JP2000325957A - Water purifier - Google Patents

Water purifier

Info

Publication number
JP2000325957A
JP2000325957A JP11139743A JP13974399A JP2000325957A JP 2000325957 A JP2000325957 A JP 2000325957A JP 11139743 A JP11139743 A JP 11139743A JP 13974399 A JP13974399 A JP 13974399A JP 2000325957 A JP2000325957 A JP 2000325957A
Authority
JP
Japan
Prior art keywords
water
water purifier
electrodes
voltage
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11139743A
Other languages
Japanese (ja)
Inventor
Masashi Yamaguchi
雅司 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11139743A priority Critical patent/JP2000325957A/en
Publication of JP2000325957A publication Critical patent/JP2000325957A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Water Treatment By Sorption (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the propagation of general bacteria in the stagnated water of a water guide part without using an antibacterial substance and to reduce used power quantity or initial water quantity by providing at least a pair of electrodes and a power supply for applying voltage across the electrodes in the water guide part allowing the outlet of a hollow-fiber yarn membrane to communicate with a water discharge pipe. SOLUTION: Tap water gathers to the water guide part 7 of a water purifier 1 and, when the start of the passage of water is detected by a passing water detecting sensor 11, voltage is applied across a pair of the electrodes 5 in an electrolytic cell 8 from a battery 9 and an electric circuit 15 and the voltage of the battery 9 is detected by a voltage detecting sensor 12. As a result, when the voltage of the battery 9 is set a voltage or more an LED lamp 10 is allowed to light and, when the voltage of the battery 9 is the set voltage or less, the LED lamp 10 is flashed. Tap water in the electrolytic tank 8 is electrolyzed, chlorine generated herein is dissolved in tap water to develop sterilizing action. At this time, current supply is controlled on the basis of the detection result of a current detector 13 by a microcomputer 14 to keep the concn. of residual chlorine in stagnation water of the water guide part 7 constant.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水中の有機物や残
留塩素を吸着する活性炭等の吸着材で増殖した細菌や水
中の一般細菌を除去する中空糸膜を備えた浄水器に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water purifier provided with a hollow fiber membrane for removing bacteria grown on an adsorbent such as activated carbon for absorbing organic substances and residual chlorine in water and general bacteria in water.

【0002】[0002]

【従来の技術】従来、水道水中の有機物や残留塩素を除
去する活性炭等の吸着材を備えた浄水器において、吸着
材で増殖する一般細菌を除去するため、実開平5−70
694号公報(以下、イ号公報と呼ぶ)に「中空糸膜を
備えた浄水器」が開示されている。
2. Description of the Related Art Conventionally, in a water purifier equipped with an adsorbent such as activated carbon for removing organic substances and residual chlorine in tap water, a water purifier has been proposed to remove general bacteria growing on the adsorbent.
No. 694 (hereinafter referred to as “A”) discloses a “water purifier provided with a hollow fiber membrane”.

【0003】イ号公報に記載の浄水器は、粒状の活性炭
の層と中空糸膜の束を収納容器内に収納し、活性炭の上
方への移動を許容する移動空間を活性炭の層の上方に設
けた構成としている。
[0003] The water purifier described in Japanese Patent Publication No. A-B1 contains a granular activated carbon layer and a bundle of hollow fiber membranes in a storage container, and a moving space for allowing the activated carbon to move upward is provided above the activated carbon layer. The configuration is provided.

【0004】またその他、特開平6−154734号公
報(以下、ロ号公報と呼ぶ)に吐水管内壁に銀等の抗菌
材を混合した材料を備え、導水部の滞留水中に抗菌物質
を溶出させて吸着材に一般細菌が増殖するのを防ぐ浄水
器が開示されている。
In addition, Japanese Unexamined Patent Publication (Kokai) No. 6-154733 (hereinafter referred to as "B") includes a material in which an antibacterial material such as silver is mixed on the inner wall of a water discharge pipe, and elutes antibacterial substances into stagnant water in a water guide section. There is disclosed a water purifier that prevents general bacteria from growing on the adsorbent.

【0005】[0005]

【発明の解決しようとする課題】しかしながら、上記従
来の浄水器では、以下のような課題を有していた。
However, the above-mentioned conventional water purifier has the following problems.

【0006】(1)イ号公報に記載の浄水器では、長時
間未使用状態のまま放置すると、中空糸膜より吐出パイ
プに至る収納容器内の滞留水においても一般細菌が増殖
する可能性があり、使用者に対して使用開始時の初期水
を捨てるように要請しなければならないため、操作性、
安全性に課題を有するとともに、未使用時の水の滞留時
間や周囲の環境によって捨てる初期水の適量が変化する
にもかかわらず、その量を使用時に判断しにくいため、
結果として多めに捨てることになり無駄が生じるという
課題を有していた。
[0006] (1) In the water purifier described in Japanese Patent Application Publication A, if left unused for a long time, there is a possibility that general bacteria may proliferate in the water retained in the storage container from the hollow fiber membrane to the discharge pipe. Yes, users must be asked to discard the initial water at the start of use, so operability,
While there is a problem with safety, the appropriate amount of initial water to be discarded varies depending on the residence time of unused water and the surrounding environment, but it is difficult to judge the amount at the time of use,
As a result, there is a problem that a large amount of waste is thrown away and waste occurs.

【0007】(2)ロ号公報に記載の浄水器では、未使
用時の水の滞留時間や周囲の環境により抗菌物質の必要
量が変化するにもかかわらず、抗菌物質の溶出速度の制
御が困難であるため、抗菌物質を常に多めに溶出させる
構成となっており、浄水中の抗菌物質に無駄が生じると
いう課題を有していた。
[0007] (2) In the water purifier described in the gazette of the publication, the dissolution rate of the antibacterial substance is controlled even though the required amount of the antibacterial substance changes depending on the residence time of the unused water and the surrounding environment. Since it is difficult, the antibacterial substance is always eluted in a large amount, and there is a problem that the antibacterial substance in purified water is wasted.

【0008】本発明は上記従来の課題を解決するもの
で、抗菌物質を使用せずに導水部の滞留水中の一般細菌
の増殖を防止できるとともに、使用する電力量、捨てる
初期水の量共に必要最低限で済み無駄がなく省エネルギ
ー性に優れた浄水器を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and can prevent the growth of general bacteria in the stagnant water of the water introduction section without using an antibacterial substance, and requires both the amount of electric power to be used and the amount of initial water to be discarded. It is an object of the present invention to provide a water purifier that is minimal and has no waste and is excellent in energy saving.

【0009】[0009]

【課題を解決するための手段】上記従来の課題を解決す
るために本発明における浄水器は、中空糸膜を備えた浄
水器であって、中空糸膜の出口および吐水管を連通する
導水部内に少なくとも一対の電極と、電極間に電圧を印
加する電源と、を備えた構成とするものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned conventional problems, a water purifier according to the present invention is a water purifier provided with a hollow fiber membrane, the water purifier being provided in a water guiding portion communicating with an outlet of the hollow fiber membrane and a water discharge pipe. And at least a pair of electrodes and a power supply for applying a voltage between the electrodes.

【0010】この構成により、抗菌物質を使用せずに導
水部の滞留水中の一般細菌の増殖を防止できるととも
に、使用する電力量、捨てる初期水の量共に必要最低限
で済み無駄がなく省エネルギー性に優れた浄水器を提供
することができる。
[0010] With this configuration, it is possible to prevent the growth of general bacteria in the stagnant water of the water conveyance section without using an antibacterial substance, and to minimize the amount of electric power used and the amount of initial water to be discarded, thereby reducing waste and saving energy. An excellent water purifier can be provided.

【0011】[0011]

【発明の実施の形態】本発明の請求項1に記載の浄水器
は、中空糸膜を備えた浄水器であって、中空糸膜の出口
および吐水管を連通する導水部内に少なくとも一対の電
極と、電極間に電圧を印加する電源と、を備えた構成を
有している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A water purifier according to a first aspect of the present invention is a water purifier provided with a hollow fiber membrane, wherein at least one pair of electrodes is provided in a water guide portion communicating with an outlet of the hollow fiber membrane and a water discharge pipe. And a power supply for applying a voltage between the electrodes.

【0012】この構成により、電極間に電圧を印加する
ことで殺菌作用を有する塩素が発生するとともに残留塩
素を低濃度域内に制御するため、導水部の滞留水中の一
般細菌の増殖を抗菌物質を使用せずに防止できるととも
に、捨てる初期水の量が必要最低限で済むという作用を
有する。
With this structure, chlorine having a bactericidal action is generated by applying a voltage between the electrodes, and the residual chlorine is controlled within a low concentration range. It can be prevented without using it, and has the effect that the amount of initial water to be discarded is the minimum required.

【0013】本発明の請求項2に記載の発明は、請求項
1に記載の浄水器であって、電極間の距離が0.5mm
以上3mm以下で形成された構成を有している。
The invention according to claim 2 of the present invention is the water purifier according to claim 1, wherein the distance between the electrodes is 0.5 mm.
It has a configuration of not less than 3 mm or more.

【0014】この構成により、塩素の発生効率を向上で
きるという作用が得られる。
According to this configuration, the effect that the generation efficiency of chlorine can be improved can be obtained.

【0015】ここで、電極間の距離が0.5mmより狭
くなるにつれ電気分解により発生する気泡が電極間に留
まるため塩素の発生効率が低下する傾向があり、3mm
より広くなるにつれ電極間の電解電流が減少するため塩
素の発生効率が低下する傾向があり、いずれも好ましく
ない。
Here, as the distance between the electrodes becomes smaller than 0.5 mm, bubbles generated by electrolysis remain between the electrodes, so that the chlorine generation efficiency tends to decrease.
As the electrode becomes wider, the electrolysis current between the electrodes decreases, and the chlorine generation efficiency tends to decrease.

【0016】本発明の請求項3に記載の発明は、請求項
1または2に記載の浄水器であって、電極間の印加電圧
が1.5V以上9V以下に設定されている構成を有して
いる。
A third aspect of the present invention is the water purifier according to the first or second aspect, wherein the applied voltage between the electrodes is set to 1.5 V or more and 9 V or less. ing.

【0017】この構成により、塩素の発生効率が向上す
るため、塩素を確実に発生させることができるという作
用を有する。
According to this configuration, since the generation efficiency of chlorine is improved, there is an effect that chlorine can be reliably generated.

【0018】ここで、印加電圧が1.5V以下の場合塩
素の発生効率が低下する傾向があり、9V以上の場合水
道水の電解効率が低下する傾向があり、いずれも好まし
くない。
Here, when the applied voltage is 1.5 V or less, the chlorine generation efficiency tends to decrease, and when the applied voltage is 9 V or more, the electrolysis efficiency of tap water tends to decrease, and neither is preferable.

【0019】本発明の請求項4に記載の発明は、請求項
1乃至3の内いずれか1に記載の浄水器であって、電源
として電池を使用する構成を有している。
According to a fourth aspect of the present invention, there is provided the water purifier according to any one of the first to third aspects, wherein the water purifier has a configuration using a battery as a power source.

【0020】この構成により、電源プラグが不要となり
場所を選ばずに設置ができるとともに、装置の小型化が
図ることができるという作用を有する。
According to this configuration, the power plug is not required, the apparatus can be installed in any place, and the size of the apparatus can be reduced.

【0021】本発明の請求項5に記載の発明は、請求項
1乃至4の内いずれか1に記載の浄水器であって、吐水
管に配設された通水検知手段と、および/または通水検
知手段で検知された通水と電池の寿命とを報知する報知
手段と、を備えた構成を有している。
According to a fifth aspect of the present invention, there is provided the water purifier according to any one of the first to fourth aspects, wherein water detecting means provided on the water discharge pipe and / or And a notification unit for notifying the water flow detected by the water flow detection unit and the life of the battery.

【0022】この構成により、通水を検知すると同時に
電極間に電圧を印加することができ、また、電源に電池
を使用する場合は電池寿命を報知するため、使用時に容
易に電池寿命を確認できるという作用を有する。
With this configuration, it is possible to apply a voltage between the electrodes at the same time as detecting water flow, and to notify the battery life when a battery is used as a power supply, so that the battery life can be easily confirmed at the time of use. It has the action of:

【0023】ここで、通水検知手段としては圧力スイッ
チ、フロートスイッチ等が用いられる。また、報知手段
としては、LEDランプ、電子ブザー等が用いられる。
Here, a pressure switch, a float switch or the like is used as the water flow detecting means. An LED lamp, an electronic buzzer, or the like is used as the notification means.

【0024】本発明の請求項6に記載の発明は、請求項
1乃至5の内いずれか1に記載の浄水器であって、電極
間の電流値の検知手段と、電流検出値に応じて通電時間
を制御する通電制御手段と、を備えた構成を有してい
る。
According to a sixth aspect of the present invention, there is provided the water purifier according to any one of the first to fifth aspects, wherein the means for detecting the current value between the electrodes and the detected current value are provided. Power supply control means for controlling the power supply time.

【0025】この構成により、浄水器に供給される水道
水において、塩素生成速度に関わる水質の変化が電流値
の変化として検知手段に検出されるため、電極間での塩
素の発生速度を予測することができるとともに、電極間
への通電時間を変化させて単位時間あたりの塩素発生量
を適量に維持できるという作用を有する。
With this configuration, in the tap water supplied to the water purifier, a change in water quality related to the chlorine generation rate is detected by the detection means as a change in the current value, so that the generation rate of chlorine between the electrodes is predicted. In addition to this, there is an effect that the amount of chlorine generated per unit time can be maintained at an appropriate amount by changing the current supply time between the electrodes.

【0026】ここで、検知手段としては抵抗法、カレン
トトランス(CT)等が用いられる。
Here, a resistance method, a current transformer (CT) or the like is used as the detecting means.

【0027】本発明の請求項7に記載の発明は、請求項
6に記載の浄水器であって、電流検出値を表示する表示
手段を備えた構成を有している。
According to a seventh aspect of the present invention, there is provided the water purifier according to the sixth aspect, wherein the water purifier has a display means for displaying a detected current value.

【0028】この構成により、使用者に殺菌作用の強さ
を把握させることができ、また、電源に電池を使用する
場合は電池寿命を予測できるという作用を有する。
With this configuration, it is possible to allow the user to grasp the strength of the sterilizing action, and to use a battery as a power supply to predict the life of the battery.

【0029】ここで、表示手段としては、液晶パネル等
が用いられる。
Here, a liquid crystal panel or the like is used as the display means.

【0030】本発明の請求項8に記載の発明は、請求項
7に記載の浄水器であって、電流検出値の表示手段の指
示に応じて通電制御手段に電極間の通電時間を入力する
入力手段を備えた構成としている。
According to an eighth aspect of the present invention, there is provided the water purifier according to the seventh aspect, wherein the energization time between the electrodes is input to the energization control means in response to an instruction of the means for displaying the detected current value. It is configured to include input means.

【0031】この構成により、使用者の好みや用途に応
じて殺菌作用の強さを調節することができ、また、電源
に電池を使用する場合は電池寿命をのばすことができる
という作用を有する。
With this configuration, the strength of the sterilizing action can be adjusted according to the user's preference and application, and when a battery is used as the power supply, the battery life can be extended.

【0032】ここで、入力手段としては、切り換えスイ
ッチ、無段階調整つまみ等が用いられる。
Here, as the input means, a changeover switch, a stepless adjustment knob or the like is used.

【0033】以下に本発明の一実施の形態について、図
面を用いて説明する。
An embodiment of the present invention will be described below with reference to the drawings.

【0034】(実施の形態1)図1は本発明の実施の形
態1における浄水器の要部断面図、図2は図1のA−A
線断面図である。
(Embodiment 1) FIG. 1 is a sectional view of a main part of a water purifier according to Embodiment 1 of the present invention, and FIG.
It is a line sectional view.

【0035】図中、1は本発明の実施の形態1における
浄水器、2は浄水器1に配設されたカートリッジ、3は
カートリッジ2の下方に収納された粒状活性炭からなる
吸着材、4はカートリッジ2内の吸着材3の上方に配設
された中空糸膜、5は一対の電極、6は浄水器1に形成
されカートリッジ2の中空糸膜4側に連通した吐水管、
6aは吐水管6の終端部に形成された吐水口、7はカー
トリッジ2の中空糸膜4側および吐水管6を連通する導
水部、8は一対の電極5が配置され導水部7に形成され
た電解槽、9は一対の電極5間に電圧を印加する電源の
電池、10は浄水器1の上面に配設された電池9の寿命
の報知手段のLEDランプ、11は吐水管6に配設され
た通水検知手段の通水検知センサー、12は一対の電極
5間に印加される電圧を検知する電圧検知センサー、1
3は一対の電極5間の電流値を検知する検知手段の電流
検知器、14は一対の電極5間に印加される電圧の制御
プログラムおよび一対の電極5間の通電時間の制御プロ
グラムを内蔵した通電制御手段のマイクロコンピュータ
ー、15はマイクロコンピューター14により制御され
電池9の電圧に関わらず一対の電極5間に一定の電圧を
印加する電気回路である。
In the drawing, reference numeral 1 denotes a water purifier according to the first embodiment of the present invention, 2 denotes a cartridge disposed in the water purifier 1, 3 denotes an adsorbent made of granular activated carbon housed below the cartridge 2, and 4 denotes A hollow fiber membrane 5 disposed above the adsorbent 3 in the cartridge 2, a pair of electrodes 5, a water discharge pipe 6 formed in the water purifier 1 and communicating with the hollow fiber membrane 4 side of the cartridge 2,
6a is a water discharge port formed at the end of the water discharge pipe 6, 7 is a water conduction part communicating between the hollow fiber membrane 4 side of the cartridge 2 and the water discharge pipe 6, and 8 is formed in the water conduction part 7 where a pair of electrodes 5 are arranged. An electrolytic cell, 9 is a battery of a power supply for applying a voltage between the pair of electrodes 5, 10 is an LED lamp as a means for informing the life of the battery 9 provided on the upper surface of the water purifier 1, and 11 is a battery provided on the water discharge pipe 6. A water flow detecting sensor of the provided water flow detecting means, 12 is a voltage detecting sensor for detecting a voltage applied between the pair of electrodes 5, 1
Reference numeral 3 denotes a current detector of a detecting means for detecting a current value between the pair of electrodes 5, and 14 includes a control program of a voltage applied between the pair of electrodes 5 and a control program of a conduction time between the pair of electrodes 5. A microcomputer 15 as an energization control means is an electric circuit which is controlled by the microcomputer 14 and applies a constant voltage between the pair of electrodes 5 regardless of the voltage of the battery 9.

【0036】なお、本実施の形態1では、電池9として
単三アルカリ乾電池を用いている。また、一対の電極5
間の距離は2mmに形成している。さらに、補助電源と
して電気回路15を組み込み、マイクロコンピューター
14が電池9と電気回路15のデューティ比を選択する
ことで常に3Vの電圧が一対の電極5間に印加されるよ
うになっている。
In the first embodiment, an AA alkaline battery is used as the battery 9. Also, a pair of electrodes 5
The distance between them is 2 mm. Further, an electric circuit 15 is incorporated as an auxiliary power supply, and the microcomputer 14 selects a duty ratio between the battery 9 and the electric circuit 15 so that a voltage of 3 V is always applied between the pair of electrodes 5.

【0037】以上のように構成された本実施の形態1の
浄水器について、以下その動作を説明する。
The operation of the water purifier thus configured according to the first embodiment will be described below.

【0038】浄水器1の所定の位置に電池9を2個直列
に取り付けて使用される。通水が開始されて導水部7に
水道水が集まり、通水検知センサー11が通水開始を検
知すると、電池9および電気回路15により電解槽8内
の一対の電極5間に電圧が印加され電流が流れるととも
に、電圧検知センサー12により電池9の電圧が検出さ
れる。ここで、検出した電池9の電圧が2Vを越えてい
る場合は、通水中の間LEDランプ10が点灯して電池
9が使用可能であることが報知され、また、検出した電
池9の電圧が2Vを下回っている場合は、LEDランプ
10が点滅することで電池9が交換時期にきたことが報
知される。電解槽8内では電流によって水道水が電解さ
れ、塩素が発生する。発生した塩素は水道水に溶解して
次亜塩素酸、次亜塩素酸イオンとなって殺菌作用を有す
る。
The water purifier 1 is used by mounting two batteries 9 at predetermined positions in series. When the flow of water is started and the tap water is collected in the water guide section 7 and the flow detection sensor 11 detects the start of water flow, a voltage is applied between the pair of electrodes 5 in the electrolytic cell 8 by the battery 9 and the electric circuit 15. As the current flows, the voltage of the battery 9 is detected by the voltage detection sensor 12. Here, when the detected voltage of the battery 9 exceeds 2 V, the LED lamp 10 is turned on during the passage of water to notify that the battery 9 is usable. When the voltage is lower than 2 V, the LED lamp 10 blinks to notify that the battery 9 has reached the time for replacement. In the electrolytic cell 8, tap water is electrolyzed by an electric current to generate chlorine. The generated chlorine is dissolved in tap water to become hypochlorous acid and hypochlorite ions, and has a bactericidal action.

【0039】ここで、一対の電極5間に流れる電流は水
道水の電気伝導度に左右される。また、殺菌作用の主な
要因である塩素の生成速度は水道水中の塩素イオン濃度
に左右される。
Here, the current flowing between the pair of electrodes 5 depends on the electric conductivity of tap water. In addition, the rate of chlorine production, which is a main factor in the sterilization action, depends on the chloride ion concentration in tap water.

【0040】以下、水道水の電気伝導度と塩素イオン濃
度の関係を調査した結果、および本実施の形態1におけ
る浄水器を用いて各塩素イオン濃度の水道水を通水した
際の電流検出器13により検出される電流検出値と塩素
生成速度の関係を調査した結果について、図面を用いて
説明する。
Hereinafter, the results of an investigation of the relationship between the electrical conductivity of tap water and the chloride ion concentration, and the current detector when tap water of each chloride ion concentration was passed using the water purifier of the first embodiment. The result of investigating the relationship between the current detection value detected by 13 and the chlorine generation rate will be described with reference to the drawings.

【0041】図3は実施の形態1における水道水の電気
伝導度と塩素イオン濃度の関係を示すグラフであり、図
4は本発明の実施の形態1における浄水器を用いて各塩
素イオン濃度の水道水を通水した際の電流検出器13に
より検出される電流検出値と塩素生成速度の関係を示す
グラフである。図3より、電気伝導度が高いほど塩素イ
オン濃度が高くなることがわかる。また、図4より、電
流検出値と塩素の生成速度はほぼ比例しているので、電
流検出値から塩素の生成速度が予測できることがわか
る。そこで、電流検出値と塩素の生成速度の関係をもと
に、浄水器1の導水部7の滞留水中の残留塩素濃度が適
正な濃度になるよう単位時間あたりの電流検出値に対す
る通電時間を設定し、マイクロコンピューター14に通
電制御プログラムを内蔵させる。図5は電流検出値と電
流検出値に応じてマイクロコンピューター14の通電制
御プログラムが決定し、1時間に1回実施される一対の
電極5間の通電時間の関係を示したグラフである。図5
より、電流検出値が大きいほど単位時間あたりの通電時
間が短くなることがわかる。
FIG. 3 is a graph showing the relationship between the electrical conductivity of tap water and the chloride ion concentration in the first embodiment, and FIG. 4 is a graph showing the relationship between each chloride ion concentration using the water purifier in the first embodiment of the present invention. It is a graph which shows the relationship between the current detection value detected by the current detector 13 when flowing tap water, and the chlorine generation rate. FIG. 3 indicates that the higher the electric conductivity, the higher the chloride ion concentration. Also, from FIG. 4, it can be seen that the detected current value and the chlorine generation rate are almost proportional, and therefore the chlorine generation rate can be predicted from the detected current value. Therefore, based on the relationship between the detected current value and the generation rate of chlorine, the energizing time for the detected current value per unit time is set so that the residual chlorine concentration in the stagnant water of the water guide unit 7 of the water purifier 1 becomes an appropriate concentration. Then, an energization control program is built in the microcomputer 14. FIG. 5 is a graph showing the relationship between the detected current value and the energization time between the pair of electrodes 5 that is determined once by the energization control program of the microcomputer 14 according to the detected current value and executed once an hour. FIG.
From this, it is understood that the larger the current detection value, the shorter the energizing time per unit time.

【0042】以上のような通電制御プログラムがマイク
ロコンピューター14に内蔵されているため、一対の電
極5間に通電が開始され電流検知器13で検出される電
流検出値がマイクロコンピューター14に伝えられる
と、電流検出値に応じて1時間に1回実施される通電時
間を通電制御プログラムが決定し通電される。これによ
り、導水部7の滞留水中の残留塩素濃度が一定範囲内に
制御される。
Since the energization control program as described above is incorporated in the microcomputer 14, when energization is started between the pair of electrodes 5 and a current detection value detected by the current detector 13 is transmitted to the microcomputer 14. The energization control program determines the energization time to be performed once an hour according to the detected current value, and the energization is performed. Thereby, the concentration of residual chlorine in the stagnant water in the water guide section 7 is controlled within a certain range.

【0043】なお、次の通水が行われた場合には最初の
通水検知動作に戻り、それまでの通電制御プログラムは
リセットされる。通水は通常1日1〜5回程度実施され
るが、この場合の通水時間は1時間に満たないため通電
が早まることになる。このように通水時間が短い場合に
おいては1時間単位の通電制御プログラムに沿って通電
が行われ、一般細菌の増殖が抑えられる。
When the next water flow is performed, the flow returns to the first water flow detection operation, and the current supply control program up to that point is reset. Water is usually passed about 1 to 5 times a day, but in this case, the water flow time is less than 1 hour, so that the power is supplied earlier. In the case where the water flow time is short in this manner, power is supplied according to a power supply control program in units of one hour, and the growth of general bacteria is suppressed.

【0044】(実施の形態2)本実施の形態2の浄水器
は、実施の形態1の浄水器に表示手段および入力手段を
備えたものである。
(Embodiment 2) The water purifier of Embodiment 2 is provided with display means and input means in the water purifier of Embodiment 1.

【0045】図6は本発明の実施の形態2における浄水
器1の上部斜視図である。なお、図1において説明した
ものと同様のものは同一の符号を付して説明は省略す
る。
FIG. 6 is a top perspective view of a water purifier 1 according to Embodiment 2 of the present invention. Note that the same components as those described in FIG. 1 are denoted by the same reference numerals and description thereof is omitted.

【0046】図中、16は一対の電極5間に電圧を印加
した際の電流検出値等を表示する表示手段の液晶パネ
ル、17は電極5間の通電時間を3段階で切り換える入
力手段のスイッチである。
In the drawing, reference numeral 16 denotes a liquid crystal panel of a display means for displaying a current detection value when a voltage is applied between the pair of electrodes 5, and 17 denotes a switch of an input means for switching the energization time between the electrodes 5 in three stages. It is.

【0047】以上のように構成された本実施の形態2の
浄水器について、以下その動作を説明する。
The operation of the water purifier of Embodiment 2 configured as described above will be described below.

【0048】まず、実施の形態1の図5に示す単位時間
あたりの通電時間のプログラムを標準モードとして設定
する。さらに、標準モードの2倍の通電時間を高モー
ド、標準モードの半分の通電時間を低モードとして設定
し、マイクロコンピューター14に各モードの通電制御
プログラムを内蔵させる。各モードの選択は、好みまた
は用途に応じて使用者がスイッチ17を操作して行う。
高モードを選択した場合、標準モードと比較して塩素の
発生量が多いため、殺菌力が強くなる。また、低モード
を選択した場合、標準モードと比較して塩素の発生量が
少ないため、初期通水時間が短くても残留塩素濃度の低
い飲料水が得られる。選択されているモードおよび電流
検出値、電池9の寿命の予測値等が液晶パネル16に表
示されており、使用者の必要に応じて随時情報を得るこ
とができる。
First, the program of the energization time per unit time shown in FIG. 5 of the first embodiment is set as the standard mode. Further, the energization time twice as long as the standard mode is set as the high mode, and the energization time half as long as the standard mode is set as the low mode. The microcomputer 14 incorporates an energization control program for each mode. The selection of each mode is performed by the user operating the switch 17 according to the preference or use.
When the high mode is selected, the amount of generated chlorine is larger than that in the standard mode, so that the sterilizing power is increased. When the low mode is selected, the amount of generated chlorine is smaller than that in the standard mode, so that drinking water having a low residual chlorine concentration can be obtained even if the initial water flow time is short. The selected mode, the detected current value, the predicted value of the life of the battery 9, and the like are displayed on the liquid crystal panel 16, so that information can be obtained as needed by the user.

【0049】[0049]

【実施例】以下に本発明の実施例について説明する。Embodiments of the present invention will be described below.

【0050】(実施例1)実施の形態1の浄水器を用い
て、以下のように実験を行った。
(Example 1) An experiment was performed as follows using the water purifier of the first embodiment.

【0051】本実施例の浄水器1において、一対の電極
5間の距離を2mm、電極5の面積を2cm2、印加電
圧を3Vに設定し、電極材料にイリジウム入り白金焼成
チタンを使用した。
In the water purifier 1 of the present embodiment, the distance between the pair of electrodes 5 was set to 2 mm, the area of the electrodes 5 was set to 2 cm 2 , the applied voltage was set to 3 V, and iridium-containing platinum fired titanium was used as the electrode material.

【0052】図1に示す浄水器1に新しいカートリッジ
2をセットした後、電気伝導度85μS/cm、塩素イ
オン濃度12mg/L、pH6.8の水道水を用いて約
30L、毎分2Lの通水速度で通水した。通常、新しい
カートリッジ2の場合あるいは毎日浄水器1を使用して
いる状態では、導水部7の滞留水中の一般細菌汚染によ
る増殖は認められにくいと考えられるため、滞留水中に
一般細菌を注入した。注入方法として、予め48時間ビ
ーカーに汲み置きしておいた水道水に加熱滅菌した水道
水を加え、一般細菌濃度が100CFU/mLとなるよ
うに希釈調整した液を1mL滅菌ピペットに取り、希釈
調整液がこぼれないように導水部7に注入する方法をと
った。24時間経過後、毎分2Lの通水速度で30Lの
通水を行った。この時の初期通水2Lを加熱殺菌してお
いたビーカーに0.2L毎に取り分け、それぞれの生菌
数と残留塩素濃度を調べた。また、上記通電による制菌
効果を把握するため、通電なしの場合の比較実験につい
てもあわせて同様に実施した。
After a new cartridge 2 is set in the water purifier 1 shown in FIG. 1, a flow rate of about 30 liters and 2 liters per minute using tap water having an electric conductivity of 85 μS / cm, a chlorine ion concentration of 12 mg / L and a pH of 6.8 is used. Water was passed at the water speed. Normally, in the case of a new cartridge 2 or in a state where the water purifier 1 is used every day, it is considered that the growth due to the general bacterial contamination in the stagnant water of the water guide part 7 is hardly recognized. Therefore, the general bacterium was injected into the stagnant water. As an injection method, heat-sterilized tap water was added to tap water previously pumped in a beaker for 48 hours, and a diluted solution was adjusted to a general bacterial concentration of 100 CFU / mL with a 1 mL sterile pipette, and the dilution was adjusted. A method of injecting the liquid into the water guiding section 7 so as not to spill was adopted. After 24 hours, 30 L of water was passed at a flow rate of 2 L per minute. At this time, 2 L of the initial water flow was divided into 0.2 L of beakers which had been sterilized by heating, and the number of viable bacteria and the concentration of residual chlorine were examined. In addition, in order to grasp the bacteriostatic effect of the energization, a comparative experiment without the energization was similarly performed.

【0053】通電あり・なしの場合の初期通水2L中の
一般細菌の生菌数の推移を図7に示す。図7に示すよう
に、通電なしの場合の初期通水中の生菌数は、0〜0.
2Lで1100CFU/mLとなり、0.6〜0.8L
で100CFU/mL以下となり、1.8〜2Lで0C
FU/mLに達した。通電ありの場合、0〜2Lの範囲
の全ての採取した水において生菌は確認されなかった。
FIG. 7 shows changes in the number of viable bacteria of general bacteria in 2 L of initial water flow with and without power supply. As shown in FIG. 7, the number of viable bacteria in the initial water flow when no current is supplied is 0 to 0.
2L becomes 1100 CFU / mL, 0.6-0.8L
Becomes 100 CFU / mL or less and becomes 0C at 1.8 to 2 L
FU / mL was reached. When electricity was supplied, no viable bacteria were confirmed in all the collected water in the range of 0 to 2 L.

【0054】次に初期通水中の残留塩素濃度を調べた。
通電ありの場合の初期通水2L中の残留塩素濃度の推移
を図8に示す。図8に示すように、通電ありの場合にお
いての初期通水中の残留塩素濃度としては、0〜0.2
Lで最大0.06mg/Lの残留塩素が検出されたが、
0.2L以降の採取した水においては残留塩素は検出さ
れなかった。通電なしの場合においては残留塩素濃度が
検出されなかったため、図は省略する。なお、検出限界
値は0.02mg/Lである。
Next, the residual chlorine concentration in the initial water flow was examined.
FIG. 8 shows the change in the concentration of residual chlorine in 2 L of the initial water flow when power is supplied. As shown in FIG. 8, the residual chlorine concentration in the initial water flow in the case where power is supplied is 0 to 0.2.
Although a maximum of 0.06 mg / L of residual chlorine was detected in L,
No residual chlorine was detected in the collected water after 0.2 L. Since no residual chlorine concentration was detected when no current was supplied, the illustration is omitted. Note that the detection limit value is 0.02 mg / L.

【0055】以上のように、本実施例1によれば浄水器
1を通常に使用する場合、使用開始時の初期水から水道
水質基準である100CFU/mL以下を常に保持でき
るとともに、初期水中の残留塩素濃度についても、0.
2L程度を最初に捨てれば検出限界値以下となり、その
後は塩素特有の臭いを気にすることなく飲料水として快
適に利用できることがわかる。
As described above, according to the first embodiment, when the water purifier 1 is used normally, the initial water at the start of use can always maintain the tap water quality standard of 100 CFU / mL or less, and the water in the initial water can be maintained. Regarding the residual chlorine concentration, 0.1
It can be seen that if about 2 L is discarded first, it becomes lower than the detection limit, and thereafter it can be used comfortably as drinking water without worrying about the odor peculiar to chlorine.

【0056】(実施例2)実施の形態2の浄水器を用
い、各モードにおける評価実験を実施例1と同様に実施
した。
(Example 2) Using the water purifier of the second embodiment, evaluation experiments in each mode were performed in the same manner as in the first example.

【0057】各モード別の通電時間と初期通水中の生菌
数の推移の関係を図9に示す。図9に示すように、低モ
ードの通電時間での初期通水中の生菌数は、0〜0.2
Lで6CFU/mLで初期から水道水質基準を大幅に下
回っており、0.4L以降は0CFU/mLに達した。
標準モードおよび高モードの通電時間では、0〜2Lに
至る全ての初期通水中で生菌は確認されなかった。
FIG. 9 shows the relationship between the energization time for each mode and the change in the number of viable bacteria in the initial water flow. As shown in FIG. 9, the number of viable bacteria in the initial water flow during the low mode energization time is 0 to 0.2.
At 6 CFU / mL in L, the water quality was far below the standard for tap water from the beginning, and reached 0.4 CFU / mL after 0.4 L.
In the standard mode and the high mode energization time, no viable bacteria were confirmed in all initial water flows from 0 to 2 L.

【0058】次に、各モード別の通電時間と初期通水中
の残留塩素濃度の推移の関係を図10に示す。図10に
示すように、各モードの通電時間での初期通水中の残留
塩素濃度は、0〜0.2Lでは濃度が最も高い高モード
で0.13mg/Lであり、通常の水道水中に含まれる
残留塩素濃度程度であった。残留塩素濃度の検出限界値
である0.02mg/L以下となる初期通水量は低モー
ドで0.4L、標準および高モードで0.6Lであり、
いずれもコップ2、3杯の通水量で初期通水中の残留塩
素がほとんどなくなることが判明した。
Next, FIG. 10 shows the relationship between the energization time for each mode and the transition of the residual chlorine concentration in the initial water flow. As shown in FIG. 10, the residual chlorine concentration in the initial water flow during the energization time in each mode is 0.13 mg / L in the high mode having the highest concentration at 0 to 0.2 L, and is included in ordinary tap water. Was about the residual chlorine concentration. The initial flow rate at which the residual chlorine concentration is below the detection limit of 0.02 mg / L is 0.4 L in the low mode and 0.6 L in the standard and high modes,
In each case, it was found that the residual chlorine in the initial water flow hardly disappeared with the water flow of two or three glasses.

【0059】ここで、電流検出値をa(mA)、標準モ
ードにおける単位時間あたりの通電時間をb(h)とす
ると、1日に消費される電流容量(mA・h)は(数
1)のように表される。
Here, assuming that the detected current value is a (mA) and the energizing time per unit time in the standard mode is b (h), the current capacity (mA · h) consumed per day is (Equation 1). It is represented as

【0060】[0060]

【数1】 (Equation 1)

【0061】また、電池9の総電流容量のうち、一対の
電極5間の通電電流として使用できる電流容量をc(m
A・h)とすると、電池9の寿命(日)は(数2)のよ
うに表される。
Further, of the total current capacity of the battery 9, the current capacity that can be used as a current flowing between the pair of electrodes 5 is c (m
A · h), the life (day) of the battery 9 is expressed as (Equation 2).

【0062】[0062]

【数2】 (Equation 2)

【0063】本実施例2における実験条件を継続する場
合を仮定して各モードの電池9の寿命を算出すると、本
実施例2における電流検出値は約1.6mAであったこ
とから、標準モードにおける単位時間あたりの通電時間
は図5より10分であることがわかるので、1日に消費
される電流容量は(数1)より6.4mA・hと算出さ
れる。また、単三アルカリ乾電池1個の電流容量は約2
500mA・hであることから、電圧を印加する際に電
池9の総電流容量のうち2000mA・hが一対の電極
5間の通電電流として使用できるとすると、電池9の寿
命は(数2)より312.5日と算出される。この値を
用いて各モードの電池9の寿命を算出すると、低モード
における通電時間は標準モードの半分であるので、電池
9の寿命は標準モードの2倍の625日、また、高モー
ドにおける通電時間は標準モードの2倍であるので、電
池9の寿命は標準モードの半分の156.25日、と算
出される。
When the life of the battery 9 in each mode was calculated assuming that the experimental conditions in the second embodiment were continued, the detected current value in the second embodiment was about 1.6 mA. It can be seen from FIG. 5 that the energizing time per unit time is 10 minutes, and the current capacity consumed per day is calculated as 6.4 mA · h from (Equation 1). The current capacity of one AA alkaline battery is about 2
Since it is 500 mA · h, assuming that 2000 mA · h of the total current capacity of the battery 9 can be used as an energizing current between the pair of electrodes 5 when applying a voltage, the life of the battery 9 is given by (Equation 2). Calculated as 312.5 days. When the life of the battery 9 in each mode is calculated using this value, the energization time in the low mode is half of that in the standard mode, and the life of the battery 9 is 625 days, which is twice as long as that in the standard mode. Since the time is twice as long as that in the standard mode, the life of the battery 9 is calculated to be 156.25 days, which is half that in the standard mode.

【0064】以上のように、本実施例2によれば、通電
時間モードを選択することで好みや用途に応じた使用が
でき、また、電池9の寿命をのばすことも可能であるこ
とがわかる。
As described above, according to the second embodiment, by selecting the energization time mode, it is possible to use the battery according to tastes and applications, and it is also possible to extend the life of the battery 9. .

【0065】[0065]

【発明の効果】以上のように本発明の浄水器によれば、
以下のような有利な効果が得られる。
As described above, according to the water purifier of the present invention,
The following advantageous effects can be obtained.

【0066】請求項1に記載の発明によれば、電極間で
殺菌作用を有する塩素が発生するとともに残留塩素を低
濃度域内に制御するため、導水部の滞留水中の一般細菌
増殖を抗菌物質を使用せずに防止することができるとと
もに、捨てる初期水の量が必要最低限で済む無駄がなく
省コスト性に優れた浄水器の提供が可能となる。
According to the first aspect of the invention, chlorine having a bactericidal action is generated between the electrodes and the residual chlorine is controlled within a low concentration range. It is possible to provide a water purifier which can be prevented without using it, and which has a minimum amount of initial water to be discarded and which has no waste and is excellent in cost saving.

【0067】請求項2に記載の発明によれば、請求項1
の効果に加え、電極間で塩素の発生効率を向上できるた
め、省エネルギー性に優れた浄水器の提供が可能とな
る。
According to the invention described in claim 2, according to claim 1
In addition to the effect described above, the efficiency of chlorine generation between the electrodes can be improved, so that it is possible to provide a water purifier excellent in energy saving.

【0068】請求項3に記載の発明によれば、請求項1
または2の効果に加え、塩素を確実に発生させることが
できるため、殺菌性、抗菌性に優れた浄水器の提供が可
能となる。
According to the invention described in claim 3, according to claim 1
Or, in addition to the effect of 2, since chlorine can be surely generated, it is possible to provide a water purifier having excellent sterilization and antibacterial properties.

【0069】請求項4に記載の発明によれば、請求項1
乃至3の内いずれか1の効果に加え、電源に電池を使用
するため、電源プラグが不要となり場所を選ばずに設置
ができるとともに、装置の小型化を図ることができる浄
水器の提供が可能となる。
According to the invention of claim 4, according to claim 1,
In addition to the effects of any one of the above, the use of a battery for the power supply eliminates the need for a power plug, so that the water purifier can be installed in any location, and the size of the apparatus can be reduced. Becomes

【0070】請求項5に記載の発明によれば、請求項1
乃至4の内いずれか1の効果に加え、通水を検知すると
同時に電極間に電圧を印加することができ、また、電源
に電池を使用する場合は電池寿命を報知するため、使用
時に容易に電池寿命を確認でき、常に高い殺菌、抗菌能
力を有する無駄のない浄水器の提供が可能となる。
According to the fifth aspect of the present invention, the first aspect is provided.
In addition to the effect of any one of (1) to (4), it is possible to apply a voltage between the electrodes at the same time as detecting the passage of water, and to inform the battery life when using a battery as a power source, so that it can be easily used at the time of use. The life of the battery can be confirmed, and a water purifier having high sterilization and antibacterial ability without waste can be provided.

【0071】請求項6に記載の発明によれば、請求項1
乃至5の内いずれか1の効果に加え、浄水器に供給され
る水道水において、塩素生成速度に関わる水質の変化が
電流値の変化として検知手段に検出されるため、電極間
での塩素の発生速度を予測することができるとともに、
単位時間あたりの塩素発生量を適量に維持でき、使用す
る電力量、捨てる初期水の量ともに必要最低限で済む無
駄のない浄水器の提供が可能となる。
According to the invention described in claim 6, according to claim 1,
In addition to the effect of any one of the above, in water supplied to the water purifier, a change in water quality related to the chlorine generation rate is detected by the detection means as a change in the current value. The occurrence rate can be predicted,
The amount of chlorine generated per unit time can be maintained at an appropriate level, and it is possible to provide a water purifier that requires no minimum amount of electric power to be used and initial water to be discarded.

【0072】請求項7に記載の発明によれば、請求項6
の効果に加え、浄水器の使用状況に関する情報を表示で
きるため、使用者に殺菌作用の強さを把握させることが
でき、また、電源に電池を使用する場合は電池寿命を予
測できる利便性に優れた浄水器の提供が可能となる。
According to the invention of claim 7, according to claim 6,
In addition to the effect of the water purifier, it can display information on the usage status of the water purifier, so that the user can grasp the strength of the sterilization action, and when using a battery for the power supply, the convenience of predicting the battery life is improved. An excellent water purifier can be provided.

【0073】請求項8に記載の発明によれば、請求項7
の効果に加え、通電時間の入力手段を備えることで、使
用者の好みや用途に応じて殺菌作用の強さを選択するこ
とができ、また、電源に電池を使用する場合は電池寿命
をのばすことができる省エネルギー性に優れた浄水器の
提供が可能となる。
According to the invention of claim 8, according to claim 7,
In addition to the effect of the above, by providing the input means of the energization time, it is possible to select the strength of the sterilization action according to the user's preference and application, and to extend the battery life when using a battery for the power supply It is possible to provide a water purifier having excellent energy saving properties.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1における浄水器の断面図FIG. 1 is a cross-sectional view of a water purifier according to Embodiment 1 of the present invention.

【図2】図1のA−A線断面図FIG. 2 is a sectional view taken along line AA of FIG. 1;

【図3】実施の形態1における水道水の電気伝導度と塩
素イオン濃度の関係を示すグラフ
FIG. 3 is a graph showing the relationship between the electric conductivity of tap water and the chloride ion concentration in the first embodiment.

【図4】実施の形態1における各塩素イオン濃度の水道
水を用いて通電した際の電流検出値と塩素生成速度の関
係を示すグラフ
FIG. 4 is a graph showing a relationship between a detected current value and a chlorine generation rate when electricity is supplied using tap water having each chlorine ion concentration in the first embodiment.

【図5】実施の形態1における電流検出値と電流検出値
に応じて決定され1時間に1回実施される通電時間の関
係を示すグラフ
FIG. 5 is a graph showing a relationship between a detected current value and an energizing time that is determined according to the detected current value and performed once an hour according to the first embodiment;

【図6】本発明の実施の形態2における浄水器の上部斜
視図
FIG. 6 is a top perspective view of a water purifier according to Embodiment 2 of the present invention.

【図7】実施例1における通電の実施の有無による初期
通水2L中の一般細菌の生菌数の推移を示すグラフ
FIG. 7 is a graph showing a change in the number of viable bacteria of general bacteria in 2 L of initial water flow depending on whether or not power is supplied in Example 1.

【図8】実施例1における通電を実施した場合の初期通
水2L中の残留塩素濃度の推移を示すグラフ
FIG. 8 is a graph showing a change in the concentration of residual chlorine in 2 L of the initial water flow when power is applied in Example 1.

【図9】実施例2における各モード別の通電時間と初期
通水中の一般細菌の生菌数の推移の関係を示すグラフ
FIG. 9 is a graph showing the relationship between the energization time for each mode and the change in the viable count of general bacteria in the initial water flow in Example 2.

【図10】実施例2における各モード別の通電時間と初
期通水中の残留塩素濃度の推移の関係を示すグラフ
FIG. 10 is a graph showing the relationship between the energization time for each mode and the change in the residual chlorine concentration in the initial water flow in Example 2.

【符号の説明】[Explanation of symbols]

1 浄水器 2 カートリッジ 3 吸着材 4 中空糸膜 5 電極 6 吐水管 6a 吐水口 7 導水部 8 電解槽 9 電池 10 LEDランプ 11 通水検知センサー 12 電圧検知センサー 13 電流検知器 14 マイクロコンピューター 15 電気回路 16 液晶パネル 17 スイッチ DESCRIPTION OF SYMBOLS 1 Water purifier 2 Cartridge 3 Adsorbent 4 Hollow fiber membrane 5 Electrode 6 Water discharge pipe 6a Water discharge port 7 Water guide part 8 Electrolysis tank 9 Battery 10 LED lamp 11 Water flow detection sensor 12 Voltage detection sensor 13 Current detector 14 Microcomputer 15 Electric circuit 16 LCD panel 17 Switch

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/50 531 C02F 1/50 531P 540 540B 550 550D 550L 560 560B 560E 560F Fターム(参考) 4D006 GA02 HA03 HA19 HA91 JA18A JA18Z KA02 KA71 KB12 KB30 KD19 KD24 KE02P KE12P KE15P KE19P MA01 PA01 PB06 PC51 4D024 AA02 AB04 AB11 BA02 CA04 CA13 DB05 DB09 DB27 4D061 DA03 DB01 DB10 EA02 EB19 EB30 EB31 EB37 EB38 EB39 EB40 GA02 GA12 GB30 GC14 GC15 GC20 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C02F 1/50 531 C02F 1/50 531P 540 540B 550 550D 550L 560 560B 560E 560F 560F F-term (reference) 4D006 GA02 HA03 HA19 HA91 JA18A JA18Z KA02 KA71 KB12 KB30 KD19 KD24 KE02P KE12P KE15P KE19P MA01 PA01 PB06 PC51 4D024 AA02 AB04 AB11 BA02 CA04 CA13 DB05 DB09 DB27 4D061 DA03 DB01 DB10 EA02 EB19 GC20 EB30 EB30 EB30

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】中空糸膜を備えた浄水器であって、前記中
空糸膜の出口および吐水管を連通する導水部内に少なく
とも一対の電極と、前記電極間に電圧を印加する電源
と、を備えたことを特徴とする浄水器。
1. A water purifier provided with a hollow fiber membrane, wherein at least one pair of electrodes is provided in a water guiding portion communicating an outlet of the hollow fiber membrane and a water discharge pipe, and a power supply for applying a voltage between the electrodes. A water purifier characterized by comprising:
【請求項2】前記電極間の距離が0.5mm以上3mm
以下で形成されていることを特徴とする請求項1に記載
の浄水器。
2. The distance between the electrodes is 0.5 mm or more and 3 mm or more.
The water purifier according to claim 1, wherein the water purifier is formed as follows.
【請求項3】前記電極間の印加電圧が1.5V以上9V
以下に設定されていることを特徴とする請求項1または
2に記載の浄水器。
3. An applied voltage between the electrodes is 1.5 V or more and 9 V or more.
The water purifier according to claim 1, wherein the water purifier is set as follows.
【請求項4】前記電源として電池を使用することを特徴
とする請求項1乃至3の内いずれか1に記載の浄水器。
4. The water purifier according to claim 1, wherein a battery is used as the power supply.
【請求項5】前記吐水管に配設された通水検知手段と、
および/または前記通水検知手段で検知された通水と前
記電池の寿命とを報知する報知手段と、を備えたことを
特徴とする請求項1乃至4の内いずれか1に記載の浄水
器。
5. A water flow detecting means provided on the water discharge pipe,
The water purifier according to any one of claims 1 to 4, further comprising: notification means for notifying the water flow detected by the water flow detection means and the life of the battery. .
【請求項6】前記電極間の電流値の検知手段と、前記検
知手段の電流検出値に応じて通電時間を制御する通電制
御手段と、を備えたことを特徴とする請求項1乃至5の
内いずれか1に記載の浄水器。
6. The apparatus according to claim 1, further comprising: means for detecting a current value between said electrodes; and energization control means for controlling an energization time in accordance with a current detected by said detection means. The water purifier according to any one of the above.
【請求項7】前記電流検出値を表示する表示手段を備え
たことを特徴とする請求項6に記載の浄水器。
7. The water purifier according to claim 6, further comprising display means for displaying the detected current value.
【請求項8】前記電流検出値の前記表示手段の指示に応
じて前記通電制御手段に前記電極間の通電時間を入力す
る入力手段を備えたことを特徴とする請求項7に記載の
浄水器。
8. The water purifier according to claim 7, further comprising input means for inputting a current supply time between said electrodes to said power supply control means in response to an instruction from said display means for said detected current value. .
JP11139743A 1999-05-20 1999-05-20 Water purifier Pending JP2000325957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11139743A JP2000325957A (en) 1999-05-20 1999-05-20 Water purifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11139743A JP2000325957A (en) 1999-05-20 1999-05-20 Water purifier

Publications (1)

Publication Number Publication Date
JP2000325957A true JP2000325957A (en) 2000-11-28

Family

ID=15252353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11139743A Pending JP2000325957A (en) 1999-05-20 1999-05-20 Water purifier

Country Status (1)

Country Link
JP (1) JP2000325957A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008296083A (en) * 2007-05-29 2008-12-11 Mrc Home Products Kk Water purifier
JP2011089769A (en) * 2011-02-10 2011-05-06 Mitsubishi Electric Corp Water sterilization device and humidifier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008296083A (en) * 2007-05-29 2008-12-11 Mrc Home Products Kk Water purifier
JP2011089769A (en) * 2011-02-10 2011-05-06 Mitsubishi Electric Corp Water sterilization device and humidifier

Similar Documents

Publication Publication Date Title
EP1074515B1 (en) Electrochemical treatment of an aqueous solution
KR101734194B1 (en) Sterilizing method for water treatment apparatus
US20130092558A1 (en) Apparatus for producing electrolytic reduced water and control method thereof
EP1926842A2 (en) Acidic electrolyzed water production system and protection membrane
WO2017077992A1 (en) Hydrogen water server
JP2017087110A (en) Electrolytic water generator, hydrogen water server provided therewith and method for producing water for dialysis liquid preparation
WO2010067697A1 (en) Electrolyzed water producing apparatus
EP1878704A1 (en) Electrochemical treatment of an aqueous solution
JP4069470B2 (en) Electrolytic hydrogen water generator
JP2000325957A (en) Water purifier
US20130193002A1 (en) Apparatus for producing electrolytic reduced water and control method thereof
JP4463928B2 (en) Water treatment equipment
JP3612902B2 (en) Electrolyzed water generator
JP3766848B2 (en) Electrolyzed water generator
KR101849076B1 (en) Water treatment apparatus for functioning as a sterilizer
JP4465758B2 (en) Electrolyzer
JP3508409B2 (en) Electrolyzed water generator
JP3890440B2 (en) Electrolyzed water generator
JPH1080686A (en) Strong acidic water generating device
WO2012144289A1 (en) Device for generating electrolyzed water and sink provided with device for generating electrolyzed water
JPH0852476A (en) Superoxidized water forming device
CN114163030B (en) Control method of water purification system and water purification system
JP4050044B2 (en) Mineral water generator
JPH1190446A (en) Sterilization apparatus
JP3477984B2 (en) Electrolyzed water generator