JP2000327836A - Polymer having dispersed therein highly refractive metallic ultrafine particle - Google Patents

Polymer having dispersed therein highly refractive metallic ultrafine particle

Info

Publication number
JP2000327836A
JP2000327836A JP14496499A JP14496499A JP2000327836A JP 2000327836 A JP2000327836 A JP 2000327836A JP 14496499 A JP14496499 A JP 14496499A JP 14496499 A JP14496499 A JP 14496499A JP 2000327836 A JP2000327836 A JP 2000327836A
Authority
JP
Japan
Prior art keywords
polymer
dispersed
refractive index
metal
ultrafine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14496499A
Other languages
Japanese (ja)
Inventor
Toyoji Hayashi
豊治 林
Takashi Kawaseki
河関孝志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP14496499A priority Critical patent/JP2000327836A/en
Publication of JP2000327836A publication Critical patent/JP2000327836A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a composite material having a high refractive index, excellent in lightweight properties, impact resistance, processing characteristics, dyeing properties, and further characterized in flexibility, thermoplastic/ thermosetting properties by dispersing metallic ultrafine particles having a specific particle size in a polymer as a dispersing medium. SOLUTION: Metallic ultrafine particles having a particle size of 0.001-0.1 μm are dispersed. The kind of the metal is selected preferably among silver, gold, aluminum, platinum, palladium and a composite thereof. The metallic ultrafine particles are dispersed to give a polymer having a high refractive index having dispersed therein the metallic ultrafine particles. Preferably, the polymer as the dispersing medium is selected among polycarbonates, polymethyl methacrylates, polyurethanes, polyacrylonitriles, polystyrenes, copolymers thereof, or composite materials thereof.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高い屈折率を有す
る、金属超微粒子をポリマー中に分散させて得られる複
合材料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite material having a high refractive index and obtained by dispersing ultrafine metal particles in a polymer.

【0002】[0002]

【従来の技術】近年、高屈折率を有する、ポリマーが広
く開発されてきており、眼鏡レンズ、プロジェクター、
カメラ、CD―R読み出し光学系などの光学機器に組み
込まれ実用に供されるようになってきた。無機ガラスに
比較して、高屈折率ポリマーは軽量性、耐衝撃性、加工
性、染色性に優れると共にガラス材料にはない可撓性、
熱可塑性・熱硬化性などの特徴をもつものも製造が可能
であるなどの長所を有している。
2. Description of the Related Art In recent years, polymers having a high refractive index have been widely developed.
It has been incorporated into optical equipment such as a camera and a CD-R readout optical system, and has come to be put to practical use. Compared with inorganic glass, high-refractive-index polymers are lightweight, have excellent impact resistance, workability, and dyeability, and have flexibility not found in glass materials.
It also has the advantage that it can be manufactured with characteristics such as thermoplasticity and thermosetting properties.

【0003】しかし、屈折率材料用途向けポリマーは無
機ガラスに比較して、低屈折率であるため、その不利を
材料の厚みを大きくすることで補わなければならないと
いう欠点があった。この欠点のため、上記のような軽量
性の特長が損なわれたり、薄型あるいは集積化されたデ
バイスの形態で用いることが困難になる。
[0003] However, polymers for use in refractive index materials have a low refractive index compared to inorganic glass, and have the disadvantage that the disadvantages must be compensated for by increasing the thickness of the material. Due to this drawback, the above-described light weight characteristics are impaired, and it is difficult to use the device in the form of a thin or integrated device.

【0004】そこで、これらの欠点を補うため、金属の
酸化物や硫化物等の無機化合物の微粒子をポリマー中に
分散させた高屈折率ポリマーが提案されている。金属の
酸化物や硫化物等の無機化合物の微粒子は、それ自体大
きな屈折率を有するため、これを微粒子の形態でポリマ
ー中に分散させるというものである。その際、無機化合
物の微粒子とポリマーの成分割合に応じ、加成則に従い
屈折率が決まることが知られている。例えば、硫化鉛
(PbS)はバルクではその屈折率は4.3であり、こ
れをポリマー中に微粒子として分散させたポリマーは波
長632.8nmで1.7〜3.9の有機無機複合ポリ
マーが得られることが報告されている(T.K-Leodidou
ら、J. Phys. Chem.、第98巻、8992−8997
頁、1994年発行)。また、特開昭61−29165
0に開示されている方法では、ジアリルエーテルイソフ
タレート樹脂(屈折率は1.56)にジルコニア(Zr
2)微粒子(バルク状態で屈折率は2.1)を50重
量%分散させた分散体の屈折率は、加成則により1.8
3になる。このように高屈折率物質としてよく知られて
いる金属の酸化物や硫化物等をポリマーに分散させる
と、高屈折率の材料が得られることは知られているが、
所望の屈折率を得るには無機微粒子の充填量を大きくす
ることが避けられず、従って重量の増加、ポリマーの脆
弱性といた欠点が存在する。そしてこの欠点は、依然と
して解決されるところまでに到っていないのが現状であ
る。
In order to compensate for these disadvantages, a high refractive index polymer in which fine particles of an inorganic compound such as a metal oxide or sulfide are dispersed in a polymer has been proposed. Fine particles of inorganic compounds such as metal oxides and sulfides have a large refractive index by themselves, and are dispersed in a polymer in the form of fine particles. At that time, it is known that the refractive index is determined according to the addition rule according to the component ratio of the fine particles of the inorganic compound and the polymer. For example, lead sulfide (PbS) has a refractive index of 4.3 in bulk, and a polymer in which this is dispersed as fine particles in a polymer is an organic-inorganic composite polymer having a wavelength of 632.8 nm and a wavelength of 1.7 to 3.9. (TK-Leodidou
Et al., J. Phys. Chem., 98, 8992-8997.
Page, published in 1994). Also, Japanese Patent Application Laid-Open No. 61-29165
In the method disclosed in No. 0, zirconia (Zr) is added to a diallyl ether isophthalate resin (refractive index: 1.56).
A dispersion in which 50% by weight of O 2 ) fine particles (in the bulk state, the refractive index is 2.1) is dispersed has a refractive index of 1.8 according to the addition rule.
It becomes 3. It is known that a high-refractive-index material can be obtained by dispersing a metal oxide or sulfide well-known as a high-refractive-index substance in a polymer as described above.
In order to obtain a desired refractive index, it is inevitable to increase the filling amount of the inorganic fine particles. Therefore, there are disadvantages such as an increase in weight and fragility of the polymer. At present, this disadvantage has not yet been solved.

【0005】例示したこれら金属の酸化物、硫化物等の
無機化合物の微粒子を充填することにより高屈折率材料
を得ようとする試みは、無機粒子分散ポリマーの屈折率
が構成成分である、金属の酸化物、硫化物等の無機化合
物の微粒子とポリマー双方の屈折率に対応して、加成則
が成り立つことを利用するものであり、バルク状態で高
屈折率の無機微粒子をポリマー中に分散させるという思
想にもとづいている。しかしながら、複合材料は構成成
分の予想もし得ない相乗効果で、考えもつかない性質を
発現する可能性も有している。
Attempts to obtain a high refractive index material by filling fine particles of inorganic compounds such as oxides and sulfides of these metals have been attempted in the case where the refractive index of an inorganic particle-dispersed polymer is a constituent component. It uses the fact that the addition rule is satisfied in accordance with the refractive index of both the fine particles of inorganic compounds such as oxides and sulfides and the polymer, and disperses the high refractive index inorganic fine particles in the polymer in the bulk state. It is based on the idea of letting them do it. However, the composite material has the possibility of exhibiting unexpected properties due to unexpected synergistic effects of the constituent components.

【0006】本発明者らは、金属超微粒子がポリマーに
分散した複合材料の屈折率は、各構成成分の屈折率の加
成則により計算される屈折率よりも高い屈折率を示すこ
とを発見し、本発明の完成に到った。本来、可視光・近
赤外線の領域でバルク金属の屈折率は金属酸化物や金属
硫化物に比較してその屈折率は極めて小さい。例えばZ
rO2が光波長589nmで2.1であるのに対して、
Agでは0.12である。従って、通常の観念では、こ
れをポリマー中に分散させても、高い屈折率を有する複
合材料を得ることは予想できるものではなく、さらにこ
れを無機ガラスに比較しても低屈折率のポリマー中へ分
散させれば、高屈折率は通常期待できない。しかしなが
ら本発明者らは、金属超微粒子をポリマーに分散させた
複合材料の屈折率に関して鋭意研究した結果、前述した
ような加成性の成り立つ金属の酸化物、硫化物、あるい
は半導体超微粒子のポリマー分散体と異なり、顕著な相
乗効果が発現することを見出した。
The present inventors have found that the refractive index of a composite material in which ultrafine metal particles are dispersed in a polymer exhibits a higher refractive index than the refractive index calculated by the addition rule of the refractive indices of the respective components. Thus, the present invention has been completed. Originally, the refractive index of a bulk metal in the visible light / near infrared region is extremely smaller than that of a metal oxide or metal sulfide. For example, Z
While rO 2 is 2.1 at an optical wavelength of 589 nm,
For Ag, it is 0.12. Therefore, according to a general idea, even if this is dispersed in a polymer, it is not expected that a composite material having a high refractive index will be obtained. , A high refractive index cannot usually be expected. However, the present inventors have conducted intensive studies on the refractive index of a composite material in which ultrafine metal particles are dispersed in a polymer. It has been found that, unlike the dispersion, a remarkable synergistic effect is exhibited.

【0007】金属超微粒子分散ポリマーの相乗効果とし
ては、金属超微粒子とポリマーの化学的、電荷移動的、
誘電的相互作用などが発現することが期待される。これ
らの相互作用により、ポリマー単独時に比較して密度が
上昇するなどの効果がもたらされたり、電荷移動が関与
する分極率の増大に伴ない、屈折率の増大が発現したり
することが考えられる。なかでも、光電磁場によって誘
起される金属超微粒子内自由電子の分極励起は、ミー散
乱の理論にもとづいて、バルク金属の屈折率あるいはポ
リマーの屈折率それぞれ単独では達成することの出来な
い、高い屈折率を有する金属超微粒子分散ポリマーを得
ることも可能である。本発明は金属超微粒子分散ポリマ
ーの屈折率に関して全く新規な効果を見出したものであ
り、現在のところ、既存に知られた理論では説明できる
ものではない。
The synergistic effect of the ultrafine metal particle-dispersed polymer includes chemical, charge transfer,
It is expected that a dielectric interaction or the like will develop. It is thought that these interactions bring about effects such as an increase in density as compared with the polymer alone, and an increase in the refractive index accompanying an increase in polarizability involving charge transfer. Can be Above all, the polarization excitation of free electrons in ultrafine metal particles induced by an optical magnetic field is based on Mie scattering theory and cannot be achieved by the refractive index of bulk metal or the refractive index of polymer alone. It is also possible to obtain an ultrafine metal particle-dispersed polymer having a high efficiency. The present invention has found a completely novel effect on the refractive index of the polymer dispersed with ultrafine metal particles, and at present cannot be explained by the existing known theory.

【0008】[0008]

【発明が解決しようとする課題】高い屈折率を有し、軽
量性、耐衝撃性、加工性、染色性に優れると共に可撓
性、熱可塑性・熱硬化性などの特徴をもつ金属超微粒子
がポリマー中へ分散した複合材料を提供することを課題
としたものである。
SUMMARY OF THE INVENTION Ultrafine metal particles having a high refractive index and excellent characteristics such as flexibility, thermoplasticity, and thermosetting properties as well as excellent light weight, impact resistance, workability, and dyeability. It is an object to provide a composite material dispersed in a polymer.

【0009】[0009]

【課題を解決するための手段】本発明者らは、従来技術
の問題を解決するために鋭意検討を重ね本発明を完成し
た。すなわち本発明は、ポリマー中に粒子径が0.00
1〜0.1μmの金属超微粒子を分散させることを特徴
とする高屈折率金属超微粒子分散ポリマーに関する。ま
た本発明は、該金属の種類が銀、金、アルミニウム、白
金、パラジウム、あるいはこれらの複合物より選択され
てなる高屈折率金属超微粒子分散ポリマーである。
Means for Solving the Problems The present inventors have conducted intensive studies to solve the problems of the prior art and completed the present invention. That is, the present invention provides a polymer having a particle diameter of 0.00
The present invention relates to a high-refractive-index metal ultrafine particle-dispersed polymer in which ultrafine metal particles of 1 to 0.1 μm are dispersed. Further, the present invention is a high refractive index metal ultrafine particle dispersed polymer in which the kind of the metal is selected from silver, gold, aluminum, platinum, palladium or a composite thereof.

【0010】さらに本発明は、該ポリマーが、ポリカー
ボネート類、ポリメチルメタクリレート類、ポリウレタ
ン類、ポリアクリロニトリル類、ポリスチレン類、ある
いはこれらを組み合わせた共重合ポリマー、あるいはこ
れらの複合物より選択されてなる高屈折率金属超微粒子
分散ポリマーに関する。
Further, the present invention relates to a high-molecular-weight polymer, wherein the polymer is selected from polycarbonates, polymethyl methacrylates, polyurethanes, polyacrylonitriles, polystyrenes, copolymers obtained by combining these, or composites thereof. The present invention relates to a polymer having a refractive index ultrafine metal particle.

【0011】[0011]

【発明実施の形態】以下、本発明をその実施形態ととも
に説明する。本発明において金属超微粒子とは、粒子径
が0.001〜0.1μmの金属粒子であり、金属の種
類は特に制限されるものではないが、好ましくは、銀、
金、アルミニウム、白金、パラジウム、あるいはこれら
の複合物が挙げられる。ここでいう複合物とは、上記金
属からなる合金、あるいは2種以上の金属の組み合せか
ら構成される金属微粒子の混合物である。分散媒体とな
るポリマーとしては、ポリカーボネート類、ポリメチル
メタクリレート類、ポリエチルメタクリレート類、ポリ
エーテル類、ポリエステル類、ポリエチレンテレフタレ
ート類、ポリ塩化ビニル類、ABS類、ポリアクリルアミ
ド類、ポリウレタン類、ポリアクリロニトリル類、ポリ
スチレン類、ポリ酢酸ビニル類、ポリビニルアルコール
類、あるいはこれらを組み合わせた共重合ポリマー、あ
るいはこれらの複合物などが挙げられる、超微粒子を適
当な方法で分散させることができるものであれば特に制
限はない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below together with its embodiments. In the present invention, the ultrafine metal particles are metal particles having a particle diameter of 0.001 to 0.1 μm, and the type of the metal is not particularly limited.
Examples include gold, aluminum, platinum, palladium, and composites thereof. The composite herein is an alloy composed of the above metals or a mixture of metal fine particles composed of a combination of two or more metals. Examples of the polymer serving as the dispersion medium include polycarbonates, polymethyl methacrylates, polyethyl methacrylates, polyethers, polyesters, polyethylene terephthalates, polyvinyl chlorides, ABSs, polyacrylamides, polyurethanes, and polyacrylonitriles. , Polystyrenes, polyvinyl acetates, polyvinyl alcohols, or copolymers of these, or composites thereof, and the like, as long as the ultrafine particles can be dispersed by an appropriate method. There is no.

【0012】本発明による金属超微粒子の生成方法は、
通例用いられている方法が採用される。例えば、気相中
で生成させる、いわゆるガス中蒸発法により製造される
金属超微粒子、金属イオンを含む溶液内で、還元により
生成した金属超微粒子をアルコキシ処理、シラン処理、
チオール処理などにより、金属超微粒子の表面を修飾し
て金属超微粒子を得ることができる。得られた金属超微
粒子は、ポリマーと共に溶液に溶解させ、溶媒を除去す
ることにより、金属超微粒子分散ポリマーを得る方法が
ある。さらに、ポリマー及び金属イオンの共存下で、溶
解した金属イオンを還元した後、貧溶媒を添加すること
により金属超微粒子分散ポリマーを得る方法などが採用
される。成型される態様としては、バルク成形品やスピ
ンコーティング、塗布あるいはスクリーン印刷などによ
り薄膜を形成することも可能である。
The method for producing ultrafine metal particles according to the present invention comprises:
Conventional methods are employed. For example, in the gas phase, metal ultrafine particles produced by the so-called gas evaporation method, in a solution containing metal ions, the metal ultrafine particles generated by reduction, alkoxy treatment, silane treatment,
The surface of the ultrafine metal particles can be modified by thiol treatment or the like to obtain ultrafine metal particles. There is a method in which the obtained ultrafine metal particles are dissolved in a solution together with the polymer, and the solvent is removed to obtain a polymer in which the ultrafine metal particles are dispersed. Furthermore, a method of obtaining a polymer in which ultrafine metal particles are dispersed by reducing a dissolved metal ion in the presence of a polymer and a metal ion and then adding a poor solvent is employed. As a mode of molding, it is also possible to form a thin film by a bulk molded product, spin coating, coating, screen printing, or the like.

【0013】[0013]

【実施例】以下本発明の金属超微粒子分散高屈折率ポリ
マーの具体的実施例を以下に詳細に説明する。 実施例1 過塩素酸銀0.207gとアクリロニトリル−スチレン
共重合ポリマー(AS樹脂)4gをN,N−ジメチルホ
ルムアミド50mlに溶かし、−60℃にした。この溶
液を攪拌しながら、水素化ホウ素ナトリウム0.009
45gをN,N−ジメチルホルムアミド20mlに溶か
し、さらにー60℃にした溶液を添加し、−60℃で1
0分間攪拌したところ、溶液の色は黄色透明に変化し、
透過型電子顕微鏡観察により粒子径3nmの銀微粒子の生
成が確認された。次に、この混合溶液を−60℃にした
メタノール500mlに滴下し、銀微粒子分散AS樹脂
を析出させ、液温が室温になるまで放置した。この銀微
粒子分散AS樹脂を石英基板上にスピンコートして1.
5μm厚みのフィルムを形成した後、屈折率を測定した
ところ、波長589nmで1.61であった。銀充填率
は0.6重量%であった。
Examples Specific examples of the ultra-fine metal particle-dispersed high refractive index polymer of the present invention will be described below in detail. Example 1 0.207 g of silver perchlorate and 4 g of an acrylonitrile-styrene copolymer (AS resin) were dissolved in 50 ml of N, N-dimethylformamide and heated to -60 ° C. While stirring this solution, sodium borohydride 0.009
45 g was dissolved in 20 ml of N, N-dimethylformamide, and a solution of -60 ° C was added.
After stirring for 0 minutes, the color of the solution turned yellow and transparent,
Observation with a transmission electron microscope confirmed formation of silver fine particles having a particle diameter of 3 nm. Next, this mixed solution was dropped into 500 ml of methanol at −60 ° C. to precipitate an AS resin in which fine silver particles were dispersed, and the mixture was allowed to stand until the liquid temperature reached room temperature. This silver fine particle-dispersed AS resin is spin-coated on a quartz substrate.
After forming a film having a thickness of 5 μm, the refractive index was measured to be 1.61 at a wavelength of 589 nm. The silver loading was 0.6% by weight.

【0014】実施例2 硝酸銀0.17gを溶解させたアセトニトリル500m
l溶液を調整した後、水素化ホウ素ナトリウム0.00
945gを添加することにより還元し、銀超微粒子を含
む溶液を作成した。さらに、この溶液にチオフェノール
0.02gを添加することで、表面がチオフェノールで
修飾された銀超微粒子を得た。その後溶媒を除去し、チ
オフェノールで修飾された銀超微粒子粉末(銀粒子径は
3nm)を得た。これをポリスチレンをジメチルホルムア
ミドに溶解させた溶液に分散させ、スピンコーティング
により厚み1μm、銀充填率0.02の銀超微粒子分散フ
ィルムを石英基板上に得た。このフィルムの屈折率は、
波長589nmで1.69であった。
Example 2 500 m of acetonitrile in which 0.17 g of silver nitrate was dissolved
After adjusting the solution, sodium borohydride 0.00
The solution was reduced by adding 945 g to prepare a solution containing ultrafine silver particles. Further, by adding 0.02 g of thiophenol to this solution, ultrafine silver particles whose surface was modified with thiophenol were obtained. After that, the solvent was removed to obtain a silver ultrafine particle powder (silver particle diameter: 3 nm) modified with thiophenol. This was dispersed in a solution in which polystyrene was dissolved in dimethylformamide, and a 1 μm-thick silver ultrafine particle dispersion film having a silver filling rate of 0.02 was obtained on a quartz substrate by spin coating. The refractive index of this film is
It was 1.69 at a wavelength of 589 nm.

【0015】実施例3 アルミニウム0.5gを坩堝に装填し、0.1Torr
のヘリウムガスを充填した真空容器内で加熱することに
より、アルミニウム超微粒子を気相で生成させ、これを
チオフェノール0.004gを含有するアセトニトリル
100ml溶液中に導き、アルミニウム超微粒子コロイ
ド液を得た。アルミニウム粒子径は50nmであった。ア
クリロニトリル−スチレン共重合ポリマー(AS樹脂)
のジメチルホルムアミド溶液に加え、その後溶媒を除去
することにより、アルミニウム超微粒子分散ポリマー溶
液を得た。これをスピンコートすることにより、石英基
板上に1.5μm厚のフィルムを得た。元素分析でアル
ミニウム充填率は0.05であった。屈折率は、実施例
1と同様にして測定したところ、1.71であった。
Example 3 A crucible was charged with 0.5 g of aluminum and placed in a crucible at 0.1 Torr.
By heating in a vacuum vessel filled with helium gas, aluminum ultrafine particles were generated in a gas phase, and this was introduced into a 100 ml solution of acetonitrile containing 0.004 g of thiophenol to obtain an aluminum ultrafine particle colloid liquid. . The aluminum particle size was 50 nm. Acrylonitrile-styrene copolymer (AS resin)
Was added to a dimethylformamide solution, and then the solvent was removed to obtain an aluminum ultrafine particle dispersed polymer solution. This was spin-coated to obtain a 1.5 μm thick film on a quartz substrate. The elemental analysis revealed that the aluminum filling factor was 0.05. The refractive index was 1.71 as measured in the same manner as in Example 1.

【0016】実施例4 チオフェノール0.02gを添加したアセトニトリル溶
液500ml中で、テトラクロロ金・四水和0.41g
の溶液を水素化ホウ素ナトリウムで還元し、表面がチオ
ールで修飾された金超微粒子コロイド溶液を得た。その
後溶媒を除去し、チオフェノールで修飾された金超微粒
子粉末を得た。金粒子径は4nmであった。これをポリス
チレンをジメチルホルムアミド溶かした溶液に分散さ
せ、スピンコーティングにより厚み1μm、金充填率0.
05のフィルムを石英基板上に得た。波長589nmで
屈折率が1.95であった。
Example 4 0.41 g of tetrachloroaurate / tetrahydrate in 500 ml of acetonitrile solution containing 0.02 g of thiophenol
Was reduced with sodium borohydride to obtain a gold ultrafine particle colloid solution whose surface was modified with thiol. Thereafter, the solvent was removed to obtain thiophenol-modified ultrafine gold powder. The gold particle size was 4 nm. This was dispersed in a solution of polystyrene dissolved in dimethylformamide, and spin-coated to a thickness of 1 μm and a gold filling rate of 0.
Film 05 was obtained on a quartz substrate. The refractive index was 1.95 at a wavelength of 589 nm.

【0017】実施例5 ポリマーをメチルメタクリレートにする以外は実施例4
と同様にして調製した金超微粒子分散ポリマーをスピン
コーティングにより厚み2μm、金充填率0.03のフ
ィルムをガラス基板上に得た。波長589nmで屈折率
が1.73であった。
Example 5 Example 4 except that the polymer is methyl methacrylate
A film having a thickness of 2 μm and a gold filling rate of 0.03 was obtained on a glass substrate by spin coating using the ultrafine gold particle dispersed polymer prepared in the same manner as in Example 1. The refractive index was 1.73 at a wavelength of 589 nm.

【0018】実施例6 過塩素酸銀のかわりに、酢酸パラジウムを用いる以外は
実施例1と同様にして粒子径5nmのパラジウム微粒子分
散AS樹脂を得た。実施例1とと同様にして石英基板上
にパラジウム充填率、0.001の2.5μm厚みのフ
ィルムを形成したものは、屈折率が1.59であた。
Example 6 A palladium fine particle-dispersed AS resin having a particle diameter of 5 nm was obtained in the same manner as in Example 1 except that palladium acetate was used instead of silver perchlorate. A film having a palladium filling rate of 0.001 and a thickness of 2.5 μm formed on a quartz substrate in the same manner as in Example 1 had a refractive index of 1.59.

【0019】[0019]

【発明の効果】本発明により得られる金属超微粒子分散
ポリマーは、従来にはない、高い屈折率を有する、バル
クでは予想不可能な、加成則にのっとらない高屈折率金
属微粒子分散ポリマーの実現である。さらに本発明によ
り得られる金属超微粒子分散ポリマーは、軽量性、染色
性、加工性などに優れるというポリマーの特徴を生かし
た高屈折率材料が提供でき、産業上重要な意義を有す
る。
The ultrafine metal particle-dispersed polymer obtained by the present invention realizes an unprecedented high-refractive-index metal fine particle-dispersed polymer having a high refractive index, which is unpredictable in bulk, and does not follow the addition rule. It is. Further, the ultrafine metal particle-dispersed polymer obtained by the present invention can provide a high-refractive-index material utilizing the characteristics of the polymer, which is excellent in lightness, dyeability, processability, and the like, and has industrial significance.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08L 69/00 C08L 69/00 101/00 101/00 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C08L 69/00 C08L 69/00 101/00 101/00

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 分散媒体であるポリマー中に、粒子径が
0.001〜0.1μmの金属超微粒子を分散させるこ
とを特徴とする高屈折率金属超微粒子分散ポリマー。
1. A high-refractive-index metal ultrafine particle-dispersed polymer, characterized in that ultrafine metal particles having a particle diameter of 0.001 to 0.1 μm are dispersed in a polymer as a dispersion medium.
【請求項2】 金属の種類が銀、金、アルミニウム、白
金、パラジウム、あるいはこれらの複合物より選択され
てなる金属超微粒子を分散させた請求項1記載の高屈折
率金属超微粒子分散ポリマー。
2. The high-refractive-index metal ultrafine particle-dispersed polymer according to claim 1, wherein metal ultrafine particles in which the kind of metal is selected from silver, gold, aluminum, platinum, palladium, and a composite thereof are dispersed.
【請求項3】 分散媒体であるポリマーが、ポリカーボ
ネート類、ポリメチルメタクリレート類、ポリウレタン
類、ポリアクリロニトリル類、ポリスチレン類、あるい
はこれらを組み合わせた共重合ポリマー、あるいはこれ
らの複合物より選択されてなる請求項1及び2記載の高
屈折率金属超微粒子分散ポリマー。
3. The method according to claim 1, wherein the polymer as the dispersion medium is selected from polycarbonates, polymethyl methacrylates, polyurethanes, polyacrylonitriles, polystyrenes, copolymers obtained by combining these, or composites thereof. Item 3. The polymer according to items 1 and 2, wherein the polymer has a high refractive index.
JP14496499A 1999-05-25 1999-05-25 Polymer having dispersed therein highly refractive metallic ultrafine particle Pending JP2000327836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14496499A JP2000327836A (en) 1999-05-25 1999-05-25 Polymer having dispersed therein highly refractive metallic ultrafine particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14496499A JP2000327836A (en) 1999-05-25 1999-05-25 Polymer having dispersed therein highly refractive metallic ultrafine particle

Publications (1)

Publication Number Publication Date
JP2000327836A true JP2000327836A (en) 2000-11-28

Family

ID=15374297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14496499A Pending JP2000327836A (en) 1999-05-25 1999-05-25 Polymer having dispersed therein highly refractive metallic ultrafine particle

Country Status (1)

Country Link
JP (1) JP2000327836A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040023159A (en) * 2002-09-11 2004-03-18 최성호 Preparation Method of the Nanosilver Particle/Organic Polymeric Composite by Radiolytic Irradiation and Thereof Nanosilver Particle/Organic Polymeric Composite
WO2007091730A1 (en) * 2006-02-10 2007-08-16 Fujifilm Corporation Organic-inorganic hybrid composition, method for producing the same, molding and optical component
WO2008029932A1 (en) * 2006-09-01 2008-03-13 Toyo Seikan Kaisha, Ltd. Adsorbable ultrafine metal particle
CN102079840A (en) * 2011-01-04 2011-06-01 武汉理工大学 Method for preparing Ag/PMMA (polymethyl methacrylate) nano composite material
US10112369B2 (en) 2013-09-20 2018-10-30 Riken Technos Corporation Transparent multilayer film containing poly(meth)acrylimide-based resin layer, and method for producing said transparent multilayer film
US10450431B2 (en) 2013-07-10 2019-10-22 Riken Technos Corporation Poly(meth)acrylimide film, easy-adhesion film using same, and method for manufacturing such films

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040023159A (en) * 2002-09-11 2004-03-18 최성호 Preparation Method of the Nanosilver Particle/Organic Polymeric Composite by Radiolytic Irradiation and Thereof Nanosilver Particle/Organic Polymeric Composite
WO2007091730A1 (en) * 2006-02-10 2007-08-16 Fujifilm Corporation Organic-inorganic hybrid composition, method for producing the same, molding and optical component
US7897712B2 (en) 2006-02-10 2011-03-01 Fujifilm Corporation Organic-inorganic hybrid composition, method for producing the same, molding and optical component
WO2008029932A1 (en) * 2006-09-01 2008-03-13 Toyo Seikan Kaisha, Ltd. Adsorbable ultrafine metal particle
JPWO2008029932A1 (en) * 2006-09-01 2010-01-21 東洋製罐株式会社 Adsorbent metal ultrafine particle-containing resin composition
JP4820416B2 (en) * 2006-09-01 2011-11-24 東洋製罐株式会社 Adsorbent containing ultrafine metal particles
US8372904B2 (en) 2006-09-01 2013-02-12 Toyo Seikan Kaisha, Ltd. Adsorptive ultra-fine metal particles
CN102079840A (en) * 2011-01-04 2011-06-01 武汉理工大学 Method for preparing Ag/PMMA (polymethyl methacrylate) nano composite material
US10450431B2 (en) 2013-07-10 2019-10-22 Riken Technos Corporation Poly(meth)acrylimide film, easy-adhesion film using same, and method for manufacturing such films
US10112369B2 (en) 2013-09-20 2018-10-30 Riken Technos Corporation Transparent multilayer film containing poly(meth)acrylimide-based resin layer, and method for producing said transparent multilayer film

Similar Documents

Publication Publication Date Title
Garnett VII. Colours in metal glasses, in metallic films, and in metallic solutions.—II
CA2329436C (en) Metal nanoshells
Zhou et al. Surface plasmon resonance induced excellent solar control for VO 2@ SiO 2 nanorods-based thermochromic foils
Schmidt Considerations about the sol-gel process: From the classical sol-gel route to advanced chemical nanotechnologies
Som et al. Core-shell Au-Ag nanoparticles in dielectric nanocomposites with plasmon-enhanced fluorescence: A new paradigm in antimony glasses
CN104411745B9 (en) Liquid polymerizable composition comprising mineral nano particle and its purposes for producing optical article
TWI292411B (en) Reduced temperature sensitive polymeric optical article and method of making same
KR101587933B1 (en) High-refractive index powder and production method and application of same
CN101343536A (en) Surface functionalized nano-particle and method for preparing its polymer nanometre composite material
JPS5891777A (en) Electrically conductive clear paint
JP2000327836A (en) Polymer having dispersed therein highly refractive metallic ultrafine particle
TW555796B (en) Polysulfone nanocomposite optical plastic article and method of making same
Wang et al. Fabrication of superhydrophobic and luminescent rare earth/polymer complex films
JP6526658B2 (en) Formation of surface modified metal colloid
Zhang et al. Development of optically transparent ZnS/poly (vinylpyrrolidone) nanocomposite films with high refractive indices and high Abbe numbers
Braun et al. Block copolymer micellar nanoreactors for the directed synthesis of ZnO nanoparticles
Chen et al. A general method for synthesis continuous silver nanoshells on dielectric colloids
JP2019147983A (en) Silver nanowire synthesizing organic protection agent, and silver nanowire and method for manufacturing same
JP2003183414A (en) Formed body of crosslinked resin composition containing super fine particle
Dodero et al. Robust Full‐Spectral Color Tuning of Photonic Colloids
JP4499962B2 (en) Composition of metal oxide ultrafine particles and polymer
Gong et al. Flexible transparent projection screen of polycarbonate matrix integrated with functionalized alumina particles
JP2006110653A (en) Inorganic oxide periodic structure
JP2005264284A (en) Composite fine particle, manufacturing method therefor, and film using the particle
JP6206564B2 (en) Surface-modified metal oxide fine particles, dispersion containing the same, resin composition, composite, and optical member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040528

A977 Report on retrieval

Effective date: 20060719

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20060801

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061205