JP2000332215A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JP2000332215A
JP2000332215A JP11136813A JP13681399A JP2000332215A JP 2000332215 A JP2000332215 A JP 2000332215A JP 11136813 A JP11136813 A JP 11136813A JP 13681399 A JP13681399 A JP 13681399A JP 2000332215 A JP2000332215 A JP 2000332215A
Authority
JP
Japan
Prior art keywords
hsg
image
substrate
film
substrate surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11136813A
Other languages
Japanese (ja)
Inventor
Satoshi Takano
高野  智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Priority to JP11136813A priority Critical patent/JP2000332215A/en
Publication of JP2000332215A publication Critical patent/JP2000332215A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To form clear production control standard by quantifying the quality of a HSG(hemispherical grain) film, after HSG treatment. SOLUTION: A surface form of a substrate W after HSG treatment is image- sensed with an image sensing means 20, and image data are obtained. Gradation of pixels constituting the image is expressed completely in two colors with a image processing means 23. A pixel of one color is made to correspond to a part, where the substrate surface is protruded by the HSG treatment, and a pixel of the other color is made to correspond to a part, where the substrate surface is recessed by the HSG treatment. On the basis of the ratio of pixels corresponding to the part where the substrate surface is protruded by the HSG treatment to the pixels of the whole image, an estimating means 24 estimates the ratio of parts where the substrate surface is protruded by the HSG treatment to the whole surface of the substrate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体装置の製造方
法に係り、特に半導体チップの容量電極部分に形成する
半球状結晶粒(HSG(Hemi-spherical Grained Silico
n))膜の膜質を定量化するための解析手法に好適なもの
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a hemi-spherical grained silicon (HSG) formed on a capacitor electrode portion of a semiconductor chip.
n)) A method suitable for an analytical method for quantifying the film quality of the film.

【0002】[0002]

【従来の技術】半導体装置、例えばDRAMを製造する
には、キャパシタセルを形成する必要がある。図6はD
RAMのキャパシタセル構造を示す。1はシリコン基板
であり、その上にフィールド酸化膜2、ソース3、ドレ
イン4がそれぞれ形成される。5はソース3−ドレイン
4間のシリコン基板1上に形成されたゲート酸化膜、6
はゲート酸化膜5上に形成されるゲート電極、7は層間
絶縁膜、8はソース3上の層間絶縁膜7に形成されたコ
ンタクト孔である。
2. Description of the Related Art To manufacture a semiconductor device, for example, a DRAM, it is necessary to form a capacitor cell. FIG. 6 shows D
1 shows a capacitor cell structure of a RAM. Reference numeral 1 denotes a silicon substrate, on which a field oxide film 2, a source 3, and a drain 4 are formed. 5, a gate oxide film formed on the silicon substrate 1 between the source 3 and the drain 4;
Is a gate electrode formed on the gate oxide film 5, 7 is an interlayer insulating film, and 8 is a contact hole formed in the interlayer insulating film 7 on the source 3.

【0003】前記ソース3−ドレイン4間にまたがって
形成された層間絶縁膜7上に下部電極9が形成される。
この下部電極9は、層間絶縁膜7上にアモルファスシリ
コン膜を堆積し、パターニングを行ない、洗浄したのち
アモルファスシリコン膜の自然酸化膜を除去し、多結晶
化を行なうことによって形成される。下部電極9の上に
Si3 4 の容量絶縁膜13が形成され、その上に多結
晶シリコン膜などにより上部電極11が形成される。こ
うしてMOSトランジスタのソース3にキャパシタセル
を有するDRAMが構成される。
A lower electrode 9 is formed on an interlayer insulating film 7 formed between the source 3 and the drain 4.
The lower electrode 9 is formed by depositing an amorphous silicon film on the interlayer insulating film 7, performing patterning, cleaning, removing a natural oxide film of the amorphous silicon film, and performing polycrystallization. A capacitance insulating film 13 of Si 3 N 4 is formed on the lower electrode 9, and an upper electrode 11 is formed thereon by a polycrystalline silicon film or the like. Thus, a DRAM having a capacitor cell at the source 3 of the MOS transistor is formed.

【0004】ところで、DRAMキャパシタにはほぼ一
定の容量値が要求されるが、DRAMの高集積化でキャ
パシタセルの占有面積が減少していくため、キャパシタ
容量値が小さくなっていくのが避けられない。そこでキ
ャパシタを一定容量に保ちつつセル面積を縮小させて電
極表面積を拡大化する必要がある。
Although a DRAM capacitor requires a substantially constant capacitance value, the area occupied by the capacitor cell is reduced due to the high integration of the DRAM, so that the capacitance value of the capacitor cannot be reduced. Absent. Therefore, it is necessary to reduce the cell area and increase the electrode surface area while keeping the capacitor at a constant capacitance.

【0005】電極表面を拡大化するものとしてHSG技
術が知られている。このHSG技術は、アモルファスシ
リコン膜の表面を実質的に清浄な状態におくことを前提
としたうえで、アモルファスシリコン膜を所定温度、例
えば600℃で加熱してHSG結晶核を発生させ、続い
て温度を下降させてHSG結晶核を成長させる。その結
果、図7に示すように、シリコン表面に凹凸状部を形成
するHSG膜12が形成される。このHSG膜12の形
成された表面積は、例えば多結晶シリコン膜の表面積の
2倍以上となり、これを容量電極表面とするものである
(特許第2508948号公報)。
[0005] HSG technology is known as a technique for enlarging an electrode surface. This HSG technique is based on the premise that the surface of the amorphous silicon film is kept in a substantially clean state. The temperature is lowered to grow HSG crystal nuclei. As a result, as shown in FIG. 7, an HSG film 12 for forming an uneven portion on the silicon surface is formed. The surface area on which the HSG film 12 is formed is, for example, twice or more the surface area of the polycrystalline silicon film, which is used as the surface of the capacitor electrode (Japanese Patent No. 2508948).

【0006】[0006]

【発明が解決しようとする課題】上述したようにHSG
技術は、ポリシリコンの表面を凹凸に加工し、電極表面
積を増加させることにより、一定容量を保ちつつセル面
積を縮小させるものである。しかし製造条件がクリティ
カルで非常に難しい技術であり、未だ確立された技術と
なっていない。そこでHSG膜の膜質を評価して、その
評価結果を製造技術にフィードバックすることが要請さ
れている。従来、HSG膜を製造段階で最終的に評価す
る技術がなかったので、HSG膜の膜質の最終評価は、
HSG処理後にいくつかの工程を経て基板を実デバイス
構造もしくはそれに準拠した構造に加工した上で、容量
値を測定することにより行っていた。
SUMMARY OF THE INVENTION As described above, HSG
The technology is to reduce the cell area while maintaining a constant capacity by processing the surface of the polysilicon into irregularities and increasing the electrode surface area. However, it is a very difficult technology with critical manufacturing conditions and has not yet been established. Therefore, it is required to evaluate the film quality of the HSG film and feed back the evaluation result to the manufacturing technology. Conventionally, there was no technology for finally evaluating the HSG film at the manufacturing stage.
After the HSG process, the substrate is processed into an actual device structure or a structure conforming to the actual device structure through several steps, and the capacitance value is measured.

【0007】しかし、実デバイス構造にしてから電気特
性(容量値)を測定することで最終的に膜質を評価する
ことは、HSG処理後に迅速かつ容易に膜質を定量化し
たいという生産現場の要請に反する。また現状ではHS
G技術の明確な評価基準が確立されていない。このため
HSG膜(キャパシタセル)の生産管理を行う上での指
標がなく、HSG技術に適切にフィードバックできない
という問題があった。
However, the final evaluation of the film quality by measuring the electrical characteristics (capacitance value) after the actual device structure has been performed is at the request of the production site to quickly and easily quantify the film quality after the HSG processing. Contrary. Also, at present, HS
No clear evaluation criteria for G technology have been established. For this reason, there is no index for controlling the production of the HSG film (capacitor cell), and there has been a problem that it is not possible to provide appropriate feedback to the HSG technology.

【0008】本発明の課題は、上述した従来技術の問題
点を解消して、HSG膜の膜質をHSG処理後に定量化
でき、明確な生産管理基準を作ることが可能な半導体装
置の製造方法を提供することにある。
An object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a method of manufacturing a semiconductor device capable of quantifying the quality of an HSG film after HSG processing and creating a clear production control standard. To provide.

【0009】[0009]

【課題を解決するための手段】本発明は、HSG処理後
の凹凸状部の形成された基板表面を撮影して画像データ
を取り込み、前記画像データを2値化して、HSG処理
により基板表面が凸状になった部分に対応する”0”画
素と、HSG処理により基板表面が凹状になった部分に
対応する”1”画素の2値画像を取得し、前記2値画像
全体に占める”0”画素の割合により、基板表面全体に
対する凸状部分の比率を評価する工程を備えることを特
徴とする半導体装置の製造方法である。
SUMMARY OF THE INVENTION According to the present invention, an image data is captured by taking an image of a substrate surface on which a concavo-convex portion has been formed after HSG processing, the image data is binarized, and the substrate surface is subjected to HSG processing. A binary image of “0” pixels corresponding to the convex portion and “1” pixels corresponding to the concave portion of the substrate surface by the HSG process is acquired, and “0” occupying the entire binary image is obtained. "A method of manufacturing a semiconductor device, comprising a step of evaluating the ratio of a convex portion to the entire substrate surface based on the ratio of pixels.

【0010】基板表面形状を撮影して画像データを取り
込む撮像手段は、SEMモニタ、電子顕微鏡など基板表
面の凹凸形状部の拡大像をCRTなどの表示部に表示す
るものがよい。画像データから得られた明るさを、HS
G処理後の基板表面の凸状部分と凹状部分との境界値で
切って”0”と”1”の画素からなる2値画像とする。
2値画像全体における”0”画素の占める割合から、基
板表面全体に対する凸状部分の比率を求めることがで
き、その比率からHSG膜の膜質を定量化できる。
The imaging means for photographing the substrate surface shape and taking in image data preferably displays an enlarged image of an uneven portion on the substrate surface on a display unit such as a CRT, such as an SEM monitor or an electron microscope. The brightness obtained from the image data is represented by HS
After the G processing, the image is cut at a boundary value between the convex portion and the concave portion on the substrate surface to obtain a binary image including “0” and “1” pixels.
The ratio of the convex portion to the entire substrate surface can be obtained from the ratio of “0” pixels in the entire binary image, and the quality of the HSG film can be quantified from the ratio.

【0011】本発明によれば、HSG膜の膜質を定量化
できるので、HSG処理後の基板表面形状の客観的な評
価が初めて可能となる。従って、HSG処理の生産管理
を行う上での重要な指標となる。またHSG処理後にH
SG膜の膜質を評価できるので、評価が迅速に行える。
さらに、通常の画像処理技術を使用するので、評価が容
易に行える。
According to the present invention, since the quality of the HSG film can be quantified, the objective evaluation of the substrate surface shape after the HSG processing is possible for the first time. Therefore, it is an important index in performing production control of the HSG process. After HSG processing, H
Since the quality of the SG film can be evaluated, the evaluation can be performed quickly.
Furthermore, evaluation can be easily performed because a normal image processing technique is used.

【0012】上記半導体装置の製造方法を実施するため
の製造装置は、HSG処理後の基板表面形状を撮影して
画像データを取り込む撮像手段と、画像データを2値化
して、HSG処理により基板表面が凸状になった部分に
対応する”0”画素と、HSG処理により基板表面が凹
状になった部分に対応する”1”画素の2値画像を取得
する2値化手段と、2値画像全体に占める”0”画素の
割合により、基板表面全体に対する凸状部分の比率を評
価する演算部とを備える半導体装置の製造装置である。
[0012] A manufacturing apparatus for carrying out the above-described method for manufacturing a semiconductor device includes an image pickup means for taking an image of a substrate surface shape after the HSG processing and taking in image data, a binarization of the image data, and a HSG processing. Means for obtaining a binary image of a "0" pixel corresponding to a portion having a convex shape, and a "1" pixel corresponding to a portion having a concave surface of the substrate by HSG processing; and a binary image. An arithmetic unit for evaluating the ratio of the convex portion to the entire substrate surface based on the ratio of “0” pixels to the whole.

【0013】これによれば通常の画像処理装置を用意す
るだけの簡単な構成で、電気特性(容量値)を測定しな
くても、HSG膜の膜質を定量化できる。
According to this, the film quality of the HSG film can be quantified with a simple configuration just by preparing an ordinary image processing apparatus without measuring the electric characteristics (capacitance value).

【0014】[0014]

【発明の実施の形態】以下に本発明の実施の形態を説明
する。
Embodiments of the present invention will be described below.

【0015】図1は、本発明の半導体装置の製造方法に
おけるHSG膜解析工程を実施するための基板解析装置
の一実施形態を示す概略構成図である。
FIG. 1 is a schematic diagram showing an embodiment of a substrate analyzing apparatus for performing an HSG film analyzing step in the method of manufacturing a semiconductor device according to the present invention.

【0016】基板解析装置は、基板Wの表面を撮影して
凹凸状部の画像を抽出する撮像手段20、撮像手段20
で取り込んだ画像データを統計処理する画像処理手段2
3、画像処理手段23で処理したデータに基づいてHS
G膜を評価する評価手段24から主に構成される。
The substrate analyzing apparatus includes an imaging unit 20 for photographing the surface of the substrate W and extracting an image of the uneven portion,
Processing means 2 for statistically processing image data captured by
3. HS based on data processed by image processing means 23
It mainly comprises an evaluation means 24 for evaluating the G film.

【0017】撮像手段20は例えばSEMモニタで構成
され、基板Wの表面に対して撮像方向が変えられるよう
に撮像部21が配置される。基板Wは例えばHSG処理
後のシリコンウェハであり、ウェハ表面は凹凸状部の形
成された容量電極表面である。撮像部21は、基板Wの
表面に電子ビームを当てて走査し、電子ビーム走査で基
板表面から発生する反射電子、二次電子などの信号を得
て、その信号用いて表示部としてのCRT22の輝度変
調をすることにより基板表面の凹凸部形状の拡大像をC
RT22上に表示する。
The image pickup means 20 is constituted by, for example, an SEM monitor, and an image pickup section 21 is arranged so that the image pickup direction can be changed with respect to the surface of the substrate W. The substrate W is, for example, a silicon wafer after HSG processing, and the wafer surface is the surface of the capacitor electrode on which the uneven portions are formed. The imaging unit 21 scans the surface of the substrate W by irradiating the surface with an electron beam, obtains signals such as reflected electrons and secondary electrons generated from the surface of the substrate by electron beam scanning, and uses the signals to form a CRT 22 as a display unit. By performing luminance modulation, an enlarged image of the shape of the irregularities on the substrate surface can be converted to C.
Display on RT22.

【0018】画像処理手段23は、撮像手段20によっ
て撮影された画像データ(信号)を2値化して、HSG
処理により基板表面が凸状になった部分に対応する”
0”画素と、HSG処理により基板表面が凹状になった
部分に対応する”1”画素の2値画像を取得する。
The image processing means 23 binarizes the image data (signal) photographed by the image pickup means 20 and converts the data into an HSG
Corresponds to the part where the substrate surface becomes convex due to processing. "
A binary image of “0” pixels and “1” pixels corresponding to a portion where the substrate surface becomes concave due to the HSG process is acquired.

【0019】評価手段24は、画像処理手段23で取得
した2値画像に基づいてHSG膜の膜質をSi電極表面
の凹状部と凸状部の比率を解析することにより評価す
る。
The evaluation means 24 evaluates the quality of the HSG film based on the binary image acquired by the image processing means 23 by analyzing the ratio of the concave portion to the convex portion on the surface of the Si electrode.

【0020】上記のような構成において、HSG処理後
の基板表面の凹凸形状をSEMモニタで観察し、その画
像データを取得する。CRT22に写る画像は、撮影方
向が電極面に対して45度方向だと図2に示すように立
体的なHSG表面SEM像が得られる。撮影方向が電極
表面に対して垂直方向だと、図3に示すように平面的な
HSG表面SEM像が得られる。ここでは基板表面全体
のHSG占有率を求めるため、図3の平面的なHSG表
面SEM像のデータを利用する。
In the above configuration, the unevenness of the substrate surface after the HSG processing is observed with a SEM monitor, and the image data is obtained. As for the image captured on the CRT 22, a three-dimensional HSG surface SEM image is obtained as shown in FIG. If the imaging direction is perpendicular to the electrode surface, a planar HSG surface SEM image is obtained as shown in FIG. Here, in order to obtain the HSG occupancy of the entire substrate surface, the data of the planar HSG surface SEM image of FIG. 3 is used.

【0021】得られたデータはピクセルと呼ばれる画像
を構成する1素子の集まりからなり、ピクセルの色は例
えば8bitモノクロ画像の場合、白色から黒色の変化
を256(8bit)段階で表現される。図3の色構成
においてSi電極表面の凹凸状部の底部は黒く表現さ
れ、底部から高くなると共に白くなっていくが、頂点付
近では逆に若干黒みが増す傾向を示す。
The obtained data is composed of a group of one element constituting an image called a pixel. For example, in the case of an 8-bit monochrome image, a change in color from white to black is expressed in 256 (8-bit) steps. In the color configuration of FIG. 3, the bottom of the uneven portion on the surface of the Si electrode is expressed as black, and becomes higher and whiter from the bottom.

【0022】図4に、図3を構成するピクセルの階調別
ピクセル数を解析したヒストグラムを示す。グラフは横
軸がピクセルの階調レベルを示し、低階調側を黒色、高
階調側を白色表示している。縦軸は各階調のピクセルの
数を棒グラフの状態で表示している。グラフで低階調レ
ベル(黒色)から中間レベルまでのピクセル数がほぼ一
定の領域はSi電極表面の凹状部を示し、階調レベルの
増加に伴いピクセル数が増加する領域は凸状部の頂点付
近を示す。さらに階調レベルが上がるとピクセル数は減
少傾向を示しこの領域は凹凸の境界域を示す。
FIG. 4 shows a histogram obtained by analyzing the number of pixels in FIG. In the graph, the horizontal axis indicates the gradation level of the pixel, black is displayed on the low gradation side, and white is displayed on the high gradation side. The vertical axis indicates the number of pixels of each gradation in the form of a bar graph. In the graph, a region where the number of pixels from the low gradation level (black) to the intermediate level is almost constant indicates a concave portion on the surface of the Si electrode, and a region where the number of pixels increases with an increase in the gradation level is the vertex of the convex portion. Show the vicinity. As the gradation level further increases, the number of pixels tends to decrease, and this region indicates a boundary region of unevenness.

【0023】図5は図3の画像を画像処理手段23によ
って2値化(画像を構成するピクセルの階調を完全に白
と黒の2色で表現する)したものである。図3と図5と
の比較から2階調化(2値化)後の白色と黒色がHSG
処理によってSi電極表面が凸状になった部分と凹状に
なった部分がほぼ対応していることが分る。ここで2値
化を行った閾値は階調レベル120(図4の上側に区分
けした凹状部と頂点付近の仕切部分)とした。図5で画
像全体の面積に対してHSG処理によりSi電極表面が
凸状になった部分の比率をHSG化の占有率と定義する
と、その計算式は以下で示される。
FIG. 5 shows the image of FIG. 3 binarized by the image processing means 23 (the gradation of the pixels constituting the image is completely expressed in two colors of white and black). From the comparison between FIG. 3 and FIG. 5, the white and black after the binary gradation (binarization) are HSG.
It can be seen that the convex and concave portions of the surface of the Si electrode almost correspond to each other. Here, the binarized threshold value was the gradation level 120 (the concave portion divided at the upper side in FIG. 4 and the partition near the vertex). In FIG. 5, when the ratio of the portion where the surface of the Si electrode becomes convex due to the HSG process with respect to the entire area of the image is defined as the occupancy of HSG, the calculation formula is shown below.

【0024】HSG 占有率(%)=( 白色部分の構成ピクセ
ル数/ 画像全体の構成ピクセル数) ×100 この式に基づく計算を評価手段24で行って、HSG膜
の膜質をHSG占有率として定量化する。このように実
施の形態によれば、HSG膜の膜質を定量化できるの
で、HSG処理後の基板表面形状の客観的な評価が初め
て可能となる。また得られた定量データは、HSG処理
の生産管理を行う上での重要な指標とすることができ、
HSG膜の膜質を評価して、その評価結果を製造技術に
フィードバックすることができ、HSG技術の確立に貢
献することができる。またHSG処理後に基板レベルで
HSG膜の膜質を評価できるので、実デバイス構造に加
工する手間が省け、評価を迅速に行うことができる。さ
らに、膜質評価に通常の画像処理技術を利用するので、
評価が容易かつ安価に行える。
HSG occupancy (%) = (number of pixels constituting white portion / number of pixels constituting entire image) × 100 A calculation based on this equation is performed by the evaluation means 24, and the quality of the HSG film is determined as the HSG occupancy. Become As described above, according to the embodiment, the quality of the HSG film can be quantified, and therefore, the objective evaluation of the substrate surface shape after the HSG processing can be performed for the first time. In addition, the obtained quantitative data can be used as an important index in performing production control of HSG processing,
The quality of the HSG film can be evaluated and the evaluation result can be fed back to the manufacturing technology, which can contribute to the establishment of the HSG technology. In addition, since the quality of the HSG film can be evaluated at the substrate level after the HSG processing, it is possible to save time and effort for processing into an actual device structure and to perform the evaluation quickly. Furthermore, since normal image processing technology is used for film quality evaluation,
Evaluation can be performed easily and inexpensively.

【0025】[0025]

【発明の効果】本発明によれば、HSG膜の膜質をHS
G占有率として定量化でき、生産管理を行う上での重要
な指標とすることが可能となる。
According to the present invention, the film quality of the HSG film is
It can be quantified as the G occupancy, and can be used as an important index in performing production management.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施の形態によるHSG膜解析工程を実施する
ための基板解析装置の一実施形態を示す概略構成図であ
る。
FIG. 1 is a schematic configuration diagram showing one embodiment of a substrate analysis apparatus for performing an HSG film analysis step according to an embodiment.

【図2】HSG表面SEM像(撮影方向:電極表面に対
して45°方向)である。
FIG. 2 is an HSG surface SEM image (imaging direction: 45 ° direction with respect to the electrode surface).

【図3】HSG表面画像(撮影方向:電極表面に対して
垂直方向)である。
FIG. 3 is an HSG surface image (a photographing direction: a direction perpendicular to an electrode surface).

【図4】HSG画像構成ピクセルのヒストグラムであ
る。
FIG. 4 is a histogram of pixels constituting an HSG image.

【図5】HSG表面画像(図3を2値化)である。FIG. 5 is an HSG surface image (binarization of FIG. 3).

【図6】一般的なDRAMの構造を示す断面図である。FIG. 6 is a sectional view showing a structure of a general DRAM.

【図7】DRAMの容量電極部の構造を示す部分断面図
である。
FIG. 7 is a partial cross-sectional view showing a structure of a capacitance electrode section of the DRAM.

【符号の説明】[Explanation of symbols]

20 撮像手段 23 画像処理手段 24 評価手段 W 基板 Reference Signs List 20 imaging means 23 image processing means 24 evaluation means W substrate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】HSG処理後の凹凸状部の形成された基板
の表面を撮像手段で撮像し、 撮像信号から基板表面形状の凹凸画像を抽出し、 抽出した信号に基づいて基板表面上の凸状部と凹状部と
が区別できるように統計処理を行い、 その処理結果から基板表面全体に対する凸状部分の比率
を評価する工程を含むことを特徴とする半導体装置の製
造方法。
An image of a surface of a substrate on which an uneven portion is formed after HSG processing is imaged by an imaging means, an image of the surface of the substrate is extracted from an image signal, and a projection on the surface of the substrate is formed based on the extracted signal. A method for manufacturing a semiconductor device, comprising: performing a statistical process so that a shape-like portion and a recessed portion can be distinguished from each other, and evaluating a ratio of a projecting portion to the entire substrate surface from the processing result.
JP11136813A 1999-05-18 1999-05-18 Manufacture of semiconductor device Pending JP2000332215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11136813A JP2000332215A (en) 1999-05-18 1999-05-18 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11136813A JP2000332215A (en) 1999-05-18 1999-05-18 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JP2000332215A true JP2000332215A (en) 2000-11-30

Family

ID=15184116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11136813A Pending JP2000332215A (en) 1999-05-18 1999-05-18 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JP2000332215A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008256505A (en) * 2007-04-04 2008-10-23 Nikon Corp Evaluation method of painting pattern and painting pattern sample
CN103292749A (en) * 2013-06-08 2013-09-11 重庆交通大学 Method for detecting road surface macrostructure distribution by utilizing digital picture processing technology

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008256505A (en) * 2007-04-04 2008-10-23 Nikon Corp Evaluation method of painting pattern and painting pattern sample
CN103292749A (en) * 2013-06-08 2013-09-11 重庆交通大学 Method for detecting road surface macrostructure distribution by utilizing digital picture processing technology

Similar Documents

Publication Publication Date Title
JP4799329B2 (en) Unevenness inspection method, display panel manufacturing method, and unevenness inspection apparatus
US20110262027A1 (en) Pattern inspection method and apparatus
JP2003215060A (en) Pattern inspection method and inspection apparatus
US6673639B2 (en) Method and system for evaluating polysilicon, and method and system for fabricating thin film transistor
CN115760826B (en) Bearing wear condition diagnosis method based on image processing
JP2005172559A (en) Method and device for detecting line defect on panel
CN114898706B (en) Display screen brightness compensation method and device and computer equipment
JP4556302B2 (en) Thin film transistor manufacturing system and method, polysilicon evaluation method and polysilicon inspection apparatus
US11852465B2 (en) Wafer inspection method and apparatus thereof
JP2008071988A (en) Defect inspecting device and method for inspecting defect of semiconductor device
JP2000332215A (en) Manufacture of semiconductor device
US9436988B2 (en) Method and system of classifying defects on a wafer
CN107527830B (en) Monitoring method of wafer inclined film
KR100366613B1 (en) Method for detecting thickness of thin layer and device adopting the same
US8526708B2 (en) Measurement of critical dimensions of semiconductor wafers
US11468556B2 (en) Artificial intelligence identified measuring method for a semiconductor image
US20220261979A1 (en) Epitaxy metrology in fin field effect transistors
JP4556266B2 (en) Polysilicon evaluation method, polysilicon inspection apparatus, thin film transistor manufacturing method, and annealing treatment apparatus
CN111127415B (en) Mura quantification method based on excimer laser annealing
CN105742293A (en) Array substrate and manufacturing method therefor
JP3335503B2 (en) Inspection method and inspection device for perforated plate
KR20040110588A (en) Pattern fault inspecting method
JP4631116B2 (en) Thin film transistor manufacturing method
JP4774598B2 (en) Polysilicon evaluation apparatus and thin film transistor manufacturing system
CN110459529B (en) Detection structure and method for metal filling defects