JP2000313690A - Production of semiconductor single crystal and solid semiconductor raw material mass used therefore - Google Patents

Production of semiconductor single crystal and solid semiconductor raw material mass used therefore

Info

Publication number
JP2000313690A
JP2000313690A JP11120550A JP12055099A JP2000313690A JP 2000313690 A JP2000313690 A JP 2000313690A JP 11120550 A JP11120550 A JP 11120550A JP 12055099 A JP12055099 A JP 12055099A JP 2000313690 A JP2000313690 A JP 2000313690A
Authority
JP
Japan
Prior art keywords
single crystal
semiconductor
raw material
seed crystal
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11120550A
Other languages
Japanese (ja)
Other versions
JP3722264B2 (en
Inventor
Junichi Osanai
淳一 小山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP12055099A priority Critical patent/JP3722264B2/en
Publication of JP2000313690A publication Critical patent/JP2000313690A/en
Application granted granted Critical
Publication of JP3722264B2 publication Critical patent/JP3722264B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the inside of an apparatus and a melt in an apparatus from being contaminated and to improve the ratio of formation of single crystal by holding a semiconductor raw material mass in a solid state by a retaining means attached to a seed crystal, melting the mass, containing the melt in a container and bringing the seed crystal into contact with the melt in the container to grow a single crystal. SOLUTION: A polycrystal silicon in a small mass state is packed into a quartz crucible 6 in a storage chamber 2 of furnace member, heated and melted by a heater 4 and about 80% of the crucible 6 is charged with a melt L. A seed crystal S is held by a seed crystal retaining means 10 fixed to a wire 9 of a single crystal storage part 3. The polycrystal silicon mass M is seized by a cylindrical seizing part S2 of the seed crystal S and suspended and retained from the wire 9 through the seed crystal retaining means 10. The polycrystal silicon mass M is dropped by the wire 9, brought into contact with the silicon melt L and additionally melted. The seed crystal S is completely exposed by the melting of the polycrystal silicon mass M and the cylindrical seizing part S2 is brought into contact with the silicon melt L in a molten state and melted. Then a single crystal is grown on the seed crystal S and pulled.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体単結晶の製造
方法およびこれに用いられる固体の半導体原料塊に係わ
り、特に半導体原料の供給方法を改善し単結晶化率の向
上を図った半導体単結晶の製造方法およびこれに用いら
れる固体の半導体原料塊に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a semiconductor single crystal and a solid semiconductor raw material lump used for the method. And a solid semiconductor raw material lump used in the method.

【0002】[0002]

【従来の技術】一般に半導体ウェーハの製造方法は、多
結晶半導体原料を溶融し、この原料融液に単結晶よりな
る種結晶を接触させ、種結晶から半導体単結晶を成長さ
せる半導単結晶の製造方法が用いられている。
2. Description of the Related Art In general, a method of manufacturing a semiconductor wafer involves melting a polycrystalline semiconductor raw material, bringing a seed crystal made of a single crystal into contact with the raw material melt, and growing a semiconductor single crystal from the seed crystal. Manufacturing methods are used.

【0003】例えば、チョクラルスキー法(以下、CZ
法という。)によるインゴット状のシリコン単結晶の製
造方法は、図10に示されるように、単結晶製造装置4
1の炉部材収納室42内に設置された石英ルツボ43に
不定形な小塊形状の原料の多結晶シリコンm0を充填
し、石英ルツボ43の外周に設けられたヒータ44によ
って多結晶シリコンm0を完全に加熱溶融した後、シー
ドチャック45に取り付けられた種結晶(シード結晶)
S0をシリコン融液に浸し、種結晶S0と石英ルツボ43
を逆方向に回転させ種結晶S0を引上げてシリコン単結
晶Ig0を成長させるものである。
For example, the Czochralski method (hereinafter referred to as CZ)
It is called the law. The method for producing an ingot-like silicon single crystal according to (1) is, as shown in FIG.
The quartz crucible 43 installed in the first furnace member storage chamber 42 is filled with polycrystalline silicon m0 as a raw material in the form of an irregular small mass, and the polycrystalline silicon m0 is heated by a heater 44 provided on the outer periphery of the quartz crucible 43. Seed crystal (seed crystal) attached to seed chuck 45 after completely heated and melted
S0 is immersed in a silicon melt, and seed crystal S0 and quartz crucible 43
Is rotated in the opposite direction to pull up the seed crystal S0 to grow the silicon single crystal Ig0.

【0004】一般に使用される原料の多結晶シリコンは
不定形な小塊形状であるため、図10に示すように、石
英ルツボ43に充填される小塊形状の多結晶シリコンm
0は嵩張り、石英ルツボ43に一度に大量に充填するこ
とは難しい。また、一回の単結晶引上げ毎に高価な新品
の石英ルツボ42を使用せねば成らず、引上げコストが
上昇する。
[0004] Since polycrystalline silicon, which is a commonly used raw material, is in the form of an amorphous small lump, as shown in FIG. 10, a small lump-shaped polycrystalline silicon m to be filled in a quartz crucible 43 is used.
0 is bulky, and it is difficult to fill a large amount of quartz crucible 43 at one time. In addition, an expensive new quartz crucible 42 must be used each time a single crystal is pulled, which increases the pulling cost.

【0005】そこでコスト低減の方策として、図11に
示すようないわゆる原料追加チャージ方式が提案されて
いる。この追加チャージ方式は単結晶製造装置51をゲ
ートバルブ52により炉部材収納室53と単結晶収納部
54に適宜仕切り可能にし、ゲートバルブ52の開放状
態で単結晶引上げ初期に炉部材収納室53に配置された
石英ルツボ55に充填し(図11(a))、小塊形状の
多結晶シリコンm0を溶融して石英ルツボ55の約80
%程度までシリコン融液L0を満たし(図11
(b))、このシリコン融液L0とは別個に用意された
原料で固体棒状の多結晶シリコン塊M0をシリコン塊保
持手段56により保持して降下させて、シリコン融液L
0に接触させて追加溶融させ(図11(c))、シリコ
ン融液L0が石英ルツボ42のほぼ全体に満される。
Therefore, as a measure for cost reduction, a so-called additional material charging method as shown in FIG. 11 has been proposed. This additional charging method enables the single crystal manufacturing apparatus 51 to be appropriately partitioned into a furnace member storage chamber 53 and a single crystal storage section 54 by a gate valve 52, and the gate valve 52 is opened and the single crystal manufacturing apparatus 51 is moved into the furnace member storage chamber 53 at the initial stage of pulling the single crystal. The placed quartz crucible 55 is filled (FIG. 11 (a)), and the polycrystalline silicon m0 having a small lump shape is melted to form about 80 cm of the quartz crucible 55.
% Of the silicon melt L0 (FIG. 11)
(B)) The solid rod-shaped polycrystalline silicon mass M0 is held by the silicon mass holding means 56 and lowered by using a raw material prepared separately from the silicon melt L0.
0 and additionally melted (FIG. 11 (c)), and the silicon melt L0 fills almost the entire quartz crucible 42.

【0006】一方、多結晶シリコン塊M0の溶融後、シ
リコン塊保持手段56を上昇させ、完全ゲートバルブ5
2を閉じ、ゲートバルブ52により仕切られた単結晶収
納部54内でシリコン塊保持手段56と種結晶保持手段
57とを交換して取り付けし、この種結晶保持手段57
に種結晶Sが取り付けられる(図11(d))。
On the other hand, after the polycrystalline silicon mass M0 is melted, the silicon mass holding means 56 is raised, and the complete gate valve 5 is removed.
2 is closed, and the silicon lump holding means 56 and the seed crystal holding means 57 are exchanged and mounted in the single crystal accommodating section 54 partitioned by the gate valve 52.
Is attached with a seed crystal S (FIG. 11D).

【0007】しかる後、ゲートバルブ52を開放し、種
結晶S0を石英ルツボ55中で溶融状態のシリコン融液
L0に接触させて、種結晶S0の下部に種結晶S0と同じ
結晶方位を有する単結晶Ig0を成長させ(図11
(e))、石英ルツボ55中にはシリコン融液L0がほ
とんど残らない状態とする(図11(e))。
Thereafter, the gate valve 52 is opened, and the seed crystal S0 is brought into contact with the silicon melt L0 in a molten state in the quartz crucible 55, so that a single crystal having the same crystal orientation as the seed crystal S0 is provided below the seed crystal S0. Crystal Ig0 is grown (FIG. 11)
(E)), the silicon melt L0 hardly remains in the quartz crucible 55 (FIG. 11 (e)).

【0008】上記の単結晶製造装置51を用いた半導体
単結晶の製造方法によれば、図11に示すような通常の
CZ法の製造方法よりも石英ルツボ1個当たりのシリコ
ン単結晶の生産量は増大する。
According to the method of manufacturing a semiconductor single crystal using the above-described single crystal manufacturing apparatus 51, the production amount of silicon single crystal per quartz crucible is smaller than that of a normal CZ method as shown in FIG. Increases.

【0009】しかし、この製造方法では、ヒータ58等
が付勢された状態で単結晶製造装置51の稼働中に最低
でも1回はゲートバルブ52を閉じて、炉部材収納室5
3と単結晶収納部54とを分離し、かつこの単結晶収納
部54を開放してシリコン塊装置56と種結晶保持手段
57との取付けの交換を行い、さらにシリコン塊保持手
段56への多結晶シリコン塊M0の取り付け、および種
結晶保持手段57への種結晶S0の取り付けを行わなけ
ればならず、単結晶収納部54は大気に曝される。大気
に曝された単結晶収納部54を再度炉部材収納室53と
連通させると、単結晶収納部54から塵埃などが落下
し、単結晶Ig0の成長を阻害し単結晶化率(結晶欠陥
が発生せず単結晶が得られる割合)を低減させる大きな
要因になっている。さらに、ゲートバルブ52の開閉に
よるゲートバルブ室59からの塵埃などの落下も生じ
る。
However, in this manufacturing method, the gate valve 52 is closed at least once during the operation of the single crystal manufacturing apparatus 51 while the heater 58 and the like are energized, and the furnace member storage chamber 5 is closed.
3 and the single crystal storage unit 54 are separated, and the single crystal storage unit 54 is opened to exchange the attachment between the silicon mass device 56 and the seed crystal holding means 57. Attachment of the crystalline silicon mass M0 and attachment of the seed crystal S0 to the seed crystal holding means 57 must be performed, and the single crystal storage part 54 is exposed to the atmosphere. When the single crystal storage part 54 exposed to the atmosphere is again communicated with the furnace member storage chamber 53, dust and the like fall from the single crystal storage part 54, hinder the growth of the single crystal Ig0, and reduce the single crystallization rate (crystal defects This is a major factor in reducing the ratio of obtaining a single crystal without generation). Further, dust and the like fall from the gate valve chamber 59 due to the opening and closing of the gate valve 52.

【0010】また、別のコスト低減の方策として、図1
2に示すようなわゆる原料のリチャージ方式がある。
As another cost reduction measure, FIG.
There is a so-called raw material recharging system as shown in FIG.

【0011】このリチャージ方式は単結晶製造装置61
をゲートバルブ62により炉部材収納室63と単結晶収
納部64に適宜仕切り可能にし、ゲートバルブ62の開
放状態で単結晶Ig1を引上げて取り出し、炉部材収納
室63に配置された石英ルツボ65に溶融シリコンL1
を残存させ(図12(a))、次に、ゲートバルブ62
により仕切られた単結晶収納部64内で種結晶保持手段
66をシリコン塊保持手段67に交換して取り付け(図
12(b))、このシリコン塊保持手段67に多結晶シ
リコン塊M1を取り付け、降下させてシリコン融液L1
に接触させ溶融し、シリコン融液L1にする(図12
(c))。
This recharging method uses a single crystal manufacturing apparatus 61.
Can be appropriately divided into a furnace member storage chamber 63 and a single crystal storage section 64 by a gate valve 62, and the single crystal Ig 1 is pulled up and taken out with the gate valve 62 opened, and is placed in a quartz crucible 65 arranged in the furnace member storage chamber 63. Molten silicon L1
(FIG. 12A), and then the gate valve 62
The seed crystal holding means 66 is replaced with a silicon lump holding means 67 in the single crystal accommodating section 64 partitioned by the step (FIG. 12B), and the polycrystalline silicon lump M1 is mounted on the silicon lump holding means 67. Lower the silicon melt L1
And melted to form a silicon melt L1 (FIG. 12).
(C)).

【0012】多結晶シリコン塊M1の溶融によりシリコ
ン融液L1は石英ルツボ65のほぼ全体に満され、一
方、保持する多結晶シリコン塊M1が存在しなくなった
シリコン保持手段67を上昇させ、ゲートバルブ62を
閉じ、ゲートバルブ62により仕切られた単結晶収納部
64内でシリコン塊保持手段67と種結晶保持手段66
とを交換して取り付け、この種結晶保持手段66に種結
晶S1が取り付けられる(図12(d))。
By melting the polycrystalline silicon mass M1, the silicon melt L1 fills almost the entire quartz crucible 65, and on the other hand, raises the silicon holding means 67 in which the polycrystalline silicon mass M1 no longer exists, and raises the gate valve. 62 is closed, and the silicon mass holding means 67 and the seed crystal holding means 66 are stored in the single crystal storage portion 64 partitioned by the gate valve 62.
The seed crystal S1 is mounted on the seed crystal holding means 66 (FIG. 12D).

【0013】しかる後、ゲートバルブ62を開放し、種
結晶S1を石英ルツボ65中で溶融状態の多結晶シリコ
ンM1に接触させて、種結晶S1に単結晶Ig1を成長
させる(図12(e))。
Thereafter, the gate valve 62 is opened, and the seed crystal S1 is brought into contact with the molten polycrystalline silicon M1 in the quartz crucible 65 to grow a single crystal Ig1 on the seed crystal S1 (FIG. 12E). ).

【0014】しかし、この製造方法でも、ヒータ68等
が付勢された状態で単結晶製造装置61の稼働中に2回
はゲートバルブ62を閉じて、炉部材収納室63と単結
晶収納部64とを分離し、かつこの単結晶収納部64を
開放して、種結晶保持手段66とシリコン塊保持手段6
7の交換、および逆にシリコン塊保持手段67と種結晶
保持手段66の交換を行う必要があるため、単結晶収納
部64は2回も大気に曝される。
However, even in this manufacturing method, the gate valve 62 is closed twice during the operation of the single crystal manufacturing apparatus 61 with the heater 68 and the like being energized, and the furnace member storage chamber 63 and the single crystal storage section 64 are closed. And the single crystal storage part 64 is opened, and the seed crystal holding means 66 and the silicon lump holding means 6 are opened.
7 and vice versa, the single crystal storage unit 64 is exposed to the atmosphere twice.

【0015】従って、このリチャージ方式は追加チャー
ジ方式に比べてさらに塵埃などの落下により炉部材収納
室63を汚損し、単結晶Ig0の成長を阻害し単結晶化
率を低減させる大きな要因となる虞があった。
Therefore, this recharging method may cause the furnace member storage chamber 63 to be further polluted by falling of dust and the like as compared with the additional charging method, and may be a major factor in inhibiting the growth of the single crystal Ig0 and reducing the single crystallization rate. was there.

【0016】さらに、上述した追加チャージ方式、リチ
ャージ方式とも引上げ装置内のガス置換を必要とするた
め、1回の引上げに要するサイクルタイムは通常のCZ
法よりも長くなる問題点がある。
[0016] Further, since both the additional charging method and the recharging method require gas replacement in the pulling device, the cycle time required for one pulling is the same as that of a normal CZ.
There is a problem that it is longer than the law.

【0017】[0017]

【発明が解決しょうとする課題】そこで、原料半導体の
供給時、半導体単結晶製造装置内を汚染することがな
く、単結晶化率の向上が図れ、かつ1回の引上げに要す
るサイクルタイムも長くならない半導体単結晶の製造方
法およびこれに用いられる固体の半導体原料塊が要望さ
れていた。
Therefore, when the raw material semiconductor is supplied, the inside of the semiconductor single crystal manufacturing apparatus is not contaminated, the single crystallization rate can be improved, and the cycle time required for one pulling is long. There has been a demand for a method of producing a semiconductor single crystal which is not to be used and a solid semiconductor raw material mass used for the method.

【0018】本発明は上述した事情を考慮してなされた
もので、半導体単結晶製造装置を汚染することなく原料
半導体供給が行えて、単結晶化率も向上し、かつ1回の
引上げに要するサイクルタイムを長くすることのない半
導体単結晶の製造方法およびこれに用いられる固体の半
導体原料塊を提供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and it is possible to supply a raw material semiconductor without contaminating a semiconductor single crystal manufacturing apparatus, improve a single crystallization rate, and require one pulling. An object of the present invention is to provide a method for manufacturing a semiconductor single crystal without increasing the cycle time and a solid semiconductor raw material mass used for the method.

【0019】[0019]

【課題を解決するための手段】上記目的を達成するため
になされた本願請求項1の発明は、容器内に収容された
半導体原料融液に種結晶を接触させて種結晶から半導体
単結晶を成長させる半導体単結晶の製造方法において、
種結晶に設けられた保持手段に固体状態の半導体原料塊
を保持させる工程と、前記保持手段に保持された前記半
導体原料塊を溶融して前記容器内に収容させる工程と、
前記容器内の半導体原料融液に前記種結晶を接触させて
単結晶を成長させる工程とを有することを特徴とする半
導体単結晶の製造方法であることを要旨としている。
Means for Solving the Problems In order to achieve the above object, the invention of claim 1 of the present application provides a method for producing a semiconductor single crystal from a seed crystal by bringing the seed crystal into contact with a semiconductor raw material melt contained in a container. In a method of manufacturing a semiconductor single crystal to be grown,
A step of holding the solid state semiconductor raw material mass in the holding means provided on the seed crystal, and a step of melting the semiconductor raw material mass held in the holding means and housing the semiconductor material mass in the container,
A step of growing the single crystal by bringing the seed crystal into contact with the semiconductor raw material melt in the container.

【0020】本願請求項2の発明では、上記保持手段に
保持された半導体原料塊を溶融する工程に先行する前工
程として、予め容器内に半導体融液を収容させておく工
程を有することを特徴とする請求項1に記載の半導体単
結晶の製造方法であることを要旨としている。
[0020] The invention of claim 2 of the present application is characterized in that a step of preliminarily preliminarily preceding the step of melting the semiconductor raw material mass held by the holding means has a step of storing a semiconductor melt in a container. The gist of the present invention is a method of manufacturing a semiconductor single crystal according to claim 1.

【0021】本願請求項3の発明では、上記予め容器内
に半導体融液を収容させておく工程は、半導体単結晶の
製造の初期に容器内に半導体原料を溶融させる工程であ
ることを特徴とする請求項2に記載の半導体単結晶の製
造方法であることを要旨としている。
According to a third aspect of the present invention, the step of preliminarily storing the semiconductor melt in the container is a step of melting a semiconductor raw material in the container at an early stage of the production of a semiconductor single crystal. The gist of the invention is a method of manufacturing a semiconductor single crystal according to claim 2.

【0022】本願請求項4の発明では、上記予め容器内
に半導体融液を収容させておく工程は、先行して行われ
る半導体単結晶の製造において半導体原料融液を残存さ
せておく工程であることを特徴とする請求項2に記載の
半導体単結晶の製造方法であることを要旨としている。
In the invention according to claim 4 of the present application, the step of storing the semiconductor melt in the container in advance is a step of leaving the semiconductor raw material melt in the preceding manufacturing of the semiconductor single crystal. A gist of the invention is a method for manufacturing a semiconductor single crystal according to claim 2.

【0023】本願請求項5の発明では、上記半導体単結
晶の製造方法はチョクラルスキー法であることを特徴と
する請求項1ないし4のいずれか1項に記載の半導体単
結晶の製造方法であることを要旨としている。
According to the invention of claim 5 of the present application, the method of manufacturing a semiconductor single crystal according to any one of claims 1 to 4, wherein the method of manufacturing a semiconductor single crystal is a Czochralski method. The gist is that there is.

【0024】本願請求項6の発明では、固体の半導体原
料塊は多結晶シリコンであり、種結晶は単結晶シリコン
であることを特徴とする請求項1ないし5のいずれか1
項に記載の半導体単結晶の製造方法。
In the invention of claim 6 of the present application, the solid semiconductor raw material mass is polycrystalline silicon, and the seed crystal is single crystal silicon.
13. The method for producing a semiconductor single crystal according to the above item.

【0025】本願請求項7の発明では、容器内に収容さ
れた半導体原料融液に種結晶を接触させて種結晶から半
導体単結晶を成長させるチョクラルスキー法による半導
体単結晶の製造方法に用いられる半導体原料において、
前記種結晶に設けた保持手段により半導体原料塊が保持
されたことを特徴とする固体の半導体原料塊であること
を要旨としている。
According to the invention of claim 7 of the present application, the method is used for a method of manufacturing a semiconductor single crystal by the Czochralski method in which a seed crystal is brought into contact with a semiconductor raw material melt accommodated in a container to grow a semiconductor single crystal from the seed crystal. Semiconductor raw materials
The gist is a solid semiconductor raw material lump characterized in that the semiconductor raw material lump is held by holding means provided on the seed crystal.

【0026】本願請求項8の発明では、上記固体の半導
体原料の保持は、この半導体原料に設けられた係止部と
種結晶に設けられた保持手段とを係合させることにより
行われることを特徴とする請求項7に記載の固体の半導
体原料塊であることを要旨としている。
According to the invention of claim 8 of the present application, the holding of the solid semiconductor material is performed by engaging a locking portion provided on the semiconductor material with a holding means provided on the seed crystal. A gist of the invention is a solid semiconductor raw material lump according to claim 7.

【0027】本願請求項9の発明では、上記種結晶に設
けられた保持手段は円板形状の係止部であり、固体の半
導体原料塊に設けた係止部は前記種結晶が収納される係
合溝部と前記種結晶の円形形状の係合部を収納する中空
部とを有することを特徴とする請求項8に記載の固体の
半導体原料であることを要旨としている。
According to the ninth aspect of the present invention, the holding means provided on the seed crystal is a disk-shaped locking portion, and the locking portion provided on the solid semiconductor raw material block accommodates the seed crystal. The gist of the present invention is a solid semiconductor raw material according to claim 8, wherein the solid semiconductor raw material has an engagement groove portion and a hollow portion for accommodating the circular engagement portion of the seed crystal.

【0028】本願請求項10の発明では、上記種結晶お
よび固体の半導体原料は円柱形状であることを特徴とす
る請求項8または9に記載の固体の半導体原料塊である
ことを要旨としている。
According to a tenth aspect of the present invention, the seed crystal and the solid semiconductor raw material have a columnar shape, and the gist is a solid semiconductor raw material mass according to the eighth or ninth aspect.

【0029】本願請求項11の発明では、上記種結晶の
円形形状の係止部の直径は、円柱形状の種結晶の直径の
3ないし4倍であることを特徴とする請求項10に記載
の固体の半導体原料塊であることを要旨としている。
According to the eleventh aspect of the present invention, the diameter of the circular locking portion of the seed crystal is three to four times the diameter of the cylindrical seed crystal. The gist is that it is a solid semiconductor raw material lump.

【0030】本願請求項12の発明では、固体の半導体
原料塊は多結晶シリコンであり、種結晶は単結晶シリコ
ンであることを特徴とする請求項7ないし11のいずれ
か1項に記載の固体の半導体原料塊であることを要旨と
している。
[0030] According to the twelfth aspect of the present invention, the solid semiconductor raw material lump is polycrystalline silicon, and the seed crystal is single crystal silicon. It is a gist that the semiconductor raw material lump is used.

【0031】[0031]

【発明の実施の形態】以下、本発明に係わる半導体単結
晶の製造方法の一実施の形態としていわゆる原料追加方
式に用いられる単結晶製造装置について添付図面に基づ
き説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a method for manufacturing a semiconductor single crystal according to the present invention will be described below with reference to the accompanying drawings.

【0032】図1に示すような本発明に係わる半導体単
結晶の製造方法に用いられる単結晶製造装置、例えばC
Z法による単結晶引上げ装置1は、炉部材収納室2とこ
の炉部材収納室2の上方に連接して設けられた単結晶収
納部3とで形成されている。炉部材収納室2にはヒータ
4により加熱され黒鉛ルツボ5に内装された容器例えば
石英ルツボ6が設けられており、この石英ルツボ6内で
原料の種結晶本体S1が加熱溶融される。黒鉛ルツボ5
は炉体7を貫通し、モータ(図示せず)に結合されて回
転されるルツボ回転軸8に取り付けられている。
A single crystal manufacturing apparatus used in the method for manufacturing a semiconductor single crystal according to the present invention as shown in FIG.
The single crystal pulling apparatus 1 by the Z method includes a furnace member storage chamber 2 and a single crystal storage part 3 provided above and connected to the furnace member storage chamber 2. The furnace member storage chamber 2 is provided with a container, for example, a quartz crucible 6 which is heated by the heater 4 and is housed in the graphite crucible 5, in which the raw material seed crystal body S1 is heated and melted. Graphite crucible 5
Is attached to a crucible rotation shaft 8 which penetrates the furnace body 7 and is connected to and rotated by a motor (not shown).

【0033】また、単結晶収納部3には昇降自在に設け
られたワイヤ9の下端に取り付けられた円筒形状の種結
晶保持手段10が設けられており、この種結晶保持手段
10には、種結晶Sが取り付けられている。
The single-crystal housing 3 is provided with a cylindrical seed crystal holding means 10 attached to the lower end of a wire 9 which is provided so as to be able to move up and down. Crystal S is attached.

【0034】図2および図3に拡大して示すように、種
結晶保持手段10に取り付けられた種結晶Sは、中実円
柱形状をなす種結晶本体S1とこの種結晶本体S1の一
端部に設けられた保持手段例えば円板形状の円形係止部
S2とで形成されている。
As shown in FIGS. 2 and 3 in an enlarged manner, the seed crystal S attached to the seed crystal holding means 10 has a solid cylindrical seed crystal main body S1 and one end of the seed crystal main body S1. It is formed by provided holding means, for example, a disk-shaped circular locking portion S2.

【0035】また、種結晶Sには固体の半導体原料塊、
例えば固体で円柱形状を有する原料の多結晶シリコン塊
Mが保持されており、この多結晶シリコン塊Mの一端部
例えば上端部には、上記円形係止部S2が収納される中
空状の収納部M1と、この収納部M1に連接し円形係止
部S2と係合する係止部M2と、この係止部M2に形成
された係合溝部M3が設けられている。
The seed crystal S includes a solid semiconductor raw material lump,
For example, a polycrystalline silicon mass M as a raw material having a solid cylindrical shape is held, and at one end, for example, the upper end of the polycrystalline silicon mass M, a hollow storage portion in which the circular locking portion S2 is stored. M1, an engaging portion M2 connected to the storage portion M1 and engaged with the circular engaging portion S2, and an engaging groove M3 formed in the engaging portion M2 are provided.

【0036】なお、11は種結晶Sに設けられた取付長
孔S3を貫通し、種結晶Sを種結晶保持手段10に保持
する係合ピンである。
Reference numeral 11 denotes an engaging pin which penetrates the mounting elongated hole S3 provided in the seed crystal S and holds the seed crystal S on the seed crystal holding means 10.

【0037】上記種結晶Sの円形係止部S2の直径d1
は、種結晶本体S1の直径d2の3ないし4倍であり、
円形係止部S2の厚みt1は20mm以上であることが
好ましく、また係止部M2の厚みt2も20mm以上、
収納部M1の高さh1は50mm以上であることが好ま
しい。
The diameter d1 of the circular locking portion S2 of the seed crystal S
Is 3 to 4 times the diameter d2 of the seed crystal body S1,
The thickness t1 of the circular locking portion S2 is preferably at least 20 mm, and the thickness t2 of the locking portion M2 is also at least 20 mm.
The height h1 of the storage section M1 is preferably 50 mm or more.

【0038】従って、図4に示すように、種結晶Sによ
る多結晶シリコンMの保持は、種結晶本体S1が係合溝
部M3を貫通し、収納部M3に収納された円形係止部S
2を係止部M2に係合することによって行われる。
Therefore, as shown in FIG. 4, the polycrystalline silicon M is held by the seed crystal S when the seed crystal main body S1 penetrates the engaging groove M3 and the circular locking portion S stored in the storage portion M3.
2 is engaged with the locking portion M2.

【0039】次に、単結晶引上げ装置1を用いた本発明
に係わる半導体単結晶の製造方法の原料追加チャージ方
式を説明する。
Next, a description will be given of an additional material charging method in the method of manufacturing a semiconductor single crystal according to the present invention using the single crystal pulling apparatus 1.

【0040】図8は追加チャージ方式の半導体単結晶の
製造工程図で、単結晶引上げ装置1の炉部材収納室2内
に設置された石英ルツボ6に小塊形状の原料の多結晶シ
リコンmを充填し、さらに単結晶収納部3のワイヤ9に
取り付けられた種結晶保持手段10に種結晶Sを取り付
け、しかる後、図4で拡大して示したように種結晶Sの
種結晶本体S1を係合溝部M3の側部から係合溝部M3
に挿入させながら円形係止部S2を収納部M3に収納さ
せ、円形係止部S2と係止部M2とを係合させることに
より、多結晶シリコン塊Mを種結晶Sおよび種結晶保持
手段10を介してワイヤ9に懸垂保持させる(図8
(a))。
FIG. 8 is a manufacturing process diagram of a semiconductor single crystal of the additional charge method. In the quartz crucible 6 installed in the furnace member storage chamber 2 of the single crystal pulling apparatus 1, polycrystalline silicon m as a raw material in a small lump is placed. The seed crystal S is attached to the seed crystal holding means 10 which is filled and further attached to the wire 9 of the single crystal storage part 3, and then the seed crystal body S1 of the seed crystal S is enlarged as shown in FIG. From the side of the engaging groove M3 to the engaging groove M3
The circular locking portion S2 is stored in the storage portion M3 while being inserted into the storage portion M3, and the circular locking portion S2 and the locking portion M2 are engaged with each other, so that the polycrystalline silicon mass M can be separated from the seed crystal S and the seed crystal holding means 10. The wire 9 is suspended from the wire 9 (FIG. 8).
(A)).

【0041】次に、石英ルツボ6の外周に設けたヒータ
4を付勢して多結晶シリコンmを完全に加熱溶融させ、
多結晶シリコン塊Mの溶融より先に予め石英ルツボ6の
約80%程度までシリコン融液Lを満させる(図8
(b))。さらに、小塊形状の多結晶シリコンmとは別
個に用意され、既に単結晶収納部3に収納され種結晶S
の円形係止部S2により保持されている多結晶シリコン
塊Mを降下させてシリコン融液Lに接触させ追加溶融さ
せる(図8(c))。多結晶シリコン塊Mの溶融が完了
するとシリコン融液Lは石英ルツボ6のほぼ全体に満さ
れる。
Next, the heater 4 provided on the outer periphery of the quartz crucible 6 is energized to completely heat and melt the polycrystalline silicon m.
Prior to melting of the polycrystalline silicon mass M, the silicon melt L is filled to about 80% of the quartz crucible 6 in advance (FIG. 8).
(B)). Further, the seed crystal S is prepared separately from the polycrystalline silicon m having a small lump shape, and is already stored in the single crystal storage unit 3.
The polycrystalline silicon mass M held by the circular locking portion S2 is lowered and brought into contact with the silicon melt L to be additionally melted (FIG. 8C). When the melting of the polycrystalline silicon mass M is completed, the silicon melt L fills almost the entire quartz crucible 6.

【0042】一方、多結晶シリコン塊Mが溶融されて種
結晶Sは完全に露出され、引上げ時の種結晶の機能を果
たせる状態になる(図8(d))。なお、多結晶シリコ
ン塊Mの係止部M2が未溶融で円形係止部S2上に残存
する場合には、種結晶Sの回転数を上げ遠心力により、
係止部M2をシリコン溶融L中に落下させればよく、ま
た多結晶シリコン塊Mが実質的に全部溶けて種結晶Sの
円形係止部S2が露出されていれば、多結晶シリコン塊
Mの一部が未溶融にまま種結晶Sに取り付いていてもよ
い。
On the other hand, the polycrystalline silicon mass M is melted, and the seed crystal S is completely exposed, so that the seed crystal S can function as a seed crystal at the time of pulling (FIG. 8D). When the locking portion M2 of the polycrystalline silicon mass M is not melted and remains on the circular locking portion S2, the rotation speed of the seed crystal S is increased and centrifugal force is applied.
It is sufficient that the locking portion M2 is dropped into the silicon melt L. If the polycrystalline silicon mass M is substantially completely melted and the circular locking portion S2 of the seed crystal S is exposed, the polycrystalline silicon mass M May be attached to the seed crystal S in an unmelted state.

【0043】しかる後、単結晶引上げ装置1内を単結晶
引上げ条件に適合させ、種結晶Sの円形係止部S2を石
英ルツボ6中で溶融状態のシリコン融液Lに接触させ
て、円形係止部S2を融解したのち、種結晶Sに単結晶
Igを成長させる(図8(e))。
Thereafter, the inside of the single crystal pulling apparatus 1 is adapted to the single crystal pulling conditions, and the circular locking portion S2 of the seed crystal S is brought into contact with the silicon melt L in a molten state in the quartz crucible 6 to form a circular ring. After melting the stop S2, a single crystal Ig is grown on the seed crystal S (FIG. 8E).

【0044】さらに単結晶インゴットIgを成長させて
引上げを完了させるが、石英ルツボ6内には再使用可能
な溶融シリコンLは残存していない(図8(e))。
Further, the single crystal ingot Ig is grown to complete the pulling, but no reusable molten silicon L remains in the quartz crucible 6 (FIG. 8E).

【0045】上述した本発明に係わる半導体単結晶の製
造方法によれば、種結晶Sを、本来の種結晶として用い
ると共に多結晶シリコン塊Mを保持する保持手段として
用いることにより、種結晶保持手段10とシリコン塊保
持手段の交換のために、炉体8または単結晶収納部3を
開放する必要がなく、多結晶シリコン塊Mを追加原料と
して溶融できて、石英ルツボ6に汚染のない十分なシリ
コン融液Lの供給が可能となり、一度に大容量のシリコ
ン単結晶Igを高単結晶化率で引き上げることができ
る。
According to the method for manufacturing a semiconductor single crystal according to the present invention described above, the seed crystal S is used as the original seed crystal and is used as the holding means for holding the polycrystalline silicon mass M. There is no need to open the furnace body 8 or the single crystal storage unit 3 for exchanging the silicon lump holding means 10 and the silicon lump holding means, so that the polycrystalline silicon lump M can be melted as an additional material, and the quartz crucible 6 is sufficiently free from contamination. The supply of the silicon melt L becomes possible, and a large volume of silicon single crystal Ig can be pulled at a high rate at a time.

【0046】また、単結晶引上げ装置1をゲートバルブ
により炉部材収納室2と単結晶収納部3を適宜仕切るゲ
ートバルブも不要となり、ゲートバルブの開閉に伴い単
結晶収納部3から塵埃などが落下して、溶融シリコン融
液Lが汚染されることもなくなり、単結晶Igの成長が
阻害されることもなく、単結晶化率の高率化も図れる。
Further, a gate valve for appropriately separating the furnace member storage chamber 2 and the single crystal storage section 3 from the single crystal pulling apparatus 1 by the gate valve becomes unnecessary, and dust and the like fall from the single crystal storage section 3 as the gate valve opens and closes. As a result, the molten silicon melt L is not contaminated, the growth of the single crystal Ig is not hindered, and the single crystallization ratio can be increased.

【0047】さらに、引上げ工程における最初の小塊形
状の多結晶シリコンmと多結晶シリコン塊Mとを同時に
装填する時、および引き上げられた単結晶インゴットI
gの取り出し時以外に、一連の工程中に炉体7または単
結晶収納部3を開放する必要がないため、ガス置換も不
必要であり、1回の引上げに要するサイクルタイムも通
常のCZ法よりも長くなることがない。
In addition, when the initial small lump-shaped polycrystalline silicon m and the polycrystalline silicon lump M are simultaneously loaded in the pulling step, and when the pulled single crystal ingot I
Since there is no need to open the furnace body 7 or the single crystal storage unit 3 during a series of steps except for the time of taking out the g, gas replacement is also unnecessary, and the cycle time required for one pulling is also reduced by the ordinary CZ method. No longer than.

【0048】次に、本発明に係わる半導体単結晶の製造
方法の他の実施の形態であるいわゆるリチャージ方式を
上述の単結晶引上げ装置1を用いて説明する。
Next, a so-called recharge method, which is another embodiment of the method of manufacturing a semiconductor single crystal according to the present invention, will be described using the above-described single crystal pulling apparatus 1.

【0049】図9はリチャージ方式の半導体単結晶の製
造工程を示すもので、引き上げられた単結晶Igを引上
げて、石英ルツボ6に溶融シリコンLを残存させ(図9
(a))、次に、ゲートバルブを閉じて単結晶Igを取
出すとともに、上述した実施の形態で用いた図8に示し
たと同様の構造を有する種結晶Sを種結晶保持具10に
取り付け、この種結晶Sの円形係止部S2に多結晶シリ
コン塊Mの係止部M1を係合させる(図9(b))。し
かる後、多結晶シリコン塊Mを降下させて、予め石英ル
ツボ6に収納されているシリコン融液Lに接触させて溶
融し、シリコン融液Lにする(図9(c))。多結晶シ
リコン塊Mの溶融によりシリコン融液Lは石英ルツボ6
のほぼ全体に満される。
FIG. 9 shows a manufacturing process of the semiconductor single crystal of the recharge method. The pulled single crystal Ig is pulled up, and the molten silicon L is left in the quartz crucible 6 (FIG. 9).
(A)) Next, the gate valve is closed, the single crystal Ig is taken out, and the seed crystal S having the same structure as that shown in FIG. 8 used in the above-described embodiment is attached to the seed crystal holder 10. The locking portion M1 of the polycrystalline silicon mass M is engaged with the circular locking portion S2 of the seed crystal S (FIG. 9B). Thereafter, the polycrystalline silicon mass M is lowered and brought into contact with the silicon melt L stored in advance in the quartz crucible 6 to be melted, thereby forming the silicon melt L (FIG. 9C). By melting the polycrystalline silicon mass M, the silicon melt L becomes a quartz crucible 6.
Almost full of.

【0050】一方、多結晶シリコン塊Mが溶融した後の
種結晶Sは完全に露出され引上げ時の種結晶の機能を果
たせる状態になる(図9(d))。しかる後、単結晶引
上げ装置1内を単結晶引上げ条件に適合させ、結晶Sの
円形係止部S2を石英ルツボ6中で溶融状態のシリコン
融液Lに接触させて、種結晶Sに単結晶Igを成長させ
る(図9(e))。
On the other hand, the seed crystal S after the polycrystalline silicon mass M is melted is completely exposed, and is in a state where it can function as a seed crystal at the time of pulling (FIG. 9D). Thereafter, the inside of the single crystal pulling apparatus 1 is adapted to the single crystal pulling conditions, and the circular locking portion S2 of the crystal S is brought into contact with the silicon melt L in a molten state in the quartz crucible 6, so that the seed crystal S becomes a single crystal. Ig is grown (FIG. 9E).

【0051】本実施形態の半導体単結晶の製造方法によ
れば、種結晶Sを本来の種結晶として用いると共に多結
晶シリコン塊Mを保持する保持手段として用いることに
より、種結晶保持手段10とシリコン塊保持手段の交換
のために、単結晶収納部3を開放する必要のは1回で済
む。従って、シリコン単結晶Igの高単結晶化率で引き
上げることが可能となり、半導体単結晶の製造コスト低
減化に寄与する。
According to the method of manufacturing a semiconductor single crystal of this embodiment, the seed crystal S is used as the original seed crystal and is used as the holding means for holding the polycrystalline silicon mass M. The single crystal storage unit 3 needs to be opened only once in order to replace the lump holding means. Therefore, it is possible to raise the silicon single crystal Ig at a high single crystallization rate, which contributes to a reduction in the manufacturing cost of the semiconductor single crystal.

【0052】このため、従来のリチャージ法では少なく
とも2回であったゲートバルブの開閉回数を低減させ、
開閉に伴う炉内への汚染のおそれを低減しつつ十分なシ
リコン融液の供給が可能となり、シリコン単結晶を高単
結晶化率で引き上げることができる。
For this reason, the number of times the gate valve is opened and closed, which is at least two times in the conventional recharge method, is reduced.
It is possible to supply a sufficient amount of the silicon melt while reducing the risk of contamination in the furnace due to the opening and closing, and it is possible to pull up the silicon single crystal at a high single crystallization rate.

【0053】[0053]

【実施例】実施例1(追加チャージ方式) 図8に記載の引上装置を用い、炉材収納室2および単結
晶収納部3が大気解放状態で直径が22インチの石英ル
ツボに、小形塊状の多結晶シリコンを100kg充填し
た。ついでこの状態のまま単結晶収納部3に本発明の保
持手段を設けた種結晶およびこの種結晶に20kgの円
柱形状多結晶シリコン塊を保持させてゲートバルブを解
放した状態で炉材収納室および単結晶収納部を閉じた。
EXAMPLE 1 (Additional charge method) Using the pulling apparatus shown in FIG. 8, the furnace material storage chamber 2 and the single crystal storage section 3 were opened to the atmosphere and formed into a quartz crucible having a diameter of 22 inches. 100 kg of polycrystalline silicon. Then, in this state, the single crystal storage part 3 is provided with the seed crystal provided with the holding means of the present invention, and the seed crystal holds a cylindrical polycrystalline silicon lump of 20 kg in a state where the gate valve is opened and the furnace material storage chamber and The single crystal housing was closed.

【0054】ついで石英ルツボ内の多結晶シリコンを溶
融させた後、種結晶に保持させた多結晶シリコンを降下
させて石英ルツボ内のシリコン融液と接触させ完全に融
解した。続いて種結晶をシリコン融液に接触させ、保持
手段に当たる部分を溶融せしめてから通常の方法に従っ
てシリコン単結晶を引き上げた。得られた無転位シリコ
ン単結晶の収率を表1に示す。本実施形態において、ゲ
ートバルブの開閉は行われていない。
Next, after melting the polycrystalline silicon in the quartz crucible, the polycrystalline silicon held by the seed crystal was lowered and brought into contact with the silicon melt in the quartz crucible to be completely melted. Subsequently, the seed crystal was brought into contact with the silicon melt, and the portion corresponding to the holding means was melted, and then the silicon single crystal was pulled up according to a usual method. Table 1 shows the yield of the obtained dislocation-free silicon single crystal. In the present embodiment, the opening and closing of the gate valve is not performed.

【0055】比較例1(追加チャージ方式) 図8に記載の引上装置を用い、炉材収納室2および単結
晶収納部3が大気解放状態で直径が22インチの石英ル
ツボに、小形塊状の多結晶シリコンを100kg充填し
た。ついでこの状態のまま単結晶収納部3に専用の保持
手段を介して円柱形状多結晶シリコン塊を保持させてゲ
ートバルブを解放した状態で炉材収納室および単結晶収
納部を閉じた。
Comparative Example 1 (Additional Charge Method) Using the pulling apparatus shown in FIG. 8, the furnace material storage chamber 2 and the single crystal storage section 3 were opened to the atmosphere, and a small crucible having a diameter of 22 inches was formed into a small crucible. 100 kg of polycrystalline silicon was filled. Then, the furnace material storage chamber and the single crystal storage part were closed with the gate valve opened while the columnar polycrystalline silicon lump was held in the single crystal storage part 3 via dedicated holding means in this state.

【0056】ついで石英ルツボ内の多結晶シリコンを溶
融させたのち、専用の保持手段に保持させた多結晶シリ
コンを降下させて石英ルツボ内のシリコン融液と接触さ
せ融解した。
Next, after the polycrystalline silicon in the quartz crucible was melted, the polycrystalline silicon held by the exclusive holding means was lowered and brought into contact with the silicon melt in the quartz crucible to be melted.

【0057】その後保持手段を単結晶収納部に引き上
げ、ゲートバルブを閉じ、炉材収納部と隔離した後に単
結晶収納部を開放して専用の保持手段を単結晶引上用の
シコン種結晶に交換した。その後単結晶収納部を閉じ、
内部雰囲気を炉材収納部と同一にした後にゲートバルブ
を開放し、種結晶を降下させて通常の方法に従ってシリ
コン単結晶を引き上げた。
After that, the holding means is pulled up to the single crystal accommodating portion, the gate valve is closed, and the single crystal accommodating portion is opened after separating from the furnace material accommodating portion, and the exclusive holding means is set to the silicon seed crystal for pulling the single crystal. Replaced. Then close the single crystal storage,
After the internal atmosphere was made the same as that of the furnace material storage section, the gate valve was opened, the seed crystal was lowered, and the silicon single crystal was pulled up according to a usual method.

【0058】得られた無転位シリコン単結晶の収率を表
1に示す。本比較例において、ゲートバルブの開閉は1
回行われている。
Table 1 shows the yield of the obtained dislocation-free silicon single crystal. In this comparative example, the opening and closing of the gate valve is 1
Has been done times.

【0059】[0059]

【表1】 [Table 1]

【0060】実施例2(リチャージ方式) 図9に記載の引上装置を用い、通常の方法に従って、第
1回目のシリコン単結晶を引き上げた。引き上げられた
単結晶を単結晶収納部に引き上げ、ゲートバルブを閉じ
て取り出した。
Example 2 (Recharging Method) The first silicon single crystal was pulled in the usual manner using the pulling apparatus shown in FIG. The pulled single crystal was pulled into the single crystal storage part, and the gate valve was closed and taken out.

【0061】次に、取り出した単結晶の代りに、本発明
の保持手段を設けた種結晶およびこの種結晶に50kg
の円柱形状多結晶シリコン塊を保持させて単結晶収納部
を閉じ、内部雰囲気を炉材収納部と同一にした後にゲー
トバルブを開放し、種結晶および多結晶シリコン塊を降
下させて石英ルツボに残っているシリコン融液に接触さ
せて多結晶シリコン塊を完全に融解した。その後、種結
晶の保持手段に当たる部分を溶融せしめてから通常の方
法に従ってシリコン単結晶を引き上げた。リチャージに
よって得られた無転位シリコン単結晶の収率を表2に示
す。本実施例において、ゲートバルブの開閉が行われる
のは1回のみであった。
Next, instead of the single crystal taken out, a seed crystal provided with the holding means of the present invention and 50 kg
After holding the columnar polycrystalline silicon lump and closing the single crystal storage section, making the internal atmosphere the same as the furnace material storage section, opening the gate valve, lowering the seed crystal and polycrystalline silicon lump into a quartz crucible The polycrystalline silicon mass was completely melted by contacting the remaining silicon melt. After that, the portion corresponding to the seed crystal holding means was melted, and then the silicon single crystal was pulled up according to a usual method. Table 2 shows the yield of dislocation-free silicon single crystals obtained by recharging. In this embodiment, the gate valve is opened and closed only once.

【0062】比較例2(リチャージ方式) 図9に記載の引上装置を用い、通常の方法に従って、第
1回目のシリコン単結晶を引き上げた。引き上げられた
単結晶を単結晶収納部に引き上げ、ゲートバルブを閉じ
て取り出した。
Comparative Example 2 (Recharge Method) Using the pulling apparatus shown in FIG. 9, the first silicon single crystal was pulled in a usual manner. The pulled single crystal was pulled into the single crystal storage part, and the gate valve was closed and taken out.

【0063】次に、取り出した単結晶の代りに、専用の
保持手段を介して50kgの円柱形状多結晶シリコン塊
を保持させて単結晶収納部を閉じ、内部雰囲気を炉材収
納部と同一にした後にゲートバルブを開放し、多結晶シ
リコン塊を降下させて石英ルツボに残っているシリコン
融液に接触させて多結晶シリコン塊を融解した。その
後、保持手段を単結晶収納部に引き上げ、ゲートバルブ
を閉じ、炉材収納部と隔離した後に単結晶収納部を開放
して専用の保持手段を単結晶引上用のシリコン種結晶に
交換した。その後、単結晶収納部を閉じ、内部雰囲気を
炉材収納部と同一にした後にゲートバルブを開放し、種
結晶を降下させて通常の方法に従ってシリコン単結晶を
引き上げた。
Then, instead of the single crystal taken out, a columnar polycrystalline silicon lump of 50 kg was held through a dedicated holding means to close the single crystal storage part, and the internal atmosphere was made the same as that of the furnace material storage part. After that, the gate valve was opened, the polycrystalline silicon mass was lowered, and was brought into contact with the silicon melt remaining in the quartz crucible to melt the polycrystalline silicon mass. Thereafter, the holding means was pulled up to the single crystal storage part, the gate valve was closed, and the single crystal storage part was opened after being isolated from the furnace material storage part, and the dedicated holding means was replaced with a silicon seed crystal for pulling the single crystal. . Thereafter, the single crystal storage section was closed, the internal atmosphere was made the same as that of the furnace material storage section, the gate valve was opened, the seed crystal was lowered, and the silicon single crystal was pulled in accordance with a usual method.

【0064】リチャージによって得られた無転位シリコ
ン単結晶の収率を表2に示す。本実施例において、ゲー
トバルブの開閉は2回行われている。
Table 2 shows the yield of dislocation-free silicon single crystals obtained by recharging. In this embodiment, the gate valve is opened and closed twice.

【0065】[0065]

【表2】 [Table 2]

【0066】[0066]

【発明の効果】本発明に係わる半導体単結晶の製造方法
によれば、種結晶を種結晶と固体の半導体原料塊を保持
する保持手段として兼用することにより、これら保持手
段の交換をなくして、固体の半導体原料塊による原料供
給に伴う単結晶製造装置内およびシリコン融液の汚染を
防止し、単結晶化率の向上を図ることができる。
According to the method for producing a semiconductor single crystal according to the present invention, the seed crystal is also used as a holding means for holding the seed crystal and the solid semiconductor raw material lump. It is possible to prevent contamination of the inside of the single crystal manufacturing apparatus and the silicon melt accompanying the supply of the raw material with the solid semiconductor raw material lump, thereby improving the single crystallization rate.

【0067】また、種結晶の兼用により、炉体またはそ
の一部の開放をなくし、あるいは開放回数を減少させて
も、追加原料として固体の半導体原料塊を用いて石英ル
ツボに十分なシリコン融液の供給が可能となり、さらに
炉内ガスの置換も不要となり、1回の引上げに要するサ
イクルタイムを延長させることもない。
Even if the furnace body or a part of the furnace body is not opened or the number of times of opening is reduced by also using the seed crystal, a sufficient amount of silicon melt can be used for the quartz crucible using a solid semiconductor raw material mass as an additional raw material. And the replacement of gas in the furnace is not required, and the cycle time required for one pulling is not extended.

【0068】またさらに、原料の追加チャージ方式に適
用すれば、汚染のないシリコン融液を十分に石英ルツボ
に供給できるので、単結晶化率の高い大容量のシリコン
単結晶を引き上げることができる。
Further, if the method is applied to the additional charging method of the raw material, a silicon melt free from contamination can be sufficiently supplied to the quartz crucible, so that a large-capacity silicon single crystal having a high single crystallization rate can be pulled.

【0069】また、原料リチャージ方式に適用すれば、
汚染のないシリコン融液を繰り返し石英ルツボに供給で
きるので、1個の石英ルツボから単結晶化率の高いシリ
コン単結晶を複数本引き上げることができ、製造コスト
を低減できる。
When applied to the raw material recharging method,
Since a silicon melt without contamination can be repeatedly supplied to the quartz crucible, a plurality of silicon single crystals having a high single crystallization rate can be pulled out from one quartz crucible, and the manufacturing cost can be reduced.

【0070】さらに、固体の半導体原料塊の保持は、こ
の半導体原料塊に設けた係止部と種結晶に設けた保持手
段とを係合させることにより行うので、種結晶を種結晶
と固体の半導体原料塊を保持する保持手段として兼用が
可能となり、保持手段の交換をなくして、固体の半導体
原料塊による原料供給に伴う半導体原料融液の汚染を防
止し、単結晶化率の向上を図ることができる。また、炉
内ガスの置換も不要となり、1回の引上げに要するサイ
クルタイムを長くすることがない。
Further, since the solid semiconductor raw material mass is held by engaging the locking portion provided on this semiconductor raw material mass with the holding means provided on the seed crystal, the seed crystal is separated from the seed crystal and the solid material. It is also possible to use as a holding means for holding the semiconductor raw material lump, eliminating the need for replacement of the holding means, preventing contamination of the semiconductor raw material melt due to the supply of the solid semiconductor raw material lump, and improving the single crystallization rate. be able to. Further, the replacement of the gas in the furnace is not required, and the cycle time required for one pulling is not lengthened.

【0071】さらに、種結晶に設けられた係止部を円板
形状にする場合には、単結晶化率の高い半導体単結晶の
引上げが可能である。
Further, when the locking portion provided on the seed crystal is formed in a disk shape, a semiconductor single crystal having a high single crystallization ratio can be pulled.

【0072】また、種結晶の円形形状の係止部の直径
を、円柱形状の種結晶の直径の3ないし4倍にする場合
には、確実に固体の半導体原料塊を保持できると共に、
単結晶化率の高い半導体単結晶の引上げが可能である。
When the diameter of the circular locking portion of the seed crystal is set to be three to four times the diameter of the columnar seed crystal, the solid semiconductor raw material lump can be reliably held, and
A semiconductor single crystal having a high single crystallization ratio can be pulled.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる半導体単結晶の製造方法に用い
られる単結晶製造装置の概念図。
FIG. 1 is a conceptual diagram of a single crystal manufacturing apparatus used in a semiconductor single crystal manufacturing method according to the present invention.

【図2】本発明に係わる半導体単結晶の製造方法に用い
られる単結晶製造装置に組み込まれた種結晶の側面図。
FIG. 2 is a side view of a seed crystal incorporated in a single crystal manufacturing apparatus used in the method for manufacturing a semiconductor single crystal according to the present invention.

【図3】図2に示す種結晶の平面図。FIG. 3 is a plan view of the seed crystal shown in FIG. 2;

【図4】本発明に係わる半導体単結晶の製造方法に用い
られる単結晶製造装置に組み込まれた種結晶と半導体原
料塊の係合状態を示す説明図。
FIG. 4 is an explanatory view showing an engagement state between a seed crystal and a semiconductor raw material mass incorporated in a single crystal manufacturing apparatus used in the semiconductor single crystal manufacturing method according to the present invention.

【図5】図4に示す半導体原料塊の平面図。FIG. 5 is a plan view of the semiconductor raw material block shown in FIG. 4;

【図6】図4に示す半導体原料塊の平面図。FIG. 6 is a plan view of the semiconductor raw material block shown in FIG. 4;

【図7】図4に示す半導体原料塊の断面図。FIG. 7 is a sectional view of the semiconductor raw material block shown in FIG. 4;

【図8】本発明に係わる半導体単結晶の製造方法の一実
施形態の製造工程図。
FIG. 8 is a manufacturing process diagram of one embodiment of a method for manufacturing a semiconductor single crystal according to the present invention.

【図9】本発明に係わる半導体単結晶の製造方法の他の
実施形態の製造工程図。
FIG. 9 is a manufacturing process diagram of another embodiment of the method for manufacturing a semiconductor single crystal according to the present invention.

【図10】従来の半導体単結晶の製造方法に用いられる
単結晶製造装置の概念図。
FIG. 10 is a conceptual diagram of a single crystal manufacturing apparatus used in a conventional semiconductor single crystal manufacturing method.

【図11】従来の半導体単結晶の製造方法の製造工程
図。
FIG. 11 is a manufacturing process diagram of a conventional method for manufacturing a semiconductor single crystal.

【図12】従来の半導体単結晶の製造方法の他の製造工
程図。
FIG. 12 is another manufacturing process diagram of a conventional method for manufacturing a semiconductor single crystal.

【符号の説明】[Explanation of symbols]

1 単結晶製造装置 2 炉部材収納室 3 単結晶収納部 4 ヒータ 5 黒鉛ルツボ 6 石英ルツボ 7 炉体 8 ルツボ回転軸 9 ワイヤ 10 種結晶保持手段 11 係合ピン M 半導体原料塊(多結晶シリコン塊) M1 収納部 M2 係止部 M3 係合溝部 S 種結晶 S1 種結晶本体 S2 保持手段(円形係止部) S3 取付長孔 DESCRIPTION OF SYMBOLS 1 Single crystal manufacturing apparatus 2 Furnace member storage room 3 Single crystal storage part 4 Heater 5 Graphite crucible 6 Quartz crucible 7 Furnace body 8 Crucible rotation axis 9 Wire 10 Seed crystal holding means 11 Engagement pin M Semiconductor raw material lump (polycrystalline silicon lump) ) M1 storage section M2 locking section M3 engaging groove section S seed crystal S1 seed crystal main body S2 holding means (circular locking section) S3 mounting slot

【手続補正書】[Procedure amendment]

【提出日】平成11年6月17日(1999.6.1
7)
[Submission date] June 17, 1999 (1999.6.1
7)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0002[Correction target item name] 0002

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0002】[0002]

【従来の技術】一般に半導体ウェーハの製造方法は、多
結晶半導体原料を溶融し、この原料融液に単結晶よりな
る種結晶を接触させ、種結晶から半導体単結晶を成長さ
せる半導体単結晶の製造方法が用いられている。
2. Description of the Related Art In general, a method for producing a semiconductor wafer is to produce a semiconductor single crystal by melting a polycrystalline semiconductor raw material, bringing a single crystal into contact with a seed crystal made of the single crystal, and growing the semiconductor single crystal from the seed crystal. A method is used.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0032[Correction target item name] 0032

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0032】図1に示すような本発明に係わる半導体単
結晶の製造方法に用いられる単結晶製造装置、例えばC
Z法による単結晶引上げ装置1は、炉部材収納室2とこ
の炉部材収納室2の上方に連接して設けられた単結晶収
納部3とで形成されている。炉部材収納室2にはヒータ
4により加熱され黒鉛ルツボ5に内装された容器例えば
石英ルツボ6が設けられており、この石英ルツボ6内で
小塊形状の原料の多結晶シリコンmが加熱溶融される。
黒鉛ルツボ5は炉体7を貫通し、モータ(図示せず)に
結合されて回転されるルツボ回転軸8に取り付けられて
いる。
A single crystal manufacturing apparatus used in the method for manufacturing a semiconductor single crystal according to the present invention as shown in FIG.
The single crystal pulling apparatus 1 by the Z method includes a furnace member storage chamber 2 and a single crystal storage part 3 provided above and connected to the furnace member storage chamber 2. The furnace member storage chamber 2 is provided with a container, for example, a quartz crucible 6 which is heated by the heater 4 and is housed in the graphite crucible 5, and in the quartz crucible 6, the polycrystalline silicon m as a raw material in the form of small blocks is heated and melted. You.
The graphite crucible 5 penetrates the furnace body 7 and is attached to a crucible rotating shaft 8 which is connected to and rotated by a motor (not shown).

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 容器内に収容された半導体原料融液に種
結晶を接触させて種結晶から半導体単結晶を成長させる
半導体単結晶の製造方法において、種結晶に設けられた
保持手段に固体状態の半導体原料塊を保持させる工程
と、前記保持手段に保持された前記半導体原料塊を溶融
して前記容器内に収容させる工程と、前記容器内の半導
体原料融液に前記種結晶を接触させて単結晶を成長させ
る工程とを有することを特徴とする半導体単結晶の製造
方法。
In a method for producing a semiconductor single crystal, wherein a semiconductor single crystal is grown from the seed crystal by bringing the seed crystal into contact with the semiconductor raw material melt accommodated in the container, the holding means provided on the seed crystal has a solid state. Holding the semiconductor raw material mass, melting the semiconductor raw material mass held by the holding means and housing the semiconductor raw material mass in the container, and bringing the seed crystal into contact with the semiconductor raw material melt in the container. Growing a single crystal.
【請求項2】 上記保持手段に保持された半導体原料塊
を溶融する工程に先行する前工程として、予め容器内に
半導体融液を収容させておく工程を有することを特徴と
する請求項1に記載の半導体単結晶の製造方法。
2. The method according to claim 1, further comprising a step of storing a semiconductor melt in a container in advance as a step preceding the step of melting the semiconductor raw material mass held by the holding means. The method for producing a semiconductor single crystal according to the above.
【請求項3】 上記予め容器内に半導体融液を収容させ
ておく工程は、半導体単結晶の製造の初期に容器内に半
導体原料を溶融させる工程であることを特徴とする請求
項2に記載の半導体単結晶の製造方法。
3. The method according to claim 2, wherein the step of storing the semiconductor melt in the container in advance is a step of melting a semiconductor raw material in the container at an early stage of the production of a semiconductor single crystal. Of manufacturing a semiconductor single crystal.
【請求項4】 上記予め容器内に半導体融液を収容させ
ておく工程は、先行して行われる半導体単結晶の製造に
おいて半導体原料融液を残存させておく工程であること
を特徴とする請求項2に記載の半導体単結晶の製造方
法。
4. The method according to claim 1, wherein the step of storing the semiconductor melt in the container in advance is a step of retaining the semiconductor raw material melt in the preceding production of the semiconductor single crystal. Item 3. The method for producing a semiconductor single crystal according to Item 2.
【請求項5】 上記半導体単結晶の製造方法はチョクラ
ルスキー法であることを特徴とする請求項1ないし4の
いずれか1項に記載の半導体単結晶の製造方法。
5. The method for producing a semiconductor single crystal according to claim 1, wherein the method for producing a semiconductor single crystal is a Czochralski method.
【請求項6】 固体の半導体原料塊は多結晶シリコンで
あり、種結晶は単結晶シリコンであることを特徴とする
請求項1ないし5のいずれか1項に記載の半導体単結晶
の製造方法。
6. The method for producing a semiconductor single crystal according to claim 1, wherein the solid semiconductor raw material mass is polycrystalline silicon, and the seed crystal is single crystal silicon.
【請求項7】 容器内に収容された半導体原料融液に種
結晶を接触させて種結晶から半導体単結晶を成長させる
チョクラルスキー法による半導体単結晶の製造方法に用
いられる半導体原料において、前記種結晶に設けた保持
手段により半導体原料塊が保持されたことを特徴とする
固体の半導体原料塊。
7. A semiconductor raw material used in a method of manufacturing a semiconductor single crystal by a Czochralski method of growing a semiconductor single crystal from a seed crystal by bringing a seed crystal into contact with a semiconductor raw material melt contained in a container. A solid semiconductor raw material mass, wherein the semiconductor raw material mass is held by holding means provided on a seed crystal.
【請求項8】 上記固体の半導体原料の保持は、この半
導体原料に設けられた係止部と種結晶に設けられた保持
手段とを係合させることにより行われることを特徴とす
る請求項7に記載の固体の半導体原料塊。
8. The semiconductor device according to claim 7, wherein the holding of the solid semiconductor material is performed by engaging a locking portion provided on the semiconductor material with a holding means provided on the seed crystal. 3. A solid semiconductor raw material lump according to item 1.
【請求項9】 上記種結晶に設けられた保持手段は円板
形状の係止部であり、固体の半導体原料塊に設けられた
係止部は前記種結晶が収納される係合溝部と前記種結晶
の円形形状の係合部を収納する中空部とを有することを
特徴とする請求項8に記載の固体の半導体原料塊。
9. The holding means provided on the seed crystal is a disk-shaped locking portion, and the locking portion provided on the solid semiconductor raw material block is provided with an engaging groove for accommodating the seed crystal. 9. The solid semiconductor raw material mass according to claim 8, comprising a hollow portion for accommodating a circular engaging portion of the seed crystal.
【請求項10】 上記種結晶および固体の半導体原料は
円柱形状であることを特徴とする請求項8または9に記
載の固体の半導体原料塊。
10. The solid semiconductor raw material mass according to claim 8, wherein the seed crystal and the solid semiconductor raw material have a cylindrical shape.
【請求項11】 上記種結晶の円形形状の係止部の直径
は、円柱形状の種結晶の直径の3ないし4倍であること
を特徴とする請求項10に記載の固体の半導体原料塊。
11. The solid semiconductor raw material mass according to claim 10, wherein the diameter of the circular locking portion of the seed crystal is three to four times the diameter of the cylindrical seed crystal.
【請求項12】 固体の半導体原料塊は多結晶シリコン
であり、種結晶は単結晶シリコンであることを特徴とす
る請求項7ないし11のいずれか1項に記載の固体の半
導体原料塊。
12. The solid semiconductor raw material mass according to claim 7, wherein the solid semiconductor raw material mass is polycrystalline silicon, and the seed crystal is single crystal silicon.
JP12055099A 1999-04-27 1999-04-27 Manufacturing method of semiconductor single crystal Expired - Lifetime JP3722264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12055099A JP3722264B2 (en) 1999-04-27 1999-04-27 Manufacturing method of semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12055099A JP3722264B2 (en) 1999-04-27 1999-04-27 Manufacturing method of semiconductor single crystal

Publications (2)

Publication Number Publication Date
JP2000313690A true JP2000313690A (en) 2000-11-14
JP3722264B2 JP3722264B2 (en) 2005-11-30

Family

ID=14789091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12055099A Expired - Lifetime JP3722264B2 (en) 1999-04-27 1999-04-27 Manufacturing method of semiconductor single crystal

Country Status (1)

Country Link
JP (1) JP3722264B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000344594A (en) * 1999-06-04 2000-12-12 Sumitomo Metal Ind Ltd Method for supplying silicon raw material and production of single crystal silicon
WO2001094669A1 (en) * 2000-06-05 2001-12-13 Mitsubishi Materials Polycrystalline Silicon Corporation Polycrystalline silicon rod and method for processing the same
KR20020053622A (en) * 2000-12-27 2002-07-05 이 창 세 Method for filling silicon and single crystal seed used thereof
US6835247B2 (en) 2000-10-31 2004-12-28 Advanced Silicon Materials Llc Rod replenishment system for use in single crystal silicon production
US6875269B2 (en) 2001-11-13 2005-04-05 Advanced Silicon Materials Llc System for increasing charge size for single crystal silicon production

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000344594A (en) * 1999-06-04 2000-12-12 Sumitomo Metal Ind Ltd Method for supplying silicon raw material and production of single crystal silicon
US6461426B2 (en) 1999-06-04 2002-10-08 Sumitomo Metal Industries, Ltd. Method of supplying silicon raw material, method of producing silicon single crystal, and poly-silicon
WO2001094669A1 (en) * 2000-06-05 2001-12-13 Mitsubishi Materials Polycrystalline Silicon Corporation Polycrystalline silicon rod and method for processing the same
US7060355B2 (en) 2000-06-05 2006-06-13 Mitsubishi Materials Polycrystalline Silicon Corporation Polycrystalline silicon rod and method of processing the same
US7455731B2 (en) 2000-06-05 2008-11-25 Mitsubishi Materials Corporation Polycrystalline silicon rod and method for processing the same
US6835247B2 (en) 2000-10-31 2004-12-28 Advanced Silicon Materials Llc Rod replenishment system for use in single crystal silicon production
KR20020053622A (en) * 2000-12-27 2002-07-05 이 창 세 Method for filling silicon and single crystal seed used thereof
US6875269B2 (en) 2001-11-13 2005-04-05 Advanced Silicon Materials Llc System for increasing charge size for single crystal silicon production

Also Published As

Publication number Publication date
JP3722264B2 (en) 2005-11-30

Similar Documents

Publication Publication Date Title
JP4103593B2 (en) Recharge tube for solid polycrystalline raw material and method for producing single crystal using the same
US4936949A (en) Czochraski process for growing crystals using double wall crucible
JP4454003B2 (en) Raw material supply equipment for single crystal pulling equipment
JP2000313690A (en) Production of semiconductor single crystal and solid semiconductor raw material mass used therefore
JP2754103B2 (en) Doping agent addition method using seed crystal
TW200419015A (en) Process for producing single crystal of compound semiconductor and crystal growing apparatus
JP3085567B2 (en) Polycrystalline recharge apparatus and recharge method
US4289572A (en) Method of closing silicon tubular bodies
JP3730056B2 (en) Semiconductor raw material lump support jig, seed crystal, and method for producing single crystal using the same
JP2519459B2 (en) Single crystal pulling device
JPH1192276A (en) Apparatus for producing semiconductor single crystal and production of semiconductor single crystal
JP4327333B2 (en) Semiconductor raw material lump support jig, semiconductor raw material lump, and method for producing semiconductor single crystal using the same
JP2721242B2 (en) Silicon single crystal pulling method
JP3085072B2 (en) Single crystal pulling device
JP2723249B2 (en) Crystal growing method and crucible for crystal growing
KR100581045B1 (en) Method for porducing silicon single crystal
JPH07330482A (en) Method and apparatus for growing single crystal
JPS6041037B2 (en) Manufacturing equipment for high dissociation pressure compound single crystal for semiconductors
JPH0640592Y2 (en) Silicon single crystal growth equipment
JPH0733584A (en) Recharging method in pulling up semiconductor single crystal
JP3624633B2 (en) Single crystal puller
JP2006213554A (en) Crystal growth method and its apparatus
JPH0733583A (en) Apparatus for growing semiconductor single crystal
JPH05132389A (en) Apparatus for producing semiconductor single crystal by fz method
JP2024528341A (en) Device and method for manufacturing single crystal silicon rods

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050907

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7