらにまた、本発明の親水性・防曇性基材
は、マトリックス金属酸化物が、シリカ、チタニア、ジ
ルコニアの少なくとも1種よりなることが好ましく、ま
た非反応性酸化物超微粒子は、シリカ、アルミナのうち
の少なくとも1種から成ることが好ましい。
Further, in the hydrophilic / anti-fogging substrate of the present invention, the matrix metal oxide is preferably composed of at least one of silica, titania and zirconia. It is preferable that it is composed of at least one of silica and alumina.

【0018】さらに、本発明の親水性・防曇性基材にお
ける該被膜は、多孔質であることが好ましく、また、被
膜の膜厚は50〜300nmであることが好ましい。
Further, the coating of the hydrophilic / anti-fog substrate of the present invention is preferably porous, and the thickness of the coating is preferably 50 to 300 nm.

【0019】また、本発明の親水性・防曇性基材の製造
方法は、マトリックス金属酸化物用の有機金属化合物溶
液に、非反応性酸化物超微粒子を希釈溶媒とともに添加
して均一に攪拌混合した溶液を基材表面に塗布し、加水
分解、縮重合反応させた後に乾燥し第1層の被膜を成膜
後、再度同一溶液により該第1層の膜上に塗布し、加水
分解、縮重合反応させた後に乾燥したし、さらに焼成す
ることを特徴とする。
The method for producing a hydrophilic / anti-fogging substrate according to the present invention is characterized in that ultra-fine particles of a non-reactive oxide are added to a solution of an organic metal compound for a matrix metal oxide together with a diluting solvent, followed by uniform stirring. The mixed solution is applied to the surface of the substrate, subjected to hydrolysis and polycondensation reaction, dried and formed into a film of the first layer, then applied again on the film of the first layer with the same solution, and subjected to hydrolysis, It is characterized in that it is dried after the condensation polymerization reaction, and then calcined.

【0020】さらに、本発明の親水性・防曇性基材の製
造方法は、アルコールに可溶な有機高分子を塗布液中に
含有させることもできる。
Further, in the method for producing a hydrophilic / anti-fogging substrate of the present invention, an organic polymer soluble in alcohol can be contained in the coating solution.

【0021】またさらに、本発明の親水性・防曇性基材
の製造方法は、乾燥温度が100乃至250℃、焼成温
度が400〜700℃の範囲であることが好ましい。
Further, in the method for producing a hydrophilic / anti-fogging substrate of the present invention, the drying temperature is preferably in the range of 100 to 250 ° C., and the firing temperature is preferably in the range of 400 to 700 ° C.

【0022】[0022]

【発明の実施の形態】本発明の親水性・防曇性基材は、
被膜中の非反応性酸化物超微粒子の分散状態が、表層を
密とするとともに膜の内層にも密な層を少なくとも1箇
所形成し、且つ該被膜の最表面も凹凸形状とするもので
ある。
BEST MODE FOR CARRYING OUT THE INVENTION The hydrophilic / anti-fog substrate of the present invention comprises:
The dispersion state of the non-reactive oxide ultrafine particles in the coating is such that the surface layer is dense and at least one dense layer is also formed in the inner layer of the film, and the outermost surface of the coating is also uneven. .

【0023】被膜の厚み方向で非反応性酸化物超微粒子
の密な分散状態が2層以上に形成することにより、一旦
吸着された水酸基は、膜の表層ばかりでなく内部にも多
量に存在して、組織全体が親水性となり、長期にわたり
親水性および防曇性を維持することが可能となる。
By forming the dense dispersion state of the non-reactive oxide ultrafine particles in two or more layers in the thickness direction of the coating, a large amount of hydroxyl groups once adsorbed are present not only on the surface but also inside the film. As a result, the whole tissue becomes hydrophilic, and it is possible to maintain the hydrophilicity and the antifogging property for a long time.

【0024】このようにするには、例えば、基材表面に
被膜を被覆する際に2回以上の繰り返し成膜操作によっ
て、容易に非反応性酸化物超微粒子の厚み方向での疎密
の分布状態を2層以上の多層に形成することができる。
なお、他の方法で2層以上にすることは、差し支えな
い。
In order to achieve this, for example, when the film is coated on the surface of the base material, the density distribution of the non-reactive oxide ultrafine particles in the thickness direction can be easily determined by performing the film formation operation twice or more times. Can be formed in two or more layers.
It is to be noted that the formation of two or more layers by another method is acceptable.

【0025】非反応性酸化物超微粒子の分散状態が、密
である層は、吸水性酸化物超微粒子とマトリックス金属
酸化物の原子比(超微粒子/マトリックス)が2.3以
上であり、また、疎である層は、吸水性酸化物超微粒子
とマトリックス金属酸化物の原子比(超微粒子/マトリ
ックス)が1.5以下であることが好ましい。
In the layer in which the non-reactive oxide ultrafine particles are densely dispersed, the atomic ratio (ultrafine particles / matrix) of the superabsorbent oxide ultrafine particles to the matrix metal oxide is 2.3 or more. It is preferable that the sparse layer has an atomic ratio (ultrafine particle / matrix) of the superabsorbent oxide ultrafine particles to the matrix metal oxide of 1.5 or less.

【0026】密な層の原子比が2.3以下であると、初
期の親水性および防曇性は良好であるが、長期に渡って
機能を発現し難くなり好ましくなく、また、疎な層の原
子比が1.5以上であると、基材との密着性が悪くな
り、各種の耐久性で不具合が起こるばかりでなく実用耐
久性も不足し好ましくない。なお、ここで述べる原子比
はオージェ電子分光による検出強度比で表すことが出来
る。
When the atomic ratio of the dense layer is 2.3 or less, the initial hydrophilicity and antifogging property are good, but it is difficult to exhibit the function over a long period of time, which is not preferable. When the atomic ratio is 1.5 or more, the adhesion to the base material is deteriorated, and not only is there a problem in various durability but also the practical durability is insufficient, which is not preferable. The atomic ratio described here can be represented by a detection intensity ratio by Auger electron spectroscopy.

【0027】なお、非反応性酸化物超微粒子の分散状態
は、図1〜図3に示すように表層および内部の少なくと
も1ヶ所に吸水性を有する非反応性酸化物超微粒子の密
な層があればよく、密な層を3層以上にすることもでき
る。また、密から疎の層へは該微粒子の濃度が急激に変
化してもよいし、徐々に濃度が変化しても構わない。
As shown in FIGS. 1 to 3, the dispersion state of the non-reactive oxide ultra-fine particles is such that a dense layer of water-absorbing non-reactive oxide ultra-fine particles is present in the surface layer and at least one location inside. The number of dense layers may be three or more. Further, the concentration of the fine particles may change rapidly from a dense to a sparse layer, or the concentration may change gradually.

【0028】被膜最表面の凹凸形状は、高さ方向での山
と谷の高さの段差が10〜30nm、幅方向の山と山の
ピッチが20〜50nmと規則的にすることが好まし
い。山と谷の段差が10nmより小さい場合には、表面
積は増大するものの吸水性を有する非反応性酸化物超微
粒子の効果を十分に発揮できず、30nmより大きい場
合には表面積は著しく増大するが、光が散乱し見る角度
によっては透視像が見にくくなるなど実用上の問題が発
生する。より好ましくは15〜20nmの範囲がよい。
またピッチが20nmより小さい場合には、山と山が隣
接しすぎるためその間に挟まれた空気層により水膜の均
一な広がりが悪くなり、50nmより大きい場合には、
吸水性を有する非反応性酸化物超微粒子の効果が十分に
発揮されず、長期に渡って親水性ならびに防曇性を発揮
し難くなる。より好ましくは30〜40nmの範囲がよ
い。
The unevenness of the outermost surface of the coating film is preferably such that the height difference between the peaks and valleys in the height direction is 10 to 30 nm, and the pitch between the peaks in the width direction is 20 to 50 nm. When the step between the peak and the valley is smaller than 10 nm, the surface area increases, but the effect of the non-reactive oxide ultrafine particles having water absorption cannot be sufficiently exerted. When the step is larger than 30 nm, the surface area increases remarkably. Practical problems such as difficulty in seeing a perspective image depending on the viewing angle due to scattering of light may occur. More preferably, the range is 15 to 20 nm.
If the pitch is smaller than 20 nm, the peaks are too adjacent to each other, so that the air layer sandwiched between them deteriorates the uniform spread of the water film.
The effect of the non-reactive oxide ultrafine particles having water absorption is not sufficiently exhibited, and it becomes difficult to exhibit hydrophilicity and antifogging properties for a long period of time. More preferably, the range is 30 to 40 nm.

【0029】本発明に用いる非反応性酸化物超微粒子
は、吸水性を有する結晶性のシリカまたは無定型、ガラ
ス状もしくはコロイダルシリカのいずれであってもよい
が特にコロイダルシリカが好ましく、アルミナとして
は、ベーマイト型結晶構造のアルミナがよい。なお、超
微粒子とは、特に粒径を限定するものではないが、粒径
がほぼ20nm以下であるものを用いることが好まし
い。
The non-reactive oxide ultrafine particles used in the present invention may be crystalline silica having water absorption or amorphous, glassy or colloidal silica, but colloidal silica is particularly preferred. Alumina having a boehmite type crystal structure is preferred. The ultrafine particles are not particularly limited in particle size, but preferably have a particle size of about 20 nm or less.

【0030】本発明のマトリックス金属酸化物は、焼成
することにより非晶質となる金属酸化物であるならば特
に物質は限定されず、シリカ、アルミナ、ジルコニア、
チタニア、酸化錫等を用いることが出来るが、耐久性、
非反応性酸化物超微粒子保持性、成膜のし易さ等から特
に、シリカ、チタニア、ジルコニア、アルミナが好まし
い。
The matrix metal oxide of the present invention is not particularly limited as long as it is a metal oxide which becomes amorphous upon firing, and may be silica, alumina, zirconia, or the like.
Titania, tin oxide, etc. can be used, but durability,
Particularly, silica, titania, zirconia, and alumina are preferable from the viewpoint of the non-reactive oxide ultrafine particle holding property and the ease of film formation.

【0031】これらマトリックス金属酸化物を形成する
主な原料としては、例えばシリカの主な原料としては、
金属アルコキド類では、シリカアルコキシド類が、テト
ラエトキシシラン、テトラメトキシシラン、モノメチル
トリエトキシシラン、モノメチルトリメトキシシラン、
ジメチルジメトキシシラン、ジメチルジエトキシシラ
ン、その他のテトラアルコキシシラン化合物、その他の
アルキルアルコキシシラン化合物、また、チタニアの主
な原料としては、テトライソプロポキシチタン、テトラ
ノルマルブトキシチタン、トリイソプロポキシチタンモ
ノアセチルアセトナート等のアルコキシド類、アルミナ
の主な原料としては、アルコキシド類では、アルミニウ
ムブトキシド、アルミアセテート類では、アルミニウム
アセチルアセトナート等の有機金属化合物、ジルコニア
の主な原料としては、アルコキシド類では、ジルコニウ
ムブトキシド、ジルコニアアセテート類では、ジルコニ
ウムアセチルアセトナート等の有機金属化合物を用いる
ことができる。
As a main raw material for forming these matrix metal oxides, for example, as a main raw material for silica,
Among metal alkoxides, silica alkoxides are tetraethoxysilane, tetramethoxysilane, monomethyltriethoxysilane, monomethyltrimethoxysilane,
Dimethyldimethoxysilane, dimethyldiethoxysilane, other tetraalkoxysilane compounds, other alkylalkoxysilane compounds, and the main raw materials of titania include tetraisopropoxytitanium, tetranormal butoxytitanium, triisopropoxytitanium monoacetylacetate. The main raw materials of alkoxides such as nathates and alumina are alkoxides such as aluminum butoxide, aluminum acetates and organometallic compounds such as aluminum acetylacetonate, and zirconia are mainly raw materials of alkoxides such as zirconium butoxide. For zirconia acetates, organometallic compounds such as zirconium acetylacetonate can be used.

【0032】被膜のマトリックス金属酸化物の含有量は
30〜90重量%、非反応性酸化物超微粒子の含有量が
10〜70重量部であるが、特に、マトリックス金属酸
化物のシリカとチタニアの含有率が等しく、それらの合
計量で20〜60重量%、ジルコニアの含有率が10〜
30重量%からなり、超微粒子の含有率が10〜70重
量%からなるものは特に好ましい。なお、被膜中に含ま
れるマトリックス金属酸化物の含有率は、90重量%を
超えると、非反応性酸化物超微粒子の効果が十分に発揮
されず、また30重量%未満では膜の耐久性や摩耗強度
が低下し、実用上の用途が限られるためである。
The content of the matrix metal oxide in the coating is 30 to 90% by weight and the content of the non-reactive oxide ultrafine particles is 10 to 70 parts by weight. Content is the same, their total amount is 20-60% by weight, zirconia content is 10-10
Those containing 30% by weight and having a content of ultrafine particles of 10 to 70% by weight are particularly preferred. If the content of the matrix metal oxide contained in the coating exceeds 90% by weight, the effect of the non-reactive oxide ultrafine particles cannot be sufficiently exerted. This is because the wear strength is reduced, and practical applications are limited.

【0033】被膜の膜厚は、50〜300nmの範囲が
好ましく、50nm未満では膜表面の凹凸形状の山と谷
の段差を25nm以上とすると基材と膜の密着性が低下
し、親水性ならびに防曇・防汚性は長期にわたって発揮
できるものの、耐久性全般が悪くなり、また山と谷の段
差を25nm以下とすると、耐久性は向上するが親水性
ならびに防曇・防汚性を長期にわたって発揮することが
困難である。さらに、膜厚が300nmを超えると焼成
時にクラックが発生したり、これを防止するために多段
階の焼成を必要とするなどコストアップとなる。より好
ましくは、120〜200nmの範囲がよい。
The thickness of the coating is preferably in the range of 50 to 300 nm. If the thickness is less than 50 nm, the adhesiveness between the substrate and the film is reduced if the step between the peaks and valleys of the unevenness of the film surface is 25 nm or more. Although anti-fogging and anti-fouling properties can be exhibited over a long period of time, the overall durability deteriorates, and if the step between peaks and valleys is 25 nm or less, the durability is improved, but the hydrophilicity and anti-fogging and anti-fouling properties are maintained over a long period of time. It is difficult to demonstrate. Further, when the film thickness exceeds 300 nm, cracks are generated at the time of firing, and the cost is increased, for example, multistage firing is required to prevent the cracks. More preferably, the range is 120 to 200 nm.

【0034】被膜は、例えば、マトリックス金属酸化物
用の有機金属化合物溶液に、非反応性酸化物超微粒子を
希釈溶媒とともに添加して均一に攪拌混合した溶液を基
材表面に塗布し、加水分解、縮重合反応させた後に乾燥
し第1層の被膜を成膜後、再度同一溶液により該第1層
の膜上に塗布し、加水分解、縮重合反応させた後に乾燥
した後、焼成することにより製造出来る。。
For example, a non-reactive oxide ultrafine particle is added to an organic metal compound solution for a matrix metal oxide together with a diluting solvent, and the resulting solution is uniformly stirred and mixed. After the polycondensation reaction is performed, the film is dried to form a first layer film, and then applied again on the first layer film using the same solution, and then subjected to hydrolysis and polycondensation reaction, dried, and then fired. It can be manufactured by .

【0035】用いられる希釈溶媒としては、アルコ−ル
系低沸点溶媒が好ましく、具体例としては、メノ−ル、
エタノ−ル、イソプロパノール、プロパノ−ル、ブタノ
ールおとびこれらアルコールの混合体、さらには酢酸エ
チル、酢酸ブチルなどのエステル類、さらにはメチルセ
ロソルブ、エチルセロソルブ、ブチルセロソルブなどの
セロソルブ類及びこれらを混合した溶媒で、レベリング
剤としてジメチルシリコーンなどのメチルシリコーン類
やフッ素系レベリング剤を適量加えても良い。本来溶液
中に含まれるアルコ−ル系やセロソルブ系のもの単独ま
たは混合物を、該溶液の蒸発速度や被膜粘度を勘案して
選択すればよい。
As the diluting solvent to be used, an alcohol-based low-boiling solvent is preferred.
Ethanol, isopropanol, propanol, butanol and mixtures of these alcohols, further esters such as ethyl acetate and butyl acetate, furthermore, cellosolves such as methyl cellosolve, ethyl cellosolve, butyl cellosolve, and a mixture thereof. Then, an appropriate amount of a methyl silicone such as dimethyl silicone or a fluorine-based leveling agent may be added as a leveling agent. Alcohols or cellosolves which are originally contained in the solution may be selected alone or in a mixture in consideration of the evaporation rate of the solution and the film viscosity.

【0036】アルコールに可溶な有機高分子を塗布液中
に含有させることにより、焼成後の被膜を多孔質あるい
はより多孔質とすると、保水性が向上し、長期にわたり
親水性・防曇性を持続できるので好ましい。なお、アル
コールに可溶な有機高分子としては、例えばヒドロキシ
プロピルセルロース、ポリビニルピロリドン、ポリビニ
ルアセテート、ポリビニルアルコール、ポリエチレング
リコール等を用いることが出来る。
When a coating film after firing is made porous or more porous by incorporating an alcohol-soluble organic polymer into the coating solution, water retention is improved, and hydrophilicity and anti-fogging properties are maintained over a long period of time. It is preferable because it can last. As the organic polymer soluble in alcohol, for example, hydroxypropylcellulose, polyvinylpyrrolidone, polyvinyl acetate, polyvinyl alcohol, polyethylene glycol and the like can be used.

【0037】多孔質を表す指標として膜の屈折率差を
(得られたサンプルの屈折率/理論屈折率×100%)
ポロシティーと考えることができ、下記算出式より今回
設定したマトリックス範囲での理論屈折率(n2)と得
られたサンプルの屈折率値(n1)の測定結果からポロ
シティーを算出した。なお、測定は溝尻光学工業(株)
製、自動エリプソメーター:DVA−36VW−Sを用
いて測定した。
As an index indicating the porosity, the difference in the refractive index of the film is obtained (the refractive index of the obtained sample / theoretical refractive index × 100%).
It can be considered as porosity, and the porosity was calculated from the measurement result of the theoretical refractive index (n2) in the matrix range set this time and the refractive index value (n1) of the obtained sample from the following calculation formula. The measurement was performed by Mizojiri Optical Co., Ltd.
And an automatic ellipsometer: DVA-36VW-S.

【0038】結果、マトリックス組成の理論屈折率範囲
は1.70〜1.95であり、得られたサンプルの屈折
率実測値範囲は1.55〜1.84であることから算出
した結果、ポロシティーは27.6%〜15.0%の範
囲であった。なお、算出式は、ポロシティー(P)=1
−{(n12−1)/(n22−1)}を用いた。
As a result, the theoretical refractive index range of the matrix composition was 1.70 to 1.95, and the measured refractive index range of the obtained sample was 1.55 to 1.84. The city ranged from 27.6% to 15.0%. The calculation formula is porosity (P) = 1.
− {(N1 2 -1) / (n2 2 -1)} was used.

【0039】塗布法としては、特に限定されるものでは
ないが、生産性などの面からは例えばスピンコート法あ
るいはディップコ−ト法、またリバ−スコ−ト法、フレ
キソ印刷法、その他のロールコート法、カーテンコート
法であり、さらにはノズルコ−ト法、スプレーコ−ト法
などが適宜採用し得るものである。これら塗布法で塗布
成膜する際の塗布液中の全固形分濃度としては約0.5
〜8重量%程度で、塗布液粘度としては2〜6cp程度
が好ましい。
The coating method is not particularly limited, but from the viewpoint of productivity and the like, for example, a spin coating method or a dip coating method, a reverse coating method, a flexographic printing method, and other roll coating methods. And a curtain coating method, and further, a nozzle coating method, a spray coating method and the like can be appropriately employed. The total solid concentration in the coating solution when forming a film by applying these coating methods is about 0.5
About 8% by weight, and the viscosity of the coating liquid is preferably about 2 to 6 cp.

【0040】塗布後の乾燥処理としては、乾燥温度が1
00〜250℃程度で乾燥時間が10〜30分間程度が
好ましく、より好ましくは、前記乾燥温度が150〜2
00℃程度で、乾燥時間が15〜20分間程度である。
As a drying treatment after coating, the drying temperature is 1
The drying time is preferably about 10 to 30 minutes at about 00 to 250 ° C., more preferably the drying temperature is 150 to 2 minutes.
The drying time is about 15 to 20 minutes at about 00C.

【0041】最終焼成処理としては、焼成温度が400
〜700℃程度で焼成時間が10〜30分間程度が好ま
しく、400℃未満では膜の機械的強度が不十分であ
り、700℃を超えると結晶形が転移したり温度を高く
しても性能の良化が図れないためである。より好ましく
は、500〜650℃の範囲である。さらに基材の種類
と用途によっては、基材がガラスの場合は、熱強化また
は/および熱曲げ加工時に同時に行うことがよく、前記
ガラスの熱強化または/および熱曲げ加工は、温度が6
00〜650℃程度で時間が5〜10分間程度行うこと
がより好ましい。
As the final baking treatment, a baking temperature of 400
The baking time is preferably about 10 to 30 minutes at about 700 ° C., and the mechanical strength of the film is insufficient at less than 400 ° C., and when the temperature exceeds 700 ° C., the crystal form undergoes a transition or the performance is high even when the temperature is increased. This is because it cannot be improved. More preferably, it is in the range of 500 to 650 ° C. Further, depending on the type and use of the base material, when the base material is glass, it is preferable to perform the heat strengthening and / or hot bending simultaneously, and the heat strengthening and / or hot bending of the glass is performed at a temperature of 6 ° C.
It is more preferable to carry out at about 00 to 650 ° C. for about 5 to 10 minutes.

【0042】なお、本発明に使用する基材としては、代
表的なものとしてはガラスが用いられるが、そのガラス
は自動車用ならびに建築用、産業用ガラス等に通常用い
られている板ガラス、所謂フロート板ガラスなどであ
り、クリアをはじめグリ−ン、ブロンズ等各種着色ガラ
スや各種機能性ガラス、強化ガラスやそれに類するガラ
ス、合せガラスのほか複層ガラス等、さらに平板あるい
は曲げ板等各種板ガラス製品として使用できることは言
うまでもない。また板厚としては例えば約2.0mm程
度以上約12mm程度以下であり、建築用としては約
3.0mm程度以上約8mm程度以下が好ましく、自動車
用としては約2.0mm程度以上約5.0mm程度以下が
好ましく、より好ましくは約2.3mm程度以上約3.
5mm程度以下のガラスである。
As the substrate used in the present invention, glass is typically used, and the glass is a plate glass commonly used for automobiles, architectural and industrial glass, so-called float glass. It is used as various types of flat glass such as clear glass, green glass, bronze, various colored glass, various functional glass, tempered glass and similar glass, laminated glass, multi-layer glass, flat plate and bent plate. It goes without saying that you can do it. The plate thickness is, for example, about 2.0 mm or more and about 12 mm or less, preferably about 3.0 mm or more and about 8 mm or less for construction, and about 2.0 mm or more to about 5.0 mm for automobiles. About 2.3 mm or less, more preferably about 2.3 mm or more and about 3.
The glass is about 5 mm or less.

【0043】なお、本発明の基材はガラスに限定される
ものではなく、ガラス以外でも金属やセラミックスな
ど、焼成熱処理しても変質しないものであれば使用する
ことができる。
The substrate of the present invention is not limited to glass, but may be made of any material other than glass, such as metals and ceramics, as long as they do not deteriorate even after heat treatment.

【0044】さらに、各種の機能性膜、例えば、熱線遮
蔽膜、紫外線遮蔽膜、電磁遮蔽膜、導電性膜、アルカリ
バリアー膜、着色膜、装飾膜等、が被覆された基材上に
本発明の膜を被覆することもできる。
Further, the present invention is applied to a substrate coated with various functional films, for example, a heat ray shielding film, an ultraviolet ray shielding film, an electromagnetic shielding film, a conductive film, an alkali barrier film, a colored film, a decorative film, etc. Can be coated.

【0045】なお、本発明における親水性とは、実施例
の被膜の性能評価で後述するように、被膜表面に20μ
lの水滴を滴下したときに、水との濡れ性を示す特性で
あり、水の接触角が好ましくは5°以下になることが良
好な状態である。一方、防曇性とは、被膜が水で濡れた
場合に、被膜付き基板を透して像が明白に見えるかどう
かの程度を示す特性であり、揺らぎがなくクリアーに見
えることが良好な状態である。
The hydrophilicity in the present invention means that 20 μm is applied to the coating surface as described later in the evaluation of the performance of the coating in Examples.
1 is a property showing wettability with water when a water drop of 1 is dropped, and it is a good state that the contact angle of water is preferably 5 ° or less. On the other hand, the anti-fog property is a property that indicates whether or not an image can be clearly seen through a coated substrate when the coating is wet with water. It is.

【0046】本発明により得られる親水性・防曇性基材
は、建築用、自動車用、産業用等の各種窓、浴室用、車
両用、化粧用、道路用等の各種鏡、その他親水性、防曇
性の要求される各種の用途に使用出来る。
The hydrophilic / anti-fog base material obtained by the present invention includes various windows for architectural use, automobile use, industrial use, etc., various mirrors for use in bathrooms, vehicles, cosmetics, roads, etc., and other hydrophilic materials. It can be used for various applications requiring anti-fog properties.

【0047】[0047]

【作用】親水性ならびに親水維持性、防曇性に係わる物
性は、膜表面の水酸基の量と表面から内部に渡る保水性
および膜表面形状への依存性が高く、膜表面と水の接触
角が小さくできるだけ多くの水を吸収または吸着するこ
とができれば、親水効果ならびに防曇効果を長期に持続
することが可能となる。
The properties related to hydrophilicity, hydrophilicity retention and anti-fogging properties are highly dependent on the amount of hydroxyl groups on the film surface, the water retention from the surface to the inside and the surface shape of the film. If the water content is as small as possible and can absorb or adsorb as much water as possible, the hydrophilic effect and the antifogging effect can be maintained for a long time.

【0048】本発明により得られる親水性・防曇性基材
が、長期に渡って親水性ならびに防曇性を持続できるの
は、被膜の表層に吸水性を有する非反応性酸化物超微粒
子が密に存在することおよび最表面が凹凸形状を有して
いることに起因し、さらに吸水性を有する非反応性酸化
物超微粒子が膜表面ばかりでなく内部にも濃度分布が高
い層があるためである。すなわち、表面積の増大により
吸着能が増し、さらに一旦吸着した水酸基は、膜表面ば
かりでなく内部にも多量に存在し、組織全体が親水性と
なるためである。また防曇性も同様な効果により水膜が
均一に広がり長期に渡って発揮することができるためで
ある。
The hydrophilic and antifogging base material obtained by the present invention can maintain the hydrophilicity and antifogging property for a long period of time because the non-reactive oxide ultrafine particles having a water absorbing property on the surface layer of the coating film. Due to the dense existence and the unevenness of the outermost surface, the non-reactive oxide ultrafine particles having water absorption have a layer with a high concentration distribution not only on the film surface but also on the inside. It is. That is, the adsorption capacity is increased by the increase in the surface area, and the hydroxyl groups once adsorbed are present not only on the surface of the membrane but also in a large amount inside the membrane, and the whole tissue becomes hydrophilic. Further, the anti-fogging property is also because the water film can be uniformly spread by the same effect and can be exerted over a long period of time.

【0049】[0049]

【実施例】以下、実施例により本発明を具体的に説明す
る。但し本発明はこれらの実施例に限定されるものでは
ない。
The present invention will be described below in detail with reference to examples. However, the present invention is not limited to these examples.

【0050】被膜の性能評価は以下の方法により評価し
た。
The performance of the coating was evaluated by the following method.

【0051】 ■初期親水性評価:水の接触角測定で評価(成膜直後の
評価) (測定機器)協和界面科学製CA−A型 (測定環境)室温/大気中 (水滴量) 20μl [合否判定]水の接触角が5°以下であるものを合格と
した。
(1) Initial hydrophilicity evaluation: Evaluation by measuring the contact angle of water (evaluation immediately after film formation) (Measurement equipment) CA-A type manufactured by Kyowa Interface Science (Measurement environment) Room temperature / in the atmosphere (water droplet amount) 20 μl Judgment] Those having a water contact angle of 5 ° or less were judged as acceptable.

【0052】 ■親水維持性評価:水の接触角測定で評価(経時測定) (測定環境等は同上) (放置条件)室内、温度;20〜35℃、湿度;40〜
90%RH [合否判定]水の接触角が5°以下であるものを合格と
した。
(2) Evaluation of hydrophilicity retention: Evaluation by measuring the contact angle of water (measurement over time) (The measurement environment and the like are the same.) (Leaving conditions) Indoor, temperature: 20 to 35 ° C., humidity: 40 to
90% RH [Pass / Fail Judgment] Those having a water contact angle of 5 ° or less were accepted.

【0053】 ■膜強度評価:堅牢試験 荷重;100g/cm2 綿帆布;キャンバス布(JISL 3120ー1961ー1206) ストローク回数;3000往復 [合否判定]著しいキズの発生がなく、水の接触角が1
0°以下であるものを合格とした。
(2) Membrane strength evaluation: fastness test Load: 100 g / cm 2 cotton canvas; canvas cloth (JISL 3120-1961-1206) Number of strokes: 3000 reciprocations [Pass / Fail] No significant scratches occurred and water contact angle was low 1
Those that were 0 ° or less were considered acceptable.

【0054】 ■耐温水性試験:60℃の温水に96h浸漬して外観、
膜強度(温水中でガーゼ布で強く擦り膜剥離の有無を調
べる)の変化を評価した [合否判定]著しいキズの発生および膜剥離がなく、水
の接触角が5°以下であるものを合格とした。
(2) Warm water resistance test: The appearance was immersed in warm water of 60 ° C. for 96 hours.
The change in film strength (rubbing strongly with gauze cloth in warm water to check for film peeling) was evaluated. [Pass / Fail] Passed if there was no significant scratching and film peeling and the water contact angle was 5 ° or less. And

【0055】 ■耐アルカリ試験:1NのNaOH水溶液に48h室温
で浸漬して外観の変化を評価した [合否判定]膜の変色および剥離がないものを合格とし
た。
(3) Alkali resistance test: Changes in appearance were evaluated by immersion in a 1N NaOH aqueous solution for 48 hours at room temperature. [Pass / Fail] Films without discoloration and peeling were evaluated as acceptable.

【0056】 ■像歪み評価:46℃飽和水蒸気に被膜面側を3分間接
触させ、この間の透視と反射での像の見え方を目視で評
価(経時測定) [合否判定]水膜の不均一さによる像の揺らぎのない場
合を合格とした。
(2) Image distortion evaluation: The film surface side was brought into contact with saturated steam at 46 ° C. for 3 minutes, and the appearance of the image during the fluoroscopy and reflection was visually evaluated (measurement over time). The case where the image did not fluctuate due to the size was judged to be acceptable.

【0057】 ■防曇性評価:呼気による評価(経時測定) [合否判定]官能評価で、呼気をかけたサンプルを介し
て新聞の文字が正読できるものを合格とした。
(2) Evaluation of antifogging property: evaluation by expiration (measurement with time) [Pass / fail judgment] In the sensory evaluation, a sample in which the characters of a newspaper could be read correctly through a sample to which exhalation was applied was passed.

【0058】なお、下記の実施例における上記の性能評
価結果ならびに室内放置での水の接触角の推移、防曇性
を表1に示す。なお、比較例の評価結果は、表2に示
す。
Table 1 shows the results of the above-mentioned performance evaluations in the following examples, changes in the contact angle of water when left indoors, and anti-fogging properties. Table 2 shows the evaluation results of the comparative examples.

【0059】[0059]

【実施例1】ゾル溶液の調製:出発原料として、マト
リックス形成用シリカゾル(CSG−DI−0600、
チッ素製)、チタニアゾル(CG−T、日本曹達製)、
ジルコニア(塩化ジルコニウム試薬、キシダ化学製)、
超微粒子シリカ(IPA−ST−S、日産化学製)、溶
媒(エキネンF−1(変性アルコール))を用いた。溶
液は以下の手順で調製した。
Example 1 Preparation of sol solution: As a starting material, a silica sol for matrix formation (CSG-DI-0600,
Nitrogen), titania sol (CG-T, manufactured by Nippon Soda),
Zirconia (zirconium chloride reagent, manufactured by Kishida Chemical),
Ultrafine silica particles (IPA-ST-S, manufactured by Nissan Chemical Industries, Ltd.) and a solvent (Echinen F-1 (denatured alcohol)) were used. The solution was prepared according to the following procedure.

【0060】ゾル溶液組成は、酸化物換算でシリカ:チ
タニア:ジルコニア:超微粒子シリカ=20:20:1
0:50重量%とし、所定量のCSG−DI−060
0、CG−T、塩化ジルコニウムおよびIPA−ST−
Sを順次添加し室温で攪拌してコーティング溶液とし
た。なお、溶液の固形分濃度は全酸化物換算で4重量%
とした。
The composition of the sol solution is silica: titania: zirconia: ultrafine silica = 20: 20: 1 in terms of oxide.
0: 50% by weight and a predetermined amount of CSG-DI-060
0, CG-T, zirconium chloride and IPA-ST-
S was added sequentially and stirred at room temperature to obtain a coating solution. The solid concentration of the solution was 4% by weight in terms of total oxides.
And

【0061】コーティング操作および焼成:基板には
10cm□で厚さ2mmのソーダライムガラスを使用し、
コーティング面を酸化セリウムで十分に研磨した後、上
水で洗浄、イオン交換水でリンス洗浄し、さらに水を除
去した後、イソプロピルアルコールで払拭してコーティ
ング用基板とした。このようにして準備したガラス基板
に上記溶液をスピンコート法で成膜し、200℃で10
分間乾燥して室温まで冷却した後、再度、同一溶液を同
じ操作で乾燥処理をし、600℃で5分間焼成した。得
られた膜は反射、透過とも色調はニュートラルで、1回
の成膜操作での膜厚は表面粗さ計(dektak−30
30、sloan社製)で測定した結果80nmで、2
回の成膜操作で160nmであった。膜表面の凹凸形状
の山と谷の段差は20nmで、ピッチは30nmであっ
た。
Coating operation and firing: Soda lime glass of 10 cm square and 2 mm thick was used for the substrate.
After the coated surface was sufficiently polished with cerium oxide, it was washed with tap water, rinsed with ion-exchanged water, water was removed, and then wiped with isopropyl alcohol to obtain a coating substrate. The above solution was spin-coated on the glass substrate prepared in this manner,
After drying for 5 minutes and cooling to room temperature, the same solution was again dried by the same operation, and baked at 600 ° C. for 5 minutes. The obtained film has a neutral color tone in both reflection and transmission, and the film thickness in one film forming operation is measured by a surface roughness meter (dektak-30).
30 (manufactured by Sloan) at 80 nm and 2
The film thickness was 160 nm in each film forming operation. The step between the peaks and valleys of the irregularities on the film surface was 20 nm, and the pitch was 30 nm.

【0062】初期親水性評価をした結果、被膜の水に対
する接触角は1〜2°と良好であるとともに、他の性能
評価結果も表1に示す通りすべて良好であった。なお、
超微粒子シリカの分散状態は、図2に示すような、基板
/疎/密/疎/密の構成を有していた。なお、被膜の原
子比(超微粒子/マトリックス)は、表層の超微粒子シ
リカの密な層が3.0、内部の超微粒子シリカの疎な層
が1.2であった。
As a result of the evaluation of the initial hydrophilicity, the contact angle of the coating film with water was as good as 1 to 2 °, and all the other performance evaluation results were also good as shown in Table 1. In addition,
The dispersed state of the ultrafine silica particles had a substrate / sparse / dense / sparse / dense configuration as shown in FIG. The atomic ratio (ultrafine particles / matrix) of the coating was 3.0 for the ultrafine silica layer on the surface and 1.2 for the sparse ultrafine silica layer inside.

【0063】[0063]

【表1】 [Table 1]

【0064】[0064]

【実施例2】ゾル溶液組成をシリカ:チタニア:ジルコ
ニア:超微粒子アルミナ=20:20:10:50重量
%とした以外はすべて実施例1と同様で、焼成後の膜厚
は140nmであった。膜表面の凹凸形状の山と谷の段
差は10nmで、ピッチは40nmであった。初期親水
性評価をした結果、被膜の水に対する接触角は1〜2°
であり良好であるとともに、他の性能評価結果も表1に
示す通りすべて良好であった。
Example 2 The same procedure as in Example 1 was carried out except that the sol solution composition was changed to silica: titania: zirconia: ultrafine alumina = 20: 20: 10: 50% by weight, and the film thickness after firing was 140 nm. . The step between the peaks and valleys of the irregularities on the film surface was 10 nm, and the pitch was 40 nm. As a result of the initial hydrophilicity evaluation, the contact angle of the coating with water was 1-2 °.
And all the performance evaluation results were good as shown in Table 1.

【0065】[0065]

【実施例3】ゾル溶液組成をシリカ:チタニア:ジルコ
ニア:超微粒子シリカ=25:25:20:30重量%
とした以外はすべて実施例1と同様で、焼成後の膜厚は
200nmであった。膜表面の山と谷の段差は10nm
でピッチは20nmであった。初期親水性評価をした結
果、被膜の水に対する接触角は2〜3°であり良好であ
るとともに、他の性能評価結果も表1に示す通りすべて
良好であった。
Example 3 The sol solution composition was silica: titania: zirconia: ultrafine silica = 25: 25: 20: 30% by weight.
All were the same as in Example 1 except that the film thickness after firing was 200 nm. Step between peaks and valleys on the film surface is 10 nm
And the pitch was 20 nm. As a result of the initial hydrophilicity evaluation, the contact angle of the coating film with water was 2-3 °, which was good, and all the other performance evaluation results were also good, as shown in Table 1.

【0066】[0066]

【実施例4】ゾル溶液組成をシリカ:チタニア:ジルコ
ニア:超微粒子シリカ=30:30:10:30重量%
とした以外はすべて実施例1と同様で、焼成後の膜厚は
160nmであった。膜表面の山と谷の段差は20nm
でピッチは30nmであった。初期親水性評価をした結
果、被膜の水に対する接触角は1〜2°であり良好であ
るとともに、他の性能評価結果も表1に示す通りすべて
良好であった。
Example 4 The sol solution composition was silica: titania: zirconia: ultrafine silica = 30: 30: 10: 30% by weight.
Except for the above, all were the same as in Example 1, and the film thickness after firing was 160 nm. The step between peaks and valleys on the film surface is 20 nm
And the pitch was 30 nm. As a result of the initial hydrophilicity evaluation, the contact angle of the coating film with water was 1-2 °, which was good, and all the other performance evaluation results were also good, as shown in Table 1.

【0067】[0067]

【実施例5】コーティング溶液を調製する際のマトリッ
クス形成用シリカゾルを三菱化学製のMSH2とした以
外はすべて実施例1と同様で、焼成後の膜厚は240n
mであった。膜表面の山と谷の段差は30nmでピッチ
は40nmであった。初期親水性評価をした結果、被膜
の水に対する接触角は1〜2°であり良好であるととも
に、他の性能評価結果も表1に示す通りすべて良好であ
った。
Example 5 The same procedure as in Example 1 was carried out except that the silica sol for forming a matrix used in preparing the coating solution was MSH2 manufactured by Mitsubishi Chemical Corporation.
m. The step between the peak and the valley on the film surface was 30 nm, and the pitch was 40 nm. As a result of the initial hydrophilicity evaluation, the contact angle of the coating film with water was 1-2 °, which was good, and all the other performance evaluation results were also good, as shown in Table 1.

【0068】[0068]

【実施例6】コーティング溶液を調製する際のマトリッ
クス形成用チタニアゾルを日本曹達製のNTiー500
とした以外はすべて実施例1と同様で、焼成後の膜厚は
280nmであった。膜表面の山と谷の段差は25nm
でピッチは20nmであった。親水性評価をした結果、
被膜の水に対する接触角は1〜2°であり良好であると
ともに、性能評価結果も表1に示す通りすべて良好であ
った。
Example 6 A titania sol for forming a matrix in preparing a coating solution was NTI-500 manufactured by Nippon Soda.
Except for the above, all were the same as in Example 1, and the film thickness after firing was 280 nm. The step between peaks and valleys on the film surface is 25 nm
And the pitch was 20 nm. As a result of the hydrophilicity evaluation,
The contact angle of the coating with water was 1-2 °, which was good, and the performance evaluation results were all good as shown in Table 1.

【0069】[0069]

【比較例1】成膜操作を1回とした以外はすべて実施例
1と同様で、焼成後の膜厚は80nmであった。膜表面
の山と谷の段差は10nmでピッチは20nmであっ
た。性能評価をした結果、被膜の水に対する初期接触角
は1〜2°であった。また、384時間後の水の接触角
は18°と経時変化は大きく、好ましいものではなかっ
た。さらに、その他の性能についても表2に示す通り親
水維持性が好ましいものではなく、防曇性も好ましいも
のではなかった。なお、被膜の原子比(超微粒子/マト
リックス比)は、表層が2.0で、内部が1.8であっ
た。
Comparative Example 1 The procedure was the same as in Example 1 except that the film formation operation was performed once, and the film thickness after firing was 80 nm. The step between the peak and the valley on the film surface was 10 nm, and the pitch was 20 nm. As a result of performance evaluation, the initial contact angle of the coating with water was 1-2 °. Further, the contact angle of water after 384 hours was 18 °, which was a large change with time, and was not preferable. In addition, as shown in Table 2, the hydrophilic properties were not preferable for the other properties, and the antifogging property was not preferable. The atomic ratio (ultrafine particle / matrix ratio) of the coating was 2.0 for the surface layer and 1.8 for the inside.

【0070】[0070]

【表2】 [Table 2]

【0071】[0071]

【比較例2】成膜操作を1回とした以外はすべて実施例
2と同様で、焼成後の膜厚は70nmであった。膜表面
の山と谷の段差は20nmでピッチは30nmであっ
た。性能評価をした結果、被膜の水に対する初期接触角
は2〜3°であった。また、576時間後の水の接触角
は27°と経時変化は大きく、好ましいものではなかっ
た。さらに、その他の性能についても表2に示す通り親
水維持性と防曇性が好ましいものではなかった。
Comparative Example 2 The same procedure as in Example 2 was carried out except that the film forming operation was performed once, and the film thickness after firing was 70 nm. The step between the peak and the valley on the film surface was 20 nm, and the pitch was 30 nm. As a result of performance evaluation, the initial contact angle of the coating film with water was 2-3 °. Further, the contact angle of water after 576 hours was 27 °, which was a large change with time, which was not preferable. Further, as shown in Table 2, the hydrophilic properties and the antifogging property were not preferable for other properties.

【0072】[0072]

【比較例3】ゾル溶液組成を酸化物換算でシリカ:チタ
ニア:ジルコニア:超微粒子シリカ=35:35:2
5:5重量%とした以外はすべて実施例1と同様で、焼
成後の膜厚は180nmであった。膜表面の山と谷の段
差は10nmでピッチは10nmであった。性能評価を
した結果、96時間後の水の接触角は18°と親水維持
性の経時変化は非常に大きく、また、呼気による防曇性
評価では水膜が均一とならず像歪みがあった。
Comparative Example 3 The sol solution composition was calculated as oxide: silica: titania: zirconia: ultrafine silica = 35: 35: 2.
Except for 5: 5% by weight, all were the same as in Example 1, and the film thickness after firing was 180 nm. The step between the peak and the valley on the film surface was 10 nm, and the pitch was 10 nm. As a result of the performance evaluation, the contact angle of water after 96 hours was 18 °, and the change with time of hydrophilicity was extremely large. In addition, in the evaluation of anti-fogging property by exhalation, the water film was not uniform and image distortion occurred. .

【0073】[0073]

【比較例4】ゾル溶液組成を酸化物換算でシリカ:チタ
ニア:ジルコニア:超微粒子シリカ=5:5:15:7
5重量%とした以外はすべて実施例1と同様で、焼成後
の膜厚は190nmであった。膜表面の山と谷の段差は
50nmでピッチは80nmで規則性はなかった。性能
評価をした結果、親水維持性の経時変化は実施例同様非
常に良好であったが、膜強度も低く堅牢試験で膜が全面
剥離し、耐温水試験と耐アリカリ試験でも膜が全面剥離
した。
Comparative Example 4 The sol solution composition was calculated as oxide: silica: titania: zirconia: ultrafine silica = 5: 5: 15: 7.
Except for 5% by weight, all were the same as in Example 1, and the film thickness after firing was 190 nm. The level difference between peaks and valleys on the film surface was 50 nm, the pitch was 80 nm, and there was no regularity. As a result of the performance evaluation, the change with time of the hydrophilicity retention was very good as in the example, but the film was also completely peeled off in the low strength test with low film strength, and the film was completely peeled off in the hot water test and the anti-alkaline test. .

【0074】[0074]

【発明の効果】本発明の親水性ならびに防曇性被膜を形
成した基材によれば、安定かつ確実に優れた親水性を長
期に渡って維持できるとともに、防曇性も長期にわたっ
て維持できる金属酸化物薄膜を得ることができ、クラッ
ク等の欠陥もなく、かつ充分な可視光線透過率と耐久性
に優れ、耐摩耗性においても実用上問題のないものとす
ることができる。さらに、透過および反射色調が基材の
もつそれと同じものとなり、建築用もしくは鏡などの産
業用、さらには自動車用窓材をはじめ、屋内、屋外で使
用される各種ガラス物品等、種々の被膜に広く採用でき
る有用な親水性ならびに防曇性被膜基材およびその形成
法を提供することができる。
According to the substrate of the present invention having a hydrophilic and antifogging film formed thereon, a metal which can stably and surely maintain excellent hydrophilicity for a long period of time and also maintain the antifogging property for a long period of time. An oxide thin film can be obtained, which has no defects such as cracks, has excellent visible light transmittance and durability, and has no practical problem in abrasion resistance. In addition, the transmission and reflection colors are the same as those of the base material, and it can be applied to various coatings such as industrial or architectural or mirror windows, as well as various glass articles used indoors and outdoors, including window materials for automobiles. It is possible to provide a useful hydrophilic and anti-fog coating substrate that can be widely adopted and a method for forming the same.

【図面の簡単な説明】[Brief description of the drawings]

【図1】非反応性酸化物超微粒子が密疎密層の場合の概
略断面図である。
FIG. 1 is a schematic cross-sectional view when a non-reactive oxide ultrafine particle is a dense / dense layer.

【図2】非反応性酸化物超微粒子が密疎密層の場合の概
略断面図である。
FIG. 2 is a schematic cross-sectional view in a case where non-reactive oxide ultrafine particles are a dense / dense layer.

【図3】非反応性酸化物超微粒子の密な層が3層の場合
の概略断面図である。
FIG. 3 is a schematic cross-sectional view when three layers of non-reactive oxide ultrafine particles are dense.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西田 佳弘 三重県松阪市大口町1510 セントラル硝子 株式会社硝子研究所内 (72)発明者 本城 啓司 三重県松阪市大口町1510 セントラル硝子 株式会社硝子研究所内 Fターム(参考) 2K009 BB02 BB06 CC03 CC32 CC42 DD01 DD02 DD06 EE02 4F100 AA17A AA17B AA17D AA19A AA19B AA19D AA20A AA20B AA20D AA21A AA21D AA27A AA27D AA33A AA33D AG00C AK01A AK01B AK01D BA04 BA07 BA10A BA10C BA26 BA27 DD01 DE04A DE04B DE04D DJ00D EH46 EJ48 EJ86 GB07 GB33 JA14B JB05 JD15A JD15D JL07 4G059 AA01 AB03 AB09 AC21 EA01 EA04 EA05 EB07 GA01 GA02 GA04 GA12  ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Yoshihiro Nishida 1510 Oguchi-cho, Matsusaka-shi, Mie Central Glass Laboratory Co., Ltd. (72) Inventor Keiji Honjo 1510 Oguchi-cho, Matsusaka-shi, Mie Central Glass Co., Ltd. F-term (reference) 2K009 BB02 BB06 CC03 CC32 CC42 DD01 DD02 DD06 EE02 4F100 AA17A AA17B AA17D AA19A AA19B AA19D AA20A AA20B AA20D AA21A AA21D AA27A AA27D AA33A AA33D AG00C AK01A AK01B AK01D BA04 BA07 BA10A BA10C BA26 BA27 DD01 DE04A DE04B DE04D DJ00D EH46 EJ48 EJ86 GB07 GB33 JA14B JB05 JD15A JD15D JL07 4G059 AA01 AB03 AB09 AC21 EA01 EA04 EA05 EB07 GA01 GA02 GA04 GA12

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】マトリックス金属酸化物中に非反応性酸化
物超微粒子が分散された複合金属酸化物よりなる被膜が
被覆された基材において、該被膜のマトリックス金属酸
化物の含有量は30〜90重量%、非反応性酸化物超微
粒子の含有量が10〜70重量%であり、被膜中の非反
応性酸化物超微粒子の分散状態は、被膜の表層はその下
層より密であって、さらに膜の内層にも非反応性酸化物
超微粒子の密な層を少なくとも1層形成するとともに、
且つ該被膜の最表面は凹凸形状となっていることを特徴
とする親水性・防曇性基材。
In a substrate coated with a coating of a composite metal oxide in which non-reactive oxide ultrafine particles are dispersed in a matrix metal oxide, the content of the matrix metal oxide in the coating is 30 to 90% by weight, the content of the non-reactive oxide ultrafine particles is 10 to 70% by weight, and the dispersion state of the non-reactive oxide ultrafine particles in the coating is such that the surface layer of the coating is denser than the lower layer, Further, at least one dense layer of non-reactive oxide ultrafine particles is formed also in the inner layer of the film,
And a hydrophilic / anti-fog base material characterized in that the outermost surface of the coating has an uneven shape.
【請求項2】非反応性酸化物超微粒子の分散状態が密で
ある層は、吸水性酸化物超微粒子とマトリックス金属酸
化物の原子比(超微粒子/マトリックス)は2.3以上
であり、分散状態が疎である層の原子比(超微粒子/マ
トリックス)は1.5以下であることを特徴とする請求
項1記載の親水性・防曇性基材。
2. The layer in which the non-reactive oxide ultrafine particles are densely dispersed has an atomic ratio of superabsorbent oxide ultrafine particles to matrix metal oxide (ultrafine particles / matrix) of 2.3 or more, The hydrophilic / anti-fogging substrate according to claim 1, wherein the atomic ratio (ultrafine particles / matrix) of the layer in which the dispersed state is sparse is 1.5 or less.
【請求項3】被膜の最表面の凹凸は、高さ方向での山と
谷との段差が10〜30nm、幅方向での山と山とのピ
ッチが20〜50nmの規則性のある凹凸形状を有する
ことを特徴とする請求項1または2記載の親水性・防曇
性基材
3. The irregularities on the outermost surface of the coating are regular irregularities in which the step between the peak and the valley in the height direction is 10 to 30 nm, and the pitch between the peaks in the width direction is 20 to 50 nm. 3. The hydrophilic / anti-fog base material according to claim 1, wherein the base material has:
【請求項4】マトリックス金属酸化物は、シリカ、チタ
ニア、ジルコニアの少なくとも1種よりなることを特徴
とする請求項1乃至3記載の親水性・防曇性基材。
4. The hydrophilic / anti-fogging substrate according to claim 1, wherein the matrix metal oxide comprises at least one of silica, titania and zirconia.
【請求項5】非反応性酸化物超微粒子は、シリカ、アル
ミナのうちの少なくとも1種から成ることを特徴とする
請求項1乃至4記載の親水性・防曇性基材。
5. The hydrophilic / anti-fogging substrate according to claim 1, wherein the non-reactive oxide ultrafine particles are made of at least one of silica and alumina.
【請求項6】被膜は、多孔質であることを特徴とする請
求項1乃至5記載の親水性・防曇性基材。
6. The hydrophilic / anti-fogging substrate according to claim 1, wherein the coating is porous.
【請求項7】被膜の膜厚は50〜300nmであること
を特徴とする請求項1乃至6記載の親水性・防曇性基
材。
7. The hydrophilic / anti-fog substrate according to claim 1, wherein the thickness of the coating is 50 to 300 nm.
【請求項8】マトリックス金属酸化物用の有機金属化合
物溶液に非反応性酸化物超微粒子を希釈溶媒とともに添
加して均一に攪拌混合した塗布液を基材表面に塗布し、
加水分解、縮重合反応させた後に乾燥し第1層の被膜を
成膜後、さらに同一塗布液を該第1層の膜上に塗布し
て、加水分解、縮重合反応させた後に乾燥し、さらに焼
成することを特徴とする親水性・防曇性基材の製造方
法。
8. A coating solution obtained by adding non-reactive oxide ultrafine particles together with a diluting solvent to an organometallic compound solution for a matrix metal oxide and uniformly stirring and mixing the coating solution,
After being subjected to hydrolysis and condensation polymerization reaction and dried to form a first layer film, the same coating solution is further applied on the first layer film, and then subjected to hydrolysis and condensation polymerization reaction and dried. A method for producing a hydrophilic / anti-fog base material, further comprising firing.
【請求項9】塗布液中にアルコールに可溶な有機高分子
を含有させることを特徴とする請求項8記載の親水性・
防曇性基材の製造方法。
9. The hydrophilic polymer according to claim 8, wherein an organic polymer soluble in alcohol is contained in the coating solution.
A method for producing an antifogging substrate.
【請求項10】乾燥温度が100〜250℃、焼成温度
が400〜700℃の範囲であることを特徴とする請求
項8または9記載の親水性・防曇性基材の製造方法。
10. The method for producing a hydrophilic / anti-fogging substrate according to claim 8, wherein the drying temperature is in the range of 100 to 250 ° C. and the firing temperature is in the range of 400 to 700 ° C.
JP11153438A 1999-06-01 1999-06-01 Hydrophilic and antifogging base material and its production Pending JP2000344546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11153438A JP2000344546A (en) 1999-06-01 1999-06-01 Hydrophilic and antifogging base material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11153438A JP2000344546A (en) 1999-06-01 1999-06-01 Hydrophilic and antifogging base material and its production

Publications (1)

Publication Number Publication Date
JP2000344546A true JP2000344546A (en) 2000-12-12

Family

ID=15562540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11153438A Pending JP2000344546A (en) 1999-06-01 1999-06-01 Hydrophilic and antifogging base material and its production

Country Status (1)

Country Link
JP (1) JP2000344546A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001106974A (en) * 1999-10-06 2001-04-17 Nippon Soda Co Ltd Photocatalytic complex, coating solution for forming photocatalytic layer and photocatalyst supporting structure
KR100529525B1 (en) * 2001-06-29 2005-11-21 크리스탈 시스템스 인코포레이티드 Antifogging product, inorganic hydrophilic hard layer forming material and process for producing antifogging lens
JP2010284843A (en) * 2009-06-10 2010-12-24 Kanagawa Acad Of Sci & Technol Reflection-proof film and its forming method
JP2015110313A (en) * 2013-10-31 2015-06-18 セントラル硝子株式会社 Hydrophilic coating-formed article, hydrophilic coating-forming coat liquid and method for producing hydrophilic coating-formed article
EP4246129A4 (en) * 2020-11-20 2024-05-15 Resonac Corp Water film evaluation method, and antifogging agent evaluation method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001106974A (en) * 1999-10-06 2001-04-17 Nippon Soda Co Ltd Photocatalytic complex, coating solution for forming photocatalytic layer and photocatalyst supporting structure
JP4693949B2 (en) * 1999-10-06 2011-06-01 日本曹達株式会社 Photocatalyst layer forming coating solution, photocatalyst complex, and photocatalyst structure
KR100529525B1 (en) * 2001-06-29 2005-11-21 크리스탈 시스템스 인코포레이티드 Antifogging product, inorganic hydrophilic hard layer forming material and process for producing antifogging lens
JP2010284843A (en) * 2009-06-10 2010-12-24 Kanagawa Acad Of Sci & Technol Reflection-proof film and its forming method
JP2015110313A (en) * 2013-10-31 2015-06-18 セントラル硝子株式会社 Hydrophilic coating-formed article, hydrophilic coating-forming coat liquid and method for producing hydrophilic coating-formed article
EP4246129A4 (en) * 2020-11-20 2024-05-15 Resonac Corp Water film evaluation method, and antifogging agent evaluation method

Similar Documents

Publication Publication Date Title
JP2001254072A (en) Preparation process of anti-fogging composition, anti- fogging coating agent and anti-fogging coated film- forming base material
JP6939573B2 (en) Translucent structure
JP3781888B2 (en) Hydrophilic substrate and method for producing the same
JP4893539B2 (en) Article having antiglare layer and method for producing the same
CN101384925A (en) Anti-reflective coated glas plate
JP6118012B2 (en) Antifogging film coated article
CA2271473C (en) Optical transparency having a diffuse antireflection coating and process for making it
AU2003200447A1 (en) Anti-fogging Coating Material, Anti-fogging Coating, and Anti-fogging Optical Member
KR100706928B1 (en) Method for preparation of hydrophilic, anti-fogging, and anti-staining thin film and method for preparation of mirror having the film
EP1101748B1 (en) Article with antifogging film and process for producing same
JP2000192021A (en) Hydrophilic, antifogging and antistaining substrate and its preparation
JP2020122809A (en) Coating liquid for forming visible light scattering film, and base material for forming visible light scattering film
JP3413286B2 (en) Water repellent glass and method for producing the same
WO2016147573A1 (en) Hydrophilic lens
JP2000344546A (en) Hydrophilic and antifogging base material and its production
JP2007241177A (en) Antireflection structure and structure
JPH09202651A (en) Hydrophilic coating membrane and its formation
JPH09227157A (en) Non-fogging film-forming base material, non-fogging film using the same and its production
JP3649596B2 (en) Substrate on which hydrophilic oxide film is formed and method for producing the same
JPH10101377A (en) Anticlouding coating film and its production
JP2004352524A (en) Low reflective article and manufacturing method therefor
JP2001233638A (en) Antifogging film-formed substrate and method for producing the same
JP2000262367A (en) Antifogging mirror and its production
JP6749093B2 (en) Substrate with superhydrophilic coating, coating solution and manufacturing method thereof
JP2001152137A (en) Non-fogging film-formed base and its preparation process

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051011