JP2000327438A - Monolithic refractory and waste melting furnace using the same - Google Patents

Monolithic refractory and waste melting furnace using the same

Info

Publication number
JP2000327438A
JP2000327438A JP11133293A JP13329399A JP2000327438A JP 2000327438 A JP2000327438 A JP 2000327438A JP 11133293 A JP11133293 A JP 11133293A JP 13329399 A JP13329399 A JP 13329399A JP 2000327438 A JP2000327438 A JP 2000327438A
Authority
JP
Japan
Prior art keywords
particles
weight
refractory
alumina
magnesia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11133293A
Other languages
Japanese (ja)
Inventor
Otojiro Kida
音次郎 木田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP11133293A priority Critical patent/JP2000327438A/en
Publication of JP2000327438A publication Critical patent/JP2000327438A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/06Aluminous cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/10Compositions or ingredients thereof characterised by the absence or the very low content of a specific material
    • C04B2111/1075Chromium-free or very low chromium-content materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Processing Of Solid Wastes (AREA)
  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To form a refractory excellent in corrosion resistance and thermal shock resistance from fire-resistant particles based on molten zirconia particles containing a specific ratio of a glassy phase, alumina particles and magnesia particles and a binder containing a specific ratio of alumina cement. SOLUTION: This monolithic refractory comprises 90-99 wt.% fire-resistant particles based on the molten zirconia particles containing 3-25 wt.% glassy phase, the alumina particles and 5-10 wt.% magnesia particles having less than 1.19 mm particle size and 1-10 wt.% binder containing 30-100 wt.% alumina cement. It is preferable that the fire-resistant particles contain 10-40 wt.% molten zirconia particle containing monoclinic ZrO2 crystalline phase, 60-90 wt.% total content of the alumina particles and the magnesia particles and >=85 wt.% the sum of these three particles. This monolithic refractory is used for construction work after adding 0.02-0.3 wt.% dispersant such as sodium tripolyphosphate or a curing control agent and water.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鉄鋼、非鉄、セメ
ントキルン、ガラス等の各種窯炉、廃棄物溶融処理炉、
焼却炉用に適し、環境問題に対応したクロムを含まない
不定形耐火物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to various furnaces for steel, non-ferrous, cement kiln, glass, etc.
The present invention relates to a chromium-free amorphous refractory suitable for incinerators and corresponding to environmental issues.

【0002】[0002]

【従来の技術】近年、廃棄物の発生量は増加の一途をた
どり、その処理は大きな社会問題となっている。例え
ば、膨大な量の廃棄物を処理するためには、埋立処分地
を確保する必要がある。また、廃棄物の焼却により発生
する焼却灰や飛灰、および下水汚泥等は処理方法や投棄
場所によっては、二次的公害汚染の誘因ともなる。
2. Description of the Related Art In recent years, the amount of waste generated has been steadily increasing, and its disposal has become a major social problem. For example, in order to treat a huge amount of waste, it is necessary to secure landfill sites. In addition, incineration ash and fly ash generated by incineration of waste, sewage sludge, and the like may also cause secondary pollution depending on the treatment method and disposal location.

【0003】この対策として、廃棄物の減容化、無害化
または再資源化が望まれており、一つの方策として溶融
法が注目されている。溶融法は、廃棄物中の無機物を溶
融スラグとして取り出し、廃棄物を大幅に減容化する方
法である。廃棄物の溶融法としては、固形廃棄物(生ご
み等)を直接熱分解し溶融処理する方法と、焼却炉で廃
棄物を一次焼却し、生じた焼却灰、飛灰、下水汚泥を二
次溶融する方法とがある。
[0003] As a countermeasure, it is desired to reduce the volume, detoxify or recycle the waste, and a melting method is attracting attention as one of the measures. The melting method is a method in which inorganic substances in waste are taken out as molten slag to greatly reduce the volume of waste. There are two methods of melting waste: direct pyrolysis of solid waste (garbage, etc.) and melting, and primary incineration of waste in an incinerator, and secondary incineration ash, fly ash, and sewage sludge generated. There is a method of melting.

【0004】焼却灰、飛灰および下水汚泥等の化学組成
は、一般にSiO2:15〜45重量%、Al23:1
0〜20重量%、CaO:5〜45重量%、Na2O:
1〜15重量%である。この他、焼却灰や飛灰には、C
d、Pb、Zn、Cu、As、Cr、Hg等の有害な金
属も多く含まれている。下水汚泥中には、金属は少ない
がP25が5〜15重量%含まれている。さらに揮発成
分としてSやClを含む化合物等が多く含まれている。
The chemical composition of incinerated ash, fly ash, sewage sludge, etc. is generally SiO 2 : 15 to 45% by weight, Al 2 O 3 : 1
0-20 wt%, CaO: 5 to 45 wt%, Na 2 O:
1 to 15% by weight. In addition, incineration ash and fly ash include C
Many harmful metals such as d, Pb, Zn, Cu, As, Cr, and Hg are also contained. The sewage sludge, metal is small but contains P 2 O 5 is 5 to 15 wt%. Further, a large amount of compounds containing S and Cl as volatile components are contained.

【0005】溶融炉に使用される耐火物の侵食の程度
は、主として炉内に投入される焼却灰、飛灰および下水
汚泥等の溶融スラグの成分、および溶融温度に大きく左
右される。溶融スラグの成分は廃棄物の種類などにより
変動するが、一般にはCaOとSiO2の重量比が、C
aO/SiO2=0.1〜1.5程度である。一方、溶
融処理炉の炉内温度は、1400〜1650℃の高温に
する必要がある。
[0005] The degree of erosion of the refractory used in the melting furnace largely depends on the components of the molten slag such as incineration ash, fly ash and sewage sludge charged into the furnace, and the melting temperature. Although the components of the molten slag vary depending on the type of waste, etc., generally, the weight ratio of CaO to SiO 2 is C
aO / SiO 2 = about 0.1 to 1.5. On the other hand, the temperature inside the melting processing furnace needs to be as high as 1400 to 1650 ° C.

【0006】このような処理条件に耐える耐火物とし
て、アルミナ質、マグネシア質、シリカ−アルミナ質な
どの耐火材が知られているが、これらは溶融スラグ成分
と反応しやすく、侵食が進行しやすい傾向がある。ま
た、カーボンを含有する耐火物は、溶融スラグ成分との
反応性は低いが、高温域で使用した場合、酸化されて消
耗しやすい。
[0006] As refractories that can withstand such processing conditions, refractory materials such as alumina, magnesia, and silica-alumina are known. These refractories easily react with molten slag components and erosion easily proceeds. Tend. Further, the refractory containing carbon has low reactivity with the molten slag component, but when used in a high temperature range, is easily oxidized and consumed.

【0007】このため高耐食性を示す耐火物として、現
在は酸化クロムを含む耐火物が多く用いられており、例
えば、特開昭63−30363、特開平6−32162
8、特開平8−48574、特開平10−81572等
に提案されている。
For this reason, refractories containing chromium oxide are now widely used as refractories exhibiting high corrosion resistance. For example, JP-A-63-30363 and JP-A-6-32162 are known.
8, JP-A-8-48574, JP-A-10-81572, and the like.

【0008】酸化クロム含有耐火物は、酸化クロムの含
有量が多いほど耐食性が良いが、高温、かつ、アルカリ
等の雰囲気条件下で使用されると、耐火物中の酸化クロ
ムが有害な六価クロムに変化するため、環境汚染問題を
生ずるおそれがある。
[0008] The higher the content of chromium oxide, the better the corrosion resistance of the refractory containing chromium oxide. However, when used at high temperatures and under atmospheric conditions such as alkali, the chromium oxide in the refractory is harmful to hexavalent. Since it changes to chromium, there is a possibility that an environmental pollution problem may occur.

【0009】また、耐食性の向上を目的とした酸化クロ
ムを含まない耐火物として、特開平7−293851に
電融ジルコニアを主成分とし炭化ケイ素を配合した耐火
物が、特開平7−256229にスピネル質不定形耐火
物が、特許第2808293号にSiCが90重量%以
上で残部がAl、SiおよびFeの酸化物である耐火材
が、それぞれ提案されている。しかし、これら提案され
ている耐火物では、耐食性が充分でない、コストが高
い、施工しにくい、などの問題がある。
As a refractory containing no chromium oxide for the purpose of improving the corrosion resistance, a refractory containing electrofused zirconia as a main component and silicon carbide is disclosed in Japanese Patent Application Laid-Open No. Japanese Patent No. 2808293 proposes a refractory material of irregular quality having a SiC content of 90% by weight or more and a balance of oxides of Al, Si and Fe. However, these proposed refractories have problems such as insufficient corrosion resistance, high cost, and difficulty in construction.

【0010】[0010]

【発明が解決しようとする課題】本発明は、廃棄物焼却
炉や溶融炉において使用できる耐食性、耐熱衝撃性に優
れる耐火物であり、かつ、低コストで施工しやすい不定
形耐火物を提供するとともに、有害な六価クロムによる
環境汚染問題を解決することを目的とする。
SUMMARY OF THE INVENTION The present invention provides a refractory having excellent corrosion resistance and thermal shock resistance which can be used in waste incinerators and melting furnaces, and which is inexpensive and easy to construct. At the same time, it aims to solve the problem of environmental pollution caused by harmful hexavalent chromium.

【0011】[0011]

【課題を解決するための手段】本発明は、ガラス相を3
〜25重量%含む溶融ジルコニア粒子と、アルミナ粒子
と、マグネシア粒子とを主体とする耐火性粒子90〜9
9重量%と、アルミナセメントを含有する結合材1〜1
0重量%とを含む不定形耐火物であって、耐火性粒子の
合量中、粒径が1.19mm未満のマグネシア粒子を5
〜10重量%含有し、結合材中のアルミナセメントの含
有量が30〜100重量%であることを特徴とする不定
形耐火物を提供する。さらに、本発明は、これらの不定
形耐火物から形成された不定形耐火物施工体を炉壁の一
部に使用した廃棄物溶融炉を提供する。
SUMMARY OF THE INVENTION According to the present invention, a vitreous phase of 3 is provided.
Refractory particles 90 to 9 mainly composed of molten zirconia particles containing -25% by weight, alumina particles, and magnesia particles.
9% by weight and a binder 1-1 containing alumina cement
And 0% by weight of magnesia particles having a particle size of less than 1.19 mm in the total amount of the refractory particles.
The present invention provides an amorphous refractory characterized in that the content is from 10 to 10% by weight, and the content of alumina cement in the binder is from 30 to 100% by weight. Further, the present invention provides a waste melting furnace using an irregular refractory construction body formed from these irregular refractories for a part of a furnace wall.

【0012】[0012]

【発明の実施の形態】本明細書で、不定形耐火物とは水
を添加する前の粉体全体をいい、その不定形耐火物から
形成される施工体を不定形耐火物施工体という。本発明
の不定形耐火物(以下、本不定形耐火物という)は、ガ
ラス相を3〜25重量%含む溶融ジルコニア粒子と、ア
ルミナ粒子と、マグネシア粒子とを主体とする耐火性粒
子を90〜99重量%含有する。
BEST MODE FOR CARRYING OUT THE INVENTION In the present specification, an amorphous refractory refers to the entire powder before water is added, and a construction formed from the irregular refractory is referred to as an irregular refractory construction. The amorphous refractory of the present invention (hereinafter referred to as the present amorphous refractory) has a refractory particle mainly composed of fused zirconia particles containing 3 to 25% by weight of a glass phase, alumina particles, and magnesia particles. Contains 99% by weight.

【0013】ここで、溶融ジルコニア粒子とは、ジルコ
ニア原料を電気溶融(以下、電融という)などの方法で
溶融し、再固化して得られる、溶融ジルコニア粒子とし
ては、単斜晶のZrO2結晶相を含むものが好ましく、
具体的には以下のものが挙げられる。例えば、ジルコン
を脱珪して得られた脱珪ジルコニア、ガラス相を含む単
斜晶ジルコニア、さらには、ガラス相を含んだ、溶融ジ
ルコニア−溶融アルミナ系等である。
Here, the molten zirconia particles are obtained by melting a zirconia raw material by a method such as electric melting (hereinafter, referred to as electro-melting) and re-solidifying. The molten zirconia particles are monoclinic ZrO 2. Those containing a crystalline phase are preferred,
Specifically, the following are mentioned. For example, desiliconized zirconia obtained by desiliconizing zircon, monoclinic zirconia containing a glass phase, and fused zirconia-fused alumina containing a glass phase can be used.

【0014】脱珪ジルコニアは、ZrO2含有量が約9
5重量%であり、単斜晶等のZrO2結晶相と、Si
2、Fe23、TiO2、およびAl23等からなるガ
ラス相とを含む。またガラス相を含む単斜晶ジルコニア
は、ZrO2含有量が約94重量%であり、主に単斜晶
からなるZrO2結晶相と、P25、Na2O、Al23
およびSiO2等からなるガラス相とを含む。このガラ
ス相がZrO2結晶相の周りを被覆している。
The desiliconized zirconia has a ZrO 2 content of about 9
5% by weight, ZrO 2 crystal phase such as monoclinic, Si
O 2 , Fe 2 O 3 , TiO 2 , and a glass phase composed of Al 2 O 3 and the like. Further, the monoclinic zirconia containing a glass phase has a ZrO 2 content of about 94% by weight, and a ZrO 2 crystal phase mainly composed of monoclinic crystals and P 2 O 5 , Na 2 O, Al 2 O 3
And a glass phase composed of SiO 2 or the like. This glass phase covers around the ZrO 2 crystal phase.

【0015】また、ガラス相を含んだ、溶融ジルコニア
−溶融アルミナは、約40重量%の主に単斜晶からなる
ZrO2結晶相と、約40重量%のコランダムと、約2
0重量%のSiO2、Al23、およびNa2O等からな
るガラス相とを含む。ここで、溶融ジルコニア粒子とし
ては、ガラス相を3〜25重量%含むことが必要であ
り、好ましくは5〜20重量%含むものがよい。
The molten zirconia-fused alumina containing a glass phase is composed of about 40% by weight of a ZrO 2 crystal phase mainly composed of monoclinic crystals, about 40% by weight of corundum and about 2% by weight.
0% by weight of a glass phase composed of SiO 2 , Al 2 O 3 , Na 2 O and the like. Here, the molten zirconia particles need to contain 3 to 25% by weight of a glass phase, preferably 5 to 20% by weight.

【0016】ガラス相の含有量が3重量%未満では、ジ
ルコニアの転移温度における体積変化が充分吸収され
ず、残留応力の発生により脆弱化し、また、25重量%
より多い場合は、溶融スラグ、金属、ガラスに対する耐
食性や高温強度が低下する。このように、単斜晶からな
るZrO2結晶の周りに存在しているガラス相は、ジル
コニアの転移温度における体積変化を吸収し、耐火性粒
子の崩壊を防止する。
When the content of the glass phase is less than 3% by weight, the change in volume at the transition temperature of zirconia is not sufficiently absorbed, and becomes weak due to the generation of residual stress.
If it is larger, the corrosion resistance to molten slag, metal and glass and the high-temperature strength decrease. Thus, the glass phase present around the monoclinic ZrO 2 crystal absorbs the volume change at the transition temperature of zirconia and prevents the refractory particles from collapsing.

【0017】一方、MgOやCaO、Y23等で安定化
した溶融ジルコニアを耐火性粒子として使用すると、安
定化剤であるMgOやCaO、Y23が溶融金属、溶融
スラグ、または、ガラスと反応し脱安定化を起こす。そ
のため、安定化した溶融ジルコニアからなる耐火性粒子
は、転移温度において崩壊し形状を維持できないため、
不定形耐火物の骨材としては好ましくない。したがっ
て、安定化した溶融ジルコニアの含有量は少量にするこ
とが好ましい。
On the other hand, when molten zirconia stabilized with MgO, CaO, Y 2 O 3 or the like is used as refractory particles, the stabilizers MgO, CaO, and Y 2 O 3 become molten metal, molten slag, or Reacts with glass to cause destabilization. Therefore, because the refractory particles made of stabilized molten zirconia cannot collapse and maintain their shape at the transition temperature,
It is not preferable as an aggregate of irregular refractories. Therefore, the content of the stabilized molten zirconia is preferably made small.

【0018】本発明における溶融ジルコニア粒子は、例
えば次のようにして得られる。脱珪ジルコニアと、所望
のガラス相を形成しうる成分と、必要によりアルミナ
と、を所定量混合した原料を電融により溶融し、得られ
た溶融物を吹き飛ばして粒状化したり、カーボンの鋳型
に流し込む等した後、冷却する。これを粉砕し、耐火性
粒子として調製する。
The molten zirconia particles in the present invention are obtained, for example, as follows. A material obtained by mixing a predetermined amount of desiliconized zirconia, a component capable of forming a desired glass phase, and, if necessary, alumina is melted by electrofusion, and the obtained melt is blown off to be granulated or formed into a carbon mold. After pouring, cool. This is crushed and prepared as refractory particles.

【0019】本発明において、アルミナ粒子としては、
バイヤー法で製造される焼成アルミナや電融法により製
造される電融アルミナなどが使用でき、これらを所定の
粒度に調製して用いる。マグネシア粒子は、海水水酸化
マグネシウムを高温で焼成した焼成マグネシアや、焼成
マグネシアを電融で溶融固化、粉砕した電融マグネシア
等が使用できる。
In the present invention, the alumina particles include
A calcined alumina produced by the Bayer method, an electrofused alumina produced by the electrofusion method, and the like can be used. As the magnesia particles, fired magnesia obtained by firing seawater magnesium hydroxide at a high temperature, electrofused magnesia obtained by melting and solidifying and pulverizing fired magnesia by electromelting can be used.

【0020】本不定形耐火物において、ガラス相を3〜
25重量%含む溶融ジルコニア粒子と、アルミナ粒子
と、マグネシア粒子とは、主として骨材部を構成し、耐
火物としての性質を特徴づける。よって、できるだけこ
れら粒子の配合量が多い程よく、具体的には、耐火性粒
子中のガラス相を3〜25重量%含む溶融ジルコニア粒
子と、アルミナ粒子と、マグネシア粒子との合量を85
重量%以上とするのが好ましい。
In the amorphous refractory, the glass phase is 3 to
The fused zirconia particles containing 25% by weight, the alumina particles, and the magnesia particles mainly constitute an aggregate portion and are characterized by refractory properties. Therefore, the larger the blending amount of these particles as much as possible, more specifically, specifically, the total amount of fused zirconia particles containing 3 to 25% by weight of the glass phase in the refractory particles, alumina particles, and magnesia particles is 85.
It is preferred that the content be not less than% by weight.

【0021】また、耐火性粒子中における、ガラス相を
3〜25重量%含む溶融ジルコニア粒子と、アルミナ粒
子と、マグネシア粒子との含有割合は、ガラス相を3〜
25重量%含む溶融ジルコニア粒子の含有量が10〜4
0重量%、アルミナ粒子およびマグネシア粒子の合計の
含有量が60〜90重量%とするのが好ましい。ガラス
相を3〜25重量%含む溶融ジルコニア粒子の含有量が
10重量%未満の場合は、溶融ジルコニアの特徴である
耐食性が充分に発揮されず、逆に40重量%を超える場
合は、耐熱衝撃性が悪くなる。
The content ratio of the fused zirconia particles containing 3 to 25% by weight of the glass phase, the alumina particles and the magnesia particles in the refractory particles is such that
The content of the molten zirconia particles containing 25% by weight is 10 to 4
It is preferable that the total content of 0% by weight, alumina particles and magnesia particles is 60 to 90% by weight. When the content of the molten zirconia particles containing 3 to 25% by weight of the glass phase is less than 10% by weight, the corrosion resistance characteristic of the molten zirconia is not sufficiently exhibited. Worse.

【0022】本発明における耐火性粒子は、その大部分
が不定形耐火物としての骨材部を構成する。通常、種々
の粒度のものが使用できるが、一般的には、10μm〜
20mmの範囲内で適切な粒度の配合を選択するのが好
ましい。
Most of the refractory particles in the present invention constitute an aggregate portion as an amorphous refractory. Usually, various particle sizes can be used, but in general, 10 μm to
It is preferable to select an appropriate particle size within the range of 20 mm.

【0023】耐火性粒子中、粒径が1.19mm未満の
マグネシア粒子を耐火性粒子の合量中、5〜10重量%
含有することが必要である。粒径が1.19mm未満の
マグネシア粒子が5重量%未満になると、マグネシアの
特徴である耐浸透性や耐熱衝撃性の効果が充分に発揮さ
れず、一方、10重量%を超えると浸透性が大きくなり
結果として耐熱衝撃性が低下するためである。
In the refractory particles, magnesia particles having a particle size of less than 1.19 mm are added in an amount of 5 to 10% by weight based on the total amount of the refractory particles.
It is necessary to contain. If the magnesia particles having a particle size of less than 1.19 mm are less than 5% by weight, the effects of the permeation resistance and thermal shock resistance, which are the characteristics of magnesia, are not sufficiently exhibited. This is because the thermal shock resistance decreases as a result.

【0024】結合材としては、アルミナセメントを30
〜100重量%含有するものを使用する。これにより、
不定形耐火物施工体が、充分な乾燥強度および高温強度
を維持できる。アルミナセメントとしては、一般にカル
シウムアルミネートを主成分とする種々のアルミナセメ
ントが使用できる。
As a binder, alumina cement is used.
What contains 100100% by weight is used. This allows
The amorphous refractory construction body can maintain sufficient dry strength and high temperature strength. As the alumina cement, generally, various alumina cements containing calcium aluminate as a main component can be used.

【0025】また、結合材としては、アルミナセメント
とともに酸化物微粒子(アルミナセメントを除く、以下
同じ)を用いるのが好ましい。アルミナセメントの一部
を酸化物微粒子で置き換えることにより不定形耐火物施
工体を緻密化し熱間強度、耐食性をより向上できる。酸
化物微粒子としては、例えば、シリカ微粒子またはアル
ミナ微粒子からなるものが挙げられる。酸化物微粒子の
粒径は、10μm以下、特には5μm以下であるのが好
ましい。
As the binder, it is preferable to use oxide fine particles (excluding alumina cement, the same applies hereinafter) together with alumina cement. By replacing a part of the alumina cement with the oxide fine particles, the amorphous refractory construction can be made denser, and the hot strength and the corrosion resistance can be further improved. Examples of the oxide fine particles include those made of silica fine particles or alumina fine particles. The particle size of the oxide fine particles is preferably 10 μm or less, particularly preferably 5 μm or less.

【0026】本不定形耐火物において、耐火性粒子が9
0〜99重量%含まれるのに対し、結合材は1〜10重
量%含まれる。特には、耐火性粒子を92〜97重量
%、結合材を3〜8重量%を含むものが好ましい。
In the refractory of the present invention, 9 refractory particles are contained.
While the binder is contained in an amount of 0 to 99% by weight, the binder is contained in an amount of 1 to 10% by weight. In particular, those containing 92 to 97% by weight of the refractory particles and 3 to 8% by weight of the binder are preferable.

【0027】本不定形耐火物は、施工に際して所定量の
水を加えて使用するが、耐火性粒子の機能をより有効に
発揮させるために、分散剤または硬化調節剤を含有する
ことが好ましい。分散剤や硬化調節剤は、不定形耐火物
の作業性を改善、安定させるために添加するものであ
り、任意のものが使用できる。
The present refractory is used by adding a predetermined amount of water at the time of construction, and preferably contains a dispersant or a hardening modifier in order to more effectively exhibit the function of the refractory particles. The dispersant and the curing regulator are added to improve and stabilize the workability of the amorphous refractory, and any one can be used.

【0028】本発明においては、分散剤として、トリポ
リリン酸ナトリウム、β−ナフタレンスルホン酸塩等が
好ましく使用できる。分散剤は、不定形耐火物中に0.
02〜0.2重量%含まれるのが好ましい。
In the present invention, sodium tripolyphosphate, β-naphthalene sulfonate and the like can be preferably used as a dispersant. The dispersant is added in the amorphous refractory in an amount of 0.1%.
It is preferably contained in an amount of 02 to 0.2% by weight.

【0029】また、硬化調節剤としては、硬化促進剤と
硬化遅延剤とがあり、硬化促進剤としては生石灰、炭酸
リチウムが好ましく使用でき、硬化遅延剤としてはシュ
ウ酸、ホウ酸等が好ましく使用できる。なお、15℃未
満の低温ではアルミナセメントの硬化が遅く、30℃を
超えると硬化が早くなるため、硬化調節剤の添加量は施
工時の気温によって調整する必要がある。一般的には、
硬化調節剤は、不定形耐火物全体に対して0.05〜
0.2重量%の範囲で含まれるのが好ましい。なお、分
散剤や硬化調節剤は、耐火性粒子と結合材の混合物にあ
らかじめ混ぜておくか、または混練時に加える水に溶解
または懸濁させて添加すればよい。
As the curing regulator, there are a curing accelerator and a curing retarder. As the curing accelerator, quick lime and lithium carbonate can be preferably used, and as the curing retarder, oxalic acid, boric acid and the like are preferably used. it can. In addition, since the hardening of the alumina cement is slow at a low temperature of less than 15 ° C., and the hardening is fast at a temperature of more than 30 ° C., it is necessary to adjust the addition amount of the hardening regulator depending on the temperature at the time of construction. In general,
The curing modifier is used in an amount of 0.05 to the entire refractory.
It is preferably contained in the range of 0.2% by weight. The dispersant and the curing regulator may be added to the mixture of the refractory particles and the binder in advance, or may be dissolved or suspended in water added during kneading.

【0030】本不定形耐火物は、施工性に優れ、しかも
耐食性の高い、ガラス相を含む溶融ジルコニア粒子と、
スラグ浸潤を抑制し不定形耐火物を緻密化させる、アル
ミナ粒子およびマグネシア粒子とを組み合わせたので、
得られる不定形耐火物施工体は、耐食性や耐熱衝撃性に
優れ、浸透性の少ない性質を有する。
The amorphous refractory is excellent in workability and high in corrosion resistance, and contains fused zirconia particles containing a glass phase.
As it combines alumina particles and magnesia particles, which suppress slag infiltration and densify amorphous refractories,
The obtained irregular-shaped refractory construction body is excellent in corrosion resistance and thermal shock resistance, and has low permeability.

【0031】本不定形耐火物から形成された不定形耐火
物施工体を廃棄物溶融炉壁の少なくとも一部、さらに好
ましくは焼却灰や飛灰の溶融スラグと接触する部分に用
いた場合、焼却灰や飛灰の溶融スラグに含まれるSiO
2、CaO、Al23、Fe23、Na2O等の成分と反
応するものの、その反応生成物は高融点物質となり、高
温下では高い粘性を示すので溶融スラグが浸透するのを
抑制するため耐食性は低下しにくい。したがって、本不
定形耐火物は、溶融スラグ等に対する耐浸透性に優れ、
結果として優れた耐食性および耐熱衝撃性を発揮する溶
融炉壁を提供できる。
In the case where the irregularly shaped refractory construction body formed from the irregularly shaped refractory is used for at least a part of a wall of a waste melting furnace, more preferably for a portion which comes into contact with molten slag of incinerated ash or fly ash, SiO contained in molten slag of ash and fly ash
2 , Although it reacts with components such as CaO, Al 2 O 3 , Fe 2 O 3 , and Na 2 O, the reaction product becomes a high melting point material and shows high viscosity at high temperatures, so that the molten slag can be prevented from penetrating. Corrosion resistance is not easily reduced due to suppression. Therefore, this amorphous refractory has excellent penetration resistance to molten slag, etc.
As a result, a melting furnace wall exhibiting excellent corrosion resistance and thermal shock resistance can be provided.

【0032】[0032]

【実施例】以下に本発明の実施例(例1〜例9)および
比較例(例10〜例17)を説明する。例15は、アル
ミナ粒子、マグネシア粒子を含まず、しかも溶融ジルコ
ニア粒子として安定化ジルコニアを使用した例である。
また例16は、アルミナ質(Al23:96重量%、そ
の他:4重量%)キャスタブルの例であり、例17は、
アルミナ−酸化クロム質(Al23:84重量%、Cr
23:10重量%、その他:6重量%)キャスタブルの
例である。
EXAMPLES Examples of the present invention (Examples 1 to 9) and comparative examples (Examples 10 to 17) will be described below. Example 15 is an example which does not contain alumina particles and magnesia particles and uses stabilized zirconia as molten zirconia particles.
Example 16 is an example of an alumina-based (Al 2 O 3 : 96% by weight, other: 4% by weight) castable.
Alumina-chromium oxide (Al 2 O 3 : 84% by weight, Cr
2 O 3 : 10% by weight, others: 6% by weight) This is an example of a castable.

【0033】表1および表2に示した配合割合となるよ
うに、各原料を秤量し万能ミキサで混合しながら水を添
加し混練物を得た。これを40mm×40mm×160
mmの型にバイブレータで振動をかけながら鋳込み、所
定時間養生し脱型後、110℃にて24時間乾燥して供
試体を得た。原料の配合割合、および得られた供試体の
評価結果を表1および表2に示す。
Each raw material was weighed so that the mixing ratio shown in Tables 1 and 2 was obtained, and water was added while mixing with a universal mixer to obtain a kneaded product. This is 40mm x 40mm x 160
It was cast into a mold having a size of mm while being vibrated with a vibrator, cured for a predetermined time, demolded, and dried at 110 ° C. for 24 hours to obtain a test piece. Tables 1 and 2 show the mixing ratios of the raw materials and the evaluation results of the obtained specimens.

【0034】なお、表1および表2において、溶融ジル
コニア粒子Aは、ジルコンの脱珪により得られたもの
(脱珪ジルコニア)、溶融ジルコニア粒子Bは、脱珪ジ
ルコニアと、ガラス相とを形成する成分を混合し、電融
して得られたもの、溶融ジルコニア粒子Cは、脱珪ジル
コニア、アルミナ、および所望のガラスを形成する成分
を混合し、電融して得られたものである。また、溶融ジ
ルコニアD(安定化品)は、脱珪ジルコニアに、Mg
O:4重量%を添加して安定化したものである。溶融ジ
ルコニア粒子A〜Dの化学成分、結晶形態およびガラス
相の割合(重量%)は表3のとおりである。
In Tables 1 and 2, the molten zirconia particles A were obtained by desiliconization of zircon (desiliconized zirconia), and the molten zirconia particles B formed desiliconized zirconia and a glass phase. The component obtained by mixing and electromelting the molten zirconia particles C is obtained by mixing desiliconized zirconia, alumina, and components forming a desired glass, and electromelting. Further, molten zirconia D (stabilized product) is obtained by adding Mg to desiliconized zirconia.
O: Stabilized by adding 4% by weight. Table 3 shows the chemical components, crystal morphology, and glass phase ratio (% by weight) of the molten zirconia particles A to D.

【0035】また、これらの各種溶融ジルコニア粒子
は、中粒:0.105mm以上1.19mm未満、微粒
は0.105mm未満として整粒した。各種溶融ジルコ
ニア粒子の粒度配合割合は、添加量が23〜40重量%
の場合は、全て微粒23〜25重量部、中粒15〜17
重量部とし、添加量が23重量%未満の場合は、微粒だ
けとした。
Further, these various kinds of fused zirconia particles were sized so that the medium size was 0.105 mm or more and less than 1.19 mm, and the fine particles were less than 0.105 mm. The particle size mixing ratio of various molten zirconia particles is as follows:
In all cases, 23 to 25 parts by weight of fine particles, 15 to 17 of medium particles
When the amount was less than 23% by weight, only fine particles were used.

【0036】アルミナは、アルミナを電融し、冷却、粉
砕されたもので、Al23:97%で、不純物としてM
gO、TiO2、Fe23等が含まれる。粒度は、粗粒
1.19mm以上8mm未満、中粒0.105mm以上
1.19mm未満に整粒した。アルミナ添加量が5〜4
5重量%の場合は、全て粗粒45重量部、中粒55重量
部とし、添加量が5重量%未満の場合は、微粒だけとし
た。
Alumina is obtained by electromelting, cooling and pulverizing alumina. Al 2 O 3 : 97%, M as an impurity
gO, TiO 2 , Fe 2 O 3 and the like are included. The particle size was adjusted to coarse grains of 1.19 mm or more and less than 8 mm, and medium grains of 0.105 mm or more and less than 1.19 mm. 5 to 4 alumina added
In the case of 5% by weight, all were 45 parts by weight of coarse particles and 55 parts by weight of medium particles, and when the added amount was less than 5% by weight, only fine particles were used.

【0037】マグネシアは、MgO:99重量%の焼成
マグネシアを使用し、粒度は、中粒0.105mm以上
1.19mm未満、微粒0.105mm未満に整粒して
使用した。マグネシア添加量が5〜10重量%の場合
は、全て中粒10重量部、微粒90重量部とし、添加量
が5重量%未満の場合は、微粒だけとした。
The magnesia used was calcined magnesia containing 99% by weight of MgO, and the particle size was adjusted to 0.105 mm or more and less than 1.19 mm, and less than 0.105 mm for fine particles. When the added amount of magnesia was 5 to 10% by weight, all were 10 parts by weight of medium particles and 90 parts by weight of fine particles, and when the added amount was less than 5% by weight, only fine particles were used.

【0038】耐火性粒子と結合材を合わせたものの粒度
配合割合は、粗粒45重量%、中粒25重量%、微粒3
0重量%とした。結合材としては、アルミナセメント
と、粒径が5μm以下であるアルミナ微粒子(Al
23:99重量%以上)と、粒径が5μm以下であるシ
リカ微粒子(SiO2:95重量%、その他:5重量
%)とを使用した。アルミナセメントとしては、Ca
O、Al23を主成分とし、Al23含有量が75%、
比表面積が6000cm2/gのものを用いた。また、
分散剤としてトリポリリン酸ナトリウムを使用した。
The combination of the refractory particles and the binder is as follows: the mixture ratio of coarse particles is 45% by weight, medium particles is 25% by weight, and fine particles are 3%.
0% by weight. As the binder, alumina cement and alumina fine particles having a particle size of 5 μm or less (Al
2 O 3 : 99 wt% or more) and silica fine particles having a particle size of 5 μm or less (SiO 2 : 95 wt%, others: 5 wt%). As the alumina cement, Ca
O, Al 2 O 3 as the main component, Al 2 O 3 content of 75%,
The one having a specific surface area of 6000 cm 2 / g was used. Also,
Sodium tripolyphosphate was used as a dispersant.

【0039】[評価結果]例1〜例17で得られた供試体
を使用し、表1および表2に示した物性および特性を評
価した。試験項目、測定法は以下のとおりである。
[Evaluation Results] Using the specimens obtained in Examples 1 to 17, the physical properties and characteristics shown in Tables 1 and 2 were evaluated. Test items and measurement methods are as follows.

【0040】嵩比重は通常の耐火物試験法(JIS R
2205準拠)により測定した。曲げ強度Aは、110
℃にて24時間熱処理した後の3点曲げ強度であり、曲
げ強度Bは、1500℃にて3時間、電気炉で焼成した
後の3点曲げ強度である。耐熱衝撃性は、1300℃に
て3時間焼成した供試体の焼成品を、1300℃の電気
炉中で15分間保持した後、室温まで急冷するサイクル
を繰り返し行い、剥離にいたるまでの回数を測定した。
上記サイクルの回数は25回を限度として行った。耐熱
衝撃性は剥離にいたるまでの回数が多い方が良好であ
る。なお、25回反復した時点で剥離がないものは25
+と表した。
The bulk specific gravity can be determined by a general refractory test method (JIS R).
2205). The bending strength A is 110
Is the three-point bending strength after heat treatment at 24 ° C. for 24 hours, and the bending strength B is the three-point bending strength after firing in an electric furnace at 1500 ° C. for 3 hours. The thermal shock resistance was measured by repeating the cycle of quenching the specimen fired at 1300 ° C for 3 hours, holding it in an electric furnace at 1300 ° C for 15 minutes, and then rapidly cooling it to room temperature, until peeling. did.
The number of cycles was limited to 25. The thermal shock resistance is better when the number of times until peeling is larger. In addition, when there was no peeling at the time of repeating 25 times, 25
It was expressed as +.

【0041】耐食性の試験は以下の方法で行った。供試
体から複数の台形柱状のテストピースを切り出し、研磨
して所定の寸法にし、これを回転ドラム内に内張りし
た。次いで、ドラムを回転させながらドラムの軸線方向
に酸素プロパン炎を吹込み、1600℃に加熱した。1
600℃に保持した状態で、侵食材として、焼却灰およ
び飛灰の合成スラグ(CaO/SiO2(重量比)=
1.0、化学組成は重量比で、Al23:16%、Ca
O:32%、SiO2:32%、Fe23:8%、K
2O:2%、Na2O:2%、MgO:2%、P25:6
%)をドラム内に投入し、6時間回転させた。スラグ
は、30分毎に新しく投入して試験を行った。
The corrosion resistance test was performed by the following method. A plurality of trapezoidal column-shaped test pieces were cut out from the specimen, polished to a predetermined size, and lined in a rotating drum. Subsequently, oxygen propane flame was blown in the axial direction of the drum while rotating the drum, and heated to 1600 ° C. 1
With the temperature maintained at 600 ° C., synthetic slag of incinerated ash and fly ash (CaO / SiO 2 (weight ratio) =
1.0, chemical composition is Al 2 O 3 : 16% by weight, Ca
O: 32%, SiO 2: 32%, Fe 2 O 3: 8%, K
2 O: 2%, Na 2 O: 2%, MgO: 2%, P 2 O 5 : 6
%) Was charged into a drum and rotated for 6 hours. The slag was freshly introduced every 30 minutes and tested.

【0042】ドラムを冷却後、テストピースを取り出し
て切断し、溶損量(mm)、スラグ浸透深さ(mm)を
テストピースの各部で測定し平均値を求めた。なお、例
17の溶損量を100とした場合の各実施例の溶損量の
比を耐食性指数として算出した。耐食性指数は、小さい
ものが耐食性が良好であることを示す。
After cooling the drum, the test piece was taken out and cut, and the amount of erosion (mm) and the slag penetration depth (mm) were measured at each part of the test piece to obtain an average value. The ratio of the amount of erosion in each example when the amount of erosion in Example 17 was 100 was calculated as the corrosion resistance index. A small corrosion resistance index indicates that the corrosion resistance is good.

【0043】耐酸化性は、40mm×40mm×40m
mの供試体を1500℃にて3時間、電気炉中で酸化さ
せた後、半分に切断し、表面からの酸化層の厚み(m
m)を測定した値である。
The oxidation resistance is 40 mm × 40 mm × 40 m
m was oxidized in an electric furnace at 1500 ° C. for 3 hours, cut in half, and the thickness of the oxide layer from the surface (m
m) is the measured value.

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【表2】 [Table 2]

【0046】[0046]

【表3】 [Table 3]

【0047】[0047]

【発明の効果】本不定形耐火物は、低コストで施工しや
すく、施工後は溶融金属、溶融スラグ、ガラス等に対し
て優れた耐食性、耐浸透性、耐熱衝撃性を有する炉壁と
なる。さらに、酸化クロムを含まないため、有害な六価
クロムが発生することがない。
The amorphous refractory of the present invention is easy to construct at a low cost, and becomes a furnace wall having excellent corrosion resistance, penetration resistance and thermal shock resistance to molten metal, molten slag, glass and the like after the construction. . Furthermore, since it does not contain chromium oxide, harmful hexavalent chromium does not occur.

【0048】よって、本不定形耐火物は、廃棄物の焼成
炉や溶融処理炉、鉄鋼、セメント、非鉄等の工業炉に現
在使用されているジルコニア−酸化クロム系、アルミナ
−酸化クロム系、マグネシア−酸化クロム系耐火物と置
き換えることができ、工業的価値は多大である。
Accordingly, the present amorphous refractories are made of zirconia-chromium oxide, alumina-chromium oxide, magnesia, etc., which are currently used in waste baking furnaces, melting furnaces, and industrial furnaces such as steel, cement, and non-ferrous metals. -It can be replaced with chromium oxide refractories, and has great industrial value.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】ガラス相を3〜25重量%含む溶融ジルコ
ニア粒子と、アルミナ粒子と、マグネシア粒子とを主体
とする耐火性粒子90〜99重量%と、アルミナセメン
トを含有する結合材1〜10重量%とを含む不定形耐火
物であって、耐火性粒子の合量中、粒径が1.19mm
未満のマグネシア粒子を5〜10重量%含有し、結合材
中のアルミナセメントの含有量が30〜100重量%で
あることを特徴とする不定形耐火物。
1. A binder 1 to 10 containing fused zirconia particles containing 3 to 25% by weight of a glass phase, 90 to 99% by weight of refractory particles mainly composed of alumina particles and magnesia particles, and alumina cement. % By weight of the refractory particles having a particle size of 1.19 mm in the total amount of the refractory particles.
An amorphous refractory comprising less than 5 to 10% by weight of magnesia particles, and wherein the content of alumina cement in the binder is 30 to 100% by weight.
【請求項2】耐火性粒子中、ガラス相を3〜25重量%
含む溶融ジルコニア粒子と、アルミナ粒子と、マグネシ
ア粒子との合量が85重量%以上である請求項1に記載
の不定形耐火物。
2. The refractory particles contain 3 to 25% by weight of a glass phase.
2. The amorphous refractory according to claim 1, wherein the combined amount of the molten zirconia particles, the alumina particles, and the magnesia particles is 85% by weight or more.
【請求項3】耐火性粒子中、ガラス相を3〜25重量%
含む溶融ジルコニア粒子の含有量が10〜40重量%、
アルミナ粒子とマグネシア粒子の合計の含有量が60〜
90重量%である請求項1または2に記載の不定形耐火
物。
3. The refractory particles contain 3 to 25% by weight of a glass phase.
The content of the molten zirconia particles including 10 to 40% by weight,
The total content of alumina particles and magnesia particles is 60 to
The amorphous refractory according to claim 1, wherein the content is 90% by weight.
【請求項4】ガラス相を3〜25重量%含む溶融ジルコ
ニア粒子が、単斜晶のZrO2結晶相を含む請求項1、
2または3に記載の不定形耐火物。
4. The molten zirconia particles containing 3 to 25% by weight of a glass phase contain a monoclinic ZrO 2 crystal phase.
4. The amorphous refractory according to 2 or 3.
【請求項5】結合材として、粒径10μm以下の酸化物
微粒子を含む請求項1〜4のいずれかに記載の不定形耐
火物。
5. The refractory according to claim 1, wherein the binder contains oxide fine particles having a particle size of 10 μm or less.
【請求項6】分散剤を不定形耐火物中に0.02〜0.
3重量%含む請求項1〜5のいずれかに記載の不定形耐
火物。
6. A dispersant is added in an amount of from 0.02 to 0.
The amorphous refractory according to any one of claims 1 to 5, comprising 3% by weight.
【請求項7】分散剤がトリポリリン酸ナトリウムおよび
/またはβ−ナフタレンスルホン酸塩である請求項6に
記載の不定形耐火物。
7. The amorphous refractory according to claim 6, wherein the dispersant is sodium tripolyphosphate and / or β-naphthalene sulfonate.
【請求項8】請求項1〜7のいずれかに記載の不定形耐
火物から形成された不定形耐火物施工体を炉壁の少なく
とも一部に使用した廃棄物溶融炉。
8. A waste melting furnace in which an amorphous refractory construction body formed from the amorphous refractory according to claim 1 is used for at least a part of a furnace wall.
JP11133293A 1999-05-13 1999-05-13 Monolithic refractory and waste melting furnace using the same Pending JP2000327438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11133293A JP2000327438A (en) 1999-05-13 1999-05-13 Monolithic refractory and waste melting furnace using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11133293A JP2000327438A (en) 1999-05-13 1999-05-13 Monolithic refractory and waste melting furnace using the same

Publications (1)

Publication Number Publication Date
JP2000327438A true JP2000327438A (en) 2000-11-28

Family

ID=15101277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11133293A Pending JP2000327438A (en) 1999-05-13 1999-05-13 Monolithic refractory and waste melting furnace using the same

Country Status (1)

Country Link
JP (1) JP2000327438A (en)

Similar Documents

Publication Publication Date Title
US5559064A (en) Chrome-free brick
US20230312418A1 (en) Dry material mixture for a backfill, preferably a refractory concrete backfill, for producing a heavy-clay refractory non-basic product, refractory concrete backfill and such a product, method for producing same, lining, and industrial furnace, channel transport system or mobile transport vessel
JP2002193681A (en) Castable refractory and waste melting furnace utilizing it
WO2004087609A1 (en) Chromium-free monolithic refractory for melting furnace for waste and melting furnace for waste lined with the same
JP2000281455A (en) Alumina-zirconia-based amorphous refractory
JP2000327436A (en) Monolithic refractory and waste melting furnace using the same
RU2140407C1 (en) Refractory concrete mix
JPH0687667A (en) Zirconia-mullite containing castable refractory
JP3587871B2 (en) Modified alumina cement-containing refractory
JP2000327438A (en) Monolithic refractory and waste melting furnace using the same
JP2000327435A (en) Monolithic refractory and waste melting furnace using the same
JP2004352600A (en) Chromium-free monolithic refractory for waste melting furnace and waste melting furnace using the same for lining
JP2000335969A (en) Monolithic refractory material and waste melting furnace using the same
JP2000178074A (en) Castable refractory for blast furnace tapping spout
JP2000239072A (en) Monolithic refractory material and waste melting furnace using the same
JP2000313675A (en) Castable refractory, and waste-melting furnace
JP2000327437A (en) Monolithic refractory and waste melting furnace using the same
JP2000319073A (en) Monolithic refractory material and waste melting furnace
JP3327536B2 (en) Irregular refractories for waste melting furnace pouring and waste melting furnace using the same
JP2007001827A (en) Alumina-chromia based monolithic refractory
JP4355486B2 (en) Unshaped refractory for waste melting furnace and waste melting furnace lined with it
JP2001220250A (en) Monolithic refractory material and melting furnace for waste
JP3212856B2 (en) Irregular cast refractories and their moldings
JP2001253782A (en) Monolithic refractory and furnace for melting waste material
JP2001348279A (en) Prepared unshaped refractory and industrial waste incinerator