JP2000321166A - Method and device for detecting foreign object in optical fiber - Google Patents

Method and device for detecting foreign object in optical fiber

Info

Publication number
JP2000321166A
JP2000321166A JP11127874A JP12787499A JP2000321166A JP 2000321166 A JP2000321166 A JP 2000321166A JP 11127874 A JP11127874 A JP 11127874A JP 12787499 A JP12787499 A JP 12787499A JP 2000321166 A JP2000321166 A JP 2000321166A
Authority
JP
Japan
Prior art keywords
optical fiber
light
amplifier
bubbles
analyzer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11127874A
Other languages
Japanese (ja)
Inventor
Koki Nasuno
好己 奈須野
Kazumasa Osono
和正 大薗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP11127874A priority Critical patent/JP2000321166A/en
Publication of JP2000321166A publication Critical patent/JP2000321166A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To positively detect bubbles in an optical fiber by applying linear polarization light from the side of the optical fiber immediately after melting and spinning in a wire-drawing furnace, receiving transmitted light via an analyzer that is installed on the rear surface of the optical fiber, and performing synchronization detection with a lock-in amplifier. SOLUTION: An electrical signal from a photoreceptor 9 is inputted to a lock amplifier 10 for measuring the AC voltage of only a frequency component that is equal to a modulation frequency and an output voltage from the amplifier 10 is recorded by a recorder 11. The operation of the amplifier 10 is called synchronous detection. With parallel light through an optical fiber 5 to be measured, a voltage being measured by the amplifier 10 is nearly constant when there are no foreign objects such as bubbles in the fiber 5. When there are foreign objects such as bubbles in the fiber 5. When there are foreign objects such as bubbles in the fiber 5, parallel light is scattered in various directions according to the size and position of the bubbles or the like and the quantity of light through an analyzer 6 increases and a measurement voltage by the amplifier 10 changes. A polarizer 4 and the analyzer 6 are used for quenching, a noise level is lowered, and a signal is detected by the amplifier 10 for detecting a weak AC signal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光ファイバ内の気
泡などの異物を線引直後にオンラインで検知する光ファ
イバの異物検知方法及びその装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for detecting foreign matter in an optical fiber for detecting foreign matter such as air bubbles in an optical fiber immediately after drawing.

【0002】[0002]

【従来の技術】光ファイバが製品不良となる原因とし
て、伝送損失や分散値が規定値を外れるなどの伝送特性
面の他に、光ファイバ及びコーティング外径の変動、光
ファイバ表面にできた微小傷に起因する低強度部、光フ
ァイバ内に存在する気泡や異物などの構造的な面があ
る。これらの原因の中でも、光ファイバ内の気泡や異物
は発見が難しい。
2. Description of the Related Art In addition to transmission characteristics such as transmission loss and dispersion values outside specified values, fluctuations in optical fiber and coating outer diameter, and microscopic surface formed on the surface of optical fiber can cause optical fiber to be defective. There are low-strength portions caused by scratches and structural surfaces such as air bubbles and foreign substances present in the optical fiber. Among these causes, it is difficult to find bubbles and foreign matter in the optical fiber.

【0003】光ファイバは、化学的気相堆積法により製
造したかさ密度の低い多孔質のスート母材を脱水焼結炉
でガラス化してガラス母材(プリフォーム)を得て、そ
の後ガラス母材を線引工程において溶融・紡糸すること
により得られるが、上記のガラス化工程ではスートかさ
密度の不均一性や焼結条件のばらつきなどにより、ガラ
ス母材中にヘリウムや窒素ガスが閉じ込められ易い。ガ
ラス母材中に閉じ込められたヘリウムや窒素ガスは溶融
・紡糸後、光ファイバ内の気泡の原因となる。さらに、
ガラス母材は溶融・紡糸において約2000℃にまで加
熱されるため、ガラス母材中のヘリウムや窒素の溶解度
が高いと、やはり溶融・紡糸後、光ファイバ内に気泡が
発生し易い。
[0003] An optical fiber is obtained by vitrifying a porous soot base material having a low bulk density manufactured by a chemical vapor deposition method in a dehydration sintering furnace to obtain a glass base material (preform). Is obtained by melting and spinning in the drawing step, but in the above-mentioned vitrification step, helium and nitrogen gas are easily confined in the glass base material due to unevenness in soot bulk density and variation in sintering conditions. . Helium and nitrogen gas confined in the glass preform cause bubbles in the optical fiber after melting and spinning. further,
Since the glass base material is heated to about 2000 ° C. during melting and spinning, if the solubility of helium and nitrogen in the glass base material is high, bubbles are likely to be generated in the optical fiber after melting and spinning.

【0004】光ファイバの接続の際に、ちょうどその接
続部に気泡があると、融者接続機の光ファイバ投影によ
るコア直視が困難となり、光ファイバ端面の位置合わせ
が正確に行なえず接続損失が大きくなってしまう。ま
た、接続できたとしても気泡が発泡して光ファイバが膨
らんでしまい、接続し直さねばならない。さらに、気泡
は光ファイバの長手方向に1〜20mの長さがあり、光
ファイバの接続工事などで気泡が見つかると光ファイバ
ケーブルを切り詰めなければならない。
[0004] When an optical fiber is connected, if there is an air bubble in the connection portion, it becomes difficult to directly look at the core of the fusion splicer by projecting the optical fiber, and the end face of the optical fiber cannot be accurately positioned, resulting in a connection loss. It gets bigger. Also, even if the connection can be made, the bubbles are foamed and the optical fiber swells, and the connection must be made again. Further, the air bubble has a length of 1 to 20 m in the longitudinal direction of the optical fiber, and when the air bubble is found in connection work of the optical fiber, the optical fiber cable must be cut off.

【0005】図3は、従来の光ファイバの異物検知方法
を示した説明図である。21は線引炉、22は外径測定
器、23は光ファイバ、24はコーティングダイスであ
る。光ファイバ23内に発生した気泡が大きい時には、
その気泡により光ファイバ23の外径が大きくなるの
で、外径測定器22により外径が大きくなった箇所を発
見することができる。その外径が大きくなった箇所は、
記録計などに記録しておいて線引終了後に廃棄すること
ができる。
FIG. 3 is an explanatory view showing a conventional method for detecting foreign matter in an optical fiber. 21 is a drawing furnace, 22 is an outer diameter measuring device, 23 is an optical fiber, and 24 is a coating die. When bubbles generated in the optical fiber 23 are large,
Since the outer diameter of the optical fiber 23 is increased by the bubbles, the outer diameter measuring device 22 can find a portion where the outer diameter is increased. Where the outer diameter has increased
It can be recorded on a recorder and discarded after drawing.

【0006】特開平9−26377には、光ファイバ内
にその一端から光を入射し、その後方散乱光に基づいて
光ファイバ中の異常を検知する光ファイバ内の異常検知
方法において、光ファイバ内に波長の異なる2以上の光
を入射し、各入射光の後方散乱光に基づいて光ファイバ
内の異常を検知する方法が開示されている。これは、光
ファイバに異なる2つ以上の波長の短パルス光を入射
し、それぞれの入射光の後方散乱光を時間の関数として
OTDR(Optical Time-Domain Reflectmetry)で観測
し、観測された後方散乱光の波形パターンから光ファイ
バ内の異物を検知するものである。
Japanese Unexamined Patent Publication No. 9-26377 discloses a method for detecting an abnormality in an optical fiber in which light enters the optical fiber from one end thereof and detects an abnormality in the optical fiber based on the backscattered light. A method is disclosed in which two or more lights having different wavelengths are incident on the optical fiber and an abnormality in the optical fiber is detected based on the backscattered light of each incident light. This is because short pulse light of two or more different wavelengths is incident on an optical fiber, and the backscattered light of each incident light is observed as a function of time by OTDR (Optical Time-Domain Reflectometry), and the observed backscattering is observed. It detects foreign matter in the optical fiber from the light waveform pattern.

【0007】例えば、光ファイバのコア部近傍に気泡が
存在すると、特定波長の後方散乱光の波形パターンには
異常は見られないが、特定波長より長波長の後方散乱光
の波形パターンには段差などの波形異常が見られる。後
方散乱光の波形パターンに異常は見られない特定波長と
は、この波長で形成されるモードフィールド径がコア径
と略同じとなるような波長である。これより長波長では
形成されるモードフィールド径がクラッド部まで広が
り、仮に気泡の存在している箇所まで広がると後方散乱
光の波形パターンに異常が見られるようになる。光ファ
イバのコア部に気泡がある場合には、どんな波長の後方
散乱光の波形パターンにも異常が見られるようになる。
For example, if bubbles exist near the core of the optical fiber, no abnormality is found in the waveform pattern of the backscattered light of a specific wavelength, but the waveform pattern of the backscattered light of a longer wavelength than the specific wavelength has a step. Abnormal waveforms are seen. The specific wavelength at which no abnormality is observed in the waveform pattern of the backscattered light is a wavelength at which the mode field diameter formed at this wavelength is substantially the same as the core diameter. At longer wavelengths, the formed mode field diameter spreads to the cladding portion, and if it spreads to the location where bubbles exist, abnormalities are observed in the waveform pattern of the backscattered light. When bubbles are present in the core of the optical fiber, abnormalities are observed in the waveform pattern of the backscattered light of any wavelength.

【0008】なお、光ファイバの異物を検知した後はコ
ーティングダイス24により溶融・紡糸直後の光ファイ
バ23にシリコーンなどの樹脂が被せられ、巻取りドラ
ム(図示してはいない)に巻取られて線引は完了する。
After detecting foreign matter in the optical fiber, the optical fiber 23 immediately after melting and spinning is covered with a resin such as silicone by a coating die 24 and wound around a winding drum (not shown). The drawing is completed.

【0009】[0009]

【発明が解決しようとする課題】従来の光ファイバの異
物検知方法及びその装置には以下の問題点があった。
The conventional method and apparatus for detecting foreign matter in an optical fiber have the following problems.

【0010】外径測定器を利用して異物を検知する方法
では、比較的大きな直径(約10μm)の気泡しか検出
できない。
In the method of detecting foreign matter using an outer diameter measuring device, only bubbles having a relatively large diameter (about 10 μm) can be detected.

【0011】特開平9−26377の方法では、モード
フィールド径の広がりを利用しているため、コア近傍に
ある異物しか発見できない。異物がコア部から離れてい
る場合には、より長波長(例えば、1.3μm用の光フ
ァイバについては1.65μm以上)の光を用いるなら
検知可能であるが、モードフィールド径が広がる故にそ
の波長の伝送損失が大幅に増加し、長尺な光ファイバに
は適用することが不可能である。
In the method of Japanese Patent Application Laid-Open No. 9-26377, since the expansion of the mode field diameter is used, only foreign matters near the core can be found. If the foreign matter is far from the core, it can be detected by using light of a longer wavelength (for example, 1.65 μm or more for an optical fiber for 1.3 μm). Wavelength transmission loss increases significantly, making it impossible to apply to long optical fibers.

【0012】従って本発明の目的は、前記した従来技術
の欠点を解消し、光ファイバ線引中に、光ファイバ内の
気泡を確実に検知する光ファイバの異物検知方法を提供
することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above-mentioned disadvantages of the prior art and to provide a method for detecting foreign matter in an optical fiber, which reliably detects bubbles in the optical fiber while drawing the optical fiber.

【0013】[0013]

【課題を解決するための手段】本発明は上記の目的を実
現するため、光源から出射された強度変調光を偏光子に
より直線偏波とし、該直線偏波の光を線引炉で溶融・紡
糸直後の光ファイバに側方より照射し、該光ファイバを
透過してきた透過光を該光ファイバの背面に設置した検
光子を介して受光し、該受光信号をロックインアンプで
同期検波した。
According to the present invention, in order to achieve the above object, the intensity-modulated light emitted from a light source is linearly polarized by a polarizer, and the linearly polarized light is melted by a drawing furnace. The optical fiber immediately after spinning was irradiated from the side, the transmitted light transmitted through the optical fiber was received via an analyzer installed on the back of the optical fiber, and the received light signal was synchronously detected by a lock-in amplifier.

【0014】また、光ファイバ線引開始時には前記受光
信号が最小となるように前記検光子を調整し、然る後に
光ファイバ線引を行なうようにした。
At the start of drawing the optical fiber, the analyzer is adjusted so that the light receiving signal is minimized, and then the drawing of the optical fiber is performed.

【0015】本発明は上記の目的を実現するため、強度
変調可能な光源と、該光源から出射した光を平行光とす
る第一集光レンズと、前記平行光を直線偏波とする偏光
子と、溶融・紡糸直後の光ファイバの背面に設置され、
且つ前記平行光を受光する検光子と、該検光子を通過し
た光を集光する第二集光レンズと、該第二集光レンズに
より集光された受光信号を電気信号に変換する受光器
と、該受光器からの電気信号を同期検波するロックイン
アンプとから構成した。
In order to achieve the above object, the present invention provides a light source capable of intensity modulation, a first condenser lens that converts light emitted from the light source into parallel light, and a polarizer that converts the parallel light into linearly polarized light. Is installed on the back of the optical fiber immediately after melting and spinning,
And an analyzer for receiving the parallel light, a second condenser lens for condensing light passing through the analyzer, and a light receiver for converting a light reception signal condensed by the second condenser lens into an electric signal And a lock-in amplifier for synchronously detecting the electric signal from the light receiver.

【0016】[0016]

【発明の実施の形態】図1は、本発明の光ファイバの異
物検知装置の一実施例を示した概略構成図である。1は
光源、2は第一ピグテイルファイバ、3は第一集光レン
ズ、4は偏光子、5は被測定光ファイバ、6は検光子、
7は第二集光レンズ、8は第二ピグテイルファイバ、9
は受光器、10はロックインアンプ、11は記録計であ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic diagram showing an embodiment of the optical fiber foreign matter detecting apparatus according to the present invention. 1 is a light source, 2 is a first pigtail fiber, 3 is a first condenser lens, 4 is a polarizer, 5 is an optical fiber to be measured, 6 is an analyzer,
7 is a second condenser lens, 8 is a second pigtail fiber, 9
Denotes a light receiver, 10 denotes a lock-in amplifier, and 11 denotes a recorder.

【0017】光ファイバ異物検知装置は、光源1と第一
ピグテイルファイバ2と第一集光レンズ3と偏光子4と
から成る異物検知装置第一光学系と、検光子6と第二集
光レンズ7と第二ピグテイルファイバ8と受光器9とか
ら成る異物検知装置第二光学系の部分と、ロックインア
ンプ10と、記録計11とから構成される。
The optical fiber foreign matter detecting device comprises a first optical system for a foreign matter detecting device comprising a light source 1, a first pigtail fiber 2, a first condenser lens 3 and a polarizer 4, an analyzer 6 and a second condenser. It comprises a part of the second optical system of the foreign matter detecting device including the lens 7, the second pigtail fiber 8 and the light receiver 9, a lock-in amplifier 10, and a recorder 11.

【0018】図2は、異物検知装置第一光学系と異物検
知装置第二光学系の設置場所を示した説明図である。1
2は線引炉、13は異物検知装置第一光学系、14は異
物検知装置第二光学系、15は光ファイバ、16はコー
ティングダイスである。異物検知装置第一光学系13と
異物検知装置第二光学系14の間に溶融・紡糸直後の光
ファイバ15がちょうど位置するように構成されてい
る。
FIG. 2 is an explanatory view showing the installation locations of the first optical system of the foreign matter detection device and the second optical system of the foreign matter detection device. 1
2 is a drawing furnace, 13 is a first optical system of the foreign matter detection device, 14 is a second optical system of the foreign matter detection device, 15 is an optical fiber, and 16 is a coating die. The optical fiber 15 immediately after melting and spinning is located between the first optical system 13 and the second optical system 14.

【0019】光源1には、偏光度の低いLED(発光ダ
イオード)を用い、周期270Hzの矩形波にて強度変調
を施した。光源1より出射した光(強度変調光)は、第
一ピグティルファイバ2を通じて、第一集光レンズ3に
達する。第一集光レンズ3は、第一ピグティルファイバ
2からの出射光を空間伝搬するために平行光にする働き
をする。この平行光は偏光子4を通過することにより直
線偏波となり、被測定光ファイバ5に達する。被測定光
ファイバ5を通過した平行光は、検光子6を通過した
後、第二集光レンズ7により集光され第二ピグテイルフ
ァイバ8に入射され、そして受光器9に受光される。線
引を開始する前に、検光子6の光学軸を回転して受光器
9で受光される受光信号が最小となるように調節してお
く。この状態を消光状態と言う。
As the light source 1, an LED (light emitting diode) having a low degree of polarization was used, and intensity modulation was performed with a rectangular wave having a period of 270 Hz. Light (intensity modulated light) emitted from the light source 1 reaches the first condenser lens 3 via the first pigtail fiber 2. The first condenser lens 3 functions to convert the light emitted from the first pigtail fiber 2 into parallel light for spatial propagation. This parallel light passes through the polarizer 4 to become linearly polarized light, and reaches the optical fiber 5 to be measured. The parallel light that has passed through the measured optical fiber 5 passes through the analyzer 6, is then condensed by the second condenser lens 7, enters the second pigtail fiber 8, and is received by the light receiver 9. Before starting drawing, the optical axis of the analyzer 6 is rotated and adjusted so that the light receiving signal received by the light receiver 9 is minimized. This state is called an extinction state.

【0020】受光器9からの電気信号は、変調周波数
(本実施例の場合270Hz)と等しい周波数成分のみの
交流電圧を測定するロックインアンプ10に入力され、
ロックインアンプ10からの出力電圧は記録計11にて
記録される。このロックインアンプ10の動作は同期検
波とも呼ばれる。
The electric signal from the light receiver 9 is input to a lock-in amplifier 10 for measuring an AC voltage having only a frequency component equal to the modulation frequency (270 Hz in this embodiment).
The output voltage from the lock-in amplifier 10 is recorded by the recorder 11. This operation of the lock-in amplifier 10 is also called synchronous detection.

【0021】被測定光ファイバ5を通過した平行光は直
線偏波であり、被測定光ファイバ5内に気泡などの異物
が無い時には、ロックインアンプ10で測定される電圧
は略一定である。このレベルは雑音レベルである。被測
定光ファイバ5内に気泡などの異物が存在する時には、
気泡などの異物の大きさ・位置より平行光は種々の方向
に散乱して(直線偏波が乱されて)、検光子6を通過す
る光の量が多くなり、ロックインアンプ10による測定
電圧が変化する。
The parallel light passing through the measured optical fiber 5 is linearly polarized, and when there is no foreign matter such as bubbles in the measured optical fiber 5, the voltage measured by the lock-in amplifier 10 is substantially constant. This level is the noise level. When a foreign substance such as a bubble exists in the optical fiber 5 to be measured,
Parallel light is scattered in various directions (linear polarization is disturbed) due to the size and position of foreign matter such as air bubbles, so that the amount of light passing through the analyzer 6 is increased. Changes.

【0022】通常、上記で説明したような散乱による光
強度の変化は非常に小さく、通常の光パワメータから散
乱光の変化を読み取ることは不可能である。そのため、
偏光子4と検光子6とを用い消光状態にして雑音レベル
を下げ(S/N比を向上させ)、微弱な交流信号を検出
するロックインアンプ10にて信号を検出している。
Normally, the change in light intensity due to scattering as described above is very small, and it is impossible to read the change in scattered light from a normal light power meter. for that reason,
The signal is detected by the lock-in amplifier 10 that detects the weak AC signal by lowering the noise level (improving the S / N ratio) by using the polarizer 4 and the analyzer 6 to turn off the light and reduce the noise level.

【0023】予め気泡を含むプリフォームを用いて10
km線引したところ、12個所にロックインアンプ10に
よる測定電圧に変化が見られた。そこで、記録計11を
基に測定電圧が変化した場所を同定し、その近傍で光フ
ァイバを1mおきに30m切断し端面状態を観察した。
その結果、サンプリングした12個所すべてにおいて光
ファイバ内に気泡を発見した。気泡の大きさは最大で1
4μm、最小で1μmであった。また、ロックインアン
プ10による測定電圧が一定であった地点の100mに
関して10個所を無作為に切り取り、同様に1mずつに
切り分け端面状態を観察したところ気泡は発見できなか
った。
Using a preform containing bubbles in advance, 10
When the km line was drawn, a change was observed in the voltage measured by the lock-in amplifier 10 at 12 places. Therefore, the place where the measured voltage was changed was identified based on the recorder 11, and the optical fiber was cut by 30 m every 1 m in the vicinity thereof, and the end face state was observed.
As a result, bubbles were found in the optical fiber at all of the 12 sampled locations. Bubbles can be up to 1 size
4 μm, minimum 1 μm. Further, 10 points were randomly cut out at 100 m at a point where the voltage measured by the lock-in amplifier 10 was constant, and similarly cut at 1 m intervals, and the end face state was observed. As a result, no bubbles were found.

【0024】なお、光源1に偏光度の低いLEDを用い
た理由は、光源1から偏光子4に達するまでに偏光状態
が変化し、偏光子4通過後の光強度そのものが変化する
ことによるS/N比の劣化を防ぐためである。この目的
のためには、LEDを用いなくとも偏光解消素子を偏光
子4より光源1側に挿入して偏光子4通過後の光強度を
安定にすることも可能である。また、光源1からの光を
第一集光レンズ3に導く第一ピグティルファイバ2に偏
波面保存光ファイバを用いて偏光状態を安定に保つこと
も可能である。さらに、第一ピグティルファイバ2を用
いずに光源1からの出射光を直接に第一集光レンズ3に
入射して平行光を得ても良い。同様に、異物検知装置第
二光学系において、第二集光レンズ7と受光器9を直結
させ第二ピグテイルファイバ8を省略しても良い。
The reason why an LED having a low degree of polarization is used as the light source 1 is that the polarization state changes from the light source 1 to the polarizer 4 and the light intensity itself after passing through the polarizer 4 changes. This is for preventing the deterioration of the / N ratio. For this purpose, it is possible to stabilize the light intensity after passing through the polarizer 4 by inserting a depolarizing element closer to the light source 1 than the polarizer 4 without using an LED. Further, the polarization state can be stably maintained by using a polarization maintaining optical fiber as the first pigtail fiber 2 for guiding the light from the light source 1 to the first condenser lens 3. Further, the light emitted from the light source 1 may be directly incident on the first condenser lens 3 without using the first pigtail fiber 2 to obtain parallel light. Similarly, in the second optical system of the foreign matter detection device, the second condenser lens 7 and the light receiver 9 may be directly connected, and the second pigtail fiber 8 may be omitted.

【0025】なお、本発明の原理を用いれば光ファイバ
内の気泡などの異物だけに留まらずに光ファイバ表面に
付着した塵の検知も可能である。
By using the principle of the present invention, it is possible to detect not only foreign substances such as bubbles in the optical fiber but also dust adhering to the surface of the optical fiber.

【0026】[0026]

【発明の効果】本発明の光ファイバの異物検知方法及び
その装置によれば、光源から出射された強度変調光を偏
光子により直線偏波とし、該直線偏波の光を線引炉で溶
融・紡糸直後の光ファイバに側方より照射し、該光ファ
イバを透過してきた透過光を該光ファイバの背面に設置
した検光子を介して受光し、該受光信号をロックインア
ンプで同期検波する方法を採用したため、どんな微小な
気泡でも確実に検知可能となった。
According to the method and apparatus for detecting foreign matter in an optical fiber of the present invention, the intensity-modulated light emitted from the light source is linearly polarized by a polarizer, and the linearly polarized light is melted by a drawing furnace. Irradiate the optical fiber immediately after spinning from the side, receive the transmitted light transmitted through the optical fiber via an analyzer installed on the back of the optical fiber, and synchronously detect the received light signal with a lock-in amplifier By adopting this method, any minute bubbles can be detected reliably.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光ファイバの異物検出装置の一実施例
を示した概略構成図である。
FIG. 1 is a schematic configuration diagram showing an embodiment of an optical fiber foreign matter detection device according to the present invention.

【図2】図1の異物検出装置光学系の配置説明図であ
る。
FIG. 2 is an explanatory diagram of an arrangement of an optical system of the foreign matter detection device of FIG.

【図3】従来の光ファイバの異物検出方法を示した説明
図である。
FIG. 3 is an explanatory view showing a conventional method for detecting foreign matter in an optical fiber.

【符号の説明】[Explanation of symbols]

1 光源 2 第一ピグテイルファイバ 3 第一集光レンズ 4 偏光子 5 被測定光ファイバ 6 検光子 7 第二集光レンズ 8 第二ピグテイルファイバ 9 受光器 10 ロックインアンプ 11 記録計 12、21 線引炉 13 異物検知装置第一光学系 14 異物検知装置第二光学系 15、23 光ファイバ 16、24 コーティングダイス 22 外径測定器 Reference Signs List 1 light source 2 first pigtail fiber 3 first condenser lens 4 polarizer 5 optical fiber to be measured 6 analyzer 7 second condenser lens 8 second pigtail fiber 9 light receiver 10 lock-in amplifier 11 recorder 12, 21 Drawing furnace 13 Foreign matter detection device first optical system 14 Foreign matter detection device second optical system 15, 23 Optical fiber 16, 24 Coating die 22 Outer diameter measuring device

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】光源から出射された強度変調光を偏光子に
より直線偏波とし、該直線偏波の光を線引炉で溶融・紡
糸直後の光ファイバに側方より照射し、該光ファイバを
透過してきた透過光を該光ファイバの背面に設置した検
光子を介して受光し、該受光信号をロックインアンプで
同期検波することを特徴とする光ファイバの異物検知方
法。
An intensity-modulated light emitted from a light source is linearly polarized by a polarizer, and the linearly-polarized light is irradiated from a side to an optical fiber immediately after being melted and spun in a drawing furnace. A method for detecting foreign matter in an optical fiber, comprising: receiving the transmitted light transmitted through the optical fiber via an analyzer provided on the back of the optical fiber; and synchronously detecting the received light signal with a lock-in amplifier.
【請求項2】光ファイバ線引開始時には前記受光信号が
最小となるように前記検光子を調整し、然る後に光ファ
イバ線引を行なうことを特徴とする請求項1記載の光フ
ァイバの異物検知方法。
2. The optical fiber according to claim 1, wherein the analyzer is adjusted so that the light receiving signal is minimized at the start of drawing the optical fiber, and then the drawing of the optical fiber is performed. Detection method.
【請求項3】強度変調可能な光源と、該光源から出射し
た光を平行光とする第一集光レンズと、前記平行光を直
線偏波とする偏光子と、溶融・紡糸直後の光ファイバの
背面に設置され、且つ前記平行光を受光する検光子と、
該検光子を通過した光を集光する第二集光レンズと、該
第二集光レンズにより集光された受光信号を電気信号に
変換する受光器と、該受光器からの電気信号を同期検波
するロックインアンプとから成ることを特徴とする光フ
ァイバの異物検知装置。
3. A light source capable of intensity modulation, a first condenser lens that converts light emitted from the light source into parallel light, a polarizer that converts the parallel light into linearly polarized light, and an optical fiber immediately after melting and spinning. An analyzer installed on the back of the and receives the parallel light,
A second condenser lens for condensing the light passing through the analyzer, a light receiver for converting a light reception signal condensed by the second condenser lens into an electric signal, and synchronizing the electric signal from the light receiver An optical fiber foreign matter detecting device, comprising: a lock-in amplifier for detecting.
JP11127874A 1999-05-10 1999-05-10 Method and device for detecting foreign object in optical fiber Pending JP2000321166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11127874A JP2000321166A (en) 1999-05-10 1999-05-10 Method and device for detecting foreign object in optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11127874A JP2000321166A (en) 1999-05-10 1999-05-10 Method and device for detecting foreign object in optical fiber

Publications (1)

Publication Number Publication Date
JP2000321166A true JP2000321166A (en) 2000-11-24

Family

ID=14970788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11127874A Pending JP2000321166A (en) 1999-05-10 1999-05-10 Method and device for detecting foreign object in optical fiber

Country Status (1)

Country Link
JP (1) JP2000321166A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103389040A (en) * 2012-05-10 2013-11-13 东友精细化工有限公司 Method for detecting defects in optical films

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103389040A (en) * 2012-05-10 2013-11-13 东友精细化工有限公司 Method for detecting defects in optical films

Similar Documents

Publication Publication Date Title
Anderson et al. Troubleshooting optical fiber networks: understanding and using optical time-domain reflectometers
CA2509129C (en) Efficient distributed sensor fiber
Laferrière et al. Reference guide to fiber optic testing
JPS6153683B2 (en)
EP1558905B1 (en) Method of evaluating fiber pmd using polarization optical time domain reflectometry
CA2034162A1 (en) Method and apparatus for measuring the thickness of a coating
Tanaka et al. Tensile-strain coefficient of resonance frequency of depolarized guided acoustic-wave Brillouin scattering
US7999930B2 (en) Detection system and optical fiber for use in such system
CN108957209B (en) Automatic broken line detection device for communication optical fiber cable production
JPH03150442A (en) Optical fault point locating device
JP2000321166A (en) Method and device for detecting foreign object in optical fiber
JPS61204535A (en) Inspecting device for optical fiber
US6930768B2 (en) Detection of discontinuities in a multimode optical fiber
JPH10267859A (en) Apparatus for detecting defect in optical fiber coat layer and inspection method
EP1065489B1 (en) Apparatus for optical time domain reflectometry on multi-mode optical fibers, a light source section thereof, and a process for producing the light source section
JP2000321167A (en) Method for detecting foreign object in optical fiber
US11137317B2 (en) OTDR using an electro-absorption modulator for both pulse forming and pulse detection
GB2167261A (en) Optical fibres
CN112816996B (en) Device and method for detecting multimode fiber fault position by utilizing optical resonant cavity
Hagemann et al. Optical time-domain reflectometry (OTDR) of diameter modulations in single mode fibers
JP2601726B2 (en) Inspection method for hermetic coated optical fiber
GB1596757A (en) Apparatus for and method of measuring the optical properties of an optical fibre while it is being drawn
Lee et al. Slope-assisted Brillouin optical correlation-domain reflectometry using high-loss plastic optical fibers
JP2719050B2 (en) Method for monitoring carbon coating of optical fiber
KUMAR OPTICAL COMMUNICATION