JP2000317263A - Method and device for treating waste gas - Google Patents

Method and device for treating waste gas

Info

Publication number
JP2000317263A
JP2000317263A JP11135242A JP13524299A JP2000317263A JP 2000317263 A JP2000317263 A JP 2000317263A JP 11135242 A JP11135242 A JP 11135242A JP 13524299 A JP13524299 A JP 13524299A JP 2000317263 A JP2000317263 A JP 2000317263A
Authority
JP
Japan
Prior art keywords
exhaust gas
amount
neutralizing agent
value
spraying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11135242A
Other languages
Japanese (ja)
Inventor
Keizo Hamaguchi
敬三 浜口
Hiroshi Osada
容 長田
Toru Shiomitsu
徹 塩満
Atsushi Hirayama
敦 平山
Susumu Ayukawa
将 鮎川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP11135242A priority Critical patent/JP2000317263A/en
Publication of JP2000317263A publication Critical patent/JP2000317263A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To stably control the discharge concn. of an acidic component to a specific value or below by spraying the required minimum quantity of a neutralizing agent while utilizing the merit of semi-dry method. SOLUTION: This device consists of a stage where a residual component of the acidic component is removed with a dust collecting machine 4 by spraying the powdery neutralizing agent after removing a part of the acidic component in waste gas by introducing the waste gas into a semi-dry reaction column 3 and the spraying slurrfied neutralizing agent. At the time of spraying the later powdery neutralizing agent, the acidic component quantity of the whole subject to be treated is estimated by using one or more values among the waste gas flow rate after dust collecting treatment, the waste gas temp. at the upstream than a waste gas cooling means by water spraying, the steam generating quantity of a steam type heat recovering means, the air quantity for combustion to a waste incinerator, the secondary air quantity to the waste incinerator, the low level heat generation of the matter to be incinerated, the CO2 concn. in the waste gas after dust collecting treatment and the O2 concn. in the waste gas after dust collecting treatment without always detecting the acidic component concn. in untreated waste gas, and the spraying quantity of the powdery neutralizing agent corresponding to the residual acidic component after spraying the slurrfied neutralizing agent is controlled on the base of the acidic component quantity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、都市ごみ焼却施
設、可燃性廃棄物処理施設などから排出される有害物質
を含む排ガスの無害化処理方法に関連し、詳しくは、ス
ラリ状中和剤及び粉末中和剤を噴霧して排ガスに含まれ
る酸性成分を除去する際に粉末中和剤噴霧量を制御する
排ガス処理方法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detoxifying exhaust gas containing harmful substances discharged from municipal solid waste incineration facilities, flammable waste treatment facilities, and the like. The present invention relates to an exhaust gas treatment method and apparatus for controlling a spray amount of a powder neutralizing agent when removing an acidic component contained in exhaust gas by spraying a powder neutralizing agent.

【0002】[0002]

【従来の技術】都市ごみや産業廃棄物を焼却処理する過
程や、金属精錬工場などで可燃性の付着物を含むスクラ
ップを予熱、溶解する際に排出される排ガスには、煤
塵、HClやSOx等の酸性成分、窒素酸化物、水銀等
の重金属、ダイオキシン類およびその前駆物質などの有
機ハロゲン化合物等、さまざまな有害物質が含まれてい
る。これらの有害物質の内、例えば、煤塵はバグフィル
タなどの集塵機で捕集して除去し、窒素酸化物であるN
Oxは、焼却炉内や炉出口にアンモニアまたは尿素水を
噴霧してNOxを選択的に無害化する無触媒脱硝法によ
り除去し、水銀およびダイオキシン類等の有機ハロゲン
化合物は、粉末活性炭を吹き込んで反応器や集塵機であ
るバグフィルタで吸着除去する、といった各種方法が用
いられる。
2. Description of the Related Art Exhaust gas emitted during the process of incineration of municipal solid waste and industrial waste, and the preheating and melting of scrap containing flammable deposits in metal smelting factories and the like includes dust, HCl and SOx. It contains various harmful substances such as acidic components such as nitrogen oxides, heavy metals such as mercury, and organic halogen compounds such as dioxins and their precursors. Among these harmful substances, for example, dust is collected and removed by a dust collector such as a bag filter, and nitrogen oxide N 2
Ox is removed by spraying ammonia or urea water into the incinerator or at the furnace outlet by a non-catalytic denitration method for selectively detoxifying NOx, and organic halogen compounds such as mercury and dioxins are blown with powdered activated carbon. Various methods such as adsorption and removal with a bag filter which is a reactor or a dust collector are used.

【0003】さて、HClやSOxなどの酸性成分は、
特開平10−296046号公報や特開平10−165
752号公報に示すように、中和剤である粉末消石灰を
噴霧して乾式反応器やバグフィルタで中和反応をさせて
除去する方法があるが、一方で排ガスの冷却を兼ねた方
法として、消石灰をスラリ状として半乾式反応塔で霧状
に噴霧して消石灰スラリに含まれる水分の蒸発潜熱によ
り排ガスを冷却し、同時に酸性成分を中和除去する方法
(半乾式法)が採用されている。
Now, acidic components such as HCl and SOx are:
JP-A-10-296046 and JP-A-10-165
As disclosed in Japanese Patent No. 752, there is a method of spraying powdered slaked lime as a neutralizing agent and performing a neutralization reaction in a dry reactor or a bag filter to remove the neutralized reaction. On the other hand, as a method that also serves to cool exhaust gas, A method in which slaked lime is made into a slurry and sprayed in a mist in a semi-dry reaction tower to cool the exhaust gas by the latent heat of evaporation of water contained in the slaked lime slurry and at the same time neutralize and remove acidic components (semi-dry method) is adopted. .

【0004】従来、前記後者の方法である半乾式法は、
煙突入口の酸性成分濃度に基づいて、消石灰スラリ濃度
を一定として噴霧量を調整するか、噴霧量を一定として
消石灰スラリ濃度を調整するか、の何れかの方法で概ね
排ガス中の酸性成分を除去していた。
Conventionally, the latter method, the semi-dry method,
Based on the concentration of the acidic component at the chimney inlet, the spray amount is adjusted with a constant slaked lime slurry concentration, or the slaked lime slurry concentration is adjusted with a constant spray amount to remove the acidic components in the exhaust gas in general. Was.

【0005】このときのスラリ噴霧量の制御方法を以下
に具体的に説明する。図8は従来の排ガス処理方法の概
略で、フイードバック制御によることを示す図である。
図8において、101は廃棄物焼却炉、102はボイ
ラ、103は半乾式反応塔、104は集塵機、106は
煙突、117はフイードバック演算器、120はスラリ
噴霧量制御装置、128はHCl濃度検出器、131は
排ガス温度検出器、132はスラリ濃度制御装置であ
る。
The method of controlling the amount of sprayed slurry at this time will be specifically described below. FIG. 8 is a schematic diagram of a conventional exhaust gas treatment method, showing that feedback control is performed.
8, 101 is a waste incinerator, 102 is a boiler, 103 is a semi-dry reactor, 104 is a dust collector, 106 is a chimney, 117 is a feedback calculator, 120 is a slurry spray amount control device, and 128 is a HCl concentration detector. , 131 is an exhaust gas temperature detector, and 132 is a slurry concentration control device.

【0006】HClを代表とする酸性成分を含む排ガス
は焼却炉101から排出されてボイラ102を経て、消
石灰スラリ噴霧による半乾式反応塔103に導入され
て、排ガスが冷却されると同時に前記酸性成分が消石灰
スラリにより中和除去される。中和反応による反応生成
物を含む排ガスは後段の集塵機104に導入されて反応
生成物が集塵除去される。このとき、集塵機104を経
たあとの排ガス中の酸性成分であるHCl濃度をHCl
濃度検出器128により検出し、この濃度信号をフイー
ドバック演算器117に送信して所定のHCl濃度とな
るようにスラリ噴霧量をフイードバック制御する。この
とき、フイードバック演算器117から発信する制御信
号は図中(a)で示したように、スラリ濃度制御装置1
32を経て、スラリ噴霧量制御装置120に送信する場
合と、図中(b)で示したように、スラリ濃度制御装置
132を介さずに直接、スラリ噴霧量制御装置120に
送信する場合がある。説明では簡便のため両者を同一の
図に併記した。また、集塵機104には集塵に適した温
度範囲があるので、排ガス温度を所定範囲におさえるた
めに、排ガス温度検出器131により冷却後の排ガス温
度を検知してフイードバック演算器117に送信し、ス
ラリ噴霧量の制御により半乾式反応塔103の出口の排
ガス温度を制御することも必要に応じて併用される。
Exhaust gas containing an acidic component represented by HCl is discharged from an incinerator 101, passed through a boiler 102, introduced into a semi-dry reactor 103 sprayed with slaked lime slurry, and cooled at the same time as the exhaust gas is cooled. Is neutralized and removed by slaked lime slurry. Exhaust gas containing a reaction product from the neutralization reaction is introduced into a dust collector 104 at a subsequent stage, where the reaction product is collected and removed. At this time, the concentration of HCl, which is an acidic component in the exhaust gas after passing through the dust collector 104, is changed to HCl.
The concentration signal is detected by the concentration detector 128, and this concentration signal is transmitted to the feedback arithmetic unit 117 to perform feedback control of the amount of the slurry sprayed so as to attain a predetermined HCl concentration. At this time, the control signal transmitted from the feedback computing unit 117 is, as shown in FIG.
In some cases, the data is transmitted to the slurry spray amount control device 120 via the control unit 32, and in the other case, the data is transmitted directly to the slurry spray amount control device 120 without the intervention of the slurry concentration control device 132, as shown in FIG. . In the description, both are shown in the same figure for simplicity. Further, since the dust collector 104 has a temperature range suitable for dust collection, in order to keep the exhaust gas temperature within a predetermined range, the exhaust gas temperature detector 131 detects the cooled exhaust gas temperature and transmits it to the feedback arithmetic unit 117. Controlling the exhaust gas temperature at the outlet of the semi-dry reaction tower 103 by controlling the slurry spraying amount is also used as needed.

【0007】なお、酸性成分にはSOx等も挙げられる
が、ここでは簡単のためHClで代表して説明した。さ
らに、酸性成分以外の窒素酸化物やダイオキシン等の有
害成分の除去は別途なされるが、本発明の主眼ではない
ので、これらの処理方法および制御方法の説明は省略し
た。
Incidentally, the acidic component includes SOx and the like, but here, for simplicity, HCl has been representatively described. Furthermore, removal of harmful components such as nitrogen oxides and dioxins other than acidic components is performed separately, but is not the main subject of the present invention, and therefore, description of these treatment methods and control methods is omitted.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、排ガス
処理後(すなわち煙突入口)のHCl濃度を検知して消
石灰スラリ噴霧量を制御する図8に示した従来方法は次
の問題点を有していた。すなわち、消石灰スラリの噴霧
量制御は酸性成分の除去に関与すると同時に排ガスの温
度制御に関与するため、煙突での酸性成分の濃度を制御
する際に、消石灰スラリ噴霧量のみで制御すると、排ガ
ス温度にまで影響し、温度の不安定な運転とならざるを
得ない欠点を有していた。
However, the conventional method shown in FIG. 8 for controlling the sprayed amount of slaked lime slurry by detecting the HCl concentration after exhaust gas treatment (that is, the chimney inlet) has the following problems. . That is, since the control of the spray amount of slaked lime slurry is involved not only in the removal of the acidic components but also in the temperature control of the exhaust gas, when controlling the concentration of the acidic components in the chimney, the exhaust gas temperature is controlled only by the spray amount of the slaked lime slurry. And had a disadvantage that the operation had to be unstable.

【0009】また、酸性成分の濃度の制御を消石灰スラ
リ濃度の調整により行うと、通常スラリタンクは運転上
数時間から数十時間の貯留容量を有する必要がありタン
ク貯留量が多いため、負荷変動を有する酸性成分濃度に
適合した所定のスラリ濃度をすぐさま得ることができな
い欠点と、スラリ濃度調整制御を行ったとしても、酸性
成分の濃度が高い場合にはスラリ濃度を極端に高くする
必要があり、このとき噴霧ポンプや噴射部の詰まりの原
因となる欠点を有する。
When the concentration of the acidic component is controlled by adjusting the concentration of slaked lime slurry, the slurry tank usually needs to have a storage capacity of several hours to several tens of hours in operation, and since the tank storage amount is large, load fluctuations may occur. The disadvantage is that it is not possible to immediately obtain a predetermined slurry concentration suitable for the acidic component concentration, and even if the slurry concentration adjustment control is performed, it is necessary to extremely increase the slurry concentration when the concentration of the acidic component is high. However, at this time, there is a drawback that causes clogging of the spray pump and the injection unit.

【0010】さらに、排ガス量の変動に対応して排ガス
温度を一定に制御する際には、通常の水噴霧による温度
制御と同様に、スラリ噴霧量を制御する必要が生じ、こ
のときスラリ濃度が一定であるとすると、正味の消石灰
の噴霧量が変化して一定水準の酸性成分除去が困難とな
る問題点を有していた。
Further, when controlling the exhaust gas temperature to be constant in response to the fluctuation of the exhaust gas amount, it is necessary to control the slurry spray amount in the same manner as the ordinary temperature control by water spray. If it is constant, there is a problem that the net sprayed amount of slaked lime changes and it is difficult to remove a certain level of acidic components.

【0011】また、別の工夫として排ガス温度を調整す
るための温調水をスラリ供給ラインに合流させる方法も
考えられるが、スラリ噴霧部の圧力変動を伴うためスラ
リ噴霧がやや不安定になることと、温調水供給ラインが
別途必要になるといった問題点を有することになる。
As another method, a method of joining temperature-regulated water for adjusting the temperature of exhaust gas to the slurry supply line can be considered, but the slurry spray becomes slightly unstable due to the pressure fluctuation of the slurry spray section. Therefore, there is a problem that a temperature control water supply line is required separately.

【0012】これらは、消石灰スラリを噴霧することに
伴う問題、すなわち、中和剤である消石灰と排ガス冷却
のための水を混合し同時に噴霧せざるを得ない半乾式法
の欠点と言えるが、消石灰の濡れ状態を形成して排ガス
中の酸性成分を除去するので、酸性成分除去効率が乾式
法(消石灰粉を乾き状態で噴霧する方法)よりも高い利
点を有しており、本発明者らは後で述べる手段により半
乾式法の利点を活かしながら、上記問題点を克服するこ
とを達成した。
These are problems associated with spraying slaked lime slurry, that is, a drawback of the semi-dry method in which slaked lime as a neutralizing agent and water for cooling exhaust gas must be sprayed simultaneously. Since the acidic component in the exhaust gas is removed by forming the wet state of slaked lime, the acid component removing efficiency has an advantage higher than the dry method (method of spraying slaked lime powder in a dry state). Achieved the above-mentioned problems while taking advantage of the semi-dry method by means described later.

【0013】次に、煙突部の酸性成分濃度に基づく消石
灰等の中和剤噴霧量制御に関する乾式法にも通じる上記
とは別の問題点を指摘する。もちろん、下記に示す問題
点は上記問題点を常に有しているので、上記問題点の併
記は省略した。
Next, another problem pointed out by the dry method concerning the control of the spray amount of the neutralizing agent such as slaked lime based on the concentration of the acidic component in the chimney will be pointed out. Of course, the following problems always have the above-mentioned problems, and therefore, the description of the above-mentioned problems is omitted.

【0014】すなわち、HCl等の酸性成分を測定する
地点は、特開平10−296046号公報や特開平10
−165752号公報に示すように、酸性成分が発生す
る焼却炉出口など排ガスの上流側地点でなく、排ガス処
理施設の下流側にてサンプリングするので、測定濃度の
時間遅れを生じることや、HClを代表とする排ガス中
の酸性成分は、通常、イオン電極方式などのようにサン
プル排ガスを吸収液に吸収させ、この液中の濃度を測定
して排ガス中の濃度に換算する方式の連続排ガス分析計
によって測定されるが、この方式は一般に応答時間が長
く、HClが一時的に多く発生したにも拘わらず、例え
ば10分遅れで、測定値が指示され、しかも、鋭敏な変
動が緩慢な変動となって表示されることが多いので、さ
らに大きな時間遅れを生ずる。このことから、処理後の
酸性成分の濃度を測定してから、中和剤としての消石灰
の噴霧量を制御すると時間遅れが生じるので、所望量の
消石灰を正しく噴霧することができず、無駄に消石灰が
消費されたり、処理後のHCl濃度が脈動を伴う大きな
挙動を示し、一定値または一定値以下の制御が困難とな
る問題が生じていた。
That is, the point at which an acidic component such as HCl is measured is described in JP-A-10-296046 and JP-A-10-296046.
As shown in JP-A-1655752, sampling is performed at the downstream side of an exhaust gas treatment facility, not at an upstream side of exhaust gas such as an incinerator outlet where an acidic component is generated. The typical acidic component in exhaust gas is a continuous exhaust gas analyzer that normally absorbs sample exhaust gas into an absorbing solution, measures the concentration in this solution, and converts it to the concentration in exhaust gas, as in the ion electrode method. In this method, the response time is generally long, and the measured value is indicated, for example, with a delay of 10 minutes, despite the temporary generation of a large amount of HCl. Is often displayed, which causes an even longer time delay. From this, if the sprayed amount of slaked lime as a neutralizing agent is controlled after measuring the concentration of the acidic component after the treatment, a time delay occurs, so that the desired amount of slaked lime cannot be sprayed correctly, which is wasteful. Slaked lime is consumed, and the concentration of HCl after the treatment shows a large behavior accompanied by pulsation, and there has been a problem that it is difficult to control a constant value or a constant value or less.

【0015】また、図8とは別の方法として、例えば、
ボイラ出口など処理前の排ガス中の酸性成分濃度を事前
に測定して、この発生量に対して消石灰噴霧量を設定す
る方法が考えられるが、この場合にも、上記の理由で、
連続分析計の応答時間の遅さによる時間遅れが生じる問
題点と、煤塵含有量の多い処理前の排ガスの長期連続の
サンプリングがサンプリングプローブの目詰まりにより
困難である問題点が生じるか、サンプリングプローブの
目詰まりを回避できる逆洗機能付きの連続分析計を用い
たとしても、上記の理由で連続分析計の応答時間の遅さ
による時間遅れが生じる問題点と、該逆洗機能付き連続
分析計が高価であることと、逆洗機能付きであっても定
期的なメンテナンスが不可欠で余分な労力を必要とする
問題点を生じることとなる。
As another method different from FIG. 8, for example,
A method is conceivable in which the concentration of the acidic component in the exhaust gas before treatment such as the boiler outlet is measured in advance, and the amount of slaked lime spray is set with respect to the generated amount.
The problem is that the time delay is caused by the slow response time of the continuous analyzer, and the problem that long-term continuous sampling of exhaust gas before treatment with high dust content is difficult due to clogging of the sampling probe occurs, Even if a continuous analyzer with a backwash function capable of avoiding clogging is used, there is a problem that a time delay occurs due to a slow response time of the continuous analyzer for the above-described reasons, and the continuous analyzer with the backwash function. Is expensive and regular maintenance is indispensable even with a backwashing function, resulting in a problem that requires extra labor.

【0016】本発明は、半乾式法の利点を活かしなが
ら、以上述べた問題点を解決するべくなされたものであ
り、必要最低量の中和剤の噴霧で、酸性成分の排出濃度
を一定値または一定値以下に安定して制御することが可
能な排ガス処理方法および装置を提供することを目的と
する。
The present invention has been made to solve the above-mentioned problems while utilizing the advantages of the semi-dry method. Alternatively, it is an object of the present invention to provide an exhaust gas treatment method and apparatus capable of stably controlling the exhaust gas to a fixed value or less.

【0017】[0017]

【課題を解決するための手段】請求項1に係る発明は、
廃棄物焼却炉から排出される排ガスにスラリ状中和剤を
噴霧して排ガス中の酸性成分を除去する方法において、
排ガスを半乾式反応塔に導入しスラリ状中和剤を噴霧し
て排ガス中の一部の酸性成分を除去したあとに、粉末中
和剤を噴霧して酸性成分の残留分を集塵機で除去する工
程からなり、後者の粉末中和剤の噴霧の際に、未処理排
ガス中の酸性成分濃度を常時検知することなく、イ)集
塵処理後の排ガス流量、ロ)水噴霧による排ガス冷却手
段より上流の排ガス温度、ハ)蒸気式熱回収手投による
蒸気発生量、ニ)廃棄物焼却炉への燃焼用空気量、ホ)
廃棄物焼却炉への二次空気量、へ)被焼却物の低位発熱
量、ト)集塵処理後の排ガス中のCO2濃度、チ)集塵
処理後の排ガス中のO2濃度、の内のひとつ以上を用い
て全処理対象の酸性成分量を推定し、これに基づいて、
前記スラリ状中和剤の噴霧後の残留酸性成分に対応する
粉末中和剤の噴霧量を制御することを特徴とする排ガス
処理方法である。
The invention according to claim 1 is
In a method of removing acidic components in exhaust gas by spraying a slurry-like neutralizing agent on exhaust gas discharged from a waste incinerator,
The exhaust gas is introduced into a semi-dry reaction tower and a slurry-like neutralizing agent is sprayed to remove some acidic components in the exhaust gas, and then a powder neutralizing agent is sprayed to remove residual acidic components with a dust collector. In the latter case of spraying the powder neutralizer, the concentration of acidic components in the untreated exhaust gas is not always detected, and the exhaust gas cooling means by (a) exhaust gas flow after dust collection and (b) water spray Upstream exhaust gas temperature, c) amount of steam generated by steam heat recovery, d) amount of combustion air to waste incinerator, e)
Secondary air amount to the waste incinerator, to) lower heating value of the incinerated, Doo) CO 2 concentration in the exhaust gas after dust collection, Ji) O 2 concentration in the exhaust gas after dust collection, the Estimate the amount of acidic components for all treatments using one or more of the above, based on this,
An exhaust gas treatment method comprising controlling a spray amount of a powder neutralizing agent corresponding to a residual acidic component after spraying the slurry-like neutralizing agent.

【0018】本発明においては、酸性成分の一部を除去
する際に半乾式反応塔を用いているので、半乾式法によ
る中和剤としての濡れ消石灰が反応塔内で蒸発する過程
で中和活性の高い粉末消石灰が得られ、必要最低限の中
和剤量で無駄なく酸性成分を除去することができる。
In the present invention, since a semi-dry reaction tower is used to remove a part of the acidic components, the wet slaked lime as a neutralizing agent by the semi-dry method is neutralized in the process of evaporating in the reaction tower. Powdered slaked lime with high activity can be obtained, and acidic components can be removed without waste with the minimum necessary amount of neutralizing agent.

【0019】また、半乾式反応塔で排ガス中の一部の酸
性成分を除去したあとの酸性成分の残留分を粉末中和剤
の噴霧によりバグフィルタなどのろ過式集塵機で除去す
るので、前段のスラリ状中和剤の噴霧量を処理対象の酸
性成分濃度が変動しても一定とすることができ、スラリ
濃度を不所望に調整する煩わしさやこれに伴う機器類へ
の過剰な負荷を回避することが可能となる。半乾式反応
塔におけるスラリ状中和剤噴霧量の調整は主に後段の集
塵機での排ガス温度を所望の温度にするために行うの
で、この調整手段は排ガス温度調整装置として機能す
る。
Further, since a residue of the acidic component after removing a part of the acidic component in the exhaust gas in the semi-dry reaction tower is removed by a filtration type dust collector such as a bag filter by spraying a powder neutralizing agent, the former stage is used. The spray amount of the slurry-type neutralizing agent can be kept constant even if the concentration of the acidic component to be treated fluctuates, thereby avoiding the troublesome adjustment of the slurry concentration undesirably and the resulting excessive load on the equipment. It becomes possible. Since the adjustment of the amount of the slurry-like neutralizing agent sprayed in the semi-dry reaction tower is mainly performed to adjust the exhaust gas temperature in the subsequent dust collector to a desired temperature, this adjusting means functions as an exhaust gas temperature adjusting device.

【0020】ここで、スラリ状中和剤の噴霧で一部の酸
性成分を除去する際の酸性成分の除去率は50〜90%
とすることが望ましい。50%以下であると、半乾式反
応塔で高効率に酸性成分を除去することの作用が半分以
下となって半乾式反応塔を用いることの優位性が顕著で
なくなることと、後段の集塵機で粉末中和剤により酸性
成分を除去する負荷が極端に大きくなって焼却炉の変動
等に追随できなくなる可能性を有するので望ましくな
く、90%以上とすると、後段の集塵機で乾式で酸性成
分を除去する制御(後述)の優位性がなくなることと、
90%以上の高除去率を確保するためには酸性成分に対
する当量以上にスラリ状中和剤を噴霧する必要が生じ
て、中和剤消費量が極端に多くなるので望ましくない。
したがって50%〜90%とすると、スラリ状中和剤に
よる酸性成分除去と、粉末中和剤による酸性成分除去の
バランスが良好に保たれるので望ましい。
Here, the removal rate of the acidic component when a part of the acidic component is removed by spraying the slurry-like neutralizing agent is 50 to 90%.
It is desirable that When it is 50% or less, the effect of removing the acidic component with high efficiency in the semi-dry reaction tower is reduced to less than half, and the advantage of using the semi-dry reaction tower is not remarkable. The load of removing the acidic components by the powder neutralizing agent becomes extremely large, and there is a possibility that it may not be able to follow fluctuations of the incinerator. Control (described later) loses its advantage,
In order to secure a high removal rate of 90% or more, it is necessary to spray a slurry-like neutralizing agent in an amount equal to or more than an equivalent to an acidic component, and the consumption of the neutralizing agent becomes extremely large, which is not desirable.
Therefore, when the content is 50% to 90%, the balance between the removal of the acidic component by the slurry-like neutralizing agent and the removal of the acidic component by the powder neutralizing agent is preferably maintained.

【0021】次に、酸性成分の残留分をバグフィルタな
どのろ過式集塵機で粉末中和剤を用いて除去するので、
噴霧量調整が乾式であるため簡便で可及的に行える利点
を有する。集塵機に導入する排ガスはすでに半乾式反応
塔で温度が例えば200℃以下の一定温度に調整されて
いるので、酸性成分除去に適した温度となり、集塵機で
の酸性成分除去性能を向上させる作用と、温度が一定で
あることにより集塵機の安定稼働が可能となる作用が同
時に得られる。
Next, the residue of the acidic component is removed with a filter dust collector such as a bag filter using a powder neutralizing agent.
Since the spray amount adjustment is of a dry type, there is an advantage that it can be performed simply and as much as possible. Since the temperature of the exhaust gas introduced into the dust collector has already been adjusted to a constant temperature of, for example, 200 ° C. or less in the semi-dry reaction tower, the temperature becomes suitable for removing the acidic components, and the action of improving the acidic component removing performance in the dust collector, When the temperature is constant, an effect that enables stable operation of the dust collector is obtained at the same time.

【0022】また、スラリ状中和剤による酸性成分除去
と粉末中和剤による酸性成分除去は、例えば消石灰を用
いればよく、ともに同じ中和剤を用いているので、薬剤
としての中和剤サイロは中和剤サイロのひとつでよく、
供給部をスラリ用と粉体噴霧用に分割するだけで済み、
簡便な方法で達成できる利点がある。
The removal of the acidic component by the slurry-like neutralizing agent and the removal of the acidic component by the powder neutralizing agent may be performed by using, for example, slaked lime. Since both use the same neutralizing agent, the neutralizing agent silo is used as a chemical. Can be one of the neutralizer silos,
All you need to do is split the feed section for slurry and powder spray,
There are advantages that can be achieved in a simple manner.

【0023】次に、粉末中和剤をバグフィルタなどのろ
過式集塵機内で噴霧する際は、未処理排ガス中の酸性成
分濃度を常時検知することなく、イ)集塵処理後の排ガ
ス流量、ロ)水噴霧による排ス冷却手段より上流の排ガ
ス温度、ハ)蒸気式熱回収手段による蒸気発生量、ニ)
廃棄物焼却炉への燃焼用空気量、ホ)廃棄物焼却炉への
二次空気量、へ)被焼却物の低位発熱量、ト)集塵処理
後の排ガス中のCO2濃度、チ)集塵処理後の排ガス中
のO2濃度、の内のひとつ以上を用いて全処理対象の酸
性成分量を推定し、これに基づいて、前記スラリ状中和
剤の噴霧後の残留酸性成分に対応する粉末中和剤の噴霧
量を制御する。
Next, when the powder neutralizer is sprayed in a filter type dust collector such as a bag filter, the concentration of the acidic component in the untreated exhaust gas is not always detected, and B) the temperature of the exhaust gas upstream of the exhaust gas cooling means by water spray; c) the amount of steam generated by the steam-type heat recovery means;
Combustion air quantity to the waste incinerator, e) secondary air amount to the waste incinerator, to) lower heating value of the incinerated, Doo) CO 2 concentration in the exhaust gas after dust collection, h) O 2 concentration in the exhaust gas after dust collection, using one or more of the estimates the acidic component of the total processed, based on this, the residual acidic components after spraying of the slurry-like neutralizing agent Control the spray amount of the corresponding powder neutralizer.

【0024】HCl、SOx等の排ガス中の酸性成分濃
度(または量)は、焼却炉の運転状況や多様な被焼却物
の性状等により、一定の値をとることはほとんどなく、
大きな変動を伴うのが一般的である。このような場合、
中和処理前の濃度変化の大きい酸性成分の濃度を常時検
知してこれに見合う量の粉末中和剤を噴霧すれば、効率
よく酸性成分を除去することが可能となるが、次の間題
点を有しているため採用できない。すなわち、処理前の
酸性成分を検知するためには含塵排ガス中の酸性成分濃
度を連続測定器で測定する必要があるが、含塵排ガスで
あるために、測定器のサンプリングプローブが頻繁に目
詰まりを起こして測定不能となる問題点や、測定器が有
する応答時間の遅れ、例えばHClを測定するイオン電
極式の連続測定器では約10分程度の時間遅れを伴い、
変動の激しい酸性成分濃度に迅速に対応することが困難
である問題点を有している。そこで、本発明では、未処
理排ガス中の酸性成分の濃度を常時検知することなく、
これに代わるものとして、上記イ)〜チ)のうち何れか
ひとつ以上を用いて全処理対象の酸性成分量を推定する
こととしたものである。
The concentration (or amount) of the acidic components in the exhaust gas such as HCl and SOx hardly takes a constant value depending on the operating conditions of the incinerator and the properties of various incinerated materials.
It is generally accompanied by large fluctuations. In such a case,
If the concentration of the acidic component having a large change in the concentration before the neutralization treatment is constantly detected and a powder neutralizing agent is sprayed in an amount corresponding to the concentration, the acidic component can be efficiently removed. Cannot be adopted because it has. That is, in order to detect acidic components before treatment, it is necessary to measure the concentration of the acidic components in the exhaust gas containing dust with a continuous measuring instrument. However, since the exhaust gas is dust-containing exhaust gas, the sampling probe of the measuring instrument is frequently used. There is a problem that the measurement becomes impossible due to clogging, and a delay in response time of the measuring device, for example, a time delay of about 10 minutes in an ion electrode type continuous measuring device for measuring HCl,
There is a problem that it is difficult to quickly respond to a rapidly changing acidic component concentration. Therefore, in the present invention, without constantly detecting the concentration of the acidic component in the untreated exhaust gas,
As an alternative to this, the amount of the acidic component of all the objects to be treated is estimated using at least one of the above items a) to h).

【0025】ここで、本発明で用いる上記イ)〜チ)の
各々について説明する。 イ)集塵処理後の排ガス流量とは、例えば図1のバグフ
ィルタ4で集塵されたあとの排ガス流量であればよく、
その後段に脱硝塔(図示しない)を設置する場合は脱硝
塔の後の排ガス流量であってもよく、排ガス流量検出器
11により連続測定された排ガス流量値を制御因子とし
て用いる。排ガス流量は図示しない排ガス温度計により
ノルマル換算されることが多いが、ノルマル換算した排
ガス流量であってもそうでなくてもどちらも採用するこ
とができる。なぜならば、通常集塵機を出た排ガス温度
は略一定であり、排ガス流量の値は温度による換算をし
てもしなくても排ガス流量の変化傾向は類似しているか
らである。排ガス流量は、焼却炉における焼却量や被焼
却物の発熱量が大きいときなどに、多くなる傾向があ
る。すなわち、排ガス流量は焼却状態を表す一指標であ
る。
Here, each of the above (a) to (h) used in the present invention will be described. B) The exhaust gas flow rate after the dust collection processing may be, for example, the exhaust gas flow rate after dust collection by the bag filter 4 in FIG.
When a denitration tower (not shown) is installed in the subsequent stage, the flow rate of the exhaust gas after the denitration tower may be used, and the flow rate value of the exhaust gas continuously measured by the exhaust gas flow rate detector 11 is used as a control factor. Although the exhaust gas flow rate is often converted to normal by an exhaust gas thermometer (not shown), either the normal converted exhaust gas flow rate or not may be adopted. This is because the temperature of the exhaust gas that normally exits the dust collector is substantially constant, and the tendency of the exhaust gas flow rate is similar whether or not the value of the exhaust gas flow rate is converted by the temperature. The exhaust gas flow rate tends to increase when the amount of incineration in the incinerator or the calorific value of the incinerated material is large. That is, the exhaust gas flow rate is one index indicating the incineration state.

【0026】ロ)水噴霧による排ガス冷却手段より上流
の排ガス温度とは、例えば、焼却炉内温度、焼却炉出口
温度、ボイラ1パス温度、ボイラ2パス温度、ボイラ出
口温度など、焼却炉で発生する排ガスが減温塔や半乾式
反応塔などの水噴霧による排ガス冷却される前の排ガス
温度であればよい。水噴霧による冷却で後段の集塵機等
に適した温度に強制的に調整されるため、もはや水噴霧
冷却後では、炉における焼却状態を示す温度とはならな
い。図5に示すグラフは、炉内温度Aと炉出口温度Bと
ボイラ2パス温度Cがそれぞれ平均値は異なるが、変動
が酷似しており、良好な相関があることを示している。
すなわち、これらの温度は焼却状態を表す一指標であ
る。
(B) The exhaust gas temperature upstream of the exhaust gas cooling means by water spray is generated in the incinerator, for example, the temperature in the incinerator, the incinerator outlet temperature, the boiler 1 pass temperature, the boiler 2 pass temperature, and the boiler outlet temperature. The temperature of the exhaust gas to be discharged may be any temperature before the exhaust gas is cooled by the water spray such as a cooling tower or a semi-dry reaction tower. Since the temperature is forcibly adjusted to a temperature suitable for the subsequent dust collector and the like by the cooling by the water spray, the temperature does not reach the temperature indicating the incineration state in the furnace after the water spray cooling. The graph shown in FIG. 5 shows that the furnace temperature A, the furnace outlet temperature B, and the boiler two-pass temperature C have different average values, but the fluctuations are very similar, indicating that there is a good correlation.
That is, these temperatures are one index indicating the incineration state.

【0027】ハ)蒸気式熱回収手段による蒸気発生量と
は、ボイラでの高圧蒸気の発生量(蒸発量)であり、焼
却温度が高いときには蒸気発生量が多くなる傾向があ
る。図5に示すグラフは、炉内温度A等と蒸発量Dが良
好な相関にあることを示している。すなわち、蒸気発生
量は焼却状態を表す一指標である。
C) The amount of steam generated by the steam-type heat recovery means is the amount of high-pressure steam generated in the boiler (evaporation amount). When the incineration temperature is high, the amount of generated steam tends to increase. The graph shown in FIG. 5 shows that the furnace temperature A and the like and the evaporation amount D have a good correlation. That is, the amount of generated steam is one index indicating the incineration state.

【0028】ニ)廃棄物焼却炉への燃焼用空気量とは、
例えば焼却炉下部に設置された燃焼用空気吹込口(図示
しない)から炉内に燃焼用空気として導入される空気量
のことである。焼却炉における焼却量や被焼却物の発熱
量が大きいときなどに、燃焼用空気量は多くなる傾向が
ある。すなわち、燃焼用空気量は焼却状態を表す一指標
である。
D) What is the amount of combustion air to the waste incinerator?
For example, it refers to the amount of air introduced as combustion air into the furnace from a combustion air inlet (not shown) provided at the lower part of the incinerator. When the amount of incineration in the incinerator or the amount of heat generated by the incineration is large, the amount of combustion air tends to increase. That is, the combustion air amount is one index indicating the incineration state.

【0029】ホ)廃棄物焼却炉への二次空気量とは、例
えば焼却炉出口付近または内部の側面に設置された二次
空気吹込口(図示しない)から、炉内または出口部に二
次燃焼用空気として導入される空気量のことである。二
次空気は二次燃焼を促進させる一方で、場合により高温
となりすぎた炉内温度を冷却する働きを持たせることも
ある。何れにしても焼却炉における焼却量や被焼却物の
発熱量が大きいときなどに、二次空気量は多くなる傾向
がある。すなわち、二次空気量は焼却状態を表す一指標
である。
E) The amount of secondary air to the waste incinerator refers to the amount of secondary air from the secondary air inlet (not shown) installed near or inside the incinerator outlet, for example, in the furnace or at the outlet. The amount of air introduced as combustion air. While the secondary air promotes secondary combustion, it may also serve to cool the furnace temperature which has become too high in some cases. In any case, the amount of secondary air tends to increase when the amount of incineration in the incinerator or the amount of heat generated by the incinerator is large. That is, the secondary air amount is one index indicating the incineration state.

【0030】へ)被焼却物の低位発熱量とは、例えば炉
内温度やごみ投入量などから予め演算される(説明省
略)被焼却物を燃焼した際に熱源として得られる発熱量
のことである。低位発熱量は全連続式焼却炉などで中央
管理している場合は、運転データとして記録されてい
る。被焼却物の低位発熱量が大きいと炉内温度も上昇す
る傾向がある。すなわち、低位発熱量は焼却状態を表す
一指標である。
F) The lower heating value of the incinerated material is a calorific value obtained as a heat source when the incinerated material is burned, which is preliminarily calculated from the furnace temperature, the amount of waste, and the like (not described). is there. When the lower heating value is managed centrally in a continuous incinerator or the like, it is recorded as operating data. If the lower heating value of the incinerated material is large, the furnace temperature tends to increase. That is, the lower heating value is one index indicating the incineration state.

【0031】ト)集塵処理後の排ガス中のCO2濃度と
は、例えば図1のバグフィルタ4で集塵されたあとの排
ガス中のCO2濃度であればよく、連続式の測定器によ
り測定されたCO2濃度のことである。焼却炉における
燃焼が活発であれば、炉内温度が上昇するとともに燃焼
用空気に含まれるO2を大きく消費してCO2を多く発生
する。すなわち、CO2濃度は焼却状態を表す一指標で
ある。
G) The CO 2 concentration in the exhaust gas after the dust collection process may be, for example, the CO 2 concentration in the exhaust gas after being collected by the bag filter 4 in FIG. It refers to the measured CO 2 concentration. If combustion is vigorous in incinerators, the temperature in the furnace often generates CO 2 consumes large O 2 contained in the combustion air with increased. That is, the CO 2 concentration is one index indicating the incineration state.

【0032】チ)集塵処理後の排ガス中のO2濃度と
は、例えば図1のバグフィルタ4で集塵されたあとの排
ガス中のO2濃度であればよく、連続式の測定器により
測定されたO2濃度のことである。焼却炉における燃焼
が活発であれば、炉内温度が上昇するとともに、燃焼用
空気に含まれるO2を大きく消費してO2濃度が小さくな
る。すなわち、O2濃度は焼却状態を表す一指標であ
る。
H) The O 2 concentration in the exhaust gas after the dust collection process may be, for example, the O 2 concentration in the exhaust gas after being collected by the bag filter 4 in FIG. It is the measured O 2 concentration. If the combustion in the incinerator is active, the temperature inside the furnace increases, and the O 2 contained in the combustion air is greatly consumed to reduce the O 2 concentration. That is, the O 2 concentration is one index indicating the incineration state.

【0033】以上説明したとおり、イ)〜チ)は何れも
焼却炉における焼却状態の活発さや不活発さを示す指標
であって、何れも通常、焼却施設に連続測定値として管
理されている流用の容易な指標である。本発明は含塵で
あるがゆえに連続測定が困難とされる中和剤未噴霧かつ
未集塵の排ガス中の酸性成分濃度を常時検知することな
く、すなわち、酸性成分濃度の連続測定器を新たに設置
することなく、相対的に応答の速い、通常の排ガス処理
施設に既設の連続測定器による測定値である、イ)集塵
処理後の排ガス流量、ロ)水噴霧による排ガス冷却手投
より上流の排ガス温度、ハ)蒸気式熱回収手段による蒸
気発生量、ニ)廃棄物焼却炉への燃焼用空気量、ホ)廃
棄物焼却炉への二次空気量、へ)被焼却物の低位発熱
量、ト)集塵処理後の排ガス中のCO2濃度、チ)集塵
処理後の排ガス中のO2濃度、の内のひとつ以上を用い
て酸性成分量を推定するので、より簡便な方法で、スラ
リ噴霧後の残留酸性成分に対応する粉末中和剤の噴霧量
を酸性成分量の推定値に基づいて設定することが可能と
なる。同時に、従来の制御による処理後の酸性成分濃度
の脈動の激しさや中和剤の無駄な消費を回避する作用が
得られる。すなわち、酸性成分濃度の連続測定器を新た
に設置することなく、処理後の酸性成分の脈動を抑えな
がら、中和剤消費量を必要最小限にすることが可能とな
る。
As described above, all of the indices (a) to (h) are indices indicating the activeness or the inactiveness of the incineration state in the incinerator, and all of them are usually diverted as continuously measured values in the incineration facility. Is an easy indicator. The present invention does not always detect the concentration of the acidic component in the exhaust gas that has not been sprayed and has not been neutralized, which is difficult to continuously measure because it is dust-containing. It is relatively quick response without being installed in a normal exhaust gas treatment facility. It is a value measured by a continuous measuring instrument that is already installed in an ordinary exhaust gas treatment facility. Upstream exhaust gas temperature, c) amount of steam generated by steam heat recovery means, d) amount of combustion air to waste incinerator, e) secondary air amount to waste incinerator, f) low incineration Since the amount of the acidic component is estimated using at least one of the calorific value, (g) the CO 2 concentration in the exhaust gas after the dust collection process, and (h) the O 2 concentration in the exhaust gas after the dust collection process, the method is simpler. Method, the spray amount of the powder neutralizing agent corresponding to the residual acidic components after slurry spraying It is possible to set based on the estimated value of the component amount. At the same time, the effect of avoiding the intense pulsation of the acid component concentration after treatment and the wasteful consumption of the neutralizing agent by the conventional control can be obtained. That is, it is possible to minimize the consumption of the neutralizing agent while suppressing the pulsation of the acid component after treatment without newly installing a continuous measuring device for the concentration of the acidic component.

【0034】また、「排ガス中の酸性成分濃度を常時検
知することなく」とは、例えば排ガス処理施設の建設時
における性能試験などで、中和剤未噴霧かつ未集塵の排
ガスの酸性成分濃度を測定し、この測定結果をその後の
通常運転で参考値とするか、請求項4および5に記載の
基準値として採用すればよいものであり、通常の運転で
連続的に測定するものでないことはすでに述べたとおり
であり、ここで述べた基準値については後述する。
The phrase "without constantly detecting the concentration of the acidic component in the exhaust gas" means that the concentration of the acidic component in the exhaust gas not sprayed with the neutralizing agent and not collected in a performance test at the time of constructing an exhaust gas treatment facility, for example. And the measurement result may be used as a reference value in the subsequent normal operation, or may be adopted as the reference value according to claims 4 and 5, and should not be continuously measured in the normal operation. Has already been described, and the reference value described here will be described later.

【0035】請求項2に係る発明は、前記イ)〜ト)の
各々の値が各々の基準値を上回るか、前記チ)の値が基
準値を下回る何れかの場合にその程度に応じて粉末中和
剤の噴霧量を増加させ、前記イ)〜ト)の各々の値が各
々の基準値を下回るか、前記チ)の値が基準値を上回る
何れかの場合にその程度に応じて粉末中和剤の噴霧量を
減少させることを特徴とする請求項1記載の排ガス処理
方法である。
According to a second aspect of the present invention, when the value of each of the above (a) to (g) exceeds each reference value or the value of the above (h) is below the reference value, depending on the degree. The spray amount of the powder neutralizing agent is increased, and the value of each of the above (a) to (g) is lower than the respective reference value or the value of the above (h) is higher than the reference value, depending on the degree. 2. The exhaust gas treatment method according to claim 1, wherein the spray amount of the powder neutralizing agent is reduced.

【0036】本発明者らは鋭意調査の結果、以下に述べ
る結論に至った。図3に示すグラフは、焼却炉の焼却状
態を示す一指標である炉出口温度(先に述べたロ)水噴
霧による排ガス冷却手段より上流の排ガス温度)と、中
和処理前(ボイラ出口)のHCl濃度の時間変化を調べ
た結果を示すものである。同図によると、炉出口温度B
とHCl濃度Eは互いによく類似した変化傾向を示して
いる。HCl濃度Eは測定器による時間遅れが目立つた
め約10分遅れで炉出口温度Bに追随している。炉出口
温度Bと時間遅れを補正したHCl濃度E1との相関を
示したのが図4であり、同図によると炉出口温度BとH
Cl濃度E1が正の相関を顕著に表していることが読み
とれる。すなわち、酸性成分であるHCl濃度E1は焼
却炉の焼却状態を示す一指標である炉出口温度Bと良好
な正の相関があるので、処理対象とする酸性成分量を推
定する際に、ロ)水噴霧による排ガス冷却手段より上流
の排ガス温度である炉出口温度を用いればよいことに帰
結した。そして推定した酸性成分量に基づいて粉末中和
剤の噴霧量を制御すれば時間遅れなく、かつ必要最小量
の粉末中和剤を噴霧することが可能となる。
The present inventors have conducted intensive studies and have reached the following conclusions. The graph shown in FIG. 3 is an index indicating the incineration state of the incinerator, the furnace outlet temperature (the exhaust gas temperature upstream of the exhaust gas cooling means by water spray described above) and before the neutralization treatment (boiler outlet). 3 shows the result of examining the change over time of the HCl concentration of the present invention. According to the figure, the furnace outlet temperature B
And the HCl concentration E show a similar tendency to change. The HCl concentration E follows the furnace outlet temperature B with a delay of about 10 minutes because a time delay due to the measuring instrument is conspicuous. FIG. 4 shows the correlation between the furnace outlet temperature B and the HCl concentration E1 corrected for the time delay.
It can be seen that the Cl concentration E1 clearly shows a positive correlation. That is, since the concentration E1 of HCl, which is an acidic component, has a good positive correlation with the furnace outlet temperature B, which is one index indicating the incineration state of the incinerator, when estimating the amount of the acidic component to be treated, b) The result is that the furnace outlet temperature, which is the exhaust gas temperature upstream of the exhaust gas cooling means by water spraying, may be used. If the spray amount of the powder neutralizing agent is controlled based on the estimated amount of the acidic component, it becomes possible to spray the required minimum amount of the powder neutralizing agent without delay.

【0037】このように、炉出口温度とHClを代表と
する酸性成分濃度は正の相関があることが判明したの
で、このときの酸性成分を除去するための粉末中和剤
は、炉出口温度がその基準値より上回る際にその程度に
応じて噴霧量を増加させ、基準値より下回る際にその程
度に応じて噴霧量を減少させればよく、すでに述べた請
求項1に係る発明の作用効果を確実に得ることができ
る。もちろん、炉出口温度の代わりに、同一の変化傾向
を示す、炉内温度、ボイラ1パス温度、ボイラ2パス温
度、ボイラ出口温度を用いてもよく、ロ)水噴霧による
排ガス冷却手段より上流の排ガス温度であればよい。
As described above, it has been found that the furnace outlet temperature and the concentration of the acidic component typified by HCl have a positive correlation, and the powder neutralizing agent for removing the acidic component at this time has a furnace outlet temperature. When the value is higher than the reference value, the spray amount may be increased according to the degree, and when the value is lower than the reference value, the spray amount may be reduced according to the degree. The effect can be obtained reliably. Of course, in place of the furnace outlet temperature, a furnace temperature, a boiler one-pass temperature, a boiler two-pass temperature, and a boiler outlet temperature that show the same change tendency may be used. It is sufficient if the temperature is the exhaust gas temperature.

【0038】酸性成分であるSOxについては、酸性成
分であるHClと同様の挙動を示すので、同様の制御が
可能である。また、ごみ焼却施設の場合、HCl濃度は
例えばSOx濃度の10倍程度と高いので、酸性成分除
去としてHClに関してのみ制御を行っても十分であ
る。
[0038] SOx, which is an acidic component, behaves similarly to HCl, which is an acidic component, and thus can be controlled in the same manner. In the case of a refuse incineration facility, since the HCl concentration is as high as, for example, about 10 times the SOx concentration, it is sufficient to control only HCl to remove acidic components.

【0039】本発明者らはさらに、イ)集塵処理後の排
ガス流量、ハ)蒸気式熱回収手段による蒸気発生量、
ニ)廃棄物焼却炉への燃焼用空気量、ホ)廃棄物焼却炉
への二次空気量、へ)被焼却物の低位発熱量、ト)集塵
処理後の排ガス中のCO2濃度、の何れであっても、
ロ)水噴霧による排ガス冷却手段より上流の排ガス温度
と同様に、HCl、SOx等の酸性成分と正の相関(図
示省略)が存在することを見いだしたので、これらのひ
とつ以上を用いてロ)の場合と同様の制御が可能で、同
様の作用効果が得られる。
The present inventors further obtained: a) the flow rate of the exhaust gas after the dust collection, c) the amount of steam generated by the steam type heat recovery means,
D) the combustion air quantity to the waste incinerator, e) secondary air amount to the waste incinerator, to) lower heating value of the incinerated, Doo) CO 2 concentration in the exhaust gas after dust collection, In any case,
B) Similar to the temperature of the exhaust gas upstream of the exhaust gas cooling means by water spraying, it was found that there was a positive correlation (not shown) with acidic components such as HCl and SOx. The same control as in the case of is possible, and the same operation and effect can be obtained.

【0040】一方、チ)集塵処理後の排ガス中のO2
度は、ト)集塵処理後の排ガス中のCO2濃度と負の相
関があることが判明しているので、イ)〜ト)の場合と
異なり、酸性成分濃度と負の相関がある。すなわち、
チ)の場合にはチ)の値がその基準値を上回る場合にそ
の程度に応じて粉末中和剤の噴霧量を減少させ、基準値
を下回る場合にその程度に応じて粉末中和剤の噴霧量を
増加させることで、イ)〜ト)の場合と同様の作用効果
が得られる。
On the other hand, (h) the O 2 concentration in the exhaust gas after the dust collection process has been found to have a negative correlation with the CO 2 concentration in the exhaust gas after the dust collection process. Unlike the case (g), there is a negative correlation with the acidic component concentration. That is,
In the case of h), when the value of h) exceeds the reference value, the spray amount of the powder neutralizing agent is reduced according to the degree, and when the value is below the reference value, the spray amount of the powder neutralizing agent is reduced according to the degree. By increasing the spray amount, the same operation and effect as in the cases a) to g) can be obtained.

【0041】請求項3に係る発明は、前記イ)〜チ)の
基準値は、排ガス処理施設の定格値、通常運転時の平均
値、排ガス処理施設の立ち上げ時の代表値、運転条件の
変更時の代表値、から選ばれた値であることを特徴とす
る請求項2記載の排ガス処理方法である。
According to a third aspect of the present invention, the reference values of (a) to (h) are the rated value of the exhaust gas treatment facility, the average value during normal operation, the representative value at startup of the exhaust gas treatment facility, and the operating conditions. 3. The exhaust gas treatment method according to claim 2, wherein the value is a value selected from a representative value at the time of change.

【0042】このように、イ)〜チ)の基準値を具体的
に設定し、この基準値に対応する酸性成分量に対応する
粉末中和剤噴霧量の明記していない基準値を設定し、
イ)〜チ)の基準値に対する増減に対し、請求項2に記
載の方法で、粉末中和剤噴霧量を前記粉末中和剤噴霧量
の基準値を基準として粉末中和剤噴霧量の増減制御を行
えば、請求項2に係る発明の作用をより確実かつ効果的
に得ることができる。
As described above, the reference values of (a) to (h) are specifically set, and the unspecified reference values of the spray amount of the powder neutralizing agent corresponding to the acidic component amount corresponding to the reference values are set. ,
3. The method according to claim 2, wherein the amount of the powder neutralizing agent sprayed is increased or decreased with respect to the reference value of the powder neutralizing agent spraying amount based on the reference value of the powdered neutralizing agent spraying amount. By performing the control, the operation of the invention according to claim 2 can be obtained more reliably and effectively.

【0043】イ)からチ)の基準値に対応する粉末中和
剤噴霧量の基準値は、例えば図4に示す相関図から、
ロ)水噴霧による排ガス冷却手段より上流の排ガス温度
としての炉出口温度が850℃のときに、ボイラ出口の
HCl濃度が略700ppmであることから、これに対
応する中和剤消費量を算定し、スラリ状中和剤による除
去率を例えば50〜90%の範囲である70%とした場
合には、残り30%の除去に相当する粉末中和剤の噴霧
量を充てればよい。このとき、必要に応じて排ガス流量
などの基準値を併用して前記粉末中和剤噴霧量の基準値
を設定することはいうまでもない。または、炉出口温度
の基準値に対応する図4とは別のボイラ出口HCl濃度
の測定値か定格値を採用して、これに対応する粉末中和
剤噴霧量を充ててもよい。そしてさらに、粉末中和剤噴
霧量の基準値は、中和未処理排ガス中のHC1濃度の不
可欠でない測定結果の値により、それに対応する粉末中
和剤噴霧量(およびスラリ状中和剤噴霧量)を適宜更新
していくこともよい。これらの場合において、ここで例
示したロ)水噴霧による排ガス冷却手段より上流の排ガ
ス温度としての炉出口温度だけでなく、請求項1などに
係る発明として示したイ)〜チ)に記載のひとつ以上の
指示値を用いてもよいことはすでに述べたことから類推
され明らかである。
The reference value of the spray amount of the powder neutralizing agent corresponding to the reference values of (a) to (h) is obtained from, for example, the correlation diagram shown in FIG.
B) When the furnace outlet temperature as the exhaust gas temperature upstream of the exhaust gas cooling means by water spray is 850 ° C., since the HCl concentration at the boiler outlet is approximately 700 ppm, the corresponding neutralizer consumption is calculated. When the removal rate of the slurry-like neutralizing agent is, for example, 70%, which is in the range of 50 to 90%, the spray amount of the powder neutralizing agent corresponding to the remaining 30% may be used. At this time, it goes without saying that the reference value of the spray amount of the powder neutralizing agent is set by using a reference value such as an exhaust gas flow rate as needed. Alternatively, a measured value or a rated value of the HCl concentration at the boiler outlet different from that in FIG. 4 corresponding to the reference value of the furnace outlet temperature may be employed, and the spray amount of the powder neutralizing agent corresponding thereto may be used. Further, the reference value of the powder neutralizing agent spray amount is determined by the value of the indispensable measurement result of the HC1 concentration in the neutralized untreated exhaust gas, and the corresponding powder neutralizing agent spray amount (and slurry-like neutralizing agent spray amount). ) May be updated as appropriate. In these cases, (b) not only the furnace outlet temperature as the exhaust gas temperature upstream of the exhaust gas cooling means by water spray but also one of the items (a) to (h) shown as the invention according to claim 1 or the like. It is apparent from the above that the indicated values may be used, by analogy.

【0044】請求項4に係る発明は、前記イ)〜チ)の
複数個を用いて処理対象の酸性成分量を推定し、この値
が該酸性成分量の基準値を上回る場合にその程度に応じ
て粉末中和剤の噴霧量を増加させ、この値が前記基準値
を下回る場合にその程度に応じて粉末中和剤の噴霧量を
減少させることを特徴とする請求項2または請求項3記
載の排ガス処理方法である。
According to a fourth aspect of the present invention, the amount of the acidic component to be treated is estimated by using a plurality of the items (a) to (h). The spray amount of the powder neutralizing agent is increased according to the value, and when this value is lower than the reference value, the spray amount of the powder neutralizing agent is reduced according to the degree. An exhaust gas treatment method as described in the above.

【0045】イ)〜チ)に記載した複数個を用いると
は、例えば、イ)集塵処理後の排ガス流量による酸性成
分推定量、ロ)水噴霧による排ガス冷却手段より上流の
排ガス温度としての炉出口温度による酸性成分推定量、
ハ)集塵処理後の排ガス中のO 2濃度による酸性成分推
定量、の3つを採用し、これらの各推定量の所定の重み
付け平均値を求めて改めて酸性成分推定量とし、次に、
これに基づく粉末中和剤の噴霧量を酸性成分量の基準値
と対比させて粉末中和剤噴霧量を増減させることであ
る。
When a plurality of items described in (a) to (h) are used,
For example, a) acid generation based on the exhaust gas flow rate after dust collection
Estimated amount, b) upstream of exhaust gas cooling means by water spray
Estimated amount of acid component by furnace outlet temperature as exhaust gas temperature,
C) O in exhaust gas after dust collection processing TwoAcid component estimation by concentration
Quantification, and the predetermined weight of each of these estimators
The average value is calculated and the estimated amount is calculated again.
The spray amount of the powder neutralizer based on this is the reference value of the amount of the acidic component.
Increase or decrease the spray amount of the powder neutralizing agent in comparison with
You.

【0046】このように複数の制御因子を用いて、その
総体としての酸性成分量(スラリ状中和剤により除去さ
れたあとの酸性成分量)およびこれに対応する粉末中和
剤噴霧量を推定するので、より正確な量の粉末中和剤の
噴霧量制御が可能となって、請求項2または3に述べた
作用をより一層確実なものとすることができる。
As described above, using a plurality of control factors, the amount of the acidic component as a whole (the amount of the acidic component after being removed by the slurry-type neutralizing agent) and the spray amount of the powder neutralizing agent corresponding thereto are estimated. Therefore, it is possible to control the spray amount of the powder neutralizing agent in a more accurate amount, and it is possible to further ensure the action described in claim 2 or 3.

【0047】ここで、イ)〜チ)から複数個の制御因子
を採用する際には、次のような制御因子の選択がさらに
効果的である。すなわち、第一群として、イ)集塵処理
後の排ガス流量、ニ)廃棄物焼却炉への燃焼用空気量、
ホ)廃棄物焼却炉への二次空気量、第二群として、ロ)
水噴霧による排ガス冷却手段より上流の排ガス温度、
ハ)蒸気式熱回収手段による蒸気発生量、へ)被焼却物
の低位発熱量、第三群として、ト)集塵処理後の排ガス
中のCO2濃度、チ)集塵処理後の排ガス中のO2濃度、
と3群に分割した際に、これら各群から0個または一つ
以上を採用して異なる2つの群から合計2つ以上を採用
することが望ましい。なぜならば、第一群、第二群、第
三群の各制御因子は各群の中では、性状が相対的に類似
していて各制御因子間の相関がより強いため、一つの群
の中から複数を選ぶより、異なる群から2つ以上を選択
した方が、より広範な排ガス処理施設の運転条件に対応
して、薬剤である粉末中和剤の噴霧量制御を適用できる
からである。
Here, when a plurality of control factors are adopted from (a) to (h), selection of the following control factors is more effective. That is, as the first group, a) the exhaust gas flow rate after the dust collection process, d) the combustion air amount to the waste incinerator,
E) Secondary air volume to waste incinerator, as second group, b)
Exhaust gas temperature upstream of exhaust gas cooling means by water spray,
C) the amount of steam generated by the steam-type heat recovery means, f) the lower heating value of the incinerated material, as a third group, g) the CO 2 concentration in the exhaust gas after dust collection, and h) in the exhaust gas after dust collection. O 2 concentration,
When divided into three groups, it is desirable to adopt zero or one or more of these groups and to employ a total of two or more from two different groups. This is because the control factors of the first group, the second group, and the third group have relatively similar properties in each group and a stronger correlation between the control factors. This is because selecting two or more from different groups, rather than selecting a plurality from, can apply spray amount control of the powder neutralizing agent, which is a chemical, in accordance with a wider range of operating conditions of the exhaust gas treatment facility.

【0048】このことを具体的に説明すると、酸性成分
除去の場合に、例えば、排ガス量に大きく関与する第一
群からイ)集塵処理後の排ガス流量を採用し、排ガス温
度に密接に関係する第二群からロ)水噴霧による排ガス
冷却手段より上流の排ガス温度としての炉出口温度を2
つ目として採用した際に、前者の排ガス流量が多くなつ
て粉末中和剤噴霧量が多く推定されたにもかかわらず、
後者の炉出口温度が低くなって粉末中和剤噴霧量が少な
く推定されるという相反する結果が生じる場合が、何ら
かの運転条件によって存在するが、このように相反する
結果の総体としての粉末中和剤噴霧量の推定値を採用す
る方が、同じ第一群からイ)集塵処理後の排ガス流量
と、ニ)廃棄物焼却炉への燃焼用空気量の2つを採用し
て、排ガス流量と燃焼用空気量から推定される粉末中和
剤噴霧量がともに多く推定される場合より、より正確な
粉末中和剤噴霧量を推定できるのである。このことはこ
こで述べた例示に限らず、互いに相関の強い同じ群から
の複数採用より、異なる群からの複数採用がより好まし
いのである。
To explain this more specifically, in the case of removing acidic components, for example, from the first group, which greatly affects the amount of exhaust gas, a) the exhaust gas flow rate after the dust collection processing is adopted, and this is closely related to the exhaust gas temperature. B) The furnace outlet temperature as the exhaust gas temperature upstream of the exhaust gas cooling means by water spray is set to 2
When adopted as the third, despite the fact that the former exhaust gas flow rate was increased and the powder neutralizing agent spray amount was estimated to be large,
There are cases where the latter result in which the furnace outlet temperature is lowered and the spray amount of the powder neutralizing agent is estimated to be small may occur depending on some operating conditions, but the powder neutralization as a whole of such conflicting results may occur. It is better to adopt the estimated value of the spray amount of the agent, from the same first group, i) the flow rate of exhaust gas after dust collection processing, and d) the flow rate of exhaust air by adopting the amount of combustion air to the waste incinerator. It is possible to more accurately estimate the spray amount of the powder neutralizing agent than when the spray amount of the powder neutralizing agent estimated from the combustion air amount and the amount of the powder neutralizing agent are both large. This is not limited to the example described here, and it is more preferable to employ a plurality of groups from different groups than to employ a plurality of groups from the same group having a strong correlation with each other.

【0049】請求項5に係る発明は、請求項4に記載の
推定した酸性成分量の基準値は、排ガス処理施設の定格
値、通常運転時の平均値、排ガス処理施設の立ち上げ時
の代表値、運転条件の変更時の代表値、から選ばれた値
であることを特徴とする排ガス処理方法である。
According to a fifth aspect of the present invention, the reference value of the estimated amount of the acidic component according to the fourth aspect is a rated value of the exhaust gas treatment facility, an average value during normal operation, and a representative value when the exhaust gas treatment facility is started up. An exhaust gas treatment method characterized in that the exhaust gas treatment method is a value selected from a value and a representative value when operating conditions are changed.

【0050】このように、イ)〜チ)の複数の制御因子
により推定する酸性成分量の基準値を具体的に設定した
上で、スラリ状中和剤噴霧後のこれに対応する粉末中和
剤噴霧量の複数因子による過不足分を請求項4に記載の
方法により制御するので、請求項4に係る発明の作用を
より確実かつ効果的に得ることができる。
As described above, after specifically setting the reference value of the amount of the acidic component estimated by the plurality of control factors a) to h), the powder neutralization corresponding to the slurry-like neutralizing agent after spraying is performed. Since the excess or deficiency due to the plurality of factors of the spray amount of the agent is controlled by the method according to the fourth aspect, the operation of the invention according to the fourth aspect can be obtained more reliably and effectively.

【0051】請求項6に係る発明は、粉末中和剤噴霧処
理後の酸性成分濃度を検知してこれに基づいて粉末中和
剤噴霧量をフイードバック制御により制御する方法を、
請求項1〜5の何れか1つに記載の各方法と組み合わせ
て行うことを特徴とする排ガス処理方法である。
According to a sixth aspect of the present invention, there is provided a method for detecting the concentration of an acidic component after a powder neutralizing agent spray treatment and controlling the amount of the powder neutralizing agent sprayed by feedback control based on the detected concentration.
An exhaust gas treatment method characterized by being performed in combination with each method according to any one of claims 1 to 5.

【0052】このようにフイードバック制御を組み合わ
せることにより、排出する酸性成分量または濃度をより
安全にかつ確実に所定値または所定値以下に抑えること
が可能となる。
By combining the feedback control as described above, the amount or concentration of the acidic component to be discharged can be more safely and reliably suppressed to a predetermined value or a predetermined value or less.

【0053】請求項7に係る発明は、廃棄物焼却炉から
排出される排ガスにスラリ状中和剤を噴霧して排ガス中
の酸性成分を除去する装置において、 a)スラリ状中和剤を噴霧をして排ガス中の一部の酸性
成分を除去する半乾式反応塔と、 b)前記半乾式反応塔を経た排ガスに粉末中和剤を噴霧
する際に、イ)集塵処理後の排ガス流量、ロ)水噴霧に
よる排ガス冷却手段より上流の排ガス温度、ハ)熱回収
手段による蒸気発生量、ニ)廃棄物焼却炉への燃焼用空
気量、ホ)廃棄物焼却炉への二次空気量、へ)被焼却物
の低位発熱量、ト)集塵処理後の排ガス中のCO2
度、チ)集塵処理後の排ガス中のO2濃度、のうちの少
なくとも一つを測定する一つ以上の連続測定器と、 c)前記連続測定器からの測定値信号を集積して処理対
象の酸性成分量を推定し、これに基づいて前記スラリ状
中和剤噴霧後の残留酸性成分に対応する粉末中和剤の噴
霧量を演算し、粉末中和剤噴霧量制御装置に粉末中和剤
噴霧量信号を送信する粉末中和剤噴霧量演算器と、 d)前記粉末中和剤噴霧量演算器より粉末中和剤噴霧量
信号を受信して粉末中和剤噴霧を行う粉末中和剤噴霧量
制御装置と、 e)粉末中和剤の噴霧により前記半乾式反応塔を経た排
ガス中の酸性成分を除去する集塵機と、からなることを
特徴とする排ガス処理装置である。
According to a seventh aspect of the present invention, there is provided an apparatus for removing an acidic component in an exhaust gas by spraying a slurry-like neutralizing agent to exhaust gas discharged from a waste incinerator. B) a semi-dry reaction tower for removing a part of the acidic components in the exhaust gas, and b) when a powder neutralizing agent is sprayed on the exhaust gas passing through the semi-dry reaction tower, a) a flow rate of the exhaust gas after the dust collection process B) the temperature of the exhaust gas upstream of the exhaust gas cooling means by water spray; c) the amount of steam generated by the heat recovery means; d) the amount of combustion air to the waste incinerator; e) the amount of secondary air to the waste incinerator. One to measure at least one of: ( 2 ) the lower calorific value of the incinerated material, (2) the CO 2 concentration in the exhaust gas after dust collection, and (3) the O 2 concentration in the exhaust gas after dust collection. C) a continuous measuring instrument as described above, and The amount of the component is estimated, and the spray amount of the powder neutralizing agent corresponding to the residual acidic component after the spraying of the slurry-like neutralizing agent is calculated based on the component amount. A powder neutralizer spray amount calculator for transmitting an amount signal; d) a powder neutralizer spray for receiving the powder neutralizer spray amount signal from the powder neutralizer spray amount calculator and spraying the powder neutralizer. An exhaust gas treatment device, comprising: a quantity control device; and e) a dust collector for removing an acidic component in the exhaust gas passing through the semi-dry reaction tower by spraying a powder neutralizing agent.

【0054】このように粉末中和剤噴霧量演算器と粉末
中和剤噴霧量制御装置と酸性成分除去装置を構成するの
で、請求項1〜6に係る発明を容易に実施することが可
能となる。
Since the powder neutralizing agent spray amount calculator, the powder neutralizing agent spray amount control device and the acidic component removing device are configured as described above, the invention according to claims 1 to 6 can be easily implemented. Become.

【0055】本発明において使用する中和剤は、排ガス
に含まれるHClやSOxなどの酸性成分を中和反応に
より排ガスから分離除去できるものであれば何でもよ
く、消石灰、苛性ソーダ、炭酸ソーダ、その他の塩基性
化合物であればよい。
The neutralizing agent used in the present invention may be any as long as it is capable of separating and removing acidic components such as HCl and SOx contained in the exhaust gas from the exhaust gas by a neutralization reaction, such as slaked lime, caustic soda, sodium carbonate, and others. Any basic compound may be used.

【0056】[0056]

【発明の実施の形態】図1は、本発明に係る排ガス処理
方法をごみ焼却処理施設に採用した場合の実施の形態の
一例を示すブロック図である。図2は、本発明に係る排
ガス処理方法をごみ焼却処理施設に採用した場合の別の
実施の形態の一例を示すブロック図であり、図1の構成
にHCl濃度検出器28を付加したものである。これら
の図において、1は廃棄物焼却炉、2はボイラ、3は半
乾式反応塔、4はバグフィルタ等からなる集塵機、6は
煙突、11は集塵機4の出口(または煙突6の入口)に
設置された排ガス流量検出器、12は廃棄物焼却炉1の
出口における排ガス温度を連続測定可能な炉出口温度検
出器、13はボイラ2の蒸気発生量を連続測定可能な蒸
気発生量検出器、14は廃棄物焼却炉1への燃焼用空気
量を連続測定可能な燃焼用空気量検出器、15は廃棄物
焼却炉1への二次空気量を連続測定可能な二次空気量検
出器、16は被焼却物の低位発熱量を連続測定可能な低
位発熱量検出器、17は粉末中和剤噴霧量演算器、18
は粉末中和剤噴霧量制御装置、21はCO2濃度検出
器、22はO2濃度検出器、28はHCl濃度検出器で
ある。
FIG. 1 is a block diagram showing an example of an embodiment in which an exhaust gas treatment method according to the present invention is applied to a refuse incineration plant. FIG. 2 is a block diagram showing an example of another embodiment in which the exhaust gas treatment method according to the present invention is employed in a refuse incineration facility, wherein an HCl concentration detector 28 is added to the configuration of FIG. is there. In these figures, 1 is a waste incinerator, 2 is a boiler, 3 is a semi-dry reactor, 4 is a dust collector including a bag filter, 6 is a chimney, and 11 is an outlet of the dust collector 4 (or an inlet of the chimney 6). The installed exhaust gas flow rate detector, 12 is a furnace outlet temperature detector that can continuously measure the exhaust gas temperature at the outlet of the waste incinerator 1, 13 is the steam generation amount detector that can continuously measure the steam generation amount of the boiler 2, 14 is a combustion air amount detector capable of continuously measuring the amount of combustion air to the waste incinerator 1, 15 is a secondary air amount detector capable of continuously measuring the amount of secondary air to the waste incinerator 1, 16 is a lower calorific value detector capable of continuously measuring the lower calorific value of the incinerated material, 17 is a powder neutralizer spray amount calculator, 18
Is a powder neutralizer spray amount control device, 21 is a CO 2 concentration detector, 22 is an O 2 concentration detector, and 28 is an HCl concentration detector.

【0057】以下、図1、図2に基づいて、ごみ焼却時
に発生する排ガスの処理フローの概略を説明する。ここ
では、中和剤として消石灰を用いた場合を説明する。な
お、これらの図は簡単のため、半乾式法における噴霧装
置、スラリタンク、消石灰タンク、その他送風機などの
周辺機器の表示は省略してある。
Hereinafter, an outline of a processing flow of exhaust gas generated during incineration of refuse will be described with reference to FIGS. Here, the case where slaked lime is used as the neutralizing agent will be described. For the sake of simplicity, these figures do not show peripheral devices such as a spray device, a slurry tank, a slaked lime tank, and a blower in the semi-dry method.

【0058】廃棄物焼却炉1から排出される700〜1
000℃の排ガスはボイラ2に導入され、熱回収によ
り、例えば200〜400℃に減温される。続いて排ガ
スは半乾式反応塔3に導入され、アトマイザなどの霧化
装置(図示しない)により消石灰スラリが霧状に噴霧さ
れ、排ガス中のHCl、SOx等の酸性成分の一部が中
和除去されるとともに、後段の集塵機を構成するバグフ
ィルタ4に適した、例えば200℃以下の一定温度に冷
却される。続いて排ガスは、バグフィルタ4に導入され
て、必要に応じて脱硝塔(図示しない)により別途脱硝
処理され、煙突6から大気放散される。半乾式反応塔3
で酸性成分の一部を除去した排ガスには、HCl等の残
留酸性成分が含まれているが、粉末中和剤噴霧量制御装
置18からの粉末消石灰の噴霧により、バグフィルタ4
入口の煙道またはバグフィルタ4内で乾式中和反応によ
り除去される。その他、ダイオキシン等の有害成分は必
要に応じて各種処理方法により処理されるが、ここでは
説明を省略する。ここで、消石灰スラリの噴霧で一部の
酸性成分を除去する際の酸性成分の除去率は、前述した
理由から50〜90%とすることが望ましい。
700 to 1 discharged from waste incinerator 1
The exhaust gas at 000 ° C. is introduced into the boiler 2 and is cooled to, for example, 200 to 400 ° C. by heat recovery. Subsequently, the exhaust gas is introduced into the semi-dry reaction tower 3, and slaked lime slurry is atomized by an atomizer (not shown) such as an atomizer to neutralize and remove a part of acidic components such as HCl and SOx in the exhaust gas. At the same time, it is cooled to a constant temperature of, for example, 200 ° C. or less, which is suitable for the bag filter 4 constituting the subsequent dust collector. Subsequently, the exhaust gas is introduced into the bag filter 4, subjected to a separate denitration process by a denitration tower (not shown) if necessary, and is emitted from the chimney 6 to the atmosphere. Semi-dry reaction tower 3
The exhaust gas from which a part of the acidic components has been removed contains residual acidic components such as HCl. However, by spraying the slaked lime powder from the powder neutralizing agent spray amount control device 18, the bag filter 4
It is removed by a dry neutralization reaction in the flue or bag filter 4 at the entrance. In addition, harmful components such as dioxin are treated by various treatment methods as needed, but the description is omitted here. Here, the removal rate of the acidic component when removing a part of the acidic component by spraying the slaked lime slurry is desirably 50 to 90% for the above-described reason.

【0059】半乾式反応塔3を経た後の残留酸性成分を
含む排ガスはバグフィルタ4に導入されるとともに、粉
末消石灰が噴霧されて、より高い水準の酸性成分除去を
達成する。このときの粉末消石灰噴霧の制御方法は具体
的には以下のとおりに行う。前記イ)〜チ)の内の一つ
以上の測定値信号、すなわち、イ)集塵処理後の排ガス
流量を示す排ガス流量検出器11からの測定信号、ロ)
水噴霧による排ガス冷却手段より上流の排ガス温度を示
す炉出口温度検出器12からの測定信号、ハ)蒸気式熱
回収手段による蒸気発生量を示す蒸気発生量検出器13
からの測定信号、ニ)廃棄物焼却炉への燃焼用空気量を
示す燃焼用空気量検出器14からの測定信号、ホ)廃棄
物焼却炉への二次空気量を示す二次空気量検出器15か
らの測定信号、へ)被焼却物の低位発熱量を示す低位発
熱量検出器16からの測定信号、ト)集塵処理後の排ガ
ス中のCO2濃度を示すCO2濃度検出器21からの測定
信号、チ)集塵処理後の排ガス中のO2濃度を示すO2
度検出器22からの測定信号の内の一つ以上の測定値信
号を粉末中和剤噴霧量演算器17に送信して、該演算器
17により酸性成分濃度を推定し、これに基づいて、消
石灰スラリ噴霧後の残留酸性成分に対応する粉末消石灰
の必要噴霧量の信号を、粉末中和剤噴霧量制御装置18
に送信して、同装置により粉末消石灰の噴霧をバグフィ
ルタ4入口の煙道またはバグフィルタ4内で行う。
Exhaust gas containing residual acidic components after passing through the semi-dry reactor 3 is introduced into the bag filter 4, and at the same time, powdered slaked lime is sprayed to achieve a higher level of removal of acidic components. The method of controlling the powdered slaked lime spray at this time is specifically performed as follows. One or more of the measured value signals of the above (a) to (h), i.e., a) the measurement signal from the exhaust gas flow rate detector 11 indicating the exhaust gas flow rate after the dust collection processing, b)
A measurement signal from the furnace outlet temperature detector 12 indicating the temperature of the exhaust gas upstream of the exhaust gas cooling means by water spray; c) a steam generation amount detector 13 indicating the amount of steam generated by the steam type heat recovery means
D) a measurement signal from the combustion air amount detector 14 indicating the amount of combustion air to the waste incinerator, e) a secondary air amount detection indicating the secondary air amount to the waste incinerator CO 2 concentration detector 21 indicating the measurement signal, DOO) CO 2 concentration in the exhaust gas after dust collection from lower heating value detector 16 indicating the lower heating value of the measurement signal to) the incinerated from vessel 15 measurement signals from, h) powder neutralizer spray amount of one or more measurement signals of the measurement signal from the O 2 concentration detector 22 indicating the O 2 concentration in the exhaust gas after the dust collection processing operation unit 17 And the arithmetic unit 17 estimates the concentration of the acidic component. Based on this, the signal of the required spray amount of the powdered slaked lime corresponding to the residual acidic component after spraying the slaked lime slurry is controlled by the powder neutralizing agent spray amount control. Device 18
And sprays the powdered slaked lime with the same device in the flue at the entrance of the bag filter 4 or in the bag filter 4.

【0060】ここで、前記イ)〜チ)の各々について、
再度繰り返し説明する。 イ)集塵処理後の排ガス流量とは、例えば図1のバグフ
ィルタ4で集塵されたあとの排ガス流量であればよく、
その後段に脱硝塔(図示しない)を設置する場合は脱硝
塔の後の排ガス流量であってもよく、排ガス流量検出器
11により連続測定された排ガス流量値を制御因子とし
て用いる。排ガス流量は図示しない排ガス温度計により
ノルマル換算されることが多いが、ノルマル換算した排
ガス流量であってもそうでなくてもどちらも採用するこ
とができる。なぜならば、通常集塵機を出た排ガス温度
は略一定であり、排ガス流量の値は温度による換算をし
てもしなくても排ガス流量の変化傾向は類似しているか
らである。排ガス流量は、焼却炉における焼却量や被焼
却物の発熱量が大きいときなどに、多くなる傾向があ
る。すなわち、排ガス流量は焼却状態を表す一指標であ
る。
Here, for each of the above a) to h),
It will be described again. B) The exhaust gas flow rate after the dust collection processing may be, for example, the exhaust gas flow rate after dust collection by the bag filter 4 in FIG.
When a denitration tower (not shown) is installed in the subsequent stage, the flow rate of the exhaust gas after the denitration tower may be used, and the flow rate value of the exhaust gas continuously measured by the exhaust gas flow rate detector 11 is used as a control factor. Although the exhaust gas flow rate is often converted to normal by an exhaust gas thermometer (not shown), either the normal converted exhaust gas flow rate or not may be adopted. This is because the temperature of the exhaust gas that normally exits the dust collector is substantially constant, and the tendency of the exhaust gas flow rate is similar whether or not the value of the exhaust gas flow rate is converted by the temperature. The exhaust gas flow rate tends to increase when the amount of incineration in the incinerator or the calorific value of the incinerated material is large. That is, the exhaust gas flow rate is one index indicating the incineration state.

【0061】ロ)水噴霧による排ガス冷却手段より上流
の排ガス温度とは、例えば、焼却炉内温度、焼却炉出口
温度、ボイラ1パス温度、ボイラ2パス温度、ボイラ出
口温度など、焼却炉で発生する排ガスが減温塔や半乾式
反応塔などの水噴霧による排ガス冷却される前の排ガス
温度であればよい。水噴霧による冷却で後段の集塵機等
に適した温度に強制的に調整されるため、もはや水噴霧
冷却後では、炉における焼却状態を示す温度とはならな
い。図5に示すグラフは、炉内温度Aと炉出口温度Bと
ボイラ2パス温度Cがそれぞれ平均値は異なるが、変動
が酷似しており、良好な相関があることを示している。
すなわち、これらの温度は焼却状態を表す一指標であ
る。
(B) The exhaust gas temperature upstream of the exhaust gas cooling means by water spray is generated in the incinerator, for example, the temperature in the incinerator, the outlet temperature of the incinerator, the boiler 1 pass temperature, the boiler 2 pass temperature, the boiler outlet temperature, etc. The temperature of the exhaust gas to be discharged may be any temperature before the exhaust gas is cooled by the water spray such as a cooling tower or a semi-dry reaction tower. Since the temperature is forcibly adjusted to a temperature suitable for the subsequent dust collector and the like by the cooling by the water spray, the temperature does not reach the temperature indicating the incineration state in the furnace after the water spray cooling. The graph shown in FIG. 5 shows that the furnace temperature A, the furnace outlet temperature B, and the boiler two-pass temperature C have different average values, but the fluctuations are very similar, indicating that there is a good correlation.
That is, these temperatures are one index indicating the incineration state.

【0062】ハ)蒸気式熱回収手段による蒸気発生量と
は、ボイラでの高圧蒸気の発生量(蒸発量)であり、焼
却温度が高いときには蒸気発生量が多くなる傾向があ
る。図5に示すグラフは、炉内温度A等と蒸発量Dが良
好な相関にあることを示している。すなわち、蒸気発生
量は焼却状態を表す一指標である。
C) The amount of steam generated by the steam-type heat recovery means is the amount of high-pressure steam generated in the boiler (evaporation amount). When the incineration temperature is high, the amount of steam generated tends to increase. The graph shown in FIG. 5 shows that the furnace temperature A and the like and the evaporation amount D have a good correlation. That is, the amount of generated steam is one index indicating the incineration state.

【0063】ニ)廃棄物焼却炉への燃焼用空気量とは、
例えば焼却炉下部に設置された燃焼用空気吹込口(図示
しない)から炉内に燃焼用空気として導入される空気量
のことである。焼却炉における焼却量や被焼却物の発熱
量が大きいときなどに、燃焼用空気量は多くなる傾向が
ある。すなわち、燃焼用空気量は焼却状態を表す一指標
である。
D) The amount of combustion air to the waste incinerator is
For example, it refers to the amount of air introduced as combustion air into the furnace from a combustion air inlet (not shown) provided at the lower part of the incinerator. When the amount of incineration in the incinerator or the amount of heat generated by the incineration is large, the amount of combustion air tends to increase. That is, the combustion air amount is one index indicating the incineration state.

【0064】ホ)廃棄物焼却炉への二次空気量とは、例
えば焼却炉出口付近または内部の側面に設置された二次
空気吹込口(図示しない)から、炉内または出口部に二
次燃焼用空気として導入される空気量のことである。二
次空気は二次燃焼を促進させる一方で、場合により高温
となりすぎた炉内温度を冷却する働きを持たせることも
ある。何れにしても焼却炉における焼却量や被焼却物の
発熱量が大きいときなどに、二次空気量は多くなる傾向
がある。すなわち、二次空気量は焼却状態を表す一指標
である。
E) The amount of secondary air to the waste incinerator refers to the amount of secondary air from the secondary air inlet (not shown) installed near or inside the incinerator outlet, for example, in the furnace or at the outlet. The amount of air introduced as combustion air. While the secondary air promotes secondary combustion, it may also serve to cool the furnace temperature which has become too high in some cases. In any case, the amount of secondary air tends to increase when the amount of incineration in the incinerator or the amount of heat generated by the incinerator is large. That is, the secondary air amount is one index indicating the incineration state.

【0065】へ)被焼却物の低位発熱量とは、例えば炉
内温度やごみ投入量などから予め演算される(説明省
略)被焼却物を燃焼した際に熱源として得られる発熱量
のことである。低位発熱量は全連続式焼却炉などで中央
管理している場合は、運転データとして記録されてい
る。被焼却物の低位発熱量が大きいと炉内温度も上昇す
る傾向がある。すなわち、低位発熱量は焼却状態を表す
一指標である。
F) The lower heating value of the incinerated material is a calorific value obtained as a heat source when the incinerated material is burned, which is calculated in advance from, for example, the furnace temperature, the amount of waste, and the like. is there. When the lower heating value is managed centrally in a continuous incinerator or the like, it is recorded as operating data. If the lower heating value of the incinerated material is large, the furnace temperature tends to increase. That is, the lower heating value is one index indicating the incineration state.

【0066】ト)集塵処理後の排ガス中のCO2濃度と
は、例えば図1のバグフィルタ4で集塵されたあとの排
ガス中のCO2濃度であればよく、連続式の測定器によ
り測定されたCO2濃度のことである。焼却炉における
燃焼が活発であれば、炉内温度が上昇するとともに燃焼
用空気に含まれるO2を大きく消費してCO2を多く発生
する。すなわち、CO2濃度は焼却状態を表す一指標で
ある。
G) The CO 2 concentration in the exhaust gas after the dust collection process may be, for example, the CO 2 concentration in the exhaust gas after being collected by the bag filter 4 in FIG. It refers to the measured CO 2 concentration. If combustion is vigorous in incinerators, the temperature in the furnace often generates CO 2 consumes large O 2 contained in the combustion air with increased. That is, the CO 2 concentration is one index indicating the incineration state.

【0067】チ)集塵処理後の排ガス中のO2濃度と
は、例えば図1のバグフィルタ4で集塵されたあとの排
ガス中のO2濃度であればよく、連続式の測定器により
測定されたO2濃度のことである。焼却炉における燃焼
が活発であれば、炉内温度が上昇するとともに、燃焼用
空気に含まれるO2を大きく消費してO2濃度が小さくな
る。すなわち、O2濃度は焼却状態を表す一指標であ
る。
(H) The O 2 concentration in the exhaust gas after the dust collection process may be, for example, the O 2 concentration in the exhaust gas after being collected by the bag filter 4 in FIG. It is the measured O 2 concentration. If the combustion in the incinerator is active, the temperature inside the furnace increases, and the O 2 contained in the combustion air is greatly consumed to reduce the O 2 concentration. That is, the O 2 concentration is one index indicating the incineration state.

【0068】以上説明したとおり、イ)〜チ)は何れも
焼却炉における焼却状態の活発さや不活発さを示す指標
であって、何れも通常、焼却施設に連続測定値として管
理されている流用の容易な指標である。
As described above, each of (a) to (h) is an index indicating the activeness or inactivity of the incineration state in the incinerator. Is an easy indicator.

【0069】この実施の形態では、酸性成分の一部を除
去する際に半乾式反応塔3を用いているので、半乾式法
による濡れ消石灰が反応塔3内で蒸発する過程で中和活
性の高い粉末消石灰が得られ、必要最低限の消石灰量で
無駄なく酸性成分を除去することができる。また、半乾
式反応塔3で排ガス中の一部の酸性成分を除去したあと
の酸性成分の残留分を粉末消石灰の噴霧によりバグフィ
ルタ4で除去するので、前段の消石灰スラリの噴霧量を
処理対象の酸性成分濃度が変動しても一定とすることが
でき、スラリ濃度を不所望に調整する煩わしさやこれに
伴う機器類への過剰な負荷を回避することが可能とな
る。半乾式反応塔3におけるスラリ噴霧量の調整は主に
後段のバグフィルタ4の排ガス温度を所望の温度にする
ために行うので、排ガス温度調整装置として機能する。
In this embodiment, since the semi-dry reaction tower 3 is used to remove a part of the acidic components, the neutralization activity is reduced in the process of the wet slaked lime being evaporated in the reaction tower 3 by the semi-dry method. High powdered slaked lime can be obtained, and acidic components can be removed without waste with a minimum required amount of slaked lime. In addition, since the residue of the acidic components in the exhaust gas after removing a part of the acidic components in the exhaust gas in the semi-dry reaction tower 3 is removed by the bag filter 4 by spraying the powdered slaked lime, the spray amount of the slaked lime slurry in the former stage is treated. Can be kept constant even if the concentration of the acidic component fluctuates, and it is possible to avoid the troublesome adjustment of the slurry concentration undesirably and the excessive load on the equipment due to this. Since the adjustment of the amount of sprayed slurry in the semi-dry reaction tower 3 is mainly performed to adjust the exhaust gas temperature of the subsequent bag filter 4 to a desired temperature, it functions as an exhaust gas temperature adjusting device.

【0070】前記イ)〜チ)の制御因子は、前述したよ
うに、それぞれ排ガス中のHClなどの酸性成分の濃度
と良好な相関を有するもので、焼却状態を表す一指標で
あり、何れも通常、焼却施設に連続測定値として管理さ
れている流用の容易な指標であることから、半乾式反応
塔3を経た後の排ガス中の残留酸性成分を中和除去する
ために粉末消石灰を噴霧する際には、未処理排ガス中の
酸性成分濃度を常時検知する必要はないものである。し
たがって、従来のように酸性成分濃度を検出することに
よる測定器のサンプリングプローブの目詰まりや該測定
器に特有の応答時間の遅れなどに起因する問題点を回避
することができるとともに、酸性成分濃度の検出に代え
て、前記イ)〜チ)の内のひとつ以上を用いて酸性成分
量を推定するので、より簡便な方法で、スラリ噴霧後の
残留酸性成分に対応する粉末消石灰の噴霧量を酸性成分
量の推定値に基づいて設定することが可能となる。同時
に、従来の制御による処理後の酸性成分濃度の脈動の激
しさや消石灰の無駄な消費を回避する作用が得られる。
すなわち、酸性成分濃度の連続測定器を新たに設置する
ことなく、処理後の酸性成分の脈動を抑えながら、消石
灰消費量を必要最小限にすることが可能となる。
As described above, each of the control factors (a) to (h) has a good correlation with the concentration of an acidic component such as HCl in the exhaust gas, and is an index indicating the incineration state. Normally, powdered slaked lime is sprayed in order to neutralize and remove residual acidic components in the exhaust gas after passing through the semi-dry reaction tower 3 because it is an easy index for diversion that is managed as a continuous measurement value in an incineration plant. In this case, it is not necessary to always detect the concentration of the acidic component in the untreated exhaust gas. Therefore, it is possible to avoid problems caused by clogging of the sampling probe of the measuring instrument due to detection of the concentration of the acidic component and a delay in response time peculiar to the measuring instrument as in the related art, and to reduce the concentration of the acidic component. In place of the detection, the amount of the acidic component is estimated by using one or more of the above (a) to (h), so that the sprayed amount of the powdered slaked lime corresponding to the residual acidic component after the slurry is sprayed can be determined by a simpler method. This can be set based on the estimated value of the amount of the acidic component. At the same time, it is possible to obtain the effect of avoiding the intense pulsation of the acid component concentration after the treatment and the wasteful consumption of slaked lime by the conventional control.
In other words, it is possible to minimize the consumption of slaked lime while suppressing the pulsation of the acid component after treatment without newly installing a continuous measuring device for the concentration of the acidic component.

【0071】酸性成分の残留分をバグフィルタ4で粉末
消石灰を用いて除去するので、噴霧量調整が乾式である
ため簡便で可及的に行える利点を有する。バグフィルタ
に導入する排ガスはすでに半乾式反応塔3で温度が例え
ば200℃以下の一定温度に調整されているので、酸性
成分除去に適した温度となり、バグフィルタ4での酸性
成分除去性能を向上させる作用と、温度が一定であるこ
とによるバグフィルタ4等機器類の安定稼働が可能とな
る作用が同時に得られる。
Since the residual amount of the acidic component is removed by using the slaked lime powder with the bag filter 4, the adjustment of the spray amount is of a dry type, so that there is an advantage that the adjustment can be performed easily and as much as possible. Since the temperature of the exhaust gas introduced into the bag filter is already adjusted to a constant temperature of, for example, 200 ° C. or less in the semi-dry reaction tower 3, the temperature becomes suitable for removing acidic components, and the performance of removing acidic components in the bag filter 4 is improved. The effect of enabling the stable operation of the equipment such as the bag filter 4 due to the constant temperature is obtained at the same time.

【0072】消石灰スラリによる酸性成分除去と粉末消
石灰による酸性成分除去は、ともに消石灰を用いている
ので、薬剤としての中和剤サイロは消石灰サイロ(図示
しない)のひとつでよく、供給部をスラリ用と粉末体噴
霧用に分割するだけで済み、簡便な方法で達成できる利
点がある。
Both the removal of the acidic component by the slaked lime slurry and the removal of the acidic component by the powdered slaked lime use slaked lime, so the neutralizing agent silo as a chemical may be one of slaked lime silos (not shown), and the supply unit is used for the slurry. It is only necessary to divide the powder for spraying, and there is an advantage that it can be achieved by a simple method.

【0073】次に、この実施の形態に係る排ガス処理方
法は、前記イ)〜ト)の各々の値が各々の基準値を上回
るか、前記チ)の値が基準値を下回る何れかの場合にそ
の程度に応じて粉末消石灰の噴霧量を増加させ、前記
イ)〜ト)の各々の値が各々の基準値を下回るか、前記
チ)の値が基準値を上回る何れかの場合にその程度に応
じて粉末消石灰の噴霧量を減少させるものである。
Next, the exhaust gas treatment method according to this embodiment is applicable to any of the cases where the values of the above (a) to (g) exceed the respective reference values or the values of the above (h) are below the reference values. The spray amount of the powdered slaked lime is increased according to the degree, and the value of each of the above (a) to (g) is lower than the respective reference value or the value of the above (h) is higher than the reference value. The amount of sprayed powdered slaked lime is reduced according to the degree.

【0074】図3は、焼却炉の焼却状態を示す一指標で
ある炉出口温度(先に述べたロ)水噴霧による排ガス冷
却手段より上流の排ガス温度)と、中和処理前(ボイラ
出口)のHCl濃度の時間変化を調べた結果を示す図で
ある。同図によると炉出口温度とHCl濃度は互いによ
く類似した変化傾向を示している。HCl濃度は測定器
による時間遅れが目立つため約10分遅れで炉出口温度
に追随している。炉出口温度と時間遅れを補正したHC
l濃度との相関を示したのが図4であり、同図によると
炉出口温度とHCl濃度が正の相関を顕著に表している
ことが読みとれる。すなわち、酸性成分であるHCl濃
度は焼却炉の炊却状態を示す一指標である炉出口温度と
良好な正の相関があるので、処理対象とする酸性成分量
を推定する際に、ロ)水噴霧による排ガス冷却手段より
上流の排ガス温度である炉出口温度を用いればよいこと
がわかる。そして推定した酸性成分量に基づいて粉末消
石灰の噴霧量を制御すれば時間遅れなく、かつ必要最小
量の粉末消石灰を噴霧することが可能となる。炉出口温
度とHClを代表とする酸性成分濃度は正の相関がある
ことが判明したので、このときの酸性成分を除去するた
めの粉末消石灰は、炉出口温度がその基準値より上回る
際にその程度に応じて噴霧量を増加させ、基準値より下
回る際にその程度に応じて噴霧量を減少させればよく、
請求項1に係る発明の作用効果を確実に得ることができ
る。
FIG. 3 is an index showing the incineration state of the incinerator, which is an index of the furnace outlet temperature (exhaust gas temperature upstream of the exhaust gas cooling means by water spray described above) and before the neutralization treatment (boiler outlet). FIG. 6 is a diagram showing the result of examining the change over time of the HCl concentration of the present invention. According to the figure, the furnace outlet temperature and the HCl concentration show a change tendency very similar to each other. The HCl concentration follows the furnace outlet temperature with a delay of about 10 minutes due to a noticeable time delay by the measuring instrument. HC with corrected furnace outlet temperature and time delay
FIG. 4 shows the correlation with the 1 concentration, and it can be seen from the figure that the furnace outlet temperature and the HCl concentration show a significant positive correlation. That is, since the concentration of HCl, which is an acidic component, has a good positive correlation with the furnace outlet temperature, which is one index indicating the state of cooking in an incinerator, when estimating the amount of the acidic component to be treated, b) water It can be seen that the furnace outlet temperature, which is the temperature of the exhaust gas upstream of the means for cooling the exhaust gas by spraying, may be used. If the spray amount of the powdered slaked lime is controlled based on the estimated amount of the acidic component, it becomes possible to spray the required minimum amount of the powdered slaked lime without delay. Since it has been found that the furnace outlet temperature and the concentration of the acidic component represented by HCl have a positive correlation, the powdered slaked lime for removing the acidic component at this time, when the furnace outlet temperature exceeds its reference value, It is sufficient to increase the spray amount according to the degree, and to decrease the spray amount according to the degree when the spray amount falls below the reference value,
The operation and effect of the invention according to claim 1 can be reliably obtained.

【0075】もちろん、炉出口温度の代わりに、同一の
変化傾向を示す、炉内温度、ボイラ1パス温度、ボイラ
2パス温度、ボイラ出口温度を用いてもよく、ロ)水噴
霧による排ガス冷却手段より上流の排ガス温度であれば
よい。酸性成分であるSOxについては、酸性成分であ
るHClと同様の挙動を示すので、同様の制御が可能で
ある。また、ごみ焼却施設の場合、HCl濃度は例えば
SOx濃度の10倍程度と高いので、酸性成分除去とし
てHClに関してのみ制御を行っても十分である。
Of course, instead of the furnace outlet temperature, the furnace temperature, the boiler one-pass temperature, the boiler two-pass temperature, and the boiler outlet temperature, which show the same changing tendency, may be used. It is sufficient if the exhaust gas temperature is further upstream. SOx, which is an acidic component, behaves similarly to HCl, which is an acidic component, and thus can be controlled similarly. In the case of a refuse incineration facility, since the HCl concentration is as high as, for example, about 10 times the SOx concentration, it is sufficient to control only HCl to remove acidic components.

【0076】本発明者らはさらに、イ)集塵処理後の排
ガス流量、ハ)蒸気式熱回収手段による蒸気発生量、
ニ)廃棄物焼却炉への燃焼用空気量、ホ)廃棄物焼却炉
への二次空気量、へ)被焼却物の低位発熱量、ト)集塵
処理後の排ガス中のCO2濃度、の何れであっても、
ロ)水噴霧による排ガス冷却手段より上流の排ガス温度
と同様に、HCl、SOx等の酸性成分と正の相関(図
示省略)が存在することを見いだしたので、これらのひ
とつ以上を用いてロ)の場合と同様の制御が可能で、同
様の作用が得られる。
The present inventors further obtained: a) the flow rate of the exhaust gas after the dust collection, c) the amount of steam generated by the steam type heat recovery means,
D) the combustion air quantity to the waste incinerator, e) secondary air amount to the waste incinerator, to) lower heating value of the incinerated, Doo) CO 2 concentration in the exhaust gas after dust collection, In any case,
B) Similar to the temperature of the exhaust gas upstream of the exhaust gas cooling means by water spraying, it was found that there was a positive correlation (not shown) with acidic components such as HCl and SOx. The same control as in the case of (1) is possible, and the same operation is obtained.

【0077】一方、チ)集塵処理後の排ガス中のO2
度は、ト)集塵処理後の排ガス中のCO2濃度と負の相
関があることが判明しているので、イ)〜ト)の場合と
異なり、酸性成分濃度と負の相関がある。すなわち、
チ)の場合にはチ)の値がその基準値を上回る場合にそ
の程度に応じて粉末消石灰の噴霧量を減少させ、基準値
を下回る場合にその程度に応じて粉末消石灰の噴霧量を
増加させることで、イ)〜ト)の場合と同様の作用が得
られる。
On the other hand, (h) the O 2 concentration in the exhaust gas after the dust collection process has been found to have a negative correlation with the CO 2 concentration in the exhaust gas after the dust collection process. Unlike the case (g), there is a negative correlation with the acidic component concentration. That is,
In the case of h), when the value of h) exceeds the reference value, the spray amount of powdered slaked lime is reduced according to the degree, and when the value is below the reference value, the spray amount of powdered slaked lime is increased according to the degree By doing so, the same operation as in cases a) to g) can be obtained.

【0078】次に、この実施の形態に係る排ガス処理方
法は、前記イ)〜チ)の基準値を、排ガス処理施設の定
格値、通常運転時の平均値、排ガス処理施設の立ち上げ
時の代表値、運転条件の変更時の代表値、から選ばれた
値とするものである。
Next, in the exhaust gas treatment method according to this embodiment, the reference values of the above (a) to (h) are set to the rated value of the exhaust gas treatment facility, the average value during normal operation, and the starting value of the exhaust gas treatment facility. It is a value selected from the representative value and the representative value when the operating condition is changed.

【0079】このように、イ)〜チ)の基準値を具体的
に設定し、この基準値に対応する酸性成分量に対応する
粉末消石灰噴霧量の明記していない基準値を設定し、
イ)〜チ)の基準値に対する増減に対し、請求項2に記
載の方法で、粉末消石灰噴霧量を前記粉末消石灰噴霧量
の基準値を基準として粉末消石灰噴霧量の増減制御を行
えば、請求項2に係る発明の作用をより確実かつ効果的
に得ることができる。
As described above, the reference values of (a) to (h) are specifically set, and the unspecified reference value of the powdered slaked lime spray amount corresponding to the acidic component amount corresponding to the reference values is set.
According to the method of claim 2, if the amount of powdered slaked lime spray is controlled to increase or decrease the amount of powdered slaked lime spray with reference to the reference value of the powdered slaked lime spraying according to the method of claim 2, The effect of the invention according to Item 2 can be obtained more reliably and effectively.

【0080】イ)からチ)の基準値に対応する粉末消石
灰噴霧量の基準値は、例えば図4に示す相関図から、
ロ)水噴霧による排ガス冷却手段より上流の排ガス温度
としての炉出口温度が850℃のときに、ボイラ出口の
HCl濃度が略700ppmであることから、これに対
応する消石灰消費量を算定し、消石灰スラリによる除去
率を例えば50〜90%の範囲である70%とした場合
には、残り30%の除去に相当する粉末消石灰の噴霧量
を充てればよい。このとき、必要に応じて排ガス流量な
どの基準値を併用して前記粉末消石灰噴霧量の基準値を
設定することはいうまでもない。または、炉出口温度の
基準値に対応する図4とは別のボイラ出口HCl濃度の
測定値か定格値を採用して、これに対応する粉末消石灰
噴霧量を充ててもよい。そしてさらに、粉末消石灰噴霧
量の基準値は、中和未処理排ガス中のHCl濃度の不可
欠でない測定結果の値により、それに対応する粉末消石
灰噴霧量(および消石灰スラリ噴霧量)を適宜更新して
いくこともよい。これらの場合において、ここで例示し
たロ)水噴霧による排ガス冷却手段より上流の排ガス温
度としての炉出口温度だけでなく、請求項1などに係る
発明として示したイ)〜チ)に記載のひとつ以上の指示
値を用いてもよいことはすでに述べたことから類推され
明らかである。
The reference value of the powdered slaked lime spray amount corresponding to the reference values of (a) to (h) is obtained from the correlation diagram shown in FIG.
B) When the furnace outlet temperature as an exhaust gas temperature upstream of the exhaust gas cooling means by water spray is 850 ° C., since the HCl concentration at the boiler outlet is approximately 700 ppm, the corresponding slaked lime consumption is calculated and the slaked lime consumption is calculated. When the removal rate by the slurry is, for example, 70%, which is in the range of 50 to 90%, the sprayed amount of powdered slaked lime corresponding to the removal of the remaining 30% may be used. At this time, it goes without saying that the reference value of the powdered slaked lime spray amount is set by using a reference value such as an exhaust gas flow rate as needed. Alternatively, a measured value or a rated value of the HCl concentration at the boiler outlet different from that in FIG. 4 corresponding to the reference value of the furnace outlet temperature may be adopted, and the corresponding sprayed amount of powdered slaked lime may be used. Further, the reference value of the powdered slaked lime spray amount is appropriately updated with the powder slaked lime spray amount (and the slaked lime slurry spray amount) corresponding to the reference value of the measurement result of the HCl concentration in the neutralized untreated exhaust gas that is not essential. It is also good. In these cases, (b) not only the furnace outlet temperature as the exhaust gas temperature upstream of the exhaust gas cooling means by water spray but also one of the items (a) to (h) shown as the invention according to claim 1 or the like. It is apparent from the above that the indicated values may be used, by analogy.

【0081】次に、この実施の形態に係る排ガス処理方
法は、前記イ)〜チ)の複数個を用いて処理対象の酸性
成分量を推定し、この値が該酸性成分量の基準値を上回
る場合にその程度に応じて消石灰粉末の噴霧量を増加さ
せ、この値が前記基準値を下回る場合にその程度に応じ
て粉末消石灰の噴霧量を減少させるものである。
Next, in the exhaust gas treatment method according to this embodiment, the amount of the acidic component to be treated is estimated using a plurality of the items (a) to (h), and this value is used as a reference value for the amount of the acidic component. If it exceeds, the spray amount of the slaked lime powder is increased in accordance with the degree, and if this value is lower than the reference value, the spray amount of the slaked lime powder is decreased in accordance with the degree.

【0082】イ)〜チ)に記載した複数個を用いると
は、例えば、イ)集塵処理後の排ガス流量による酸性成
分推定量、ロ)水噴霧による排ガス冷却手段より上流の
排ガス温度としての炉出口温度による酸性成分推定量、
ハ)集塵処理後の排ガス中の02濃度による酸性成分推
定量、の3つを採用し、これらの各推定量の所定の重み
付け平均値を求めて改めて酸性成分推定量とし、次に、
これに基づく粉末消石灰の噴霧量を酸性成分量の基準値
と対比させて粉末消石灰噴霧量を増減させることであ
る。
The use of a plurality of items described in (a) to (h) means, for example, a) an estimated amount of an acidic component based on an exhaust gas flow rate after a dust collection process, and b) an exhaust gas temperature upstream of an exhaust gas cooling means by water spray. Estimated amount of acid component by furnace outlet temperature,
C) Estimated amount of acidic component based on 02 concentration in exhaust gas after dust collection processing, and a predetermined weighted average value of each of these estimated amounts is determined to obtain the estimated amount of acidic component again.
The spray amount of the powdered slaked lime is to be increased or decreased by comparing the sprayed amount of the powdered slaked lime based on this with the reference value of the acidic component amount.

【0083】このように複数の制御因子を用いて、その
総体としての酸性成分量(消石灰スラリにより除去され
たあとの酸性成分量)およびこれに対応する粉末消石灰
噴霧量を推定するので、より正確な量の粉末消石灰の噴
霧量制御が可能となって、請求項2または3に述べた作
用をより一層確実なものとできる。
As described above, a plurality of control factors are used to estimate the amount of the acidic component as a whole (the amount of the acidic component after being removed by the slaked lime slurry) and the spray amount of the powdered slaked lime corresponding thereto, so that more accurate The spray amount of the powdered slaked lime can be controlled in an appropriate amount, and the operation described in claim 2 or 3 can be further ensured.

【0084】ここで、イ)〜チ)から複数個の制御因子
を採用する際には、次のような制御因子の選択がさらに
効果的である。すなわち、第一群として、イ)集塵処理
後の排ガス流量、ニ)廃棄物焼却炉への燃焼用空気量、
ホ)廃棄物焼却炉への二次空気量、第二群として、ロ)
水噴霧による排ガス冷却手段より上流の排ガス温度、
ハ)蒸気式熱回収手段による蒸気発生量、へ)被焼却物
の低位発熱量、第三群として、ト)集塵処理後の排ガス
中のCO2濃度、チ)集塵処理後の排ガス中のO2濃度、
と3群に分割した際に、これら各群から0個または一つ
以上を採用して異なる2つの群から合計2つ以上を採用
することが望ましい。なぜならば、第一群、第二群、第
三群の各制御因子は各群の中では、性状が相対的に類似
していて各制御因子間の相関がより強いため、一つの群
の中から複数を選ぶより、異なる群から2つ以上を選択
した方が、より広範な排ガス処理施設の運転条件に対応
して、薬剤である粉末消石灰の噴霧量制御を適用できる
からである。
Here, when a plurality of control factors are adopted from (a) to (h), selection of the following control factors is more effective. That is, as the first group, a) the exhaust gas flow rate after the dust collection process, d) the combustion air amount to the waste incinerator,
E) Secondary air volume to waste incinerator, as second group, b)
Exhaust gas temperature upstream of exhaust gas cooling means by water spray,
C) the amount of steam generated by the steam-type heat recovery means, f) the lower heating value of the incinerated material, as a third group, g) the CO 2 concentration in the exhaust gas after dust collection, and h) in the exhaust gas after dust collection. O 2 concentration,
When divided into three groups, it is desirable to adopt zero or one or more of these groups and to employ a total of two or more from two different groups. This is because the control factors of the first group, the second group, and the third group have relatively similar properties in each group and a stronger correlation between the control factors. This is because selecting two or more from different groups, rather than selecting a plurality from, enables application of spray amount control of powdered slaked lime as a chemical corresponding to a wider range of operating conditions of the exhaust gas treatment facility.

【0085】このことを具体的に説明すると、酸性成分
除去の場合に、例えば、排ガス量に大きく関与する第一
群からイ)集塵処理後の排ガス流量を採用し、排ガス温
度に密接に関係する第二群からロ)水噴霧による排ガス
冷却手段より上流の排ガス温度としての炉出口温度を2
つ目として採用した際に、前者の排ガス流量が多くなつ
て粉末消石灰噴霧量が多く推定されたにもかかわらず、
後者の炉出口温度が低くなって粉末消石灰噴霧量が少な
く推定されるという相反する結果が生じる場合が、何ら
かの運転条件によって存在するが、このように相反する
結果の総体としての粉末消石灰噴霧量の推定値を採用す
る方が、同じ第一群からイ)集塵処理後の排ガス流量
と、ニ)廃棄物焼却炉への燃焼用空気量の2つを採用し
て、排ガス流量と燃焼用空気量から推定される粉末消石
灰噴霧量がともに多く推定される場合より、より正確な
粉末消石灰噴霧量を推定できるのである。このことはこ
こで述べた例示に限らず、互いに相関の強い同じ群から
の複数採用より、異なる群からの複数採用がより好まし
いのである。
To explain this more specifically, in the case of removing acidic components, for example, from the first group, which greatly affects the amount of exhaust gas, a) the flow rate of exhaust gas after dust collection is adopted, and it is closely related to the temperature of exhaust gas. B) The furnace outlet temperature as the exhaust gas temperature upstream of the exhaust gas cooling means by water spray is set to 2
When adopted as the third, despite the former exhaust gas flow rate was increased and the amount of powdered slaked lime spray was estimated much,
There is a case where the latter result in which the furnace outlet temperature is lowered and the amount of powdered slaked lime spraying is estimated to be small may occur depending on some operating conditions, but the amount of powdered slaked lime spraying as a whole of such conflicting results exists. It is better to adopt the estimated values from the same first group, i) the exhaust gas flow rate after dust collection processing, and d) the amount of combustion air to the waste incinerator. The amount of powdered slaked lime spray can be estimated more accurately than when the amount of powdered slaked lime spray estimated from the amount is both large. This is not limited to the example described here, and it is more preferable to employ a plurality of groups from different groups than to employ a plurality of groups from the same group having a strong correlation with each other.

【0086】次に、この実施の形態に係る排ガス処理方
法は、請求項4に記載の推定した酸性成分量の基準値
を、排ガス処理施設の定格値、通常運転時の平均値、排
ガス処理施設の立ち上げ時の代表値、運転条件の変更時
の代表値、から選ばれた値とするものである。
Next, in the exhaust gas treatment method according to this embodiment, the estimated reference value of the amount of the acidic component described in claim 4 is calculated based on the rated value of the exhaust gas treatment facility, the average value during normal operation, and the exhaust gas treatment facility. The value selected from the representative value at the time of startup and the representative value at the time of changing the operating conditions.

【0087】すなわち、請求項4に記載の推定した酸性
成分量の基準値として、排ガス処理施設の定格値、通常
運転時の平均値、排ガス処理施設の立ち上げ時の代表
値、運転条件の変更時の代表値、から選ばれた何れかの
値またはこれら複数の平均値を採用すればよい。酸性成
分量の基準値に対応する必要な粉末消石灰噴霧量は、例
えば、図6に示す粉末消石灰噴霧量(消石灰当量)とH
Cl除去率との関係を参考にして定めればよい。
That is, as the reference value of the estimated amount of the acidic component according to the fourth aspect, the rated value of the exhaust gas treatment facility, the average value during normal operation, the representative value at startup of the exhaust gas treatment facility, and the change of the operating conditions Any value selected from representative values of time or an average value of a plurality of these values may be employed. The required amount of powdered slaked lime spray corresponding to the reference value of the amount of acidic component is, for example, the amount of powdered slaked lime sprayed (slaked lime equivalent) shown in FIG.
It may be determined by referring to the relationship with the Cl removal rate.

【0088】なお、半乾式のスラリ噴霧では中和効率が
高く、さらに本発明のように除去率90%以下であれ
ば、消石灰の投入量に相当する酸性成分が略中和除去さ
れて未反応消石灰は少ないが、乾式法ではやや中和効率
が劣ることと、90%以上の高水準除去が必要のため、
粉末消石灰の当量比は1を越えることが通常であること
を断っておく。
In the case of a semi-dry type slurry spray, the neutralization efficiency is high, and if the removal rate is 90% or less as in the present invention, the acidic components corresponding to the slaked lime input amount are substantially neutralized and removed, and Although the amount of slaked lime is small, the dry method has a slightly lower neutralization efficiency and requires a high level removal of 90% or more.
It should be noted that the equivalent ratio of powdered slaked lime is usually more than 1.

【0089】このように、イ)〜チ)の複数の制御因子
により推定する酸性成分量の基準値を具体的に設定した
上で、消石灰スラリ噴霧後のこれに対応する粉末消石灰
噴霧量の粉末数因子による過不足分を請求項4に記載の
方法により制御するので、請求項4に係る発明の作用を
より確実かつ効果的に得ることができる。
As described above, after the reference value of the amount of the acidic component estimated by the plurality of control factors a) to d) is specifically set, the powder of the slaked lime spray amount corresponding to the slaked lime slurry after the slaked lime slurry is sprayed Since the excess or deficiency due to several factors is controlled by the method according to claim 4, the effect of the invention according to claim 4 can be obtained more reliably and effectively.

【0090】次に、この実施の形態に係る排ガス処理方
法は、粉末消石灰噴霧処理後の酸性成分濃度を検知して
これに基づいて粉末消石灰噴霧量をフイードバック制御
により制御する方法を、請求項1〜5の何れか1つに記
載の各方法と組み合わせて行うものである。
Next, the exhaust gas treatment method according to this embodiment detects a concentration of the acidic component after the powdered slaked lime spraying treatment and controls the sprayed amount of the powdered slaked lime by feedback control based on the detected concentration. This method is performed in combination with each of the methods described in any one of (1) to (5).

【0091】図2に示すとおり、バグフィルタ4から排
出される煙突入口における排ガスの煙道部には、HCl
濃度検出器28、必要に応じてSOx濃度検出器(図示
しない)が常設され、同排ガス中の酸性成分濃度が連続
的に測定される。これらの濃度信号はすでに述べたイ)
〜チ)の各信号とともに、粉末中和剤噴霧量演算器17
に送信され、すでに述べた粉末消石灰噴霧量制御にさら
にフイードバック制御が加算されて、粉末中和剤噴霧量
制御装置18に制御信号が送信されて粉末消石灰が噴霧
される。
As shown in FIG. 2, the flue gas of the exhaust gas at the chimney inlet discharged from the bag filter 4 contains HCl.
A concentration detector 28 and, if necessary, a SOx concentration detector (not shown) are permanently provided, and the concentration of the acidic component in the exhaust gas is continuously measured. These density signals have already been described a)
To (h) together with the powder neutralizer spray amount calculator 17
The feedback control is further added to the powder slaked lime spray amount control described above, and a control signal is transmitted to the powder neutralizing agent spray amount control device 18 to spray the powder slaked lime.

【0092】このようにフイードバック制御を組み合わ
せることにより、排出する酸性成分量または濃度をより
安全にかつ確実に所定値または所定値以下に抑えること
が可能となる。
By combining the feedback control as described above, the amount or concentration of the acidic component to be discharged can be more safely and surely suppressed to a predetermined value or a predetermined value or less.

【0093】本発明の排ガス処理方法の実施の形態を説
明するために引用した図1、図2では半乾式反応塔3に
おけるスラリ噴霧量の制御機器について表記を省略した
が、もちろん、噴霧器はアトマイザなどの公知の霧化器
などが採用され、粉末中和剤噴霧量演算器17で粉末消
石灰の噴霧量制御とともに一括して演算、制御を行う構
成にすることが望ましいことはいうまでもない。
In FIGS. 1 and 2 cited for explaining the embodiment of the exhaust gas treatment method of the present invention, the control device for the amount of slurry sprayed in the semi-dry reactor 3 is not shown, but, of course, the atomizer is an atomizer. It is needless to say that it is desirable to adopt a configuration in which a known atomizer or the like is adopted and the powder neutralizer spray amount calculator 17 performs the calculation and control together with the spray amount of the slaked lime powder.

【0094】さらに、本発明の排ガス処理装置は、半乾
式反応塔3と集塵機(例えばバグフィルタ)4を有して
いればよく、図1、図2に表示の処理機器に限定され
ず、酸性成分以外の有害成分を除去する際には必要に応
じて対応する処理装置が配列される。
Further, the exhaust gas treatment apparatus of the present invention only needs to have the semi-dry reaction tower 3 and the dust collector (eg, bag filter) 4, and is not limited to the treatment equipment shown in FIGS. When removing harmful components other than components, corresponding processing devices are arranged as necessary.

【0095】本発明で用いる粉末中和剤噴霧量制御装置
18は、粉末中和剤噴霧量演算器17からの信号を受信
して、これに基づいて粉末消石灰噴霧量を大きな時間遅
れなく制御でき、バグフィルタ4入口の煙道またはバグ
フィルタ4内に噴霧が可能であれば、何れの形式であっ
てもかまわない。
The powder neutralizer spray amount controller 18 used in the present invention can receive the signal from the powder neutralizer spray amount calculator 17 and control the powder slaked lime spray amount without a large time delay based on the signal. Any type may be used as long as spraying can be performed in the flue at the entrance of the bag filter 4 or inside the bag filter 4.

【0096】本発明で用いる排ガス流量検出器11、炉
出口温度検出器12、蒸気発生量検出器13、燃焼用空
気量検出器14、二次空気量検出器15、低発熱量検出
器16、CO2濃度検出器21、O2濃度検出器22の各
検出器は公知の検出器を用いればよいが、粉末消石灰噴
霧量の迅速な制御に用いるので、これら検出器は応答の
相対的に速いものが望ましい。
The exhaust gas flow rate detector 11, the furnace outlet temperature detector 12, the steam generation amount detector 13, the combustion air amount detector 14, the secondary air amount detector 15, the low heat generation amount detector 16, Known detectors may be used for each of the CO 2 concentration detector 21 and the O 2 concentration detector 22, but since they are used for quick control of the amount of powdered slaked lime, these detectors have a relatively fast response. Things are desirable.

【0097】以上、本発明の実施の形態をごみ焼却施設
に適用した場合について詳しく述べたが、燃焼や加熱に
伴って排出される排ガス中にHCl、SOx等の酸性成
分が存在していれば適用でき、産業廃棄物など可燃性廃
乗物やその他燃焼装置一般から排出される排ガスや、金
属精錬工場でスクラップを予熱、溶解する際に排出され
る排ガスであっても、同じように適用することができ
る。
The case where the embodiment of the present invention is applied to a refuse incineration facility has been described in detail. However, if acidic components such as HCl and SOx are present in exhaust gas discharged due to combustion or heating. Applicable to exhaust gas emitted from combustible waste vehicles such as industrial waste and other combustion equipment in general, and exhaust gas emitted when preheating and melting scrap in a metal smelting plant. Can be.

【0098】[0098]

【実施例】本発明に係る排ガス処理方法をごみ焼却処理
施設に採用して得られた本発明の効果を示す実施例を示
す。
EXAMPLE An example showing the effect of the present invention obtained by applying the exhaust gas treatment method according to the present invention to a refuse incineration facility will be described.

【0099】図7は、本発明を実施した実施例と従来法
の比較例で、煙突入口HCl濃度の時間変化を比較した
図である。表1は、本発明の実施例と従来法の比較例と
で、消石灰消費量等について比較した結果を示す表であ
る。ここで、本発明の実施例は、図2の装置構成による
もので、本発明の粉末消石灰噴霧量制御方法とフイード
バック制御を併用したものであり、従来法による比較例
は、図8の装置構成によるもので、フイードバック制御
のみを用いたものである。なお、正確な比較を行うた
め、焼却炉の運転条件は実施例と比較例でほば同一の条
件となるように設定した。
FIG. 7 is a diagram comparing the change over time in the concentration of HCl at the inlet of a chimney in an embodiment of the present invention and a comparative example of a conventional method. Table 1 is a table showing the results of comparing slaked lime consumption and the like between the example of the present invention and a comparative example of the conventional method. Here, the embodiment of the present invention is based on the apparatus configuration shown in FIG. 2, in which the powder slaked lime spray amount control method of the present invention and the feedback control are used in combination. , In which only feedback control is used. In addition, in order to perform an accurate comparison, the operating conditions of the incinerator were set to be almost the same as those in the example and the comparative example.

【0100】[0100]

【表1】 [Table 1]

【0101】表1によると、本発明を実施した実施例と
従来法による比較例の両者ともに処理後(煙突入口)の
HCl濃度は平均値でははぼ目標濃度を達成することが
できた。しかしながら、図7によると本発明を実施した
実施例は、HCl濃度の変動幅がともに2ppm程度と
ごく小さい値であったのに対し、従来法を実施した比較
例は、HCl濃度の変動幅が約10ppmと大きく、か
つ、周期的に大きな脈動を生じていた。また、半乾式反
応塔出口温度は170℃を目標に温度制御を行ったが、
比較例は、酸性成分濃度を制御するためにスラリ噴霧量
(およびスラリ濃度)を制御したので、半乾式反応塔出
口温度は±15℃程度の温度の変動を生じ、かつ平均温
度も170℃からややずれる結果となったが、実施例は
温度変動幅が3℃程度とごく小さく、良好な排ガス温度
制御を達成できた。さらに、表1から実施例と比較例を
消石灰消費量(実施例は消石灰スラリと粉末消石灰の合
計)で比較すると、本発明の実施例は比較例に対し、消
石灰消費量を38%節約できた。ここでは示さなかった
が、酸性成分であるSOxについてもここで示したHC
lと同等の結果が得られた。
According to Table 1, both the working example of the present invention and the comparative example according to the conventional method showed that the HCl concentration after the treatment (inlet of the chimney) could reach the target value in the mean value. However, according to FIG. 7, the variation of the HCl concentration was very small at about 2 ppm in both of the examples according to the present invention, while the variation of the HCl concentration was small in the comparative example using the conventional method. The pulsation was large, about 10 ppm, and was periodically large. In addition, the semi-dry reaction tower outlet temperature was controlled at 170 ° C. as a target,
In the comparative example, the slurry spray amount (and the slurry concentration) was controlled in order to control the concentration of the acidic component. Therefore, the outlet temperature of the semi-dry reactor was fluctuated by about ± 15 ° C., and the average temperature was from 170 ° C. Although the result was slightly shifted, in the example, the temperature fluctuation range was as small as about 3 ° C., and good exhaust gas temperature control could be achieved. Furthermore, comparing the example and the comparative example with slaked lime consumption (Example: the sum of slaked lime slurry and powdered slaked lime) from Table 1, the example of the present invention was able to save 38% of slaked lime consumption compared to the comparative example. . Although not shown here, the SOx which is an acidic component was also used for the HC shown here.
A result equivalent to 1 was obtained.

【0102】以上から、本発明を実施することにより、
処理後の酸性成分濃度および排ガス温度の変動や脈動の
ごく小さい安定した酸性成分除去を達成できるととも
に、消石灰の消費量を大幅に削減できることが示され
た。
As described above, by implementing the present invention,
It was shown that stable removal of acidic components with very small fluctuations and pulsations in the concentration of acidic components and exhaust gas temperature after treatment can be achieved, and the consumption of slaked lime can be significantly reduced.

【0103】[0103]

【発明の効果】以上説明したように、本発明によれば、
HCl等の酸性成分を含む廃棄物焼却炉からの排ガスを
処理する際に、まず酸性成分の一部を半乾式反応塔で除
去してから、次に集塵機で粉末中和剤を噴霧して除去す
るので、酸性成分濃度の制御が確実かつ容易となる。
As described above, according to the present invention,
When treating exhaust gas from waste incinerators containing acidic components such as HCl, first remove some of the acidic components in a semi-dry reaction tower, and then remove the powder neutralizer by spraying with a dust collector. Therefore, the control of the concentration of the acidic component can be reliably and easily performed.

【0104】さらに、集塵機において粉末中和剤を噴霧
する際に、相対的に応答の速い、既存の施設に備わった
連続測定器による測定値である、イ)集塵処理後の排ガ
ス流量、ロ)水噴霧による排ガス冷却手段より上流の排
ガス温度、ハ)蒸気式熱回収手段による蒸気発生量、
ニ)廃棄物焼却炉への燃焼用空気量、ホ)廃棄物焼却炉
への二次空気量、へ)被焼却物の低位発熱量、ト)集塵
処理後の排ガス中のCO 2濃度、チ)集塵処理後の排ガ
ス中のO2濃度、の内のひとつ以上を用いて処理対象の
酸性成分量を推定し、これに基づいてスラリ状中和剤の
噴霧後の残留酸性成分に対応する粉末中和剤の噴霧量を
制御するので、未処理酸性成分濃度の連続測定器を新た
に設置することなく、従来のフイードバック制御による
処理後の酸性成分濃度の脈動の激しさや中和剤の無駄な
消費を回避することができ、もって、簡便な方法で安定
した酸性成分除去と中和剤消費量の節約が可能となる。
Further, a dust neutralizer is sprayed with a dust collector.
When responding to existing facilities
It is the value measured by a continuous measuring device.
Flow rate, b) exhaust water upstream from the exhaust gas cooling means by water spray
Gas temperature, c) the amount of steam generated by the steam-type heat recovery means,
D) Amount of air for combustion to waste incinerator, e) Waste incinerator
To the amount of secondary air, to) lower calorific value of incinerated material, to g) dust collection
CO in exhaust gas after treatment TwoConcentration, h) Exhaust gas after dust collection processing
O in theTwoConcentration, using one or more of
Estimate the amount of acidic component, and based on this estimate
Adjust the spray amount of the powder neutralizer corresponding to the residual acidic components after spraying.
Control, a new continuous measuring device for untreated acidic component concentration
Without conventional feedback control
Severe pulsation of acid component concentration after treatment and waste of neutralizer
Consumption can be avoided and therefore stable in a simple way
It is possible to remove the acidic component and save the consumption of the neutralizing agent.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の排ガス処理方法をごみ焼却処理施設に
採用した場合の実施の形態の一例を示すブロック図であ
る。
FIG. 1 is a block diagram showing an example of an embodiment in a case where an exhaust gas treatment method of the present invention is employed in a refuse incineration facility.

【図2】本発明の排ガス処理方法をごみ焼却処理施設に
採用した場合の別の実施の形態の一例を示すブロック図
である。
FIG. 2 is a block diagram showing an example of another embodiment when the exhaust gas treatment method of the present invention is employed in a refuse incineration facility.

【図3】炉出口温度、ボイラ出口HCl濃度の各時間変
化を示す図である。
FIG. 3 is a diagram showing changes over time of a furnace outlet temperature and a boiler outlet HCl concentration.

【図4】炉出口温度とボイラ出口HCl濃度との相関を
示す図である。
FIG. 4 is a diagram showing a correlation between a furnace outlet temperature and a boiler outlet HCl concentration.

【図5】炉内温度、炉出口温度、ボイラ2パス温度、蒸
発量(蒸気発生量)の各時間変化を示す図である。
FIG. 5 is a diagram showing changes over time in a furnace temperature, a furnace outlet temperature, a boiler two-pass temperature, and an evaporation amount (steam generation amount).

【図6】粉末消石灰噴霧量(消石灰当量比)とHCl除
去率との関係を示す図である。
FIG. 6 is a diagram showing the relationship between the amount of powdered slaked lime sprayed (slaked lime equivalent ratio) and the HCl removal rate.

【図7】本発明を実施した実施例と従来法による比較例
で、煙突入口HCl濃度の時間変化を比較した図であ
る。
FIG. 7 is a diagram comparing the time variation of the concentration of HCl at the inlet of the chimney in an example in which the present invention is implemented and a comparative example according to a conventional method.

【図8】従来の半乾式法の一例を示すブロック図であ
る。
FIG. 8 is a block diagram showing an example of a conventional semi-dry method.

【符号の説明】[Explanation of symbols]

1 廃棄物焼却炉 2 ボイラ 3 半乾式反応塔 4 集塵機(バグフィルタ) 6 煙突 11 排ガス流量検出器 12 炉出口温度検出器 13 蒸気発生量検出器 14 燃焼用空気量検出器 15 二次空気量検出器 16 低位発熱量検出器 17 粉末中和剤噴霧量演算器 18 粉末中和剤噴霧量制御装置 21 CO2濃度検出器 22 O2濃度検出器 28 HCl濃度検出器DESCRIPTION OF SYMBOLS 1 Waste incinerator 2 Boiler 3 Semi-dry reaction tower 4 Dust collector (bag filter) 6 Chimney 11 Exhaust gas flow detector 12 Furnace outlet temperature detector 13 Steam generation amount detector 14 Combustion air amount detector 15 Secondary air amount detection 16 Low calorific value detector 17 Powder neutralizer spray amount calculator 18 Powder neutralizer spray amount controller 21 CO 2 concentration detector 22 O 2 concentration detector 28 HCl concentration detector

───────────────────────────────────────────────────── フロントページの続き (72)発明者 塩満 徹 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 平山 敦 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 鮎川 将 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 3K070 DA01 DA16 DA27 DA37 DA43 DA58 DA59 DA60 4D002 AA02 AA12 AA19 AA21 AA29 AB01 AC04 BA03 BA13 BA14 CA01 CA11 DA02 DA05 DA12 DA16 EA02 GA01 GA02 GA04 GB01 GB02 GB03 GB06 HA08 HA10  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Toru Shioman 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Inside Nihon Kokan Co., Ltd. (72) Inventor Atsushi Hirayama 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. (72) Inventor Masaru Ayukawa 1-2-1, Marunouchi, Chiyoda-ku, Tokyo F-term in Nihon Kokan Co., Ltd. (reference) 3K070 DA01 DA16 DA27 DA37 DA43 DA58 DA59 DA60 4D002 AA02 AA12 AA19 AA21 AA29 AB01 AC04 BA03 BA13 BA14 CA01 CA11 DA02 DA05 DA12 DA16 EA02 GA01 GA02 GA04 GB01 GB02 GB03 GB06 HA08 HA10

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 廃棄物焼却炉から排出される排ガスにス
ラリ状中和剤を噴霧して排ガス中の酸性成分を除去する
方法において、 排ガスを半乾式反応塔に導入しスラリ状中和剤を噴霧し
て排ガス中の一部の酸性成分を除去したあとに、粉末中
和剤を噴霧して酸性成分の残留分を集塵機で除去する工
程からなり、後者の粉末中和剤の噴霧の際に、未処理排
ガス中の酸性成分濃度を常時検知することなく、イ)集
塵処理後の排ガス流量、ロ)水噴霧による排ガス冷却手
段より上流の排ガス温度、ハ)蒸気式熱回収手段による
蒸気発生量、ニ)廃棄物焼却炉への燃焼用空気量、ホ)
廃棄物焼却炉への二次空気量、へ)被焼却物の低位発熱
量、ト)集塵処理後の排ガス中のCO2濃度、チ)集塵
処理後の排ガス中のO2濃度、の内のひとつ以上を用い
て全処理対象の酸性成分量を推定し、これに基づいて、
前記スラリ状中和剤の噴霧後の残留酸性成分に対応する
粉末中和剤の噴霧量を制御することを特徴とする排ガス
処理方法。
A method for removing an acidic component in exhaust gas by spraying a slurry-like neutralizing agent onto exhaust gas discharged from a waste incinerator, comprising introducing the exhaust gas into a semi-dry reaction tower to remove the slurry-type neutralizing agent. After removing some acidic components in the exhaust gas by spraying, it consists of a process of spraying a powder neutralizing agent to remove the residual acid components with a dust collector. , Without constantly detecting the concentration of acidic components in untreated exhaust gas, a) exhaust gas flow rate after dust collection, b) exhaust gas temperature upstream of exhaust gas cooling means by water spray, c) steam generation by steam type heat recovery means Amount, d) amount of combustion air to waste incinerator, e)
Secondary air amount to the waste incinerator, to) lower heating value of the incinerated, Doo) CO 2 concentration in the exhaust gas after dust collection, Ji) O 2 concentration in the exhaust gas after dust collection, the Estimate the amount of acidic components for all treatments using one or more of the above, based on this,
An exhaust gas treatment method comprising controlling a spray amount of a powder neutralizing agent corresponding to a residual acidic component after spraying the slurry-like neutralizing agent.
【請求項2】 前記イ)〜ト)の各々の値が各々の基準
値を上回るか、前記チ)の値が基準値を下回る何れかの
場合にその程度に応じて粉末中和剤の噴霧量を増加さ
せ、前記イ)〜ト)の各々の値が各々の基準値を下回る
か、前記チ)の値が基準値を上回る何れかの場合にその
程度に応じて粉末中和剤の噴霧量を減少させることを特
徴とする請求項1記載の排ガス処理方法。
2. The spraying of the powder neutralizing agent according to the degree in which the value of each of (a) to (g) is higher than the respective reference value or the value of (h) is lower than the reference value. Spraying the powder neutralizing agent according to the degree of increase in the amount of each of the above (i) to (g) below the respective reference values or the value of the above (h) above the reference values. The exhaust gas treatment method according to claim 1, wherein the amount is reduced.
【請求項3】 前記イ)〜チ)の基準値は、排ガス処理
施設の定格値、通常運転時の平均値、排ガス処理施設の
立ち上げ時の代表値、運転条件の変更時の代表値、から
選ばれた値であることを特徴とする請求項2記載の排ガ
ス処理方法。
3. The reference values of (a) to (h) are a rated value of an exhaust gas treatment facility, an average value during normal operation, a representative value when starting up the exhaust gas treatment facility, a representative value when changing operating conditions, 3. The exhaust gas treatment method according to claim 2, wherein the value is selected from the group consisting of:
【請求項4】 前記イ)〜チ)の複数個を用いて処理対
象の酸性成分量を推定し、この値が該酸性成分量の基準
値を上回る場合にその程度に応じて粉末中和剤の噴霧量
を増加させ、この値が前記基準値を下回る場合にその程
度に応じて粉末中和剤の噴霧量を減少させることを特徴
とする請求項2または請求項3記載の排ガス処理方法。
4. A method for estimating the amount of an acidic component to be treated by using a plurality of the above (a) to (h), and when this value exceeds a reference value of the amount of the acidic component, the powder neutralizing agent according to the degree. 4. The exhaust gas treatment method according to claim 2, wherein the spray amount is increased, and when this value is lower than the reference value, the spray amount of the powder neutralizing agent is reduced according to the degree.
【請求項5】 請求項4に記載の推定した酸性成分量の
基準値は、排ガス処理施設の定格値、通常運転時の平均
値、排ガス処理施設の立ち上げ時の代表値、運転条件の
変更時の代表値、から選ばれた値であることを特徴とす
る排ガス処理方法。
5. The reference value of the estimated amount of the acidic component according to claim 4, wherein the rated value of the exhaust gas treatment facility, the average value during normal operation, the representative value at startup of the exhaust gas treatment facility, and the change of operating conditions An exhaust gas treatment method characterized by a value selected from representative values of time.
【請求項6】 粉末中和剤噴霧処理後の酸性成分濃度を
検知してこれに基づいて粉末中和剤噴霧量をフイードバ
ック制御により制御する方法を、請求項1〜5の何れか
1つに記載の各方法と組み合わせて行う排ガス処理方
法。
6. The method according to claim 1, wherein the concentration of the acidic component after the powder neutralizing agent spraying treatment is detected and the amount of the powder neutralizing agent sprayed is controlled by feedback control based on the detected concentration. An exhaust gas treatment method performed in combination with each of the methods described above.
【請求項7】 廃棄物焼却炉から排出される排ガスにス
ラリ状中和剤を噴霧して排ガス中の酸性成分を除去する
装置において、 a)スラリ状中和剤を噴霧をして排ガス中の一部の酸性
成分を除去する半乾式反応塔と、 b)前記半乾式反応塔を経た排ガスに粉末中和剤を噴霧
する際に、イ)集塵処理後の排ガス流量、ロ)水噴霧に
よる排ガス冷却手段より上流の排ガス温度、ハ)熱回収
手段による蒸気発生量、ニ)廃棄物焼却炉への燃焼用空
気量、ホ)廃棄物焼却炉への二次空気量、へ)被焼却物
の低位発熱量、ト)集塵処理後の排ガス中のCO2
度、チ)集塵処理後の排ガス中のO2濃度、のうちの少
なくとも一つを測定する一つ以上の連続測定器と、 c)前記連続測定器からの測定値信号を集積して処理対
象の酸性成分量を推定し、これに基づいて前記スラリ状
中和剤噴霧後の残留酸性成分に対応する粉末中和剤の噴
霧量を演算し、粉末中和剤噴霧量制御装置に粉末中和剤
噴霧量信号を送信する粉末中和剤噴霧量演算器と、 d)前記粉末中和剤噴霧量演算器より粉末中和剤噴霧量
信号を受信して粉末中和剤噴霧を行う粉末中和剤噴霧量
制御装置と、 e)粉末中和剤の噴霧により前記半乾式反応塔を経た排
ガス中の酸性成分を除去する集塵機と、 からなることを特徴とする排ガス処理装置。
7. An apparatus for removing an acidic component in an exhaust gas by spraying a slurry-like neutralizing agent on exhaust gas discharged from a waste incinerator, comprising: a) spraying a slurry-like neutralizing agent on the exhaust gas; A) a semi-dry reaction tower for removing some acidic components; and b) when spraying a powder neutralizing agent onto the exhaust gas passing through the semi-dry reaction tower, a) the flow rate of the exhaust gas after the dust collection treatment, and b) water spraying. Exhaust gas temperature upstream of the exhaust gas cooling means, c) the amount of steam generated by the heat recovery means, d) the amount of combustion air to the waste incinerator, e) the amount of secondary air to the waste incinerator, and One or more continuous measuring instruments for measuring at least one of: a lower calorific value of the above, g) the CO 2 concentration in the exhaust gas after the dust collection process, and h) the O 2 concentration in the exhaust gas after the dust collection process. C) integrating the measured value signals from said continuous measuring device to estimate the amount of acidic components to be processed, Calculating a spray amount of the powder neutralizing agent corresponding to the residual acidic component after the spraying of the slurry-like neutralizing agent, and transmitting a powder neutralizing agent spray amount signal to the powder neutralizing agent spray amount control device; A powder neutralizer spray amount control device for receiving a powder neutralizer spray amount signal from the powder neutralizer spray amount calculator and spraying the powder neutralizer, and e) powder. An exhaust gas treatment device, comprising: a dust collector that removes an acidic component in exhaust gas that has passed through the semi-dry reaction tower by spraying a neutralizing agent.
JP11135242A 1999-05-17 1999-05-17 Method and device for treating waste gas Pending JP2000317263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11135242A JP2000317263A (en) 1999-05-17 1999-05-17 Method and device for treating waste gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11135242A JP2000317263A (en) 1999-05-17 1999-05-17 Method and device for treating waste gas

Publications (1)

Publication Number Publication Date
JP2000317263A true JP2000317263A (en) 2000-11-21

Family

ID=15147144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11135242A Pending JP2000317263A (en) 1999-05-17 1999-05-17 Method and device for treating waste gas

Country Status (1)

Country Link
JP (1) JP2000317263A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006314906A (en) * 2005-05-12 2006-11-24 Hitachi Ltd System and method of supplying exhaust gas treating agent
JP2008200631A (en) * 2007-02-21 2008-09-04 Takuma Co Ltd Method and apparatus for treating combustion exhaust gas
KR20140074314A (en) * 2011-09-29 2014-06-17 뱁콕 앤드 윌콕스 파워 제네레이션 그룹, 인크. Dry sorbent injection during steady-state conditions in dry scrubber
KR20140074315A (en) * 2011-09-29 2014-06-17 뱁콕 앤드 윌콕스 파워 제네레이션 그룹, 인크. Dry sorbent injection during non-steady state conditions in dry scrubber
JP2015144984A (en) * 2014-01-31 2015-08-13 三菱日立パワーシステムズ株式会社 Lime supply apparatus and exhaust gas treatment system
CN105351955A (en) * 2015-11-05 2016-02-24 武汉烽火兴业节能环保科技有限公司 Intelligent detection system and method for flue gas dust removal
CN109078478A (en) * 2018-09-04 2018-12-25 中国恩菲工程技术有限公司 Deacidifying flue gas processing system and its application
CN115040995A (en) * 2022-07-08 2022-09-13 深圳能源环保股份有限公司 Lime slurry throttle adjusting method for treating waste gas of garbage power plant based on semidry method
CN116943415A (en) * 2023-07-11 2023-10-27 泊头市境友环保科技有限公司 Quick dust removal and desulfurization device for flue gas

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006314906A (en) * 2005-05-12 2006-11-24 Hitachi Ltd System and method of supplying exhaust gas treating agent
JP4701825B2 (en) * 2005-05-12 2011-06-15 株式会社日立製作所 Exhaust gas treatment agent supply system and supply method
JP2008200631A (en) * 2007-02-21 2008-09-04 Takuma Co Ltd Method and apparatus for treating combustion exhaust gas
EP2760564B1 (en) * 2011-09-29 2017-11-08 The Babcock & Wilcox Company Dry sorbent injection during steady-state conditions in dry scrubber
KR20140074315A (en) * 2011-09-29 2014-06-17 뱁콕 앤드 윌콕스 파워 제네레이션 그룹, 인크. Dry sorbent injection during non-steady state conditions in dry scrubber
EP2760564A1 (en) * 2011-09-29 2014-08-06 Babcock and Wilcox Power Generation Group, Inc. Dry sorbent injection during steady-state conditions in dry scrubber
JP2014534054A (en) * 2011-09-29 2014-12-18 バブコック・アンド・ウィルコックス・パワー・ジェネレイション・グループ・インコーポレイテッドBabcock & Wilcox Power Generation Group,Inc. Dry adsorbent injection during non-steady state to a dry scrubber
JP2014534897A (en) * 2011-09-29 2014-12-25 バブコック・アンド・ウィルコックス・パワー・ジェネレイション・グループ・インコーポレイテッドBabcock & Wilcox Power Generation Group,Inc. Dry adsorbent input during steady state in dry scrubber
KR102002193B1 (en) 2011-09-29 2019-07-19 더 뱁콕 앤드 윌콕스 컴퍼니 Dry sorbent injection during non-steady state conditions in dry scrubber
KR101940848B1 (en) * 2011-09-29 2019-01-21 더 뱁콕 앤드 윌콕스 컴퍼니 Dry sorbent injection during steady-state conditions in dry scrubber
KR20140074314A (en) * 2011-09-29 2014-06-17 뱁콕 앤드 윌콕스 파워 제네레이션 그룹, 인크. Dry sorbent injection during steady-state conditions in dry scrubber
EP2760565B1 (en) * 2011-09-29 2018-04-11 The Babcock & Wilcox Company Dry sorbent injection during non-steady state conditons in dry scrubber
US10005026B2 (en) 2014-01-31 2018-06-26 Mitsubishi Hitachi Power Systems, Ltd. Limestone supply device and air pollution control system
JP2015144984A (en) * 2014-01-31 2015-08-13 三菱日立パワーシステムズ株式会社 Lime supply apparatus and exhaust gas treatment system
CN105351955A (en) * 2015-11-05 2016-02-24 武汉烽火兴业节能环保科技有限公司 Intelligent detection system and method for flue gas dust removal
CN109078478A (en) * 2018-09-04 2018-12-25 中国恩菲工程技术有限公司 Deacidifying flue gas processing system and its application
CN109078478B (en) * 2018-09-04 2024-04-12 中国恩菲工程技术有限公司 Flue gas deacidification treatment system and application thereof
CN115040995A (en) * 2022-07-08 2022-09-13 深圳能源环保股份有限公司 Lime slurry throttle adjusting method for treating waste gas of garbage power plant based on semidry method
CN116943415A (en) * 2023-07-11 2023-10-27 泊头市境友环保科技有限公司 Quick dust removal and desulfurization device for flue gas
CN116943415B (en) * 2023-07-11 2024-04-02 泊头市境友环保科技有限公司 Quick dust removal and desulfurization device for flue gas

Similar Documents

Publication Publication Date Title
JP4838579B2 (en) Mercury removal system and mercury removal method
WO2012128330A1 (en) Spray-drying device for dehydrated filtrate from desulfurization wastewater, exhaust gas treatment system and method
WO2015125559A1 (en) System for discharge gas treatment and method for discharge gas treatment
JP2008142602A (en) Mercury removing method and mercury removing system
US20080089822A1 (en) Regeneration of nt-scr catalysts
CN104661728B (en) Emission-control equipment
JP5024735B2 (en) Exhaust gas treatment method
JP2000317263A (en) Method and device for treating waste gas
JP2017200668A (en) Exhaust gas desalination apparatus
EP0930091A1 (en) Method of treating exhaust gas
JP2000317264A (en) Method for removing harmful component in waste gas and device for treating waste gas
JP2012120992A (en) Exhaust gas denitrification apparatus
JP4701825B2 (en) Exhaust gas treatment agent supply system and supply method
JP2810024B2 (en) Process gas purification method
JP3368751B2 (en) Reaction bag filter system and operating method thereof
JP2010127598A (en) Treated object combustion system and method of controlling concentration of nitrogen oxide in exhaust gas
EP1316352A1 (en) Method for treating mercury in exhaust gas and exhaust gas treating system
JP2011115684A (en) Exhaust gas treatment device, combustion furnace and exhaust gas treatment method
JP6909667B2 (en) Combustion exhaust gas treatment device
JP6417149B2 (en) Exhaust gas treatment apparatus and treatment method using the same
JPH06218229A (en) Method and device for controlling supply of flue gas purifying agent
EP2018216B1 (en) A method and an apparatus for the absorption of gases
JP2012130854A (en) Exhaust gas treatment apparatus
WO2021210311A1 (en) Exhaust gas treatment system and exhaust gas treatment method
JPH10274411A (en) Temperature control method of dust collector of refuse incinerator