JP2000324801A - Drive circuit for voltage-controlled semiconductor device - Google Patents

Drive circuit for voltage-controlled semiconductor device

Info

Publication number
JP2000324801A
JP2000324801A JP11129896A JP12989699A JP2000324801A JP 2000324801 A JP2000324801 A JP 2000324801A JP 11129896 A JP11129896 A JP 11129896A JP 12989699 A JP12989699 A JP 12989699A JP 2000324801 A JP2000324801 A JP 2000324801A
Authority
JP
Japan
Prior art keywords
voltage
gate
igbt
switching
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11129896A
Other languages
Japanese (ja)
Inventor
Hiroshi Takubo
拡 田久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP11129896A priority Critical patent/JP2000324801A/en
Publication of JP2000324801A publication Critical patent/JP2000324801A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Power Conversion In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To facilitate switching in short time and prevent increase in switching loss by connecting the connecting point between a first switching circuit and a second switching circuit with the gate terminal of a voltage-controlled semiconductor device. SOLUTION: When the gate voltage VGE of IGBT 7 reaches a threshold voltage and gate charges are discharged to a capacitor 9, the IGBT 7 starts turn-off operation. Since the capacitance of the capacitor 9 is set to such a value as to store the gate charges, the gate charges are discharged only through a resistor 5 when collector current is interrupted. After the gate charges are discharged to the capacitor 9, the discharge current is reduced by the gate resistor 5, and the rate of change of current and the rate of change of voltage are reduced. After the interruption of the IGBT 7, the off state is maintained by a power supply 2 for off. Thus, switching loss is prevented, and surge voltage due to reduction in the rate of change of current and switching noise due to reduction in the rate of change of voltage is prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、IGBTやパワー
MOS−FETなどの電圧制御形半導体素子の駆動回路
に係わり、電圧制御形半導体素子がスイッチングを行う
時に発生するサージ電圧や、主端子間の電圧変化率 (dV
/dt)によるスイッチングノイズを抑制する回路に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a driving circuit for a voltage-controlled semiconductor device such as an IGBT or a power MOS-FET, and more particularly to a surge voltage generated when the voltage-controlled semiconductor device performs switching and a voltage between main terminals. Voltage change rate (dV
/ dt) related to a circuit for suppressing switching noise.

【0002】[0002]

【従来の技術】図3は、電圧制御形半導体素子としての
IGBTを駆動する駆動回路の一般的な構成図である。
図3において、IGBT7のバイアス用としてのオン用
電源1とオフ用電源2が直列に接続され、この直列に接
続された電源にターンオン用スイッチとしてのトランジ
スタ3、ターンオン用ゲート抵抗4、ターンオフ用スイ
ッチとしてのトランジスタ6、ターンオフ用ゲート抵抗
5が直列に接続された回路が並列に接続されている。そ
して、トランジスタ3とトランジスタ6との接続点がI
GBT7のゲートに接続され、オン用電源1とオフ用電
源2の接続点がIGBT7のエミッタに接続されてい
る。
2. Description of the Related Art FIG. 3 is a general configuration diagram of a drive circuit for driving an IGBT as a voltage-controlled semiconductor device.
In FIG. 3, an on power supply 1 and an off power supply 2 for biasing the IGBT 7 are connected in series, and a transistor 3 as a turn-on switch, a turn-on gate resistor 4, and a turn-off switch are connected to the power supply connected in series. A circuit in which a transistor 6 and a turn-off gate resistor 5 are connected in series is connected in parallel. The connection point between the transistor 3 and the transistor 6 is I
The connection point of the power supply 1 for on and the power supply 2 for off is connected to the emitter of the IGBT7.

【0003】IGBTなどの高速スイッチングが可能な
素子を使用すると、この素子がスイッチングする時に回
路配線等各部の浮遊インダクタンスによって過大なサー
ジ電圧が発生したり、IGBTの主端子間に大きな電圧
変化率 (dV/dt)が発生し、これがスイッチングノイズと
して素子の誤動作を起こすばかりでなくIGBT自身を
破壊してしまうという問題がある。
When an element capable of high-speed switching such as an IGBT is used, an excessive surge voltage is generated due to stray inductance of each part such as a circuit wiring when the element is switched, or a large voltage change rate between main terminals of the IGBT ( dV / dt), which not only causes a malfunction of the device as switching noise but also destroys the IGBT itself.

【0004】これを防止しIGBTを緩やかにスイッチ
ングさせるため、従来は前述の駆動回路のゲート抵抗4
および5の値を問題が生じなくなるレベルまで大きくす
る方法が採られている。このスイッチングの様子を図4
に示す。
In order to prevent this and switch the IGBT slowly, conventionally, the gate resistance 4 of the above-described drive circuit is used.
And the value of 5 is increased to a level at which no problem occurs. Figure 4 shows this switching.
Shown in

【0005】図3において、外部より指令されるオン・
オフ信号に基づいたゲート駆動電圧VGEは、オン用電源
1またはオフ用電源2からトランジスタ3と抵抗4との
直列回路またはトランジスタ6と抵抗5との直列回路を
介してIGBT7のゲートに入力される。
[0005] In FIG.
The gate drive voltage V GE based on the OFF signal is input from the ON power supply 1 or the OFF power supply 2 to the gate of the IGBT 7 via a series circuit of the transistor 3 and the resistor 4 or a series circuit of the transistor 6 and the resistor 5. You.

【0006】IGBT7のゲート部分はIGBT7の構
造上コンデンサ容量であるので、ゲート駆動回路による
ゲート容量の充放電時間をゲート抵抗4および5により
調整できる。ターンオン用のゲート抵抗4およびターン
オフ用のゲート抵抗5を増加させることによりIGBT
7のゲート入力部の充放電を遅らせ、IGBT7のゲー
ト・エミッタ間電圧VGEの立ち上がり・立ち下がりを緩
やかにすることができる。VGEの立ち上がり・立ち下が
りを緩やかにすることによりIGBT7はゆるやかなス
イッチングを行い、di/dt や dV/dtの低減、サージ電圧
の抑制によりスイッチングノイズの低減をはかることが
できる。
Since the gate portion of the IGBT 7 has a capacitor capacity due to the structure of the IGBT 7, the charging and discharging time of the gate capacity by the gate drive circuit can be adjusted by the gate resistors 4 and 5. The IGBT is increased by increasing the turn-on gate resistance 4 and the turn-off gate resistance 5.
7 delays the charging and discharging of the gate input portion of the can to slow the rise and fall of the gate-emitter voltage V GE of IGBT 7. By gradual rise and fall of V GE IGBT 7 performs gradual switching, reducing the di / dt and dV / dt, it is possible to reduce switching noise by suppressing the surge voltage.

【0007】図4に示した波形はゲート抵抗4および5
の値を変えた場合のスイッチング波形の違いを示したも
のであり、(a)はゲート・エミッタ間電圧VGEを示し
ており、(b)はコレクタ・エミッタ間電圧VCEを示し
ており、(c)はコレクタ電流IC を示している。実線
はゲート抵抗4および5の値を小さくしたときの、点線
はゲート抵抗4および5の値を大きくしたときの波形例
である。
The waveform shown in FIG.
(A) shows the gate-emitter voltage V GE , (b) shows the collector-emitter voltage V CE , and (C) shows the collector current I C. The solid line is a waveform example when the values of the gate resistors 4 and 5 are reduced, and the dotted line is a waveform example when the values of the gate resistors 4 and 5 are increased.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上述の
ような方式はゲート抵抗が大きくなるためゲート容量の
充電に時間がかかり、駆動回路にオン・オフ信号が入力
されてから実際にIGBTが動作するまでの時間が増加
してしまうため、短時間でのIGBTのスイッチングが
困難であったり、スイッチング損失が増加するなどの問
題がある。本発明の目的は、以上のような課題を解決す
る電圧制御形半導体素子の駆動回路を提供することにあ
る。
However, in the above-described method, it takes a long time to charge the gate capacitance because the gate resistance becomes large, and the IGBT actually operates after the ON / OFF signal is input to the drive circuit. However, there is a problem that it is difficult to switch the IGBT in a short time, or the switching loss increases. An object of the present invention is to provide a driving circuit for a voltage-controlled semiconductor device that solves the above problems.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明においては、電圧制御形半導体素子の駆動回
路において、第一の抵抗と第一のトランジスタとの直列
回路からなるオン用の第一のスイッチング回路と、第二
の抵抗と第二のトランジスタとの直列回路からなるオフ
用の第二のスイッチング回路とを備え、第一のスイッチ
ング回路と第二のスイッチング回路とを直列接続し、か
つ外部より与えられる前記電圧制御形半導体素子のオン
・オフ信号が前記第一および第二のトランジスタに与え
られ、前記第二の抵抗に並列にコンデンサが接続され、
第一のスイッチング回路と第二のスイッチング回路との
接続点と前記電圧制御形半導体素子のゲート端子とを接
続して駆動回路を構成する。
In order to achieve the above object, according to the present invention, in a drive circuit for a voltage-controlled semiconductor device, an ON-circuit comprising a series circuit of a first resistor and a first transistor is provided. A first switching circuit, comprising a second switching circuit for off comprising a series circuit of a second resistor and a second transistor, connecting the first switching circuit and the second switching circuit in series An on / off signal of the voltage-controlled semiconductor element, which is externally supplied, is supplied to the first and second transistors, and a capacitor is connected in parallel with the second resistor,
A connection point between the first switching circuit and the second switching circuit and a gate terminal of the voltage-controlled semiconductor device are connected to form a drive circuit.

【0010】この発明は、IGBTのターンオフ時に、
まずターンオフするに必要なゲート電荷量をコンデンサ
によって素早く放電させ、オフする瞬間迄はコンデンサ
により、オフ信号が指令されてからIGBTが実際にオ
フするまでの時間遅れの増大を防ぐとともに、IGBT
がオフを開始すると大きな抵抗値に切り換えて前述のdi
/dt やサージ電圧の低減を行うように作用するものであ
る。
According to the present invention, when the IGBT is turned off,
First, the amount of gate charge required to turn off is quickly discharged by the capacitor. Until the moment of turning off, the capacitor prevents an increase in the time delay from when the off signal is commanded until the IGBT is actually turned off.
Starts to turn off, switches to a large resistance value, and
It works to reduce / dt and surge voltage.

【0011】[0011]

【発明の実施の形態】図1,2に本発明の実施例を示
す。図1は本発明の実施例の回路図であり、従来技術の
図3に対応しており、従って図3と同一部分には同一番
号を付してその説明を省略している。
1 and 2 show an embodiment of the present invention. FIG. 1 is a circuit diagram of an embodiment of the present invention, and corresponds to FIG. 3 of the prior art. Therefore, the same parts as those of FIG. 3 are denoted by the same reference numerals and description thereof is omitted.

【0012】図2は各部の波形を示した図であり、
(a)はゲート・エミッタ間電圧VGEを示しており、
(b)はゲート電流Ig を示しており、(c)はコレク
タ電流ICとコレクタ・エミッタ間電圧VCEを示してい
る。
FIG. 2 is a diagram showing waveforms of respective parts.
(A) shows the gate-emitter voltage V GE ,
(B) shows the gate current Ig, and (c) shows the collector current I C and the collector-emitter voltage V CE .

【0013】図1において、IGBT7のオン・オフ信
号はトランジスタ3および6のベースに接続されてお
り、トランジスタ3および6はオン・オフ信号に従って
それぞれオンまたはオフする。トランジスタ3および6
のエミッタはそれぞれゲート抵抗4および5を介して共
通接続してIGBT7のゲートに接続され、IGBT7
に対してゲート信号VGEを発生させる。またゲート抵抗
5と並列にコンデンサ9が接続されている。トランジス
タ3のコレクタはオン用電源1の正極に接続され、トラ
ンジスタ6のコレクタはオフ用電源2の負極に接続され
ている。
In FIG. 1, the on / off signal of the IGBT 7 is connected to the bases of the transistors 3 and 6, and the transistors 3 and 6 are turned on or off according to the on / off signal, respectively. Transistors 3 and 6
Are commonly connected to the gate of IGBT 7 via gate resistors 4 and 5, respectively.
, A gate signal VGE is generated. A capacitor 9 is connected in parallel with the gate resistor 5. The collector of the transistor 3 is connected to the positive electrode of the power supply 1 for ON, and the collector of the transistor 6 is connected to the negative electrode of the power supply 2 for OFF.

【0014】次に図1の回路動作について説明する。I
GBT7をターンオンさせる動作については、従来技術
で説明した動作と同様であるのでその説明は省略する。
Next, the operation of the circuit shown in FIG. 1 will be described. I
The operation of turning on the GBT 7 is the same as the operation described in the related art, so the description is omitted.

【0015】外部より指令されるオン・オフ信号が入力
されると、その信号はトランジスタ3および6へ入力さ
れる。この信号がオフ信号であるとオン用トランジスタ
3をオフさせ、同時にオフ用トランジスタ6をオンさせ
る。オフ用トランジスタ6がオンすることにより、IG
BT7のゲートの電荷は主に放電用コンデンサ9を通し
て放電され、IGBT7のゲート電圧VGEは減少しIG
BT7はターンオフを始める。
When an on / off signal instructed from outside is input, the signal is input to transistors 3 and 6. When this signal is an OFF signal, the ON transistor 3 is turned OFF, and the OFF transistor 6 is turned ON at the same time. When the off transistor 6 is turned on, the IG
The electric charge at the gate of the BT 7 is mainly discharged through the discharging capacitor 9, and the gate voltage V GE of the IGBT 7 decreases,
BT7 starts to turn off.

【0016】VGEがIGBT7のしきい電圧値に達し、
コレクタ電流を遮断しはじめるに必要なゲート電荷量
(図2に示すQg)がコンデンサ9へ放電されると、I
GBT7はターンオフ動作(コレクタ電流の遮断)を始
める。
When V GE reaches the threshold voltage value of IGBT7,
When the gate charge (Qg shown in FIG. 2) required to start to cut off the collector current is discharged to the capacitor 9, I
The GBT 7 starts a turn-off operation (cutoff of the collector current).

【0017】コンデンサ9の容量はQgを蓄えるに等し
い容量に設定されているので、コレクタ電流遮断中はゲ
ート電荷量は抵抗5のみを通して放電される。すなわ
ち、コンデンサ9の容量Cは、定常オン状態でのゲート
電圧とIGBT7のしきい値電圧との差をΔV(図2の
波形図に示す)とすると、C=Qg/ΔVなる値に設定
されている。
Since the capacity of the capacitor 9 is set equal to the capacity for storing Qg, the gate charge is discharged only through the resistor 5 while the collector current is cut off. That is, the capacitance C of the capacitor 9 is set to a value of C = Qg / ΔV, where ΔV (shown in the waveform diagram of FIG. 2) is a difference between the gate voltage in the steady-on state and the threshold voltage of the IGBT 7. ing.

【0018】従って、Qgがすべてコンデンサ9に放電
した後は、ゲート抵抗5により放電電流(ゲート電流)
は絞られ、IGBT7のスイッチングは緩やかになり d
i/dtや dV/dtが抑制される。IGBT7遮断後はオフ用
電源2によりオフ状態が保たれる。図2に本方式による
ターンオフスイッチング波形を実線で、従来方式でのス
イッチング波形を点線で示してある。
Therefore, after Qg is completely discharged to the capacitor 9, a discharge current (gate current) is generated by the gate resistor 5.
And the switching of the IGBT 7 becomes slower and d
i / dt and dV / dt are suppressed. After the IGBT 7 is shut off, the off state is maintained by the off power supply 2. FIG. 2 shows a turn-off switching waveform according to the present method by a solid line and a switching waveform according to the conventional method by a dotted line.

【0019】このようにIGBT7のターンオフ時は、
初めはコンデンサ9を通じてオフ動作を始めるに必要な
ゲート電荷を素早く放電させてIGBT7のゲート信号
に対する動作遅れの増加を防ぎ、その後は抵抗5を通じ
てゲート電荷を放電させる(ゲート電流を小さくする)
ことにより、 di/dtや dV/dtを低減し、サージ電圧の抑
制を行うことが出来る。
As described above, when the IGBT 7 is turned off,
Initially, the gate charge required to start the OFF operation is quickly discharged through the capacitor 9 to prevent an increase in the operation delay of the IGBT 7 with respect to the gate signal, and thereafter the gate charge is discharged through the resistor 5 (to reduce the gate current).
As a result, di / dt and dV / dt can be reduced and surge voltage can be suppressed.

【0020】なお、本発明の実施例はIGBTにより説
明を行ったが、これは他の電圧制御形半導体素子、例え
ばMOS−FETなどについても有効である。また、実
施例ではオン用電源とオフ用電源二つを用いたが、これ
はオン用電源のみでも有効に働くことは明らかである。
Although the embodiment of the present invention has been described with reference to the IGBT, the present invention is also effective for other voltage-controlled semiconductor devices, for example, MOS-FETs. Further, in the embodiment, two power supplies for ON and OFF are used, but it is clear that this works effectively only with the power supply for ON.

【0021】[0021]

【発明の効果】本発明によれば、IGBTのターンオフ
時に、オフが始まるまではコンデンサにより見かけ上の
ゲート抵抗を小さく、オフ動作中はゲート抵抗を大きく
することにより、スイッチング損失を防ぎ、かつスイッ
チングスピードをおとすことなく、 di/dtの低減による
サージ電圧の抑制と、 dV/dtの低減によるスイッチング
ノイズの抑制が図れる。
According to the present invention, when the IGBT is turned off, the apparent gate resistance is reduced by a capacitor until the IGBT is turned off, and the gate resistance is increased during the off operation, thereby preventing switching loss and switching. Surge voltage can be suppressed by reducing di / dt and switching noise can be suppressed by reducing dV / dt without reducing speed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例を示す回路図。FIG. 1 is a circuit diagram showing an embodiment of the present invention.

【図2】図1の回路図の各部の波形を示す図。FIG. 2 is a diagram showing waveforms at various points in the circuit diagram of FIG. 1;

【図3】従来の駆動回路の例を示す回路図。FIG. 3 is a circuit diagram showing an example of a conventional driving circuit.

【図4】図3の回路図の各部の波形を示す図。FIG. 4 is a diagram showing waveforms at various points in the circuit diagram of FIG. 3;

【符号の説明】[Explanation of symbols]

1…オン用電源,2…オフ用電源、3,6…トランジス
タ、4,5…抵抗、7…IGBT、8…ダイオード、9
…コンデンサ。
DESCRIPTION OF SYMBOLS 1 ... Power supply for ON, 2 ... Power supply for OFF, 3, 6 ... Transistor, 4, 5 ... Resistance, 7 ... IGBT, 8 ... Diode, 9
... capacitors.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電圧制御形半導体素子の駆動回路におい
て、第一の抵抗と第一のトランジスタとの直列回路から
なるオン用の第一のスイッチング回路と、第二の抵抗と
第二のトランジスタとの直列回路からなるオフ用の第二
のスイッチング回路とを備え、第一のスイッチング回路
と第二のスイッチング回路とを直列接続し、かつ外部よ
り与えられる前記電圧制御形半導体素子のオン・オフ信
号が前記第一および第二のトランジスタに与えられ、前
記第二の抵抗に並列にコンデンサが接続され、第一のス
イッチング回路と第二のスイッチング回路との接続点と
前記電圧制御形半導体素子のゲート端子とを接続したこ
とを特徴とする電圧制御形半導体素子の駆動回路。
1. A drive circuit for driving a voltage-controlled semiconductor device, comprising: a first switching circuit for turning on, comprising a series circuit of a first resistor and a first transistor; and a second resistor and a second transistor. A second switching circuit for turning off comprising a series circuit of the first and second switching circuits, the first switching circuit and the second switching circuit are connected in series, and an on / off signal of the voltage control type semiconductor element which is externally given. Is provided to the first and second transistors, a capacitor is connected in parallel with the second resistor, a connection point between the first switching circuit and the second switching circuit and a gate of the voltage-controlled semiconductor element A drive circuit for a voltage-controlled semiconductor device, wherein the drive circuit is connected to a terminal.
JP11129896A 1999-05-11 1999-05-11 Drive circuit for voltage-controlled semiconductor device Withdrawn JP2000324801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11129896A JP2000324801A (en) 1999-05-11 1999-05-11 Drive circuit for voltage-controlled semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11129896A JP2000324801A (en) 1999-05-11 1999-05-11 Drive circuit for voltage-controlled semiconductor device

Publications (1)

Publication Number Publication Date
JP2000324801A true JP2000324801A (en) 2000-11-24

Family

ID=15021056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11129896A Withdrawn JP2000324801A (en) 1999-05-11 1999-05-11 Drive circuit for voltage-controlled semiconductor device

Country Status (1)

Country Link
JP (1) JP2000324801A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100627126B1 (en) 2004-03-19 2006-09-25 닛산 지도우샤 가부시키가이샤 Drive circuit for voltage driven type semiconductor element
JP2012239361A (en) * 2011-05-13 2012-12-06 Toyo Electric Mfg Co Ltd Gate driving circuit
KR101261944B1 (en) 2010-09-17 2013-05-09 기아자동차주식회사 Inverter control system
CN104065251A (en) * 2013-03-18 2014-09-24 意法半导体研发(上海)有限公司 Driver circuit with controlled gate discharge current
US8878573B2 (en) 2011-05-25 2014-11-04 Fuji Electric Co., Ltd. Voltage controlled switching element gate drive circuit
JP2015207853A (en) * 2014-04-18 2015-11-19 日産自動車株式会社 Driving circuit system
CN106664005A (en) * 2014-07-10 2017-05-10 株式会社电装 Drive device
DE102021128164A1 (en) 2020-12-25 2022-06-30 Fuji Electric Co., Ltd. DRIVER DEVICE
DE102022116270A1 (en) 2021-08-18 2023-02-23 Fuji Electric Co., Ltd. CONTROL DEVICE

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100627126B1 (en) 2004-03-19 2006-09-25 닛산 지도우샤 가부시키가이샤 Drive circuit for voltage driven type semiconductor element
KR101261944B1 (en) 2010-09-17 2013-05-09 기아자동차주식회사 Inverter control system
JP2012239361A (en) * 2011-05-13 2012-12-06 Toyo Electric Mfg Co Ltd Gate driving circuit
US8878573B2 (en) 2011-05-25 2014-11-04 Fuji Electric Co., Ltd. Voltage controlled switching element gate drive circuit
US8994414B2 (en) 2011-05-25 2015-03-31 Fuji Electric Co., Ltd. Voltage controlled switching element gate drive circuit
US9112502B2 (en) 2011-05-25 2015-08-18 Fuji Electric Co., Ltd. Voltage controlled switching element gate drive circuit
US9225326B2 (en) 2011-05-25 2015-12-29 Fuji Electric Co., Ltd. Voltage controlled switching element gate drive circuit
CN104065251A (en) * 2013-03-18 2014-09-24 意法半导体研发(上海)有限公司 Driver circuit with controlled gate discharge current
JP2015207853A (en) * 2014-04-18 2015-11-19 日産自動車株式会社 Driving circuit system
CN106664005A (en) * 2014-07-10 2017-05-10 株式会社电装 Drive device
DE102021128164A1 (en) 2020-12-25 2022-06-30 Fuji Electric Co., Ltd. DRIVER DEVICE
DE102022116270A1 (en) 2021-08-18 2023-02-23 Fuji Electric Co., Ltd. CONTROL DEVICE

Similar Documents

Publication Publication Date Title
JP3141613B2 (en) Method and circuit for driving voltage-driven element
JP3666843B2 (en) Gate circuit of insulated gate semiconductor device
JP3339311B2 (en) Driver circuit for self-extinguishing semiconductor device
JP4432215B2 (en) Semiconductor switching element gate drive circuit
JP4742828B2 (en) Voltage-driven switching circuit
US7151401B2 (en) Semiconductor apparatus
US6242968B1 (en) Semiconductor power converting apparatus
JP3885563B2 (en) Power semiconductor drive circuit
JP2005269446A (en) Drive circuit for voltage-driven semiconductor device
JP2001094406A (en) Drive circuit
JPH0947015A (en) Drive circuit for self-extinguishing semiconductor element
JP2000333441A (en) Gate control circuit for insulated gate semiconductor device
JP3680722B2 (en) IGBT overcurrent protection circuit
JP2000324801A (en) Drive circuit for voltage-controlled semiconductor device
JPH1051285A (en) Drive circuit for voltage controlled transistor
JP3568848B2 (en) Gate circuit of insulated gate semiconductor device
JP4321491B2 (en) Voltage-driven semiconductor device driving apparatus
JP3532377B2 (en) Gate drive circuit for voltage driven switch element
JP2002300016A (en) Gate drive means and gate drive circuit
JP2913699B2 (en) Drive circuit for voltage-driven semiconductor devices
JP3348022B2 (en) Gate drive circuit
JP2000197343A (en) Gate control method for semiconductor element
JP7226099B2 (en) gate drive circuit
JP2000295838A (en) Drive circuit
JP2621498B2 (en) Gate drive circuit

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20040726