JP2000334888A - Composite material and damage control method thereof - Google Patents

Composite material and damage control method thereof

Info

Publication number
JP2000334888A
JP2000334888A JP11149721A JP14972199A JP2000334888A JP 2000334888 A JP2000334888 A JP 2000334888A JP 11149721 A JP11149721 A JP 11149721A JP 14972199 A JP14972199 A JP 14972199A JP 2000334888 A JP2000334888 A JP 2000334888A
Authority
JP
Japan
Prior art keywords
shape memory
memory alloy
composite material
alloy foil
damage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11149721A
Other languages
Japanese (ja)
Other versions
JP4338823B2 (en
Inventor
Toshimitsu Ogisu
巣 敏 充 荻
Masato Nomura
村 正 人 野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP14972199A priority Critical patent/JP4338823B2/en
Priority to US09/579,806 priority patent/US6655218B1/en
Publication of JP2000334888A publication Critical patent/JP2000334888A/en
Priority to US10/638,697 priority patent/US6896961B2/en
Priority to US10/641,940 priority patent/US6986286B2/en
Priority to US11/179,760 priority patent/US7082837B2/en
Priority to US11/449,298 priority patent/US7296477B2/en
Application granted granted Critical
Publication of JP4338823B2 publication Critical patent/JP4338823B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To repair the damaged region of a composite material by utilizing the shape recovering function of a shape memory alloy foil as damage suppressing function. SOLUTION: A composite material 1 wherein shape memory alloy foils 2 to which strain different at room temp. is imparted are arranged between fiber reinforced resin layers 3 is provided and a current is applied to each shape memory alloy foil 2 of the composite material 1 to monitor the resistance change of the shape memory alloy foil 2 and the damage region of the composite material 1 is detected by the resistance change of the monitored shape memory alloy foil 2 and a current is applied to the shape memory alloy foil 2 corresponding to the detected damaged region of the composite material 1 and compression force or shearing stress is generated in the damaged region of the composite material by the shape memory alloy foil 2 changed in shape by heating due to the application of a current and the damage of the damaged region of the composite material is controlled.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、次世代航空機構
造、衛星及び宇宙ステーション等の宇宙機器、超高層建
築、公共インフラストラクチャー及び高速車両に適用さ
れる複合材および複合材の損傷制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite material applied to next-generation aircraft structures, space equipment such as satellites and space stations, skyscrapers, public infrastructures, and high-speed vehicles, and a method of controlling damage to the composite material.

【0002】[0002]

【従来の技術】構造材料に適用されている複合材は、衝
撃荷重に対して材料内部が損傷を受け易いという性質を
有するため、設計許容値を複合材本来の持つ強度の1/
4程度としている。この設計許容値を引き上げるため
に、複合材の内部に損傷抑制効果のある材料を埋め込
み、複合材に衝撃荷重が負荷された時にもその際の荷重
及び損傷を検知することにより安全性を高めるようにし
た複合材は知られている。
2. Description of the Related Art Since a composite material applied to a structural material has a property that the inside of the material is easily damaged by an impact load, the design tolerance is set to 1 / the strength of the composite material.
It is about 4. In order to raise the design allowance, a material with a damage suppression effect is embedded inside the composite material, and even if an impact load is applied to the composite material, the load and damage at that time are detected to enhance safety. Composites are known.

【0003】特開平6−212018号公報には、逆変
態終了温度以下の少なくとも1種類以上の形状記憶合金
材料を母材表面または母材内に配列した構造の高分子基
複合機能性材料が記載されている。
JP-A-6-212018 describes a polymer-based composite functional material having a structure in which at least one or more shape memory alloy materials having a temperature equal to or lower than the reverse transformation end temperature are arranged on the surface of the base material or in the base material. Have been.

【0004】特開平7−48637号公報には、熱弾性
変態を起こす少なくとも1種類以上の形状記憶合金材料
素子を母材内に混入もしくは配列させた構造の金属基複
合材料が記載されている。
Japanese Patent Application Laid-Open No. 7-48637 describes a metal-based composite material having a structure in which at least one or more types of shape memory alloy material elements that cause thermoelastic transformation are mixed or arranged in a base material.

【0005】特開平8−15208号公報には、積層構
造を有する複合材料にNiTi形状記憶合金の細線を埋
め込んだ後、細線に電流を流し、マトリックス材料に亀
裂や損傷が生じた際の細線の電流抵抗変化を検出する複
合材料損傷検知システムが記載されている。
Japanese Patent Application Laid-Open No. 8-15208 discloses that after a fine wire of a NiTi shape memory alloy is embedded in a composite material having a laminated structure, an electric current is applied to the fine wire and the fine wire when a crack or damage occurs in the matrix material. A composite damage detection system for detecting a change in current resistance is described.

【0006】[0006]

【発明が解決しようとする課題】上記複合材において
は、複合材に埋め込んだ損傷抑制効果のある材料が複合
材の異物となる可能性があり、これが複合材の擬似欠陥
となって複合材の強度低下を起こすおそれがある。
In the above-mentioned composite material, there is a possibility that the material embedded in the composite material and having the effect of suppressing damage may become a foreign material of the composite material, and this may be a pseudo defect of the composite material and cause the composite material to have a defect. There is a possibility that strength may be reduced.

【0007】上記複合材料損傷検知システムでは、損傷
検知と損傷抑制を別々の材料で行うことが前提であり、
材料として形状記憶合金細線を用い、複合材料に挿入し
た形状記憶合金細線に均一に収縮応力を発生させてトラ
ンスバースクラックを抑制しようとするものであるが、
これでは複合材料の設計許容値を減少させた衝撃負荷時
に発生しやすいデラミネーションには対応できない。
In the above-described composite material damage detection system, it is premised that damage detection and damage suppression are performed using different materials.
Using a shape memory alloy thin wire as the material, it is intended to suppress transversal cracks by uniformly generating shrinkage stress in the shape memory alloy thin wire inserted into the composite material,
This cannot cope with delamination which is likely to occur at the time of an impact load in which the design allowable value of the composite material is reduced.

【0008】本発明は上記した点を考慮してなされたも
ので、形状記憶合金箔の形状回復機能を損傷抑制機能と
して利用する複合材および複合材の損傷部位を形状記憶
合金箔の加熱による形状変化に伴う圧縮力を複合材の損
傷部位に加えることで損傷部位を修復する複合材の損傷
制御方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and provides a composite material utilizing a shape recovery function of a shape memory alloy foil as a damage suppressing function, and forming a damaged portion of the composite material by heating the shape memory alloy foil. An object of the present invention is to provide a composite damage control method for repairing a damaged part by applying a compressive force accompanying a change to the damaged part of the composite.

【0009】[0009]

【課題を解決するための手段】本発明の複合材は、常温
で歪みを与えた形状記憶合金箔を繊維強化樹脂層の間に
配置し、形状記憶合金箔の形状回復機能を損傷抑制機能
として利用することで損傷部位を修復することができ
る。
According to the composite material of the present invention, a shape memory alloy foil having a strain at room temperature is disposed between fiber-reinforced resin layers, and a shape recovery function of the shape memory alloy foil is used as a damage suppressing function. By using it, the damaged site can be repaired.

【0010】本発明の複合材の損傷制御方法は、常温で
異なる歪みを与えた形状記憶合金箔を繊維強化樹脂層の
間に配置した複合材を設け、この複合材の各形状記憶合
金箔に微弱電流を流して形状記憶合金箔の抵抗変化をモ
ニターし、複合材の損傷部位をモニターした形状記憶合
金箔の抵抗変化により検知し、検知した複合材の損傷部
位に対応する形状記憶合金箔に通電し、複合材の損傷部
位を通電による加熱で形状が変化する形状記憶合金箔に
より圧縮し、複合材の損傷部位の損傷を制御することを
特徴とする。
According to the method for controlling damage to a composite material of the present invention, a composite material is provided in which shape memory alloy foils having different strains at room temperature are arranged between fiber-reinforced resin layers, and each shape memory alloy foil of the composite material is provided. A weak current is passed to monitor the resistance change of the shape memory alloy foil, and the damaged portion of the composite material is detected by monitoring the resistance change of the shape memory alloy foil, and the detected shape memory alloy foil corresponding to the detected damaged portion of the composite material The present invention is characterized in that a current is applied, and a damaged portion of the composite material is compressed by a shape memory alloy foil whose shape changes by heating by applying the current, thereby controlling damage to the damaged portion of the composite material.

【0011】[0011]

【発明の実施の形態】以下本発明の実施の形態を図面を
参照して説明する。図1は本発明による複合材パネルを
示し、この複合材パネル1は、形状記憶合金箔2を繊維
強化樹脂層3,3の間に配置して構成されている。形状
記憶合金箔2は、NiTi合金を素材とした厚さ約0.
04mmのNiTi形状記憶合金であり、常温で歪みが
与えられた状態、すなわち変態点以下の温度で歪みが保
持された状態で繊維強化樹脂層3,3の間に配置され
る。各繊維強化樹脂層3は、炭素繊維強化樹脂3a(図
5)を複数枚積層して形成される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a composite panel according to the present invention. The composite panel 1 has a shape memory alloy foil 2 disposed between fiber-reinforced resin layers 3 and 3. The shape memory alloy foil 2 is made of a NiTi alloy and has a thickness of about 0.1 mm.
This is a 04 mm NiTi shape memory alloy, which is disposed between the fiber reinforced resin layers 3 and 3 in a state where strain is given at room temperature, that is, in a state where strain is maintained at a temperature lower than the transformation point. Each fiber reinforced resin layer 3 is formed by laminating a plurality of carbon fiber reinforced resins 3a (FIG. 5).

【0012】形状記憶合金は、一般に、外的な熱によっ
て可逆的に元の結晶構造状態に戻るという特性を有する
ものであり、図2に示す材料特性から明らかなように、
低温マルテンサイト相が高温での安定オーステナイト相
よりも1/2〜1/3程度柔らかく変形が容易であり、
低温から高温になるにつれて剛性率が2〜3倍程度上昇
し、予ひずみを付与してその変形を拘束した場合には、
逆に2〜3倍程度の大きい回復力が得られるという特性
を備えている。
The shape memory alloy generally has the property of reversibly returning to the original crystal structure state by external heat. As is apparent from the material properties shown in FIG.
The low-temperature martensite phase is about 1/2 to 1/3 softer and easier to deform than the stable austenite phase at high temperatures,
When the rigidity increases about 2 to 3 times as the temperature increases from low temperature to high temperature, when the prestrain is applied and the deformation is restrained,
Conversely, it has a characteristic that a large recovery force of about two to three times can be obtained.

【0013】本発明の複合材パネル1は、形状記憶合金
箔2を変態点以下の温度で変形を拘束した状態で繊維強
化樹脂層3の間に配置し、形状記憶合金箔2を変態点以
上の温度に加熱し形状記憶合金箔2を形状変化させるこ
とで、複合材料の各層にせん断応力を発生させてデラミ
ネーションを抑制させる応力を発生させる。
In the composite panel 1 of the present invention, the shape memory alloy foil 2 is disposed between the fiber reinforced resin layers 3 in a state where the deformation is restrained at a temperature below the transformation point, and the shape memory alloy foil 2 is kept above the transformation point. By changing the shape of the shape memory alloy foil 2 by heating to a temperature of the above, a shear stress is generated in each layer of the composite material to generate a stress for suppressing delamination.

【0014】図1に示す複合材パネル1は、6枚の繊維
強化樹脂層3と2種類の常温で歪みの大きさが異なる形
状記憶合金箔2とから形成され、6枚の繊維強化樹脂層
3のうちの端側に位置する繊維強化樹脂層3を2枚の炭
素繊維強化樹脂3aを積層したもので形成し、中間に位
置する繊維強化樹脂層3を3枚の炭素繊維強化樹脂3a
を積層したもので形成し、常温で歪みの大きさが異なる
2種類の形状記憶合金箔2を繊維強化樹脂層3の間に交
互に配置している。形状記憶合金箔2は3種類以上の常
温で歪みの大きさが異なるものとし、それぞれを繊維強
化樹脂層3の間に配置することもできる。なお、上記形
状記憶合金箔2は、テープ状をなす細長い片を互いに接
触しないように並列配置することが望ましい。
A composite panel 1 shown in FIG. 1 is formed of six fiber reinforced resin layers 3 and two types of shape memory alloy foils 2 having different strain magnitudes at normal temperature. 3, the fiber reinforced resin layer 3 located on the end side is formed by laminating two carbon fiber reinforced resins 3a, and the fiber reinforced resin layer 3 located in the middle is formed of three carbon fiber reinforced resins 3a.
Are laminated, and two types of shape memory alloy foils 2 having different strains at normal temperature are alternately arranged between the fiber reinforced resin layers 3. The shape memory alloy foils 2 may have three or more kinds of different magnitudes of strain at room temperature, and may be arranged between the fiber reinforced resin layers 3. It is desirable that the shape memory alloy foils 2 are arranged in parallel so that the tape-shaped elongated pieces do not contact each other.

【0015】つぎに、複合材パネル1の製造手順を説明
する。
Next, a procedure for manufacturing the composite panel 1 will be described.

【0016】まず、各形状記憶金属箔2の両端部を図3
に示すようにクリップ手段4により挟持し、クリップ手
段4,4を常温で矢印A方向に引っ張り、形状記憶合金
箔2に変態点以下の温度で歪みを負荷する。
First, both ends of each shape memory metal foil 2 are shown in FIG.
As shown in (2), the clipping means 4 is clamped, and the clipping means 4 and 4 are pulled in the direction of arrow A at normal temperature to apply a strain to the shape memory alloy foil 2 at a temperature lower than the transformation point.

【0017】ついで、歪みを負荷した形状記憶合金箔2
を表面処理して表面を粗面化する。この表面処理は、図
4に示すように、形状記憶合金箔2を処理層5に入れら
れた硝酸またはフッ酸のような酸処理液6に浸漬して粗
面7を形成する酸洗処理法で行われる。この表面処理
は、電子ビーム等のエネルギー照射により粗面を形成す
るスパッタリング法またはゾルゲル法により行うことも
できる。形状記憶合金箔2は変態温度が60〜70℃で
あるから、表面処理を行う際に、形状記憶合金箔2がこ
の変態温度以上にならないよう注意することが必要であ
る。
Next, the shape memory alloy foil 2 loaded with strain
To make the surface rough. As shown in FIG. 4, this surface treatment is a pickling treatment method in which the shape memory alloy foil 2 is immersed in an acid treatment liquid 6 such as nitric acid or hydrofluoric acid contained in the treatment layer 5 to form a rough surface 7. Done in This surface treatment can also be performed by a sputtering method or a sol-gel method in which a rough surface is formed by irradiation with energy such as an electron beam. Since the shape memory alloy foil 2 has a transformation temperature of 60 to 70 ° C., it is necessary to take care that the shape memory alloy foil 2 does not exceed the transformation temperature when performing surface treatment.

【0018】つぎに、炭素繊維強化プリプレグを所定寸
法にプリカットし、プリカットしたプリプレグ3aと形
状記憶合金箔2を、図5に示すように積層する。この場
合、歪みを負荷した形状記憶合金箔2は、図示しない歪
み保持手段により歪みが負荷された状態が維持されるよ
うに積層される。この場合、形状記憶合金箔2とプリプ
レグ3aとの界面での高い接着強度が形状記憶合金箔2
に化学処理または物理的に表面を粗くすることで得られ
る。
Next, the carbon fiber reinforced prepreg is precut to a predetermined size, and the precut prepreg 3a and the shape memory alloy foil 2 are laminated as shown in FIG. In this case, the shape memory alloy foil 2 loaded with the strain is laminated so that the state where the strain is loaded by the strain holding means (not shown) is maintained. In this case, the high bonding strength at the interface between the shape memory alloy foil 2 and the prepreg 3a is high.
It can be obtained by chemical treatment or by physically roughening the surface.

【0019】プリプレグ3aの積層構成は適用される構
造の強度により異なるため任意であるが、図5に示すプ
リプレグの積層構成は、形状記憶合金箔2を中心に3P
LYのプリプレグ3a毎に形状記憶合金箔2を配置し、
両端側に2PLYのプリプレグ3aを配置した合計16
PLYであり、形状記憶合金箔2は合計5PLYであ
る。
The laminated structure of the prepreg 3a is optional because it differs depending on the strength of the applied structure. However, the laminated structure of the prepreg shown in FIG.
The shape memory alloy foil 2 is arranged for each LY prepreg 3a,
Total 16 with 2PLY prepregs 3a arranged on both ends
PLY, and the shape memory alloy foil 2 has a total of 5 PLY.

【0020】具体的には、プリプレグと形状記憶合金箔
の積層体は、その構造に掛かる亀裂進展許容応力が5k
gf/mm2 であったとすると、形状記憶合金箔をその
応力を抑えることの可能なせん断応力が発生可能なもの
とする。この場合、形状記憶合金箔への配線が可能な銅
箔等も合わせて積層成形する。
Specifically, the laminate of the prepreg and the shape memory alloy foil has a crack growth allowable stress applied to its structure of 5 k.
If it is gf / mm 2, it is assumed that the shape memory alloy foil can generate a shear stress capable of suppressing the stress. In this case, a copper foil or the like capable of wiring to the shape memory alloy foil is also laminated and formed.

【0021】つぎに、プリプレグと形状記憶合金箔の積
層体は、図6に示すように、温度が180℃、真空圧が
700mmhg、加圧力が3.2kgf/mm2 の条件
下において90分間硬化され、図1に示す複合材パネル
1が成形される。
Next, as shown in FIG. 6, the laminate of the prepreg and the shape memory alloy foil was cured for 90 minutes at a temperature of 180 ° C., a vacuum pressure of 700 mmhg, and a pressure of 3.2 kgf / mm 2. The composite panel 1 shown in FIG. 1 is formed.

【0022】つぎに、複合材の損傷制御方法について説
明する。
Next, a method for controlling damage to the composite material will be described.

【0023】形状記憶合金は金属であるためその断面積
によって電気抵抗値が任意に決定する。このため、予め
形状記憶合金に微弱な一定電流を流しておくと、例えば
材料内部で亀裂が発生した場合、形状記憶合金に局部的
な歪みが発生し、この歪みによって形状記憶合金の電気
抵抗は変化する。したがって、出力する電圧を常にモニ
タリングしておけば、その変化によって材料内部の損傷
が検知できる。予備試験及び検討によって、損傷が起こ
った場合の電圧の変化を把握しておき、電圧の変化をコ
ンピュータに記憶させておけば損傷に等しい出力があっ
た場合、損傷の検知が可能である。
Since the shape memory alloy is a metal, the electric resistance value is arbitrarily determined according to its cross-sectional area. For this reason, if a weak constant current is passed through the shape memory alloy in advance, for example, when a crack occurs inside the material, local distortion occurs in the shape memory alloy, and the electrical resistance of the shape memory alloy is reduced by this distortion. Change. Therefore, if the output voltage is constantly monitored, the change in the voltage can detect the damage inside the material. By preliminarily testing and examining the change in voltage in the event of damage, if the change in voltage is stored in a computer, damage can be detected if there is an output equal to the damage.

【0024】すなわち、形状記憶合金のひずみと電気抵
抗の関係は図7に示す通りであり、複合材に発生するト
ランスバースクラック、デラミネーション等異なる種
類、位置及び大きさの損傷と電気抵抗の関係とその電気
抵抗の分布を把握することにより、複合材に発生する損
傷の種類、位置及び大きさが判定可能である。
That is, the relationship between the strain and the electrical resistance of the shape memory alloy is as shown in FIG. By grasping the distribution of the electric resistance and the electric resistance, it is possible to determine the type, position and size of the damage occurring in the composite material.

【0025】また、複合材料中の損傷の種類、位置及び
大きさを3D画像として観察することができる。
Further, the type, position and size of damage in the composite material can be observed as a 3D image.

【0026】複合材パネル1に図8に示すような層間剥
離が発生すると、繊維強化樹脂層3に負荷された応力ま
たは繊維強化樹脂層3が損傷を受けた場合に受ける応力
集中による応力バランスが変化し、応力バランスの変化
が形状記憶合金箔2自身の歪みとして感受され、この歪
みの変化が形状記憶合金箔2の形状変化による電気抵抗
の変化となる。したがって、複合材に配置された複数の
形状記憶合金箔のうちのどの形状記憶合金箔の電気抵抗
が変化したかを検知することで、複合材パネル1の損傷
部位が検出される。
When delamination occurs in the composite panel 1 as shown in FIG. 8, the stress applied to the fiber reinforced resin layer 3 or the stress balance due to the concentration of stress received when the fiber reinforced resin layer 3 is damaged is reduced. The shape memory alloy foil 2 itself is perceived as a change, and the change in the stress balance is sensed as a distortion of the shape memory alloy foil 2 itself. Therefore, by detecting which of the plurality of shape memory alloy foils arranged in the composite material has changed the electrical resistance, the damaged portion of the composite material panel 1 is detected.

【0027】複合材パネル1の損傷部位が検出される
と、複合材パネル1の損傷部位に対応する形状記憶合金
箔2にこの形状記憶合金箔2を加熱する程度の電流を流
し、形状記憶合金箔2の温度を変態温度以上に上昇し、
加熱で形状が変化する形状記憶合金箔により複合材の損
傷部位に圧縮力または圧縮応力を加え、複合材の損傷部
位の損傷を抑制することにより複合材の損傷部位の損傷
を制御する。
When a damaged portion of the composite panel 1 is detected, an electric current enough to heat the shape memory alloy foil 2 is applied to the shape memory alloy foil 2 corresponding to the damaged portion of the composite panel 1, and the shape memory alloy Raise the temperature of foil 2 above the transformation temperature,
A compressive force or a compressive stress is applied to the damaged portion of the composite material by the shape memory alloy foil whose shape changes by heating, and the damage of the damaged portion of the composite material is controlled by suppressing the damage of the damaged portion of the composite material.

【0028】図8に示す複合材パネルは、繊維強化樹脂
層3,3との間に形状記憶合金箔2が配置され、これら
の形状記憶合金箔2は2種類の歪が与えられている。最
上層の形状記憶合金箔2bには比較的小さな歪が与えら
れ、その次の形状記憶合金2cには比較的大きな歪が与
えられ、さらに下の形状記憶合金箔2dには比較的小さ
な歪が、その下の形状記憶合金箔2eには比較的大きな
歪が、最下層の形状記憶合金箔2fには比較的小さな歪
が与えられている。この複合材パネルの繊維強化樹脂層
3eにデラミネーションが発生した場合、この繊維強化
樹脂層3eを挟んだ形状記憶合金箔2eと2dの電気抵
抗値に最も大きな変化が生じるとともにその他の形状記
憶合金箔の電気抵抗値も変化する。即ち、損傷の程度に
よるが、形状記憶合金箔2dと2eとの間の電気抵抗変
化が急激になる。このとき、層間剥離の進行を防止する
ために、形状記憶合金箔2dと2eに通電する。形状記
憶合金箔2dには比較的小さな歪を、それより大きな歪
を形状記憶合金箔2eに与えてあるので、それらの歪の
影響で繊維強化樹脂3eは上に凸状に湾曲しようとする
ので、パネルを構成するその他の層から圧迫される。こ
の作用によって繊維強化樹脂層3eを構成する層のデラ
ミネーションが防止される。
In the composite panel shown in FIG. 8, a shape memory alloy foil 2 is arranged between the fiber reinforced resin layers 3 and 3, and the shape memory alloy foil 2 is given two kinds of strains. A relatively small strain is applied to the topmost shape memory alloy foil 2b, a relatively large strain is applied to the next shape memory alloy 2c, and a relatively small strain is applied to the lower shape memory alloy foil 2d. A relatively large strain is given to the shape memory alloy foil 2e thereunder, and a relatively small strain is given to the shape memory alloy foil 2f of the lowermost layer. When delamination occurs in the fiber reinforced resin layer 3e of the composite material panel, the largest change occurs in the electric resistance value of the shape memory alloy foils 2e and 2d sandwiching the fiber reinforced resin layer 3e, and other shape memory alloys. The electrical resistance of the foil also changes. That is, the electrical resistance between the shape memory alloy foils 2d and 2e changes rapidly, depending on the degree of damage. At this time, in order to prevent the progress of delamination, power is supplied to the shape memory alloy foils 2d and 2e. Since relatively small strain is given to the shape memory alloy foil 2d and larger strain is given to the shape memory alloy foil 2e, the fiber reinforced resin 3e tends to be curved upwardly under the influence of those strains. Squeezed from the other layers that make up the panel. By this action, delamination of the layer constituting the fiber reinforced resin layer 3e is prevented.

【0029】[0029]

【発明の効果】以上述べたように、本発明の複合材は、
常温で歪みを与えた形状記憶合金箔を繊維強化樹脂層の
間に配置したことで、形状記憶合金箔の形状回復機能を
損傷抑制機能として利用することで損傷部位を修復する
ことができる。
As described above, the composite material of the present invention
By arranging the shape memory alloy foil that has been strained at room temperature between the fiber reinforced resin layers, the damaged portion can be repaired by using the shape recovery function of the shape memory alloy foil as a damage suppression function.

【0030】本発明の複合材の損傷制御方法は、複合材
の層間に配置した常温で異なる歪みを与えた形状記憶合
金箔の抵抗変化をモニターし、モニターした形状記憶合
金箔の抵抗変化により複合材の損傷部位を検知し、検知
した複合材の損傷部位に対応する形状記憶合金箔に通電
し、複合材の損傷部位を通電による加熱で形状が変化す
る形状記憶合金箔により圧縮力またはせん断応力を発生
させ、複合材の損傷部位の損傷を制御することができ
る。
The method for controlling damage to a composite material according to the present invention monitors a change in resistance of a shape memory alloy foil, which is disposed between layers of the composite material and has different strains at room temperature, and monitors the change in resistance of the monitored shape memory alloy foil. Detects a damaged part of the material, energizes the shape memory alloy foil corresponding to the detected damaged part of the composite material, and compresses or shears stress by the shape memory alloy foil whose shape changes by heating the damaged part of the composite material by energization And control of damage at the damaged site of the composite material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による複合材の斜視図。FIG. 1 is a perspective view of a composite according to the present invention.

【図2】形状記憶合金の材料特性を示す図。FIG. 2 is a diagram showing material characteristics of a shape memory alloy.

【図3】形状記憶合金箔に常温で歪みを与える段階を示
す図。
FIG. 3 is a diagram showing a stage in which a shape memory alloy foil is strained at room temperature.

【図4】形状記憶合金箔の表面処理を示す図。FIG. 4 is a view showing a surface treatment of a shape memory alloy foil.

【図5】繊維強化樹脂プリプレグと形状記憶合金の積層
構成を示す図。
FIG. 5 is a diagram showing a laminated structure of a fiber reinforced resin prepreg and a shape memory alloy.

【図6】図5の積層体を硬化処理する条件を示す図。FIG. 6 is a view showing conditions for curing the laminate of FIG. 5;

【図7】形状記憶合金箔の歪みと電気抵抗との関係を示
す図。
FIG. 7 is a diagram showing a relationship between distortion and electric resistance of a shape memory alloy foil.

【図8】複合材の層間剥離を検出し制御する状態を示す
図。
FIG. 8 is a diagram showing a state in which delamination of a composite material is detected and controlled.

【符号の説明】[Explanation of symbols]

1 複合材パネル 2 形状記憶合金箔 3 繊維強化樹脂層 3a 繊維強化樹脂プリプレグ DESCRIPTION OF SYMBOLS 1 Composite panel 2 Shape memory alloy foil 3 Fiber reinforced resin layer 3a Fiber reinforced resin prepreg

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G060 AA10 AA20 AE01 AF07 EA03 EB03 EB07 KA13 4F100 AB31A AB33A BA03 BA06 BA08 BA10B BA10C BA13 DH02B DH02C GB07 GB31 JL15A  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2G060 AA10 AA20 AE01 AF07 EA03 EB03 EB07 KA13 4F100 AB31A AB33A BA03 BA06 BA08 BA10B BA10C BA13 DH02B DH02C GB07 GB31 JL15A

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】常温で歪みが与えられた形状記憶合金箔を
繊維強化樹脂層の間に配置したことを特徴とする複合
材。
1. A composite material comprising a shape memory alloy foil which is strained at room temperature and disposed between fiber-reinforced resin layers.
【請求項2】形状記憶合金箔と繊維強化樹脂層とが交互
に積層され、各形状記憶合金箔は常温で異なる歪みが与
えられていることを特徴とする複合材。
2. A composite material wherein a shape memory alloy foil and a fiber reinforced resin layer are alternately laminated, and each of the shape memory alloy foils is given different strains at room temperature.
【請求項3】常温で与えられる歪みの大きさにより分別
される2種類の形状記憶合金箔と繊維強化樹脂層とが交
互に積層されかつ2種類の形状記憶合金箔が交互に配置
されることを特徴とする請求項1に記載のの複合材。
3. Two types of shape memory alloy foils and a fiber reinforced resin layer, which are separated according to the magnitude of strain given at normal temperature, are alternately laminated and two types of shape memory alloy foils are alternately arranged. The composite of claim 1, wherein:
【請求項4】常温で異なる歪みを与えた形状記憶合金箔
を繊維強化樹脂層の間に配置した複合材を設け、この複
合材の各形状記憶合金箔に微弱電流を流して形状記憶合
金箔の抵抗変化をモニターし、複合材の損傷部位をモニ
ターした形状記憶合金箔の抵抗変化により検知し、検知
した複合材の損傷部位に対応する形状記憶合金箔に通電
し、複合材の損傷部位を加熱で形状が変化する形状記憶
合金箔により圧縮力またはせん断応力を発生させ、複合
材の損傷部位の損傷を制御することを特徴とする複合材
の損傷制御方法。
4. A composite material in which shape memory alloy foils having different strains at room temperature are arranged between fiber-reinforced resin layers, and a weak current is applied to each shape memory alloy foil of the composite material to form a shape memory alloy foil. The change in resistance of the composite material is monitored, and the damaged portion of the composite material is detected based on the change in resistance of the monitored shape memory alloy foil, and the shape memory alloy foil corresponding to the detected damaged portion of the composite material is energized to detect the damaged portion of the composite material. A method of controlling damage to a composite material, wherein a compression force or a shear stress is generated by a shape memory alloy foil whose shape changes upon heating to control damage to a damaged portion of the composite material.
JP14972199A 1999-05-28 1999-05-28 Damage control method for composite materials Expired - Fee Related JP4338823B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP14972199A JP4338823B2 (en) 1999-05-28 1999-05-28 Damage control method for composite materials
US09/579,806 US6655218B1 (en) 1999-05-28 2000-05-26 Composite material and method of controlling damage thereto and damage sensor
US10/638,697 US6896961B2 (en) 1999-05-28 2003-08-07 Composite material and method of controlling damage thereto and damage sensor
US10/641,940 US6986286B2 (en) 1999-05-28 2003-08-16 Composite material and method of controlling damage thereto and damage sensor
US11/179,760 US7082837B2 (en) 1999-05-28 2005-07-12 Composite material and method of controlling damage thereto and damage sensor
US11/449,298 US7296477B2 (en) 1999-05-28 2006-06-08 Composite material and method of controlling damage thereto and damage sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14972199A JP4338823B2 (en) 1999-05-28 1999-05-28 Damage control method for composite materials

Publications (2)

Publication Number Publication Date
JP2000334888A true JP2000334888A (en) 2000-12-05
JP4338823B2 JP4338823B2 (en) 2009-10-07

Family

ID=15481373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14972199A Expired - Fee Related JP4338823B2 (en) 1999-05-28 1999-05-28 Damage control method for composite materials

Country Status (1)

Country Link
JP (1) JP4338823B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002131265A (en) * 2000-10-19 2002-05-09 R & D Inst Of Metals & Composites For Future Industries Damage detection sensor, production method thereof and composite material with the same incorporated therein
JP2002225166A (en) * 2001-01-29 2002-08-14 Fuji Heavy Ind Ltd Composite material and method for controlling damage to composite material
EP1454737A1 (en) * 2003-03-04 2004-09-08 Fuji Jukogyo Kabushiki Kaisha Composite material and method of manufacturing the same
JP2005172809A (en) * 2003-11-21 2005-06-30 Fujikura Kasei Co Ltd Crack-sensing material, method for manufacturing the same, crack-sensing system and crack sensing method
JP2005297437A (en) * 2004-04-14 2005-10-27 Fuji Heavy Ind Ltd Manufacturing method of composite material
KR100980635B1 (en) 2008-08-07 2010-09-07 한국항공우주연구원 Composite structure for reducing vibration and pyroshock using shape memory alloy and the method for manufacturing the same
JP2013533813A (en) * 2010-06-04 2013-08-29 ザ・ボーイング・カンパニー Shape memory alloy / fiber reinforced polymer composite structure and formation method
JP2016506438A (en) * 2012-12-21 2016-03-03 ライプニッツ−インスティトゥートフィア ノイエ マテリアーリエン ゲマインニュッツィゲ ゲゼルシャフト ミット ベシュレンクタ ハフトゥンク Object with selectable adhesion
CN108162538A (en) * 2018-02-05 2018-06-15 江苏新光镭射包装材料股份有限公司 A kind of shape memory laser film and its production method
CN113183565A (en) * 2021-06-03 2021-07-30 河南工业大学 Preparation method of carbon fiber reinforced sliding current collecting material for high-speed train
US11359658B2 (en) 2014-12-22 2022-06-14 Leibniz-Institut Für Neue Materialien Gemeinnützige Gmbh Structured surface with adhesion switchable in stages

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002131265A (en) * 2000-10-19 2002-05-09 R & D Inst Of Metals & Composites For Future Industries Damage detection sensor, production method thereof and composite material with the same incorporated therein
JP2002225166A (en) * 2001-01-29 2002-08-14 Fuji Heavy Ind Ltd Composite material and method for controlling damage to composite material
JP4562295B2 (en) * 2001-01-29 2010-10-13 富士重工業株式会社 COMPOSITE MATERIAL AND DAMAGE CONTROL METHOD FOR COMPOSITE MATERIAL
EP1454737A1 (en) * 2003-03-04 2004-09-08 Fuji Jukogyo Kabushiki Kaisha Composite material and method of manufacturing the same
JP2005172809A (en) * 2003-11-21 2005-06-30 Fujikura Kasei Co Ltd Crack-sensing material, method for manufacturing the same, crack-sensing system and crack sensing method
JP2005297437A (en) * 2004-04-14 2005-10-27 Fuji Heavy Ind Ltd Manufacturing method of composite material
JP4555595B2 (en) * 2004-04-14 2010-10-06 富士重工業株式会社 Manufacturing method of composite material
KR100980635B1 (en) 2008-08-07 2010-09-07 한국항공우주연구원 Composite structure for reducing vibration and pyroshock using shape memory alloy and the method for manufacturing the same
JP2013533813A (en) * 2010-06-04 2013-08-29 ザ・ボーイング・カンパニー Shape memory alloy / fiber reinforced polymer composite structure and formation method
JP2016106044A (en) * 2010-06-04 2016-06-16 ザ・ボーイング・カンパニーThe Boeing Company Shape memory alloy/fiber reinforced polymeric composite structures and method for forming
JP2016506438A (en) * 2012-12-21 2016-03-03 ライプニッツ−インスティトゥートフィア ノイエ マテリアーリエン ゲマインニュッツィゲ ゲゼルシャフト ミット ベシュレンクタ ハフトゥンク Object with selectable adhesion
US10046541B2 (en) 2012-12-21 2018-08-14 Leibniz-Institut Fuer Neue Materialien Gemeinnuetzige Gmbh Object with selectable adhesion
US11359658B2 (en) 2014-12-22 2022-06-14 Leibniz-Institut Für Neue Materialien Gemeinnützige Gmbh Structured surface with adhesion switchable in stages
CN108162538A (en) * 2018-02-05 2018-06-15 江苏新光镭射包装材料股份有限公司 A kind of shape memory laser film and its production method
CN108162538B (en) * 2018-02-05 2023-12-15 江苏新光镭射包装材料股份有限公司 Shape memory laser film and production method thereof
CN113183565A (en) * 2021-06-03 2021-07-30 河南工业大学 Preparation method of carbon fiber reinforced sliding current collecting material for high-speed train

Also Published As

Publication number Publication date
JP4338823B2 (en) 2009-10-07

Similar Documents

Publication Publication Date Title
US6655218B1 (en) Composite material and method of controlling damage thereto and damage sensor
Soutis et al. Compressive behaviour of CFRP laminates repaired with adhesively bonded external patches
Tang et al. A boundary layer theory-part II: extension of laminated finite strip
JP2000334888A (en) Composite material and damage control method thereof
JP5550245B2 (en) Method for manufacturing metal-ceramic matrix hybrid composite structure, method for manufacturing composite structure, and laminated composite structure
US20140186476A1 (en) Composite self-healing system
EP1454737B1 (en) Composite material and method of manufacturing the same
Mall et al. Electromechanical fatigue behavior of graphite/epoxy laminate embedded with piezoelectric actuator
US20100323497A1 (en) Method of transferring a thin layer onto a target substrate having a coefficient of thermal expansion different from that of the thin layer
Peairs et al. Practical issues of activating self-repairing bolted joints
JP5560121B2 (en) Joining method of carbon fiber reinforced thermoplastic resin composite
Bucci et al. ARALL® Laminates
Bieniaś et al. Low velocity impact resistance of aluminium/carbon-epoxy fiber metal laminates
Hojo et al. Effect of fatigue loading on critical current in stainless steel–laminated DI-BSCCO superconducting composite tape
Park et al. Optimum design of the co-cured double lap joint composed of aluminum and carbon epoxy composite
Kang et al. A measurement method for piezoelectric material properties under longitudinal compressive stress–-a compression test method for thin piezoelectric materials
CN111911377B (en) SMA actuator based on gradient prestrain
JP4583576B2 (en) Damage position detection device for fiber reinforced resin composite and method for manufacturing damage detection sensor
Ogisu et al. Development of health monitoring system using embedded SMA foils in CFRP laminates
Sriraman et al. Bond characterization in very high power ultrasonic additive manufacturing
Turner Structural acoustic response of a shape memory alloy hybrid composite panel (lessons learned)
Gong et al. Application of Tsai-Wu criterion to notched and Unnotched composite laminates under torque loading
Ivanova et al. Piezo health monitoring of adhesive joints
Ogisu et al. Damage suppression in CFRP laminates using embedded shape memory alloy foils
JP4562295B2 (en) COMPOSITE MATERIAL AND DAMAGE CONTROL METHOD FOR COMPOSITE MATERIAL

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090402

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090701

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees