JP2000337106A - Condensing plant - Google Patents

Condensing plant

Info

Publication number
JP2000337106A
JP2000337106A JP11145345A JP14534599A JP2000337106A JP 2000337106 A JP2000337106 A JP 2000337106A JP 11145345 A JP11145345 A JP 11145345A JP 14534599 A JP14534599 A JP 14534599A JP 2000337106 A JP2000337106 A JP 2000337106A
Authority
JP
Japan
Prior art keywords
cooling
water
outside air
temperature
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11145345A
Other languages
Japanese (ja)
Other versions
JP4251247B2 (en
Inventor
Toshiki Nishikawa
俊樹 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Plant Construction Corp
Original Assignee
Toshiba Plant Construction Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Plant Construction Corp filed Critical Toshiba Plant Construction Corp
Priority to JP14534599A priority Critical patent/JP4251247B2/en
Publication of JP2000337106A publication Critical patent/JP2000337106A/en
Application granted granted Critical
Publication of JP4251247B2 publication Critical patent/JP4251247B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To compensate the reduction in cooling performance of an air cooling type condenser by the cooling effect of a water spray means by cooling the exhaust pipe of the air cooling type condenser from a steam turbine by the water spray means for spraying cooling water. SOLUTION: An exhaust pipe 6 for introducing the exhaust from a low pressure turbine 5 to an air cooling type condenser 7 is provided with a water spray means 9. The water spray means 9 comprises spray nozzles 10 for spraying cooling water to the circumference of the exhaust pipe 6, a feed pump 12 provided on a cooling water pipe 11 for supplying cooling water to the spray nozzles 10 and a control valve 13. The control valve 13 is controlled by a temperature controller 16 for outputting a control signal according to the temperature signal from a temperature detector 15 for detecting the outside air temperature. When the outside air temperature rises higher than a set valve, the output of the temperature controller 16 is increased to increase the opening of the control valve 13 to increase the cooling quantity, and when it lowerers below the set value, the cooling quantity is reduced. According to this, even if the outside air temperature rises, the reduction in vacuum degree of the air cooling type condenser is prevented to avoid the reduction in output o a steam turbine.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は蒸気タービンの排気
を空冷式復水器で冷却する復水装置に関し、詳しくは外
気温度の上昇に伴う空冷式復水器の真空度低下を防止す
る復水装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a condenser for cooling the exhaust gas of a steam turbine by an air-cooled condenser, and more particularly to a condenser for preventing a degree of vacuum of the air-cooled condenser from decreasing with an increase in outside air temperature. It concerns the device.

【0002】[0002]

【従来の技術】蒸気タービンにより発電機を駆動して発
電する火力発電設備において、蒸気タービンの出力は入
口側蒸気圧力と排気圧力の差に比例する。そこで通常蒸
気タービンの排気は復水器により凝縮して圧力降下させ
る。臨海地域や大きな河川近くに設置される火力発電所
では大量の冷却水が得られるので水冷式の復水器が多く
設置される。ところがそのように冷却水を豊富に得られ
ない地域に設置される火力発電所では空冷式復水器が使
用される。この空冷式復水器は、排気が流通する多数の
チューブとその外面に固定された多数のフィンとにより
コアを構成し、そのコアに冷却風を送るファンが設けら
れたものである。図2は従来の空冷式復水器を使用した
復水装置による火力発電装置を示すプロセスフロー図で
ある。ボイラ1で発生した高圧蒸気は高圧蒸気管2によ
り高圧タービン3に導入され、そこから排出される低圧
蒸気は低圧蒸気管4により低圧タービン5に導入され
る。低圧タービン5からの排気は排気管6を経て空冷式
復水器7に導入され、そこで外気により冷却されて凝縮
し、復水となって給水管8から再びボイラ1に戻され
る。
2. Description of the Related Art In a thermal power plant in which a generator is driven by a steam turbine to generate electricity, the output of the steam turbine is proportional to the difference between the inlet steam pressure and the exhaust pressure. Therefore, the exhaust gas of the steam turbine is usually condensed by a condenser to reduce the pressure. In thermal power plants installed near seaside areas or near large rivers, a large amount of cooling water can be obtained, so many water-cooled condensers are installed. However, air-cooled condensers are used in thermal power plants installed in areas where such abundant cooling water cannot be obtained. In this air-cooled condenser, a core is constituted by a number of tubes through which exhaust gas flows and a number of fins fixed to the outer surface thereof, and a fan for sending cooling air to the core is provided. FIG. 2 is a process flow diagram showing a thermal power generator using a condensing device using a conventional air-cooled condenser. The high-pressure steam generated in the boiler 1 is introduced into a high-pressure turbine 3 by a high-pressure steam pipe 2, and the low-pressure steam discharged therefrom is introduced into a low-pressure turbine 5 by a low-pressure steam pipe 4. Exhaust gas from the low-pressure turbine 5 is introduced into an air-cooled condenser 7 through an exhaust pipe 6, where it is cooled and condensed by outside air, condensed, and returned to the boiler 1 from the water supply pipe 8 again.

【0003】[0003]

【発明が解決しようとする課題】一般に水冷式の復水器
は冷却水温度が安定しているので、季節変化や天気の変
動により外気温度が変化しても冷却能力には殆ど影響を
与えない。しかし空冷式復水器は放熱管と外気の接触に
よる熱交換作用を利用するので、外気温度の変化により
冷却能力が変動し、特に外気温度の高い夏期などは冷却
能力が大幅に下がり、空冷式復水器における真空度の低
下という現象が起こる。夏期は発電需要が多いにも拘わ
らず、このように空冷式復水器の真空度が低下すると、
蒸気タ−ビン(図2の例では低圧タービン5)における
蒸気の膨張仕事量が減少して出力低下を招く。蒸気タ−
ビンの定格出力を維持するにはボイラからの蒸気量を増
加する必要があるが、その場合には発電プラントの総合
効率が低下する。そこで本発明は、空冷式復水器を備え
た復水装置におけるこのような問題を解決することを課
題とするものである。
Generally, a water-cooled condenser has a stable cooling water temperature, so that even if the outside air temperature changes due to seasonal changes or weather fluctuations, the cooling capacity is hardly affected. . However, since the air-cooled condenser uses the heat exchange effect by contact between the radiator tube and the outside air, the cooling capacity fluctuates due to changes in the outside air temperature, especially in summer when the outside air temperature is high, etc. A phenomenon occurs in which the degree of vacuum in the condenser decreases. Despite the high demand for power generation in summer, when the degree of vacuum of the air-cooled condenser decreases in this way,
The work of expanding steam in the steam turbine (the low-pressure turbine 5 in the example of FIG. 2) is reduced, and the output is reduced. Steam tar
In order to maintain the rated output of the bin, it is necessary to increase the amount of steam from the boiler, in which case the overall efficiency of the power plant decreases. Therefore, an object of the present invention is to solve such a problem in a condenser provided with an air-cooled condenser.

【0004】[0004]

【課題を解決するための手段】前記課題を解決する請求
項1に記載の発明は、蒸気タービンの排気を空冷式復水
器で冷却する復水装置において、冷却水をスプレーする
散水手段9により、蒸気タービンから空冷式復水器7へ
の排気管6を冷却するようにしたことを特徴とするもの
である。また請求項2に記載の発明は、請求項1に記載
の復水装置の好ましい実施の形態であって、外気温度の
上昇に比例して散水手段9による冷却量を増加させる
か、または外気温度が設定値を越えたときに散水手段9
による冷却を開始もしくは冷却量を増加させるように構
成されていることを特徴とするものである。
According to a first aspect of the present invention, there is provided a condensing device for cooling the exhaust gas of a steam turbine by an air-cooled condenser by a water spraying means for spraying cooling water. The exhaust pipe 6 from the steam turbine to the air-cooled condenser 7 is cooled. The invention according to claim 2 is a preferred embodiment of the water condensing device according to claim 1, wherein the amount of cooling by the water sprinkling means 9 is increased in proportion to the rise in the outside air temperature, or the outside air temperature is increased. Watering means 9 when exceeds the set value
The cooling is started or the cooling amount is increased.

【0005】[0005]

【発明の実施の形態】次に、本発明の実施の形態を図面
により説明する。図1は本発明の復水装置を使用した火
力発電装置を示すプロセスフロー図であり、図2と同じ
部分には同一符号が付されている。本発明では低圧ター
ビン5から排出される排気を空冷式復水器7に導入する
ための排気管6に散水手段9が設けられる。この散水手
段9は所定長の排気管6の外周部に冷却水をスプレーす
る散水ノズル10と、散水ノズル10に冷却水を供給す
る冷却水管11と、冷却水管11に設けた供給ポンプ1
2および調節弁13と、冷却水を貯蔵する水槽14を有
している。なお、排気管6は一例として、その直径が1
m60cm程で、全長が16m〜20m程のものであ
る。そこで、好ましくは、散水ノズル10はその大きな
排気管6の全周に可能な限り均一に散水ができるように
設置する。さらには、排気管6の下方に冷却水回収設備
を設け、そこで回収した冷却水を比較的小容量のクーリ
ングタワー等の冷却装置で冷却してから水槽14に戻す
ことにより、冷却水を循環使用するようにしてもよい。
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a process flow chart showing a thermal power generator using the condensing device of the present invention, and the same parts as those in FIG. 2 are denoted by the same reference numerals. In the present invention, a water sprinkling means 9 is provided in an exhaust pipe 6 for introducing exhaust gas discharged from the low-pressure turbine 5 into an air-cooled condenser 7. The water spraying means 9 includes a water spray nozzle 10 for spraying cooling water to an outer peripheral portion of the exhaust pipe 6 having a predetermined length, a cooling water pipe 11 for supplying cooling water to the water spray nozzle 10, and a supply pump 1 provided in the cooling water pipe 11.
2 and a control valve 13 and a water tank 14 for storing cooling water. The exhaust pipe 6 has, for example, a diameter of 1
It is about 60 m long and about 16 m to 20 m long. Therefore, preferably, the watering nozzle 10 is installed so as to spray water as uniformly as possible over the entire circumference of the large exhaust pipe 6. Further, a cooling water collecting facility is provided below the exhaust pipe 6, and the collected cooling water is cooled by a cooling device such as a cooling tower having a relatively small capacity, and then returned to the water tank 14, thereby circulating the cooling water. You may do so.

【0006】調節弁13は外気温度を検出する温度検出
器15からの温度信号に応じた制御信号を出力する温度
制御器16により制御される。すなわち外気温度が設定
された値より上昇するとそれに比例して温度制御器16
の出力が増加し、調節弁13の開度が大きくなって冷却
量が増加し、逆に外気温度が設定された値より低下する
と温度制御器16の出力がそれに比例して減少し、調節
弁13の開度が小さくなって冷却量が減少するようにな
っている。また別の方法として、外気温度が設定温度を
越えたときに作動する温度スイッチを設け、その作動時
に調整弁13を開けて散水手段9による冷却を開始させ
るか、または該温度スイッチの作動時に低開度から高開
度に切り換えて散水手段9による冷却を増加させるよう
な2段階制御方式を採用することもできる。
The control valve 13 is controlled by a temperature controller 16 which outputs a control signal corresponding to a temperature signal from a temperature detector 15 for detecting the outside air temperature. That is, when the outside air temperature rises above the set value, the temperature controller 16
Increases, the opening of the control valve 13 increases, the amount of cooling increases, and conversely, when the outside air temperature falls below a set value, the output of the temperature controller 16 decreases in proportion thereto. The degree of cooling is reduced by decreasing the opening of the thirteen. As another method, a temperature switch that is activated when the outside air temperature exceeds a set temperature is provided, and when the temperature switch is activated, the regulating valve 13 is opened to start cooling by the water sprinkling means 9 or when the temperature switch is activated, It is also possible to adopt a two-stage control system in which the opening is switched from the opening to the high opening to increase the cooling by the water sprinkling means 9.

【0007】上記のように温度制御器16を使用する代
わりに、真空度制御器を使用することもできる。すなわ
ち真空検出器により空冷式復水器7内の真空度を検出
し、その検出値が予め設定された真空度になるように真
空度制御器が調整弁13を制御するように構成する。な
お真空度の代わりに排気管6の圧力を検出して同様な制
御をさせてもよい。さらに別の方法として、調節弁13
を手動操作弁とし、外気温度の値に応じて随時散水手段
9による冷却量を変化させることもできる。このような
構成は外気温度が比較的緩やかにしか変動しないような
場合に適しており、装置が簡便になるという利点があ
る。
[0007] Instead of using the temperature controller 16 as described above, a vacuum controller may be used. That is, the degree of vacuum in the air-cooled condenser 7 is detected by the vacuum detector, and the degree of vacuum controller controls the regulating valve 13 so that the detected value becomes a preset degree of vacuum. The same control may be performed by detecting the pressure of the exhaust pipe 6 instead of the degree of vacuum. As still another method, the control valve 13
Is a manually operated valve, and the cooling amount by the water sprinkling means 9 can be changed at any time according to the value of the outside air temperature. Such a configuration is suitable for a case where the outside air temperature fluctuates only relatively slowly, and has an advantage that the apparatus is simplified.

【0008】[0008]

【発明の効果】以上のように請求項1に記載の復水装置
は、冷却水をスプレーする散水手段により蒸気タービン
から空冷式復水器への排気管を冷却するようにしたこと
を特徴とするものである。それによって外気温度が上昇
し空冷式復水器の冷却能力が低下したとき、その低下を
散水手段の冷却作用によって補償することができる。そ
のため、外気温度が上昇しても空冷式復水器の真空度低
下を防止して蒸気タービンの出力低下を回避することが
できる。また水の冷却効果に加えて水の一部が蒸発する
際の蒸発潜熱も利用できるので、より少ない冷却水で効
率よく排気を冷却することができる。さらに、散水手段
に使用される冷却水は水冷式復水器における冷却水に比
較して極めて少量でよく、冷却水を大量に得られない地
域でも簡単に設置できる。しかも冷却水量が少ないの
で、比較的小容量のクーリングタワーなどの冷却装置で
冷却して、その冷却水を循環使用することもできる。
As described above, the condenser according to the first aspect is characterized in that the exhaust pipe from the steam turbine to the air-cooled condenser is cooled by the water spraying means for spraying the cooling water. Is what you do. As a result, when the outside air temperature rises and the cooling capacity of the air-cooled condenser decreases, the decrease can be compensated for by the cooling action of the water spray means. Therefore, even if the outside air temperature rises, it is possible to prevent a decrease in the degree of vacuum of the air-cooled condenser and to avoid a decrease in the output of the steam turbine. Further, since the latent heat of evaporation when a part of the water evaporates can be used in addition to the cooling effect of the water, the exhaust gas can be efficiently cooled with less cooling water. Further, the amount of cooling water used in the water spraying means may be extremely small as compared with the cooling water in the water-cooled condenser, and can be easily installed even in an area where a large amount of cooling water cannot be obtained. Moreover, since the amount of cooling water is small, the cooling water can be cooled by a cooling device such as a cooling tower having a relatively small capacity, and the cooling water can be circulated.

【0009】また請求項2に記載の復水装置は、外気温
度の上昇に比例して散水手段9による冷却量を増加させ
るか、または外気温度が設定値を越えたときに散水手段
9による冷却を開始もしくは冷却量を増加させるように
構成されていることを特徴とするものである。それによ
って空冷式復水器の真空度を安定化し、蒸気タービンの
出力変動をより少なくすることができる。
According to a second aspect of the present invention, the water condensing device increases the amount of cooling by the water spraying means in proportion to the rise of the outside air temperature, or cools the water by the water spraying means when the outside air temperature exceeds a set value. Or the cooling amount is increased. Thereby, the degree of vacuum of the air-cooled condenser can be stabilized, and the output fluctuation of the steam turbine can be further reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の復水装置を使用した火力発電装置を示
すプロセスフロー図。
FIG. 1 is a process flow diagram showing a thermal power generator using a condensing device of the present invention.

【図2】従来の空冷式復水器を使用した復水装置による
火力発電装置を示すプロセスフロー図。
FIG. 2 is a process flow diagram showing a thermal power generator using a condensing device using a conventional air-cooled condenser.

【符号の説明】[Explanation of symbols]

1 ボイラ 2 高圧蒸気管 3 高圧タービン 4 低圧蒸気管 5 低圧タービン 6 排気管 7 空冷式復水器 8 給水管 9 散水手段 10 散水ノズル 11 冷却水管 12 供給ポンプ 13 調節弁 14 水槽 15 温度検出器 16 温度制御器 Reference Signs List 1 boiler 2 high-pressure steam pipe 3 high-pressure turbine 4 low-pressure steam pipe 5 low-pressure turbine 6 exhaust pipe 7 air-cooled condenser 8 water supply pipe 9 watering means 10 watering nozzle 11 cooling water pipe 12 supply pump 13 control valve 14 water tank 15 temperature detector 16 Temperature controller

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 蒸気タービンの排気を空冷式復水器7で
冷却する復水装置において、冷却水をスプレーする散水
手段9により、蒸気タービンから空冷式復水器7への排
気管6を冷却するようにしたことを特徴とする復水装
置。
In a condensing device for cooling the exhaust gas of a steam turbine by an air-cooled condenser, an exhaust pipe from the steam turbine to the air-cooled condenser is cooled by water spraying means for spraying cooling water. A condensing device characterized in that the condensing device is used.
【請求項2】 外気温度の上昇に比例して散水手段9に
よる冷却量を増加させるか、または外気温度が設定値を
越えたときに散水手段9による冷却を開始もしくは冷却
量を増加させるようにした請求項1に記載の復水装置。
2. The cooling amount by the water spraying means 9 is increased in proportion to the rise of the outside air temperature, or the cooling by the water spraying means 9 is started or the cooling amount is increased when the outside air temperature exceeds a set value. The condensing device according to claim 1.
JP14534599A 1999-05-25 1999-05-25 Condensation device Expired - Fee Related JP4251247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14534599A JP4251247B2 (en) 1999-05-25 1999-05-25 Condensation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14534599A JP4251247B2 (en) 1999-05-25 1999-05-25 Condensation device

Publications (2)

Publication Number Publication Date
JP2000337106A true JP2000337106A (en) 2000-12-05
JP4251247B2 JP4251247B2 (en) 2009-04-08

Family

ID=15383044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14534599A Expired - Fee Related JP4251247B2 (en) 1999-05-25 1999-05-25 Condensation device

Country Status (1)

Country Link
JP (1) JP4251247B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100375523B1 (en) * 2000-12-13 2003-03-10 주식회사 경동보일러 Waste gas purification device for condensing boiler
JP2014509367A (en) * 2011-02-25 2014-04-17 スカニア シーブイ アクチボラグ System for converting thermal energy into mechanical energy in a vehicle
KR101547064B1 (en) * 2014-06-23 2015-08-26 이중용 Hybrid-type process cooling water cooling apparatus and the process system including the same
WO2017078146A1 (en) * 2015-11-05 2017-05-11 株式会社 東芝 System for recovering water vapor in electrical power generation exhaust gas, thermal power generation system, and method for recovering water vapor in electrical power generation exhaust gas
JP2017089611A (en) * 2015-11-05 2017-05-25 株式会社東芝 System for recovering steam in power generation exhaust gas, fire power generation system and method for recovering steam in power generation exhaust gas
CN108106449A (en) * 2017-12-15 2018-06-01 神华集团有限责任公司 Air-cooling island cooling device and method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100375523B1 (en) * 2000-12-13 2003-03-10 주식회사 경동보일러 Waste gas purification device for condensing boiler
JP2014509367A (en) * 2011-02-25 2014-04-17 スカニア シーブイ アクチボラグ System for converting thermal energy into mechanical energy in a vehicle
KR101547064B1 (en) * 2014-06-23 2015-08-26 이중용 Hybrid-type process cooling water cooling apparatus and the process system including the same
WO2017078146A1 (en) * 2015-11-05 2017-05-11 株式会社 東芝 System for recovering water vapor in electrical power generation exhaust gas, thermal power generation system, and method for recovering water vapor in electrical power generation exhaust gas
JP2017089611A (en) * 2015-11-05 2017-05-25 株式会社東芝 System for recovering steam in power generation exhaust gas, fire power generation system and method for recovering steam in power generation exhaust gas
CN108351098A (en) * 2015-11-05 2018-07-31 株式会社东芝 Vapor recovery method in vapor recovery system, thermal power generation system and power generation exhaust gas in power generation exhaust gas
CN108351098B (en) * 2015-11-05 2021-04-20 株式会社东芝 System for recovering water vapor from power generation exhaust gas, thermal power generation system, and method for recovering water vapor from power generation exhaust gas
CN108106449A (en) * 2017-12-15 2018-06-01 神华集团有限责任公司 Air-cooling island cooling device and method

Also Published As

Publication number Publication date
JP4251247B2 (en) 2009-04-08

Similar Documents

Publication Publication Date Title
US8534039B1 (en) High performance air-cooled combined cycle power plant with dual working fluid bottoming cycle and integrated capacity control
KR100628593B1 (en) Combustion turbine cooling media supply system and related method
JPH11324710A (en) Gas turbine power plant
US5437157A (en) Method of and apparatus for cooling hot fluids
US6422019B1 (en) Apparatus for augmenting power produced from gas turbines
JPH0436244B2 (en)
US20110203279A1 (en) Cogeneration device
US8220266B2 (en) Condenser for power plant
US20160223208A1 (en) Trigeneration energy supply system
US6119445A (en) Method of and apparatus for augmenting power produced from gas turbines
JP2000337106A (en) Condensing plant
JP2003161164A (en) Combined-cycle power generation plant
KR100382671B1 (en) Process for cooling the coolant of a gas turbine and device for carrying out said process
US6128901A (en) Pressure control system to improve power plant efficiency
JPWO2012042641A1 (en) Solar-powered combined cycle plant
JP2006521527A (en) Air cooler for power plant and use of this air cooler
JPH05222906A (en) Controller for power plant utilizing exhaust heat
JPH0688538A (en) Gas turbine plant
JPH1136818A (en) Controller for cogeneration plant utilizing waste heat
JP2000282895A (en) Intake air cooling device and method for gas turbine
JP2007247656A (en) Gas turbine power generation facility and air humidifier
JPH07217803A (en) Method and equipment for starting waste heat boiler with at least two separating pressure device
JP2004156517A (en) Steam turbine plant
CN219810299U (en) Air cooling island auxiliary cooling system
JPH05222904A (en) Control device for turbine exhaust condensing system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees