JP2000332353A - Surface emission semiconductor laser device - Google Patents

Surface emission semiconductor laser device

Info

Publication number
JP2000332353A
JP2000332353A JP11135051A JP13505199A JP2000332353A JP 2000332353 A JP2000332353 A JP 2000332353A JP 11135051 A JP11135051 A JP 11135051A JP 13505199 A JP13505199 A JP 13505199A JP 2000332353 A JP2000332353 A JP 2000332353A
Authority
JP
Japan
Prior art keywords
region
active layer
substrate
laser device
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11135051A
Other languages
Japanese (ja)
Inventor
Norihide Noda
憲秀 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP11135051A priority Critical patent/JP2000332353A/en
Publication of JP2000332353A publication Critical patent/JP2000332353A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily control a size of an optical waveguiding region and achieve a device with a long life. SOLUTION: A first DBR reflecting layer 12, an active layer 13 and a second DBR reflecting layer 14 are formed on one surface of a substrate 11. Electrode layers 15, 16 are provided on a surface of the second DBR reflecting layer 14 and a rear surface of the substrate 11, respectively. A periodic structure is provided in external regions 22 of the active layer 13 and the DBR reflecting layers 12, 14.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、光通信、光ピッ
クアップ、レーザプリンタ、固体レーザ励起などの分野
で用いられる面発光型半導体レーザ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface-emitting type semiconductor laser device used in fields such as optical communication, optical pickups, laser printers, and solid-state laser excitation.

【0002】[0002]

【従来の技術】面発光型半導体レーザ装置の構造とし
て、従来より、ファブリペロー共振器型、利得導波型、
埋め込み型屈折率導波型、選択酸化型、反導波型などが
知られている。面発光半導体レーザ装置では、発光領域
の大きさがその特性に大きな影響を及ぼすので、その発
光領域の大きさを制御しやすい構造として、反導波型
(イオン注入型)が有力である(特開平10−9823
6号公報参照)。
2. Description of the Related Art Conventionally, as a structure of a surface emitting semiconductor laser device, a Fabry-Perot resonator type, a gain waveguide type,
A buried refractive index waveguide type, a selective oxidation type, an anti-waveguide type, and the like are known. In a surface-emitting semiconductor laser device, the size of the light-emitting region has a great effect on its characteristics. Therefore, an anti-waveguide type (ion-implanted type) is a promising structure that can easily control the size of the light-emitting region. Kaihei 10-9823
No. 6).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、イオン
注入による反導波型の面発光型半導体レーザ装置では、
欠陥が生じやすく、寿命に悪影響が及ぶという問題があ
る。そのため、発光領域の大きさの制御は、これまで選
択酸化型の構造(特開平10ー200210号公報参
照)で研究が進められている。
However, in the anti-guided surface emitting semiconductor laser device by ion implantation,
There is a problem that defects are likely to occur and the life is adversely affected. Therefore, the control of the size of the light emitting region has been studied with a selective oxidation type structure (see JP-A-10-200210).

【0004】この発明は、上記に鑑み、発光領域の大き
さの制御が容易であるとともに、劣化の心配のない、長
寿命な面発光型半導体レーザ装置を提供することを目的
とする。
SUMMARY OF THE INVENTION In view of the above, it is an object of the present invention to provide a long-life surface emitting semiconductor laser device in which the size of a light emitting region can be easily controlled and there is no fear of deterioration.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
め、この発明による面発光型半導体レーザ装置において
は、半導体基板と、該基板上に設けられた、活性層が2
つの反射層によって挟まれ、ダブルヘテロ接合が形成さ
れるサンドイッチ構造の半導体積層構造と、該活性層の
光の導波領域の周囲に形成された周期構造とが備えられ
ることが特徴となっている。
In order to achieve the above object, a surface emitting semiconductor laser device according to the present invention comprises a semiconductor substrate and an active layer provided on the substrate.
It is characterized by being provided with a semiconductor laminated structure of a sandwich structure sandwiched between two reflective layers and forming a double hetero junction, and a periodic structure formed around a light waveguide region of the active layer. .

【0006】活性層において光が導波する領域の外部に
周期構造が設けられている。このように周期構造が設け
られている領域では、半導体のバンド構造のようなフォ
トニックバンドが形成されることになり、このバンドギ
ャップ内にある波長の光はその領域では許されない。そ
のため、このような周期構造の設けられた領域で光の導
波領域を囲むことにより、その導波領域に光を閉じ込め
ることができる。この場合、周期構造を設ける領域を制
御することにより、光の導波領域の大きさを制御するこ
とは容易である。また、イオン注入することもないので
劣化の心配もなくなり、長寿命化することができる。
[0006] A periodic structure is provided outside the region where light is guided in the active layer. In the region where the periodic structure is provided, a photonic band like a band structure of a semiconductor is formed, and light having a wavelength within the band gap is not allowed in the region. Therefore, by surrounding the light waveguide region with the region provided with such a periodic structure, light can be confined in the waveguide region. In this case, it is easy to control the size of the light waveguide region by controlling the region where the periodic structure is provided. In addition, since there is no need for ion implantation, there is no fear of deterioration, and the life can be extended.

【0007】[0007]

【発明の実施の形態】つぎに、この発明の実施の形態に
ついて図面を参照しながら詳細に説明する。図1は、こ
の発明の実施の形態にかかる面発光型半導体レーザ装置
の断面を模式的に示すものである。この図1において、
半導体基板11の一表面に第1のDBR(Distri
buted Bragg Reflector)反射層
12と、活性層13と、第2のDBR反射層14とが形
成されており、さらに、その第2のDBR反射層14の
表面および基板11の裏面には電極層15、16がそれ
ぞれ設けられている。
Next, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 schematically shows a cross section of a surface emitting semiconductor laser device according to an embodiment of the present invention. In this FIG.
A first DBR (Distri) is formed on one surface of the semiconductor substrate 11.
A butted Bragg Reflector reflective layer 12, an active layer 13, and a second DBR reflective layer 14 are formed, and an electrode layer 15 is formed on the front surface of the second DBR reflective layer 14 and the back surface of the substrate 11. , 16 are provided.

【0008】そして、活性層13と、それを挟むDBR
反射層12、14には、光導波領域21の外部領域22
に周期構造が設けられている。
The active layer 13 and the DBR sandwiching the active layer 13
The reflection layers 12 and 14 include an outer region 22 of the optical waveguide region 21.
Is provided with a periodic structure.

【0009】半導体基板11は、たとえば、GaAs基
板を用い、DBR反射層12、14はAlAsからな
り、活性層13はAlGaAsからなる。電極層15は
TiPtAuからなり、電極層16はTiPtからな
る。半導体基板11および各層の導電型は活性層13と
DBR反射層12、14との接合面でダブルヘテロ接合
が形成されるように適宜定め得るが、たとえば半導体基
板11をn型、DBR反射層12をn型、DBR反射層
14をp型とすることができる。これにより、活性層1
3がn型DBR反射層12とp型DBR反射層14とに
挟まれて、ダブルヘテロ接合が形成されることになる。
The semiconductor substrate 11 is, for example, a GaAs substrate, the DBR reflection layers 12, 14 are made of AlAs, and the active layer 13 is made of AlGaAs. The electrode layer 15 is made of TiPtAu, and the electrode layer 16 is made of TiPt. The conductivity type of the semiconductor substrate 11 and each layer can be appropriately determined so that a double hetero junction is formed at the junction surface between the active layer 13 and the DBR reflection layers 12 and 14. Can be n-type, and the DBR reflection layer 14 can be p-type. Thereby, the active layer 1
3 is sandwiched between the n-type DBR reflection layer 12 and the p-type DBR reflection layer 14 to form a double hetero junction.

【0010】このような面発光型半導体レーザ装置は、
基本的には、通常の面発光型半導体レーザ装置と同様
に、MOCVD法やrfスパッタ法あるいはMBE法等
により、GaAs基板11の上に、AlAs反射層1
2、AlGaAs活性層13、AlAs反射層14を順
次エピタキシャル成長させることによって作られる。
Such a surface emitting semiconductor laser device is
Basically, an AlAs reflective layer 1 is formed on a GaAs substrate 11 by a MOCVD method, an rf sputtering method, an MBE method, or the like, similarly to a normal surface-emitting type semiconductor laser device.
2. It is made by sequentially epitaxially growing the AlGaAs active layer 13 and the AlAs reflective layer 14.

【0011】周期構造は、つぎのようにして作られる。
基板11の表面に、図2に示すようなパターンでエッチ
ングすることにより、円形の凹部23を多数、周期的に
設ける。すなわち、中央の光導波領域21とすべき領域
を除いた、外部領域22に上記のような多数の周期的な
凹部23を設ける。そして、上記のようにrfスパッタ
法やMOCVD法、MBE法などによって、AlAs反
射層12、AlGaAs活性層13、AlAs反射層1
4を順次エピタキシャル成長させる。とくに、基板11
にもバイアスをかけたスパッタ法であるrfスパッタ法
によると、基板11の表面に設けた上記のパターンが最
終層であるAlAs反射層14にまで続くので有効であ
る。
The periodic structure is made as follows.
A large number of circular concave portions 23 are periodically provided on the surface of the substrate 11 by etching in a pattern as shown in FIG. That is, a large number of the periodic concave portions 23 are provided in the external region 22 except for the region to be the central optical waveguide region 21. Then, as described above, the AlAs reflection layer 12, the AlGaAs active layer 13, and the AlAs reflection layer 1 are formed by rf sputtering, MOCVD, MBE, or the like.
4 is sequentially epitaxially grown. In particular, the substrate 11
According to the rf sputtering method, which is a sputtering method in which a bias is applied, the above pattern provided on the surface of the substrate 11 is effective because it continues to the AlAs reflection layer 14 as the final layer.

【0012】この面発光型半導体レーザ装置において、
電極層15、16間に電圧を印加すると、電流が活性層
13中に流れ、電子と正孔との再結合が起こり、発光す
る。この電流がしきい値以上になると、レーザ発光が生
じ、この光がDBR反射層12、14間で形成された光
共振器で増幅され、レーザ光が基板11の表面側より放
射される。
In this surface emitting semiconductor laser device,
When a voltage is applied between the electrode layers 15 and 16, a current flows through the active layer 13, and recombination of electrons and holes occurs, thereby emitting light. When this current exceeds the threshold value, laser light emission occurs, this light is amplified by an optical resonator formed between the DBR reflection layers 12 and 14, and laser light is emitted from the surface side of the substrate 11.

【0013】ここで、活性層13およびDBR反射層1
2、14において光が導波する領域として設定された領
域21の外部の領域22には周期構造が設けられている
ので、この外部領域22では、半導体のバンド構造のよ
うなフォトニックバンドが形成されることになり、この
バンドギャップ内にある波長の光はその領域では許され
ない。つまり、周期構造の設けられた領域22で光の導
波領域21を囲むことにより、その導波領域21に光を
閉じ込めることができる。
Here, the active layer 13 and the DBR reflection layer 1
Since a periodic structure is provided in the region 22 outside the region 21 set as a region where light is guided in 2 and 14, a photonic band such as a semiconductor band structure is formed in the external region 22. Therefore, light having a wavelength within this band gap is not allowed in that region. That is, by surrounding the light waveguide region 21 with the region 22 provided with the periodic structure, light can be confined in the waveguide region 21.

【0014】レーザ波長に対するこの周期構造の決定に
ついては、周期構造の対称性によって決まる「ブリュア
ンゾーン」という概念が利用できる。電子の運動量とエ
ネルギーの関係式を示すバンド図は、フォトニクス結晶
に対して光の波数と周波数の関係を表すフォトニックバ
ンド図に置き換えられる。
For the determination of the periodic structure with respect to the laser wavelength, the concept of "Brillouin zone" determined by the symmetry of the periodic structure can be used. The band diagram showing the relational expression between the momentum and energy of electrons can be replaced with a photonic band diagram showing the relationship between the wave number and frequency of light for a photonic crystal.

【0015】このように、外部領域22に周期構造を設
けて光導波領域21の大きさを制御しているので、光の
導波領域21の大きさを制御することは容易である。ま
た、イオン注入することもないので劣化の心配もなくな
り、長寿命化することができる。
As described above, since the size of the optical waveguide region 21 is controlled by providing the periodic structure in the external region 22, it is easy to control the size of the light waveguide region 21. In addition, since there is no need for ion implantation, there is no fear of deterioration, and the life can be extended.

【0016】なお、上の記述は、この発明の一つの実施
の形態に関するものであって、この発明がこの記述に限
定されることなく、発明の趣旨を逸脱しない範囲で、具
体的な構成などは種々に変更できることはもちろんであ
る。たとえば、基板11やDBR反射層12、14、活
性層13の材料や、導電型などは上記に限定されない。
外部領域22に設ける周期構造は図2に示すようなもの
に限らず、光導波領域21が図2に示すように円形であ
る場合には、その円形の光導波領域21の回りに同心円
状となっている周期構造を設けることも可能である。
The above description relates to one embodiment of the present invention, and the present invention is not limited to this description, and specific configurations and the like are provided without departing from the spirit of the invention. Can of course be variously changed. For example, the materials of the substrate 11, the DBR reflection layers 12, 14 and the active layer 13, and the conductivity type are not limited to the above.
The periodic structure provided in the external region 22 is not limited to the one shown in FIG. 2. If the optical waveguide region 21 is circular as shown in FIG. 2, the periodic structure may be concentric around the circular optical waveguide region 21. It is also possible to provide a periodic structure that is configured.

【0017】[0017]

【発明の効果】以上説明したように、この発明によれ
ば、周期構造を設けることによって光導波領域を限定し
ているので、その光導波領域の大きさを制御することが
容易になる。また、イオン注入することがないので、劣
化しにくくなり、長寿命な面発光型半導体レーザ装置を
得ることができる。
As described above, according to the present invention, since the optical waveguide region is limited by providing the periodic structure, the size of the optical waveguide region can be easily controlled. In addition, since ion implantation is not performed, deterioration is less likely to occur, and a long-life surface emitting semiconductor laser device can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施の形態を示す模式的な断面図。FIG. 1 is a schematic sectional view showing an embodiment of the present invention.

【図2】基板11の表面の模式的な平面図。FIG. 2 is a schematic plan view of the surface of a substrate 11.

【符号の説明】[Explanation of symbols]

11 基板 12、14 DBR反射層 13 活性層 15、16 電極層 21 光導波領域 22 外部領域 23 円形凹部 DESCRIPTION OF SYMBOLS 11 Substrate 12, 14 DBR reflection layer 13 Active layer 15, 16 Electrode layer 21 Optical waveguide area 22 External area 23 Circular recess

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板と、該基板上に設けられた、
活性層が2つの反射層によって挟まれ、ダブルヘテロ接
合が形成されるサンドイッチ構造の半導体積層構造と、
該活性層の光の導波領域の周囲に形成された周期構造と
を備えることを特徴とする面発光型半導体レーザ装置。
A semiconductor substrate provided on the substrate;
A semiconductor laminated structure having a sandwich structure in which an active layer is sandwiched between two reflective layers to form a double hetero junction;
A periodic structure formed around a light guiding region of the active layer.
JP11135051A 1999-05-14 1999-05-14 Surface emission semiconductor laser device Pending JP2000332353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11135051A JP2000332353A (en) 1999-05-14 1999-05-14 Surface emission semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11135051A JP2000332353A (en) 1999-05-14 1999-05-14 Surface emission semiconductor laser device

Publications (1)

Publication Number Publication Date
JP2000332353A true JP2000332353A (en) 2000-11-30

Family

ID=15142787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11135051A Pending JP2000332353A (en) 1999-05-14 1999-05-14 Surface emission semiconductor laser device

Country Status (1)

Country Link
JP (1) JP2000332353A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003067724A1 (en) * 2002-02-08 2003-08-14 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and its manufacturing method
JP2006005324A (en) * 2004-05-19 2006-01-05 Ricoh Co Ltd Surface emitting laser element, surface emitting laser array, optical interconnection system, optical communication system, electrophotographic system and optical disc system
WO2006062084A1 (en) * 2004-12-08 2006-06-15 Sumitomo Electric Industries, Ltd. Semiconductor laser device and method for manufacturing same
US8012780B2 (en) 2007-08-13 2011-09-06 Sumitomo Electric Industries, Ltd. Method of fabricating semiconductor laser
JP2020136557A (en) * 2019-02-22 2020-08-31 国立大学法人京都大学 Two-dimensional photonic crystal surface emitting laser
CN112993751A (en) * 2021-01-28 2021-06-18 湖北光安伦芯片有限公司 Nano-column VCSEL light source structure and preparation method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003067724A1 (en) * 2002-02-08 2003-08-14 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and its manufacturing method
US7009216B2 (en) 2002-02-08 2006-03-07 Matsushita Electric Industrial Co., Ltd. Semiconductor light emitting device and method of fabricating the same
JP2006005324A (en) * 2004-05-19 2006-01-05 Ricoh Co Ltd Surface emitting laser element, surface emitting laser array, optical interconnection system, optical communication system, electrophotographic system and optical disc system
WO2006062084A1 (en) * 2004-12-08 2006-06-15 Sumitomo Electric Industries, Ltd. Semiconductor laser device and method for manufacturing same
US8605769B2 (en) 2004-12-08 2013-12-10 Sumitomo Electric Industries, Ltd. Semiconductor laser device and manufacturing method thereof
US8012780B2 (en) 2007-08-13 2011-09-06 Sumitomo Electric Industries, Ltd. Method of fabricating semiconductor laser
JP2020136557A (en) * 2019-02-22 2020-08-31 国立大学法人京都大学 Two-dimensional photonic crystal surface emitting laser
JP7306675B2 (en) 2019-02-22 2023-07-11 国立大学法人京都大学 Two-dimensional photonic crystal surface emitting laser
CN112993751A (en) * 2021-01-28 2021-06-18 湖北光安伦芯片有限公司 Nano-column VCSEL light source structure and preparation method thereof
CN112993751B (en) * 2021-01-28 2022-08-19 湖北光安伦芯片有限公司 Nano-column VCSEL light source structure and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3783411B2 (en) Surface emitting semiconductor laser
JP4919639B2 (en) Surface emitting laser element, surface emitting laser array, surface emitting laser element manufacturing method, surface emitting laser module, electrophotographic system, optical communication system, and optical interconnection system
JP3697903B2 (en) Surface emitting laser and surface emitting laser array
JP2692913B2 (en) Grating coupled surface emitting laser device and modulation method thereof
US7308011B2 (en) Versatile method and system for single mode VCSELs
EP3453086B1 (en) Laser device and method for its operation
US20140219301A1 (en) Reflectivity-modulated grating mirror
JP2004146833A (en) Electrically pumped vertical cavity surface-emitting laser(vcsel) having a plurality of active regions
WO2022044886A1 (en) Vertical-cavity surface-emitting laser element and method for manufacturing vertical-cavity surface-emitting laser element
US20030026312A1 (en) Monolithically integrated optically-pumped edge-emitting semiconductor laser
JP2009182145A (en) Semiconductor optical element
JP2009081230A (en) Surface-emitting laser
JP2007511082A (en) Monolithic optical pumping VCSEL with laterally mounted edge emitters
JP3968910B2 (en) Surface emitting laser array
US20040213310A1 (en) Surface emitting semiconductor laser and communication system using the same
JP2002223033A (en) Optical element and optical system
US8693894B2 (en) Gain clamped optical device for emitting LED mode light
JP2000332353A (en) Surface emission semiconductor laser device
WO2005074080A1 (en) Surface-emitting laser and its manufacturing method
JP5006242B2 (en) Surface emitting semiconductor laser device
JPWO2007135772A1 (en) Light emitting element
US8031754B2 (en) Surface emitting laser element, surface emitting laser element array, method of fabricating a surface emitting laser element
JP3857632B2 (en) Vertical cavity surface emitting laser device
KR100795994B1 (en) Single-mode vertical cavity surface emitting lasers and method for manufacturing thereof
JPS6140159B2 (en)

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050401

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050404