JP2000334451A - Physicochemical treatment of nitrogen-containing waste water - Google Patents

Physicochemical treatment of nitrogen-containing waste water

Info

Publication number
JP2000334451A
JP2000334451A JP11145934A JP14593499A JP2000334451A JP 2000334451 A JP2000334451 A JP 2000334451A JP 11145934 A JP11145934 A JP 11145934A JP 14593499 A JP14593499 A JP 14593499A JP 2000334451 A JP2000334451 A JP 2000334451A
Authority
JP
Japan
Prior art keywords
wastewater
waste water
exchange resin
nitrogen
cation exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11145934A
Other languages
Japanese (ja)
Inventor
Takumi Nanaumi
匠 七海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP11145934A priority Critical patent/JP2000334451A/en
Publication of JP2000334451A publication Critical patent/JP2000334451A/en
Pending legal-status Critical Current

Links

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Physical Water Treatments (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably remove ammoniacal nitrogen in waste water containing metal components over a long period of time by adjusting the pH of the waste water to a specified range and passing the waste water through a column packed with cation exchange resin particles when the waste water is treated by catalytic wet oxidation treatment. SOLUTION: Waste water in a waste water storage tank 2 is transported by a pump 8 to a pipe 4. During the transport, the pH of the waste water is adjusted to 9-12 by adding an alkali with an alkali adding mechanism 10 to separate metal components in the waste water as hydroxides. The waste water is transported to a column 20 packed with cation exchange resin particles, where the separated metal hydroxides and suspended solids are captured and ionic metal components which remain as metal hydroxides without separating are adsorbed. The waste water is then successively transported to a heat exchanger 6, a heater 12 and an ammoniacal nitrogen removing unit 14, and ammoniacal nitrogen in the waste water is removed. The pressure difference before and after passing the column 2 is measured with a differential pressure gauge 22 and backward washing is carried out, if necessary.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属成分が共存す
るアンモニア態窒素含有排水、特に発電所の復水脱塩装
置の再生排液のごとく、金属成分として鉄、銅、亜鉛等
の重金属イオンを含むが、硬度成分(Ca、Mg)をほ
とんど含まないアンモニア態窒素含有排水の物理化学的
処理方法に関する。
The present invention relates to a wastewater containing ammonia nitrogen in which metal components coexist, particularly heavy metal ions such as iron, copper, zinc, etc. The present invention relates to a physicochemical treatment method for wastewater containing ammonia nitrogen, which contains almost no hardness components (Ca, Mg).

【0002】[0002]

【従来の技術】発電所や各種の産業プラントから排出さ
れる排水や下水には、アンモニア態窒素が含まれるもの
がある。アンモニア態窒素については、現状ではすべて
の水域に関わる排水基準による規制はないが、近年閉鎖
性水域などにおいて富栄養化問題が深刻化しており、そ
のためアンモニア態窒素についての排水水質規制の動き
が活発化している。
2. Description of the Related Art Some wastewater and sewage discharged from power plants and various industrial plants contain ammonia nitrogen. Currently, there is no regulation of ammonia nitrogen in wastewater standards for all water bodies.However, in recent years the problem of eutrophication in closed water areas has become serious, and as a result, there has been an active movement in wastewater quality regulations for ammonia nitrogen. Is becoming

【0003】従来、排水中のアンモニア態窒素の除去方
法としては、生物学的硝化脱窒素処理が一般的であった
が、この生物学的処理法は、運転管理が難しい、広い設
置スペースが必要になる、発生汚泥の処理が必要にな
る、高濃度のアンモニア態窒素含有排水の処理に適さな
い(濃度500mg/Lのアンモニア態窒素を除去する
のが限度)、といった問題があるため、生物学的処理法
に代わる新しいアンモニア態窒素除去方法が提案されつ
つある。
Conventionally, biological nitrification and denitrification has been generally used as a method for removing ammonia nitrogen in wastewater. However, this biological treatment requires a large installation space, which is difficult to control. Because it is necessary to treat generated sludge and is not suitable for treating high-concentration ammonia-nitrogen-containing wastewater (it is limited to remove 500 mg / L of ammonia-nitrogen). A new ammonia nitrogen removal method that is an alternative to the conventional treatment method is being proposed.

【0004】上述した新しいアンモニア態窒素除去方法
に関しては、物理化学的処理法として、触媒湿式酸化処
理法及びアンモニアストリッピング処理法が各社から提
案されている。これらの物理化学的処理法は、運転管理
が容易である、広い設置スペースを必要としない、汚泥
が発生しない、高濃度のアンモニア態窒素含有排水を処
理できる、といった利点を有している。
Regarding the above-mentioned new ammonia nitrogen removal method, various companies have proposed a catalytic wet oxidation treatment method and an ammonia stripping treatment method as physicochemical treatment methods. These physicochemical treatment methods have advantages in that operation management is easy, a large installation space is not required, sludge is not generated, and wastewater containing high concentration of ammonia nitrogen can be treated.

【0005】ここで、物理化学的処理法を用いたアンモ
ニア態窒素含有排水の処理フローの一例を図2に示す。
図2において、2は排水貯槽、4は排水貯槽2に接続さ
れた配管、6は配管4に接続された熱交換器であり、上
記配管4にはポンプ8及びアルカリ添加機構10が設け
られている。また、12は熱交換器6に接続された加熱
器、14は加熱器12に接続された触媒湿式酸化処理法
又はアンモニアストリッピング処理法によるアンモニア
態窒素除去装置、16は処理水流出管、18は排ガス流
出管を示す。
[0005] Fig. 2 shows an example of a processing flow for wastewater containing ammonia nitrogen using a physicochemical treatment method.
In FIG. 2, 2 is a drainage storage tank, 4 is a pipe connected to the drainage storage tank 2, 6 is a heat exchanger connected to the pipe 4, and the pipe 4 is provided with a pump 8 and an alkali addition mechanism 10. I have. Reference numeral 12 denotes a heater connected to the heat exchanger 6, reference numeral 14 denotes an ammonia nitrogen removing apparatus connected to the heater 12 by a catalytic wet oxidation method or ammonia stripping method, reference numeral 16 denotes a treated water outflow pipe, reference numeral 18 Indicates an exhaust gas outflow pipe.

【0006】本装置によるアンモニア態窒素含有排水の
処理は、次のように行われる。まず、排水貯槽2内の排
水はポンプ8の作動により熱交換器6に導入される。こ
のとき、アルカリ添加機構10によって配管4を流れる
排水にアルカリが添加され、排水のpHが9〜12程度
に調整される。次に、排水は加熱器12、アンモニア態
窒素除去装置14に順次通水され、アンモニア態窒素除
去装置14において排水中のアンモニア態窒素が除去さ
れる。アンモニア態窒素除去装置14の処理水は処理水
流出管16に流出し、熱交換器6で排水と熱交換を行っ
た後、放流又は再利用される。また、アンモニア態窒素
除去装置14で発生した排ガスは排ガス流出管18から
排出される。なお、触媒湿式酸化処理法及びアンモニア
ストリッピング処理法の詳細は後述する。
The treatment of the wastewater containing ammonia nitrogen by the present apparatus is performed as follows. First, the wastewater in the wastewater storage tank 2 is introduced into the heat exchanger 6 by the operation of the pump 8. At this time, alkali is added to the wastewater flowing through the pipe 4 by the alkali addition mechanism 10, and the pH of the wastewater is adjusted to about 9 to 12. Next, the waste water is sequentially passed through the heater 12 and the ammonia nitrogen removal device 14, and the ammonia nitrogen in the waste water is removed by the ammonia nitrogen removal device 14. The treated water of the ammonia nitrogen removal device 14 flows out to the treated water outflow pipe 16 and is subjected to heat exchange with the waste water in the heat exchanger 6 before being discharged or reused. The exhaust gas generated by the ammonia nitrogen removal device 14 is discharged from an exhaust gas outflow pipe 18. The details of the catalytic wet oxidation treatment and the ammonia stripping treatment will be described later.

【0007】[0007]

【発明が解決しようとする課題】前述した物理化学的処
理法、すなわち触媒湿式酸化処理法又はアンモニアスト
リッピング処理法によってアンモニア態窒素含有排水の
処理を行う場合、排水中にアンモニア態窒素と金属成分
とが共存していると、アンモニア態窒素の除去が安定に
行われなくなるという問題があった。
When the wastewater containing ammonia nitrogen is treated by the above-mentioned physicochemical treatment method, that is, the catalytic wet oxidation treatment method or the ammonia stripping treatment method, the ammonia nitrogen and metal components are contained in the waste water. When coexisting with the above, there was a problem that the removal of ammonia nitrogen was not performed stably.

【0008】すなわち、上記いずれの方法においても、
排水中にたとえCa2+等の硬度成分が含まれていなくて
も、Fe、Cu、Znといった重金属成分がイオン状で
存在すると、これら成分が処理装置(熱交換器、加熱
器、処理槽、配管等)内でスケールとして析出し、流路
の閉塞や気液接触効率の低下などが生じて、処理性能を
低下させるものであった。また、触媒湿式酸化処理法に
おいては、触媒の表面に金属成分がスケールとして付着
・析出し、これが触媒毒として作用したり、触媒同士が
付着する原因となったりして、触媒性能を低下させるも
のであった。さらに、触媒湿式酸化処理法又はアンモニ
アストリッピング処理法によってアンモニア態窒素含有
排水の処理を行う場合、触媒湿式酸化処理においては主
として装置構成材料の腐蝕防止の観点から、また、アン
モニアストリッピング処理においては除去効率の観点か
ら、一般に排水のpHを9〜12程度に調整するが、排
水のpHをアルカリ側にすると前記金属成分から金属水
酸化物や金属錯体を主成分とする懸濁物質が生成し、こ
の懸濁物質が処理装置内に流入すると、前述した金属成
分のイオンと同様に処理性能を低下させるものであっ
た。
That is, in any of the above methods,
Even if the wastewater does not contain a hardness component such as Ca 2+ , if heavy metal components such as Fe, Cu, and Zn are present in an ionic state, these components will be treated in a treatment apparatus (heat exchanger, heater, treatment tank, (E.g., pipes), and as a scale, blockage of the flow path and reduction of the gas-liquid contact efficiency occur, thereby deteriorating the processing performance. Also, in the catalytic wet oxidation method, metal components adhere and precipitate as scales on the surface of the catalyst, and this acts as a catalyst poison or causes catalysts to adhere to each other, thereby deteriorating the catalyst performance. Met. Further, in the case of treating ammonia-containing nitrogen-containing wastewater by a catalytic wet oxidation treatment method or an ammonia stripping treatment method, the catalytic wet oxidation treatment is mainly performed from the viewpoint of preventing corrosion of the constituent materials of the apparatus, and the ammonia stripping treatment is performed in the following manner. From the viewpoint of the removal efficiency, the pH of the wastewater is generally adjusted to about 9 to 12, but when the pH of the wastewater is set to the alkaline side, a suspended substance mainly composed of a metal hydroxide or a metal complex is generated from the metal component. When the suspended solids flow into the processing apparatus, the processing performance is reduced similarly to the ions of the metal components described above.

【0009】本発明は、前述した事情に鑑みてなされた
もので、アンモニア態窒素と金属成分とが共存するアン
モニア態窒素含有排水を触媒湿式酸化処理法又はアンモ
ニアストリッピング処理法により処理する場合に、前記
金属成分に起因する経時的な処理性能の低下を防止し、
安定した処理性能を持続させることにより、アンモニア
態窒素の除去を長期間にわたって安定に行うことができ
るようにした窒素含有排水の物理化学的処理方法を提供
することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and is intended for use in treating ammonia-nitrogen-containing wastewater in which ammonia-nitrogen and metal components coexist by a catalytic wet oxidation treatment method or an ammonia stripping treatment method. Preventing the deterioration of the processing performance over time caused by the metal component,
It is an object of the present invention to provide a physicochemical treatment method for nitrogen-containing wastewater, in which ammonia-nitrogen can be stably removed over a long period of time by maintaining stable treatment performance.

【0010】[0010]

【課題を解決するための手段】本発明は、前記目的を達
成するため、金属成分を含むアンモニア態窒素含有排水
を触媒湿式酸化処理法により処理して排水中のアンモニ
ア態窒素を除去するに当たり、前記排水のpHを9〜1
2に調整し、該排水を陽イオン交換樹脂粒子充填層に通
水した後に、前記触媒湿式酸化処理法による処理を行う
ことを特徴とする窒素含有排水の物理化学的処理方法を
提供する。
Means for Solving the Problems In order to achieve the above object, the present invention provides a method for treating ammonia-nitrogen-containing wastewater containing metal components by catalytic wet oxidation to remove ammonia-nitrogen in the wastewater. The pH of the wastewater is 9 to 1
The method of claim 2, wherein the wastewater is passed through a layer packed with cation exchange resin particles, and then treated by the catalytic wet oxidation treatment method.

【0011】また、本発明は、前記目的を達成するた
め、金属成分を含むアンモニア態窒素含有排水をアンモ
ニアストリッピング処理法により処理して排水中のアン
モニア態窒素を除去するに当たり、前記排水のpHを9
〜12に調整し、該排水を陽イオン交換樹脂粒子充填層
に通水した後に、前記アンモニアストリッピング処理法
による処理を行うことを特徴とする窒素含有排水の物理
化学的処理方法を提供する。
In order to achieve the above object, the present invention provides a method for removing ammonia nitrogen from waste water containing metal components by removing the nitrogen from the waste water by treating the waste water containing ammonia with an ammonia stripping treatment method. 9
To 12, wherein the wastewater is passed through a layer packed with cation exchange resin particles, and then treated by the ammonia stripping treatment method.

【0012】本発明では、アンモニア態窒素含有排水を
触媒湿式酸化処理法又はアンモニアストリッピング処理
法で処理するに当たり、排水のpHを9〜12に調整し
た後に、この排水を陽イオン交換樹脂粒子充填層に通水
する。排水のpHを9〜12にすることによって排水中
の金属成分、例えばFe、Cu、Zn等の重金属成分
は、金属水酸化物や金属錯体として析出する。析出した
金属水酸化物や、もともと排水中に含まれていた酸化鉄
微粒子等の懸濁物質は、陽イオン交換樹脂粒子充填層の
濾過材としての機能により陽イオン交換樹脂粒子充填層
に捕捉され、排水中から除去される。そのため、上記懸
濁物質が処理装置内に流入することに起因する処理性能
の低下が防止される。なお、万一、排水中にCa等の硬
度成分が混入した場合、Ca、Mgは排水のpHを9〜
12にしてもイオン状であることが多いので陽イオン交
換樹脂粒子充填層の濾過作用では除去されないが、この
Ca 2+、Mg2+はイオン交換により陽イオン交換樹脂粒
子に吸着され、排水中から除去される。そのため、Ca
2+やMg2+が処理装置内に流入することに起因する処理
性能の低下が防止される。さらに、pHがアルカリ性の
領域においてはイオンとして存在するFe等の金属成分
は微量であるが、この微量のイオン状の鉄等もイオン交
換により陽イオン交換樹脂粒子に吸着され、排水中から
除去される。そのため、イオン状の鉄等が処理装置内に
流入することに起因する処理性能の低下が防止される。
なお、本発明では懸濁物質を捕捉する濾過材として陽イ
オン交換樹脂粒子を用いるが、その理由は、膜よりも粒
状物の方が懸濁物質による目詰まりが生じにくく、メン
テナンス性に優れているためである。
In the present invention, the wastewater containing ammonia nitrogen is treated
Catalytic wet oxidation or ammonia stripping
The pH of the wastewater is adjusted to 9 to 12 for
After that, this wastewater is passed through a bed packed with cation exchange resin particles.
I do. By adjusting the pH of the wastewater to 9 to 12
Metal components, for example, heavy metal components such as Fe, Cu, and Zn
Precipitates as a metal hydroxide or a metal complex. Deposited
Metal hydroxides and iron oxides originally contained in wastewater
Suspended substances such as fine particles are used in the cation exchange resin particle packed bed.
Cation exchange resin particle packed bed due to its function as a filter material
And is removed from the wastewater. Therefore,
Processing performance due to suspended substances flowing into the processing equipment
Is prevented from decreasing. It should be noted that hard water such as Ca
When the components are mixed, Ca and Mg can adjust the pH of the wastewater to 9 to
Even if it is 12, it is often ionic, so cation exchange
It is not removed by the filtration action of the exchange resin particle packed bed.
Ca 2+, Mg2+Is cation exchange resin particles by ion exchange
Is adsorbed by water and removed from wastewater. Therefore, Ca
2+And Mg2+Due to the flow of water into the processing equipment
Performance degradation is prevented. Furthermore, the pH is alkaline
Metal components such as Fe present as ions in the region
Is a trace amount, but this trace amount of ionic iron
Is adsorbed on the cation exchange resin particles by
Removed. For this reason, ionic iron etc.
A reduction in processing performance due to the inflow is prevented.
In the present invention, a positive filter is used as a filter medium for capturing suspended substances.
On-exchange resin particles are used because the
The clogging of suspended matter is less likely to occur with
This is because of excellent tenability.

【0013】以下、本発明につきさらに詳しく説明す
る。本発明では、まず、アンモニア態窒素含有排水のp
Hを9〜12に調整する。pHが9未満であると金属成
分が水酸化物として完全に析出せず、また、pHが12
を越えても析出する水酸化物の量は増加せず、アルカリ
を無駄に消費することとなるので、いずれの場合も好ま
しくない。pHの調整手段としては、例えば、アルカリ
添加機構によって排水にアルカリを添加する手段等を用
いることができる。
Hereinafter, the present invention will be described in more detail. In the present invention, first, p
Adjust H to 9-12. If the pH is less than 9, the metal component does not completely precipitate as hydroxide, and the pH is 12 or less.
If the amount exceeds the range, the amount of the precipitated hydroxide does not increase, and the alkali is wasted. As a means for adjusting the pH, for example, a means for adding an alkali to waste water by an alkali addition mechanism can be used.

【0014】本発明では、次に、pHを調整した排水を
陽イオン交換樹脂粒子充填層に通水する。この場合、陽
イオン交換樹脂の種類に限定はなく、弱酸性陽イオン交
換樹脂でも強酸性陽イオン交換樹脂でもよい。また、陽
イオン交換樹脂のイオン形については、万一、排水中に
Ca2+やMg2+が混入した場合でも、これらの硬度成分
を除去する点で、Ca形、Mg形以外のイオン形である
ことが好ましく、特にH形、NH4形又はアルカリ金属
イオン形(Na形、K形等)が好ましい。
Next, in the present invention, the pH-adjusted wastewater is passed through a cation exchange resin particle packed bed. In this case, the type of the cation exchange resin is not limited, and may be a weakly acidic cation exchange resin or a strongly acidic cation exchange resin. Further, regarding the ion form of the cation exchange resin, even if Ca 2+ or Mg 2+ is mixed in the wastewater, the ion forms other than the Ca form and Mg form are used in removing these hardness components. It is particularly preferable to use H form, NH 4 form or alkali metal ion form (Na form, K form, etc.).

【0015】本発明で用いる陽イオン交換樹脂の具体例
として、強酸性陽イオン交換樹脂はアンバーライト(登
録商標、以下同じ)IR120B、IR124、200
C、ダイヤイオン(登録商標、以下同じ)SK1B、S
K102、PK208、PK212等、弱酸性陽イオン
交換樹脂はアンバーライトIRC50、IRC76、ダ
イヤイオンWK10、WK20等を挙げることができ
る。
As a specific example of the cation exchange resin used in the present invention, a strongly acidic cation exchange resin is Amberlite (registered trademark, hereinafter the same) IR120B, IR124, 200
C, Diaion (registered trademark, the same applies hereinafter) SK1B, S
Examples of weakly acidic cation exchange resins such as K102, PK208 and PK212 include Amberlite IRC50, IRC76, Diaion WK10, WK20 and the like.

【0016】本発明では、前記のようにpHを9〜12
に調整した排水を陽イオン交換樹脂粒子充填層に通水し
た後に、触媒湿式酸化処理法又はアンモニアストリッピ
ング処理法によって排水中のアンモニア態窒素を除去す
る。
In the present invention, the pH is adjusted to 9 to 12 as described above.
After the adjusted wastewater is passed through the cation exchange resin particle packed bed, the ammonia nitrogen in the wastewater is removed by a catalytic wet oxidation treatment method or an ammonia stripping treatment method.

【0017】触媒湿式酸化処理法は、触媒の存在下で酸
化剤を用いて被処理水中のアンモニア態窒素を窒素ガス
に酸化分解する方法である。触媒湿式酸化処理法では、
一般に、金属触媒の存在下、被処理水を所定温度(通常
100〜370℃)に加熱するとともに、被処理水を液
相を保持する圧力にまで加圧し、かつ酸素含有ガス(例
えば空気)等を酸化剤として被処理水に供給する。触媒
としては、例えば、銀、金、白金、コバルト、ニッケ
ル、パラジウム、ロジウム、ルテニウム、インジウム、
イリジウムやこれらの酸化物、塩化物、硫化物等から選
ばれる触媒成分を適宜担体に担持させたものが使用され
る。
The catalyst wet oxidation method is a method of oxidizing and decomposing ammonia nitrogen in water to be treated into nitrogen gas using an oxidizing agent in the presence of a catalyst. In the catalytic wet oxidation treatment method,
Generally, in the presence of a metal catalyst, the water to be treated is heated to a predetermined temperature (usually 100 to 370 ° C.), the water to be treated is pressurized to a pressure that maintains a liquid phase, and an oxygen-containing gas (for example, air) is used. Is supplied to the water to be treated as an oxidizing agent. As the catalyst, for example, silver, gold, platinum, cobalt, nickel, palladium, rhodium, ruthenium, indium,
A catalyst is used in which a catalyst component selected from iridium and oxides, chlorides, sulfides and the like thereof is appropriately supported on a carrier.

【0018】アンモニアストリッピング処理法は、被処
理水のpHを上げてアンモニウムイオン(NH4 +)を揮
発性の遊離アンモニア(NH3)に変えたのち、被処理
水を多量の空気と接触させ、アンモニアを大気に逸散さ
せて窒素除去を行う方法である。アンモニアストリッピ
ング処理法では、通常、被処理水のpHを11以上にす
るとともに、被処理水を所定温度に加熱する。
In the ammonia stripping method, after the pH of the water to be treated is raised to convert ammonium ions (NH 4 + ) into volatile free ammonia (NH 3 ), the water to be treated is brought into contact with a large amount of air. This is a method for removing nitrogen by dispersing ammonia into the atmosphere. In the ammonia stripping method, the pH of the water to be treated is usually set to 11 or more, and the water to be treated is heated to a predetermined temperature.

【0019】本発明においては、アンモニア態窒素含有
排水の通水時における陽イオン交換樹脂粒子充填層の前
後の差圧を監視し、該差圧が所定値に上昇した時点で、
陽イオン交換樹脂粒子充填層の洗浄を行うことが好まし
い。すなわち、陽イオン交換樹脂粒子充填層の前後の差
圧は懸濁物質の堆積に伴って上昇するが、上記差圧を監
視し、差圧が一定の値に達した時点で純水等を用いて陽
イオン交換樹脂粒子充填層を洗浄することにより、差圧
を低下させて初期差圧程度にまで回復させることができ
る。この場合、通水工程から洗浄工程への移行は自動制
御によって行ってもよく、運転員が日常的に監視を行
い、手動で洗浄工程への移行を行うようにしてもよい。
In the present invention, the pressure difference before and after the cation exchange resin particle packed bed during the passage of the ammonium nitrogen-containing wastewater is monitored, and when the pressure difference rises to a predetermined value,
It is preferable to wash the cation exchange resin particle packed bed. That is, the differential pressure before and after the cation exchange resin particle packed bed increases with the deposition of suspended matter, but the above differential pressure is monitored, and when the differential pressure reaches a certain value, pure water or the like is used. By washing the cation-exchange resin particle-packed layer in this manner, the pressure difference can be reduced and restored to about the initial pressure difference. In this case, the transition from the water-passing step to the cleaning step may be performed by automatic control, or an operator may perform daily monitoring and manually transition to the cleaning step.

【0020】また、本発明では、陽イオン交換樹脂粒子
充填層の陽イオン交換樹脂は非再生運用とし、薬品によ
るイオン交換基の化学再生は行わないことが適当であ
る。化学再生を行うと、再生排水中にアンモニア態窒素
が含まれてしまい、その処理が別途必要となるためであ
る。非再生運用のため、陽イオン交換樹脂の最初のイオ
ン形がどのような形であっても、通水を一定の時間続け
ると陽イオン交換樹脂粒子充填層のイオン形分布は排水
と平衡な状態となる。しかし、イオン形が例えばNH4 +
形に置換している場合でも、陽イオン交換樹脂の選択性
や特異的な吸着性から、イオン状の金属成分の少なくと
も一部は陽イオン交換樹脂に吸着される。すなわち、N
4 +はイオン状の金属成分に比べて陽イオン交換樹脂に
対する選択性が弱いので、排水の通水によって陽イオン
交換樹脂に吸着されたNH4 +(陽イオン交換樹脂をH形
又はアルカリ金属形で使用した場合)、あるいは通水当
初から樹脂に吸着されていたNH4 +(陽イオン交換樹脂
をNH4形で使用した場合)は排水中の金属イオンとイ
オン交換されて下流側に押し出されてしまうと考えられ
る。なお、陽イオン交換樹脂粒子充填層の流出水中にN
4 +が含まれていても、このNH4 +は後段の触媒湿式酸
化処理法又はアンモニアストリッピング処理法による処
理で除去されるので問題はない。また、陽イオン交換樹
脂の金属成分の吸着能力が大きく低下した場合には、陽
イオン交換樹脂の交換を行えばよい。
In the present invention, it is appropriate that the cation exchange resin in the cation exchange resin particle packed bed is not operated for regeneration, and the chemical regeneration of the ion exchange groups by chemicals is not performed. This is because, when the chemical regeneration is performed, ammonia nitrogen is contained in the regeneration wastewater, and the treatment is required separately. Due to non-regeneration operation, regardless of the initial ion form of the cation exchange resin, if the water is kept flowing for a certain period of time, the ion form distribution of the cation exchange resin particle packed bed is in equilibrium with the wastewater. Becomes However, if the ionic form is, for example, NH 4 +
Even when the cation-exchange resin is substituted in the form, at least a part of the ionic metal component is adsorbed by the cation-exchange resin due to the selectivity and specific adsorption of the cation-exchange resin. That is, N
Since H 4 + has a weaker selectivity to the cation exchange resin than the ionic metal component, NH 4 + (the cation exchange resin is converted to an H form or an alkali metal) NH 4 + (when the cation exchange resin is used in the NH 4 form), which has been adsorbed to the resin from the beginning of water passage, is ion-exchanged with metal ions in the wastewater and pushed out to the downstream side. It is thought that it will be. The effluent of the packed bed of cation exchange resin particles contains N
Even if H 4 + is contained, there is no problem because this NH 4 + is removed in the subsequent treatment by the catalytic wet oxidation treatment or ammonia stripping treatment. Further, when the adsorption capacity of the metal component of the cation exchange resin is significantly reduced, the cation exchange resin may be replaced.

【0021】[0021]

【発明の実施の形態】図1は本発明方法の実施に用いる
排水処理装置の一例を示すフロー図である。本例の装置
は、図2に示した装置において、配管4のアルカリ添加
機構10連結個所と熱交換器6との間に陽イオン交換樹
脂粒子充填塔20を設けるとともに、この陽イオン交換
樹脂粒子充填塔20の前後の差圧を測定する差圧計22
を設置したものである。したがって、図1において図2
の装置と同一の部分には、同一の参照符号を付してその
説明を省略する。
FIG. 1 is a flow chart showing an example of a wastewater treatment apparatus used for carrying out the method of the present invention. The apparatus of this example is different from the apparatus shown in FIG. 2 in that a cation exchange resin particle packed column 20 is provided between the heat exchanger 6 and a connection point of the alkali addition mechanism 10 of the pipe 4 and the cation exchange resin particles Differential pressure gauge 22 for measuring the differential pressure before and after packed tower 20
Is installed. Therefore, FIG.
The same components as those of the above device are denoted by the same reference numerals, and description thereof is omitted.

【0022】本装置によるアンモニア態窒素含有排水の
処理は、次のように行われる。まず、排水貯槽2内の排
水はポンプ8の作動により配管4を流れ、アルカリ添加
機構10によってアルカリが添加され、pHが9〜12
に調整される。このpH調整により、排水中の鉄イオン
等の金属成分が水酸化物として析出する。その後、排水
は陽イオン交換樹脂粒子充填塔20に通水され、ここで
前記の析出した金属水酸化物や排水中にもともと含まれ
る懸濁物質が陽イオン交換樹脂粒子充填層に捕捉される
とともに、金属水酸化物して析出せずに残留したイオン
状の金属成分が陽イオン交換樹脂粒子に吸着される。そ
の後、排水は熱交換器6、加熱器12、アンモニア態窒
素除去装置14に順次通水され、アンモニア態窒素除去
装置14において排水中のアンモニア態窒素が除去され
る。この点は図2の装置と同じである。
The treatment of the wastewater containing ammonia nitrogen by the present apparatus is performed as follows. First, the drainage in the drainage storage tank 2 flows through the pipe 4 by the operation of the pump 8, and alkali is added by the alkali addition mechanism 10 to adjust the pH to 9 to 12.
It is adjusted to. This pH adjustment causes metal components such as iron ions in the wastewater to precipitate as hydroxides. Thereafter, the wastewater is passed through a cation exchange resin particle packed tower 20, where the precipitated metal hydroxide and suspended substances originally contained in the wastewater are captured by the cation exchange resin particle packed bed. The ionic metal component remaining without being precipitated as a metal hydroxide is adsorbed on the cation exchange resin particles. Thereafter, the wastewater is sequentially passed through the heat exchanger 6, the heater 12, and the ammonia nitrogen removing device 14, and the ammonia nitrogen in the wastewater is removed by the ammonia nitrogen removing device 14. This is the same as the apparatus of FIG.

【0023】また、本装置では、差圧計22によって通
水時における陽イオン交換樹脂粒子充填塔20の前後の
差圧を測定し、差圧が所定値に上昇した時点で陽イオン
交換樹脂粒子充填塔20の陽イオン交換樹脂粒子充填層
の純水等による逆洗(逆洗流路は図示せず)を行う。こ
れにより、陽イオン交換樹脂粒子充填塔20の前後の差
圧が懸濁物質の堆積に伴って上昇していても、この差圧
を低下させて初期差圧程度にまで回復させることができ
る。
In this apparatus, the differential pressure gauge 22 measures the pressure difference before and after the cation exchange resin particle packed tower 20 during the passage of water, and when the differential pressure rises to a predetermined value, the cation exchange resin particle packed Backwashing of the cation-exchange resin particle packed bed of the tower 20 with pure water or the like is performed (backwash channels are not shown). Thereby, even if the differential pressure before and after the cation exchange resin particle packed column 20 increases with the accumulation of the suspended solids, the differential pressure can be reduced and restored to about the initial differential pressure.

【0024】[0024]

【実施例】(実施例1)図1に示した排水処理装置を用
いてアンモニア態窒素含有排水の処理を行った。この場
合、アンモニア態窒素除去装置14としては触媒湿式酸
化処理法によるものを使用した。排水としては、アンモ
ニア態窒素濃度2000mg/L、鉄(溶解性鉄)濃度
10mg/L、硬度成分濃度0mg/Lの模擬排水を用
いた。陽イオン交換樹脂粒子充填塔20の陽イオン交換
樹脂としては、強酸性陽イオン交換樹脂であるアンバー
ライトIR120BをNa形にして用いた。また、陽イ
オン交換樹脂粒子充填塔20の陽イオン交換樹脂粒子充
填層の容量は0.005m 3、アンモニア態窒素除去装
置14(触媒充填塔)の容量は0.05m3、排水流量
は1m3/day、通水時間は1000時間とした。
(Embodiment 1) The wastewater treatment apparatus shown in FIG. 1 is used.
The wastewater containing ammonia nitrogen was treated. This place
In the case, the ammonia-nitrogen removing device 14 is a catalytic wet acid
The thing by the chemical treatment method was used. As the wastewater,
Near nitrogen concentration 2000mg / L, iron (soluble iron) concentration
Uses simulated wastewater with a concentration of 10 mg / L and a hardness concentration of 0 mg / L
Was. Cation exchange in the cation exchange resin particle packed column 20
Amber is a strong acid cation exchange resin.
Wright IR120B was used in the Na form. In addition,
Cation exchange resin particle packing of the on-exchange resin particle packed tower 20
Filling capacity is 0.005m Three, Ammonia nitrogen removal equipment
The capacity of the device 14 (catalyst packed tower) is 0.05 mThree, Drainage flow
Is 1mThree/ Day and the water flow time were 1000 hours.

【0025】通水開始後1000時間経過時における水
質分析の結果を表1に示す。表1に示されるように、ア
ンモニア態窒素濃度2000mg/Lの排水を原水とし
て1000時間の処理を行った場合でも、処理水中のア
ンモニア態窒素濃度は10mg/L以下を維持してい
た。また、通水開始後1000時間経過時に陽イオン交
換樹脂粒子充填塔20の前後の差圧は初期差圧よりも5
%上昇していたが、純水による逆洗を行ったところ、初
期差圧にまで回復した。さらに、触媒充填塔を開放点検
したところ、塔内に沈殿物やスケールは観察されなかっ
た。
Table 1 shows the results of water quality analysis 1000 hours after the start of water flow. As shown in Table 1, even when the wastewater having an ammonia nitrogen concentration of 2000 mg / L was used as raw water and treated for 1000 hours, the ammonia nitrogen concentration in the treated water was maintained at 10 mg / L or less. In addition, the differential pressure before and after the cation-exchange resin particle packed tower 20 at the time of 1000 hours after the start of water flow is 5 times lower than the initial differential pressure.
%, But after backwashing with pure water, it recovered to the initial differential pressure. Further, when the catalyst packed tower was opened and inspected, no precipitate or scale was observed in the tower.

【0026】[0026]

【表1】 [Table 1]

【0027】(実施例2)図1に示した排水処理装置を
用いてアンモニア態窒素含有排水の処理を行った。この
場合、アンモニア態窒素除去装置14としてはアンモニ
アストリッピング処理法によるものを使用した。排水及
び陽イオン交換樹脂粒子充填塔20の陽イオン交換樹脂
としては実施例1と同じものを用いた。また、陽イオン
交換樹脂粒子充填塔20の陽イオン交換樹脂粒子充填層
の容量は0.005m3、アンモニア態窒素除去装置1
4(アンモニアストリッピング塔)の容量は0.05m
3、排水流量は1m3/day、通水時間は1000時間
とした。
Example 2 The wastewater containing ammonia nitrogen was treated using the wastewater treatment apparatus shown in FIG. In this case, as the ammonia nitrogen removing device 14, a device using an ammonia stripping treatment method was used. The same cation exchange resin as in Example 1 was used as the cation exchange resin in the drainage and cation exchange resin particle packed column 20. The capacity of the cation exchange resin particle packed bed of the cation exchange resin particle packed column 20 is 0.005 m 3 , and the ammonia nitrogen removal device 1
The capacity of 4 (ammonia stripping tower) is 0.05m
3. The drainage flow rate was 1 m 3 / day, and the water flow time was 1000 hours.

【0028】通水開始後1000時間経過時における水
質分析の結果を表2に示す。表2に示されるように、ア
ンモニア態窒素濃度2000mg/Lの排水を原水とし
て1000時間の処理を行った場合でも、処理水中のア
ンモニア態窒素濃度は10mg/L以下を維持してい
た。また、通水開始後1000時間経過時に陽イオン交
換樹脂粒子充填塔20の前後の差圧は初期差圧よりも5
%上昇していたが、純水による逆洗を行ったところ、初
期差圧にまで回復した。さらに、アンモニアストリッピ
ング塔を開放点検したところ、塔内に沈殿物やスケール
は観察されなかった。
Table 2 shows the results of water quality analysis 1000 hours after the start of water flow. As shown in Table 2, the concentration of ammonia nitrogen in the treated water was maintained at 10 mg / L or less even when the wastewater having an ammonia nitrogen concentration of 2000 mg / L was treated as raw water for 1000 hours. In addition, the differential pressure before and after the cation-exchange resin particle packed tower 20 at the time of 1000 hours after the start of water flow is 5 times lower than the initial differential pressure.
%, But after backwashing with pure water, it recovered to the initial differential pressure. Further, when the ammonia stripping tower was opened and inspected, no precipitate or scale was observed in the tower.

【0029】[0029]

【表2】 [Table 2]

【0030】(比較例1)実施例1において、アルカリ
を添加した排水を陽イオン交換樹脂粒子充填塔20に通
水せず、熱交換器6に直接導入すること以外は、実施例
1と同様にしてアンモニア態窒素含有排水の処理を行っ
た。通水開始後900時間経過時における水質分析の結
果を表3に示す。表3に示されるように、900時間経
過時には処理水水質の低下が見られた。また、触媒充填
塔を開放点検したところ、塔の入口部分に沈殿が堆積し
ているのが観察された。この沈殿を蛍光X線分析法によ
り分析した結果、主成分は鉄であることが判明した。
Comparative Example 1 The procedure of Example 1 was repeated, except that the wastewater to which alkali had been added was not introduced into the cation exchange resin particle packed column 20 but was directly introduced into the heat exchanger 6. Then, the wastewater containing ammonia nitrogen was treated. Table 3 shows the results of water quality analysis after 900 hours from the start of water flow. As shown in Table 3, after 900 hours, the quality of the treated water decreased. When the catalyst packed tower was opened and inspected, it was observed that sediment had accumulated at the inlet of the tower. The precipitate was analyzed by X-ray fluorescence analysis, and as a result, it was found that the main component was iron.

【0031】[0031]

【表3】 [Table 3]

【0032】(比較例2)実施例2において、アルカリ
を添加した排水を陽イオン交換樹脂粒子充填塔20に通
水せず、熱交換器6に直接導入すること以外は、実施例
2と同様にしてアンモニア態窒素含有排水の処理を行っ
た。通水開始後950時間経過時における水質分析の結
果を表4に示す。表4に示されるように、950時間経
過時には処理水水質の低下が見られた。また、アンモニ
アストリッピング塔を開放点検したところ、塔の入口部
分に沈殿が堆積しているのが観察された。この沈殿を蛍
光X線分析法により分析した結果、主成分は鉄であるこ
とが判明した。
Comparative Example 2 The procedure of Example 2 was repeated, except that the wastewater to which alkali had been added was not introduced into the cation exchange resin particle packed column 20 but was directly introduced into the heat exchanger 6. Then, the wastewater containing ammonia nitrogen was treated. Table 4 shows the results of the water quality analysis at the time of 950 hours after the start of water passage. As shown in Table 4, a decrease in the quality of the treated water was observed after 950 hours. When the ammonia stripping tower was opened and inspected, it was observed that sediment had accumulated at the inlet of the tower. The precipitate was analyzed by X-ray fluorescence analysis, and as a result, it was found that the main component was iron.

【0033】[0033]

【表4】 [Table 4]

【0034】[0034]

【発明の効果】以上のように、本発明によれば、アンモ
ニア態窒素と金属成分とが共存するアンモニア態窒素含
有排水を触媒湿式酸化処理法又はアンモニアストリッピ
ング処理法により処理する場合に、金属成分に起因する
経時的な処理性能の低下を防止し、安定した処理性能を
持続させることにより、アンモニア態窒素の除去を長期
間にわたって安定に行うことができる。
As described above, according to the present invention, when the ammonia-nitrogen-containing wastewater in which ammonia-nitrogen and a metal component coexist is treated by the catalytic wet oxidation treatment or the ammonia stripping treatment, the metal is removed. By preventing the processing performance from deteriorating over time due to the components and maintaining the stable processing performance, it is possible to stably remove ammonia nitrogen over a long period of time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る窒素含有排水の処理方法の実施に
用いる排水処理装置の一例を示すフロー図である。
FIG. 1 is a flowchart showing an example of a wastewater treatment apparatus used for carrying out a method for treating nitrogen-containing wastewater according to the present invention.

【図2】物理化学的処理法を用いたアンモニア態窒素含
有排水の従来の処理フローの一例を示すフロー図であ
る。
FIG. 2 is a flow chart showing an example of a conventional treatment flow for wastewater containing ammonia nitrogen using a physicochemical treatment method.

【符号の説明】[Explanation of symbols]

2 排水貯槽 4 配管 6 熱交換器 8 ポンプ 10 アルカリ添加機構 12 加熱器 14 アンモニア態窒素除去装置 16 処理水流出管 18 排ガス流出管 20 陽イオン交換樹脂粒子充填塔 22 差圧計 2 Drainage storage tank 4 Pipe 6 Heat exchanger 8 Pump 10 Alkali addition mechanism 12 Heater 14 Ammonia nitrogen removal device 16 Treated water outflow pipe 18 Exhaust gas outflow pipe 20 Cation exchange resin particle packed tower 22 Differential pressure gauge

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/58 CDJ C02F 1/58 CDJP 1/74 101 1/74 101 Fターム(参考) 4D011 AA12 AA15 AD03 AD06 4D025 AA07 AB09 AB22 AB23 BA09 BA10 BB02 BB07 CA03 CA06 CA10 DA01 4D037 AA08 AB08 AB12 BA23 BB01 BB02 BB05 BB06 BB07 CA12 CA14 CA15 4D038 AA06 AB29 AB66 AB68 AB69 AB79 BA02 BB08 BB13 BB16 4D050 AA09 AB35 AB55 AB57 AB58 BB01 BC01 BC02 BC06 CA01 CA08 CA13 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C02F 1/58 CDJ C02F 1/58 CDJP 1/74 101 1/74 101 F term (Reference) 4D011 AA12 AA15 AD03 AD06 4D025 AA07 AB09 AB22 AB23 BA09 BA10 BB02 BB07 CA03 CA06 CA10 DA01 4D037 AA08 AB08 AB12 BA23 BB01 BB02 BB05 BB06 BB07 CA12 CA14 CA15 4D038 AA06 AB29 AB66 AB68 AB69 AB79 BA02 BB08 AB35 BC01 AB01 AB01 BC01 CA13

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 金属成分を含むアンモニア態窒素含有排
水を触媒湿式酸化処理法により処理して排水中のアンモ
ニア態窒素を除去するに当たり、前記排水のpHを9〜
12に調整し、該排水を陽イオン交換樹脂粒子充填層に
通水した後に、前記触媒湿式酸化処理法による処理を行
うことを特徴とする窒素含有排水の物理化学的処理方
法。
When the ammonia-containing nitrogen-containing wastewater containing a metal component is treated by a catalytic wet oxidation treatment to remove ammonia-nitrogen in the wastewater, the pH of the wastewater is adjusted to 9 to 10.
12. The method of physicochemically treating nitrogen-containing wastewater, comprising adjusting the water content to 12, and passing the wastewater through a layer packed with cation exchange resin particles, and then performing the treatment by the catalytic wet oxidation treatment method.
【請求項2】 金属成分を含むアンモニア態窒素含有排
水をアンモニアストリッピング処理法により処理して排
水中のアンモニア態窒素を除去するに当たり、前記排水
のpHを9〜12に調整し、該排水を陽イオン交換樹脂
粒子充填層に通水した後に、前記アンモニアストリッピ
ング処理法による処理を行うことを特徴とする窒素含有
排水の物理化学的処理方法。
2. When treating ammonia-nitrogen-containing wastewater containing a metal component by ammonia stripping treatment to remove ammonia-nitrogen in the wastewater, the pH of the wastewater is adjusted to 9 to 12, and the wastewater is treated. A physicochemical treatment method for nitrogen-containing wastewater, wherein the treatment is performed by the ammonia stripping treatment method after passing water through the cation exchange resin particle packed bed.
【請求項3】 アンモニア態窒素含有排水の通水時にお
ける陽イオン交換樹脂粒子充填層の前後の差圧を監視
し、該差圧が所定値に上昇した時点で陽イオン交換樹脂
粒子充填層の洗浄を行うことを特徴とする請求項1又は
2に記載の窒素含有排水の物理化学的処理方法。
3. The pressure difference before and after the cation-exchange resin particle packed bed during the passage of the ammonium nitrogen-containing wastewater is monitored, and when the differential pressure rises to a predetermined value, the cation-exchange resin particle packed bed is monitored. The method for physicochemically treating nitrogen-containing wastewater according to claim 1 or 2, wherein washing is performed.
JP11145934A 1999-05-26 1999-05-26 Physicochemical treatment of nitrogen-containing waste water Pending JP2000334451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11145934A JP2000334451A (en) 1999-05-26 1999-05-26 Physicochemical treatment of nitrogen-containing waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11145934A JP2000334451A (en) 1999-05-26 1999-05-26 Physicochemical treatment of nitrogen-containing waste water

Publications (1)

Publication Number Publication Date
JP2000334451A true JP2000334451A (en) 2000-12-05

Family

ID=15396461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11145934A Pending JP2000334451A (en) 1999-05-26 1999-05-26 Physicochemical treatment of nitrogen-containing waste water

Country Status (1)

Country Link
JP (1) JP2000334451A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001009481A (en) * 1999-06-30 2001-01-16 Kansai Electric Power Co Inc:The Treatment of waste water containing metal and ammonia
JP2003164877A (en) * 2001-12-03 2003-06-10 Sanyo Electric Co Ltd Method for treating nitrogen
JP2008519299A (en) * 2004-11-08 2008-06-05 ショット アクチエンゲゼルシャフト Electrophotographic processable toner
JP2010104896A (en) * 2008-10-29 2010-05-13 Ohbayashi Corp Water treatment apparatus and method for operating the same
US7794592B2 (en) 2006-06-29 2010-09-14 Ralph Brown Wastewater disinfection apparatus and methods
JP2013010073A (en) * 2011-06-29 2013-01-17 Mitsubishi Rayon Co Ltd Method and device for waste water treatment
CN105967311A (en) * 2015-04-09 2016-09-28 江苏九九久科技股份有限公司 Simple-process 3,5,6-trichloropyridine-2-sodium alcoholate wastewater processing method
JP2017217607A (en) * 2016-06-07 2017-12-14 オルガノ株式会社 Water treatment method and apparatus, method for remodeling water treatment apparatus, and kit for remodeling water treatment apparatus
CN109912096A (en) * 2019-03-11 2019-06-21 江苏南大华兴环保科技股份公司 A kind of pretreated method of o-methyl formate benzene sulfonamide waste water sub-prime

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001009481A (en) * 1999-06-30 2001-01-16 Kansai Electric Power Co Inc:The Treatment of waste water containing metal and ammonia
JP2003164877A (en) * 2001-12-03 2003-06-10 Sanyo Electric Co Ltd Method for treating nitrogen
JP2008519299A (en) * 2004-11-08 2008-06-05 ショット アクチエンゲゼルシャフト Electrophotographic processable toner
US7794592B2 (en) 2006-06-29 2010-09-14 Ralph Brown Wastewater disinfection apparatus and methods
JP2010104896A (en) * 2008-10-29 2010-05-13 Ohbayashi Corp Water treatment apparatus and method for operating the same
JP2013010073A (en) * 2011-06-29 2013-01-17 Mitsubishi Rayon Co Ltd Method and device for waste water treatment
CN105967311A (en) * 2015-04-09 2016-09-28 江苏九九久科技股份有限公司 Simple-process 3,5,6-trichloropyridine-2-sodium alcoholate wastewater processing method
JP2017217607A (en) * 2016-06-07 2017-12-14 オルガノ株式会社 Water treatment method and apparatus, method for remodeling water treatment apparatus, and kit for remodeling water treatment apparatus
CN109912096A (en) * 2019-03-11 2019-06-21 江苏南大华兴环保科技股份公司 A kind of pretreated method of o-methyl formate benzene sulfonamide waste water sub-prime

Similar Documents

Publication Publication Date Title
US5192418A (en) Metal recovery method and system for electroplating wastes
Knocke et al. Soluble manganese removal on oxide‐coated filter media
US7488423B2 (en) System and method of slurry treatment
JP2011517618A (en) Catalytic wet oxidation system and method
JP2000334451A (en) Physicochemical treatment of nitrogen-containing waste water
EP0164402B1 (en) Recovery of organic acids, catalysts and water from terephthalic acid manufacture
JP2014198291A (en) Method for treating poorly biodegradable organic matter-containing water and treatment apparatus thereof
CN110770174A (en) Produced water treatment system and method for recovering organic compounds from produced water
JP2014198286A (en) Method for treating poorly biodegradable organic matter-containing water and treatment apparatus thereof
US20100108609A1 (en) System and method of slurry treatment
JP4177521B2 (en) Method for treating wastewater containing metal and ammonia
US4675108A (en) Apparatus for treating wash water from the manufacture of terephthalic acid
JPH11253968A (en) Water recovering apparatus
CN107117726B (en) Recovery processing method of suspended solid containing copper, zinc and aluminum in catalyst production wastewater
Short et al. The GM‐IX process: A pilot study for recovering zinc cyanides
JPH11207365A (en) Treatment of selenium-containing waste water
JP4013010B2 (en) Method for cleaning and regenerating catalyst
JP2002085942A (en) Recovery process of liquid chemical component in water used for washing metal surface treatment
JP5051004B2 (en) Method and apparatus for treating alkaline waste liquid containing water-soluble resin component
JPH11267668A (en) Treatment of waste water
CN1451615A (en) Method for removing ammonia nitrogen from reused sewage
JP3526132B2 (en) Supercritical water oxidation treatment method
WO2022141423A1 (en) Method for treating organic compounds from industrial wastewaters with resins
JPH0716564A (en) Treatment of exhaust gas-desulfurization wastewater
JPH0523678A (en) Waste water treatment