JP2000311716A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JP2000311716A
JP2000311716A JP11118961A JP11896199A JP2000311716A JP 2000311716 A JP2000311716 A JP 2000311716A JP 11118961 A JP11118961 A JP 11118961A JP 11896199 A JP11896199 A JP 11896199A JP 2000311716 A JP2000311716 A JP 2000311716A
Authority
JP
Japan
Prior art keywords
amorphous carbon
secondary battery
lithium
lithium secondary
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11118961A
Other languages
Japanese (ja)
Other versions
JP3463601B2 (en
Inventor
Kotaro Kobayashi
康太郎 小林
Yoshimasa Koishikawa
佳正 小石川
Kensuke Hironaka
健介 弘中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP11896199A priority Critical patent/JP3463601B2/en
Priority to US09/525,264 priority patent/US6506518B1/en
Priority to DE60001196T priority patent/DE60001196T2/en
Priority to EP00302150A priority patent/EP1052719B1/en
Priority to TW089105981A priority patent/TW456063B/en
Publication of JP2000311716A publication Critical patent/JP2000311716A/en
Application granted granted Critical
Publication of JP3463601B2 publication Critical patent/JP3463601B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium secondary battery having high temperature cycle characteristics possible to be efficiently improved without reducing a discharge capacity. SOLUTION: Amorphous carbon powder having a specific surface of 10.0 m2/g and an average particle diameter of 7.0 μm is used for a negative electrode active material, and lithium manganata having a Li/Mn ratio of 0.58 is used for a positive electrode active material. The surface area of the amorphous carbon material gets larger by setting the average diameter of the amorphous carbon material at 10 μm or less, and even if an inactive coat is formed on the surface of the negative electrode by elusion and deposition of manganese, high temperature cycle characteristics can be improved without causing high temperature cycle deterioration, because the entire surface area is large.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリチウム二次電池に
係り、特に、非晶質炭素材を負極活物質としマンガン酸
リチウムを正極活物質としたリチウム二次電池に関す
る。
The present invention relates to a lithium secondary battery, and more particularly to a lithium secondary battery using an amorphous carbon material as a negative electrode active material and lithium manganate as a positive electrode active material.

【0002】[0002]

【従来の技術】従来、再充電が可能な二次電池の分野で
は、鉛電池、ニッケル−カドミウム電池、ニッケル−水
素電池等の水溶液系電池が主流であった。しかしなが
ら、近年、地球温暖化や枯渇燃料の問題から電気自動車
(EV)や駆動の一部を電気モーターで補助するハイブ
リッド自動車が着目され、その電源に用いられるより高
容量で高出力な二次電池が求められるようになってき
た。このような要求に対して、正極にコバルト酸リチウ
ム等のリチウム遷移金属複合酸化物を、負極に炭素材を
用い、リチウムイオンを挿入・脱離させることにより充
放電を可能としたリチウム二次電池の開発が進められて
いる。
2. Description of the Related Art Conventionally, in the field of rechargeable secondary batteries, aqueous batteries such as lead batteries, nickel-cadmium batteries, and nickel-hydrogen batteries have been the mainstream. However, in recent years, attention has been paid to electric vehicles (EVs) and hybrid vehicles in which a part of the drive is assisted by an electric motor due to the problem of global warming and depleted fuel, and a higher-capacity, higher-output secondary battery used for the power supply. Has been required. In response to such demands, a lithium secondary battery that uses a lithium transition metal composite oxide such as lithium cobalt oxide for the positive electrode, a carbon material for the negative electrode, and inserts and removes lithium ions to enable charging and discharging. Is being developed.

【0003】負極の炭素材には、一般的に天然黒鉛粉末
やりん片状、塊状などの人造黒鉛粉末、メソフェーズピ
ッチ系黒鉛等の黒鉛系材料とフリフリルアルコール等の
フラン樹脂などを焼成した非晶質の炭素材料が用いられ
ている。
The carbon material of the negative electrode is generally made of natural graphite powder, artificial graphite powder such as scaly or massive, graphite material such as mesophase pitch graphite, and furan resin such as furfuryl alcohol. A crystalline carbon material is used.

【0004】黒鉛系材料は不可逆容量が小さく電圧特性
も平坦であり高容量であることが特徴であるが、サイク
ル特性が悪いという問題がある。また、合成樹脂を焼成
した非晶質炭素は黒鉛の理論容量値以上の容量が得られ
サイクル特性にも優れるという特徴をもつが、不可逆容
量が大きく電池での高容量化が難しいという欠点があ
る。
[0004] Graphite materials are characterized by low irreversible capacity, flat voltage characteristics and high capacity, but have the problem of poor cycle characteristics. In addition, amorphous carbon obtained by calcining a synthetic resin has a feature that a capacity higher than the theoretical capacity value of graphite is obtained and the cycle characteristics are excellent, but there is a disadvantage that the irreversible capacity is large and it is difficult to increase the capacity in a battery. .

【0005】正極のリチウム遷移金属酸化物には容量、
サイクル特性等のバランスから一般的にはコバルト酸リ
チウムが使用されているが、原料であるコバルトは資源
量が少なくコスト高となることから、電気自動車やハイ
ブリッド自動車用電池の材料としてはマンガン酸リチウ
ムが有望視され開発が進められている。しかしながら、
マンガン酸リチウムを正極活物質とした電池では高温で
マンガン酸リチウムが溶出するので、高温でのサイクル
特性が従来のコバルト酸リチウムを用いた電池に比べ劣
る。
The lithium transition metal oxide of the positive electrode has a capacity,
Lithium cobaltate is generally used in view of the balance of cycle characteristics and the like. However, since cobalt as a raw material has a small amount of resources and is costly, lithium manganate is used as a material for batteries for electric vehicles and hybrid vehicles. Is promising and is under development. However,
In a battery using lithium manganate as a positive electrode active material, lithium manganate is eluted at a high temperature, so that the cycle characteristics at a high temperature are inferior to those of a conventional battery using lithium cobaltate.

【0006】これに対し、マンガン酸リチウムのマンガ
ンの一部をコバルト(Co)やクロム(Cr)等の異種
金属で置換することにより、高温でのマンガンの溶出を
減少させ、電池の高温サイクル特性を向上させることが
種々提案されている。
On the other hand, by replacing a part of manganese of lithium manganate with a different metal such as cobalt (Co) or chromium (Cr), elution of manganese at high temperature is reduced, and high-temperature cycle characteristics of the battery are reduced. Various improvements have been proposed.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、マンガ
ンの一部を異種金属で置換したマンガン酸リチウムは高
温でのマンガン溶出量は減少するが、完全に溶出を止め
ることができないばかりか放電容量を減少させてしま
う、という問題点がある。
However, lithium manganate, in which a part of manganese is replaced by a different metal, reduces the amount of manganese eluted at high temperatures, but not only can not completely stop elution, but also reduces the discharge capacity. There is a problem that

【0008】本発明者らはマンガン酸リチウムを正極に
非晶質炭素材を負極に用いた電池での高温でのサイクル
劣化原因を鋭意分析した結果、溶出したマンガンが核と
なり負極表面に不活性な被膜を形成することが高温サイ
クル劣化の原因であることを突き止めた。
The inventors of the present invention have conducted intensive analysis of the causes of high-temperature cycle deterioration in a battery using lithium manganate as a positive electrode and an amorphous carbon material as a negative electrode. It has been found that the formation of a proper coating is a cause of high-temperature cycle deterioration.

【0009】本発明はかかる知見に基づいて、非晶質炭
素材を負極活物質としマンガン酸リチウムを正極活物質
としたリチウム二次電池において、放電容量を減少させ
ることなく有効に高温サイクル特性を改善することがで
きるリチウム二次電池を提供することを目的とする。
According to the present invention, based on such findings, in a lithium secondary battery in which an amorphous carbon material is used as a negative electrode active material and lithium manganate is used as a positive electrode active material, high-temperature cycle characteristics can be effectively reduced without reducing discharge capacity. It is an object to provide a lithium secondary battery that can be improved.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、非晶質炭素材を負極活物質としマンガン
酸リチウムを正極活物質としたリチウム二次電池におい
て、前記非晶質炭素材の平均粒径が10μm以下である
ことを特徴とする。本発明では、非晶質炭素材の平均粒
径を10μm以下とすることで非晶質炭素材の表面積が
大きくなり、正極からのマンガン溶出/析出により負極
表面に不活性被膜が形成されても全体の表面積が大きい
ので、高温サイクル劣化を起こさず高温サイクル特性を
改善することができる。
To achieve the above object, the present invention relates to a lithium secondary battery comprising an amorphous carbon material as a negative electrode active material and lithium manganate as a positive electrode active material. The carbon material has an average particle size of 10 μm or less. In the present invention, by setting the average particle size of the amorphous carbon material to 10 μm or less, the surface area of the amorphous carbon material is increased, and even if an inert film is formed on the negative electrode surface due to manganese elution / precipitation from the positive electrode. Since the total surface area is large, high-temperature cycle characteristics can be improved without causing high-temperature cycle deterioration.

【0011】この場合において、非晶質炭素材の平均粒
径が10μmの非晶質炭素材の比表面積は約5m/g
程度であり比表面積が5m/g以下では表面積増加の
効果がほとんど見られず、平均粒径が3.5μmの非晶
質炭素材の平均粒径は約20m/g程度であり平均粒
径が20m/g以上では比表面積が大きくなりすぎる
ことにより不可逆容量増加といった他の性能面での劣化
が起こるので、非晶質炭素材の平均粒径を3.5μm以
上10μm以下とすることが好ましい。また、マンガン
酸リチウムのLi/Mn比を0.5を超えて0.6以下
とすれば、量論組成(0.5)と比べ極端な放電容量低
下を招くことなくマンガン溶出量を低減することができ
る。
In this case, the specific surface area of the amorphous carbon material having an average particle size of 10 μm is about 5 m 2 / g.
When the specific surface area is 5 m 2 / g or less, there is almost no effect of increasing the surface area. The average particle diameter of the amorphous carbon material having an average particle diameter of 3.5 μm is about 20 m 2 / g and the average particle diameter is about 20 m 2 / g. If the diameter is 20 m 2 / g or more, the specific surface area becomes too large, and other performances such as an increase in irreversible capacity are deteriorated. Therefore, the average particle diameter of the amorphous carbon material should be 3.5 μm or more and 10 μm or less. Is preferred. If the Li / Mn ratio of lithium manganate is more than 0.5 and not more than 0.6, the manganese elution amount is reduced without causing an extreme decrease in discharge capacity as compared with the stoichiometric composition (0.5). be able to.

【0012】[0012]

【発明の実施の形態】以下、本発明に係るリチウム二次
電池を円筒型リチウム二次電池に適用した実施例につい
て、実施例の効果を確認するための比較例と比較しつつ
詳述する。 (実施例1)まず、本実施例の円筒型リチウム二次電池
の作製方法について、負極の作製、正極の作製、電池の
作製の順に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment in which the lithium secondary battery according to the present invention is applied to a cylindrical lithium secondary battery will be described in detail while comparing with a comparative example for confirming the effects of the embodiment. (Example 1) First, a method of manufacturing a cylindrical lithium secondary battery of this example will be described in the order of manufacturing a negative electrode, manufacturing a positive electrode, and manufacturing a battery.

【0013】<負極の作製>平均粒径が7.0μmの負
極活物質としての非晶質炭素粉末(比表面積=10.0
/g)90重量部に対し、結着剤としてポリフッ化
ビニリデンを10重量部添加し、これに分散溶媒として
N−メチルピロリドンを添加、混練したスラリを厚さ1
0μmの圧延銅箔の両面に塗布、その後乾燥、プレス、
断裁することにより厚さ70μmの負極を得た。
<Preparation of Negative Electrode> Amorphous carbon powder having an average particle size of 7.0 μm as a negative electrode active material (specific surface area = 10.0
m 2 / g) 90 parts by weight, 10 parts by weight of polyvinylidene fluoride as a binder, N-methylpyrrolidone as a dispersing solvent, and a kneaded slurry having a thickness of 1
0μm rolled copper foil on both sides, then dried, pressed,
By cutting, a negative electrode having a thickness of 70 μm was obtained.

【0014】<正極の作製>正極活物質としてのマンガ
ン酸リチウム(Li/Mn比=0.58)100重量部
に対し、導電材として10重量部のりん片状黒鉛と結着
剤として5重量部のポリフッ化ビニリデンとを添加し、
これに分散溶媒としてN−メチルピロリドンを添加、混
練したスラリを厚さ20μmのアルミニウム箔の両面に
塗布、その後乾燥、プレス、断裁することにより厚さ7
0μmの正極を得た。
<Preparation of Positive Electrode> For 100 parts by weight of lithium manganate (Li / Mn ratio = 0.58) as a positive electrode active material, 10 parts by weight of flake graphite as a conductive material and 5 parts by weight as a binder Parts of polyvinylidene fluoride and
N-methylpyrrolidone was added as a dispersing solvent to this, and a kneaded slurry was applied to both sides of a 20-μm-thick aluminum foil, and then dried, pressed and cut to a thickness of 7 μm.
A positive electrode of 0 μm was obtained.

【0015】<電池の作製>以上のようにして作製した
負極及び正極を、厚さ25μmのポリエチレン製セパレ
ータを挟んで捲回して捲回群とし、この捲回群を円筒形
の電池容器に挿入、電解液を所定量注入後上蓋をかしめ
封口することにより円筒型リチウム二次電池を得た。電
解液にはエチレンカーボネートとジメチルカーボネート
との混合溶液中に6フッ化リン酸リチウム(LiP
)を1モル/リットル溶解したものを用いた。円筒
型リチウム二次電池の容量は4.0Ahである。
<Preparation of Battery> The negative electrode and the positive electrode prepared as described above are wound around a polyethylene separator having a thickness of 25 μm to form a wound group, and the wound group is inserted into a cylindrical battery container. After injecting a predetermined amount of the electrolytic solution, the upper lid was swaged and sealed to obtain a cylindrical lithium secondary battery. As the electrolyte, lithium hexafluorophosphate (LiP) is used in a mixed solution of ethylene carbonate and dimethyl carbonate.
F 6) was used after dissolving 1 mole / liter. The capacity of the cylindrical lithium secondary battery is 4.0 Ah.

【0016】(実施例2〜4)非晶質炭素粉末の平均粒
径と比表面積とを表1に示すようにそれぞれ2.0〜1
0.0μm、5.0〜25.0m/gの範囲で変化さ
せて実施例2から実施例4の負極を作製した。負極以外
は実施例1と同様の正極、セパレータ及び電解液を用
い、同様の作製方法で円筒型リチウム二次電池を組み立
てた(以下、実施例2〜4の電池という。)。
Examples 2 to 4 As shown in Table 1, the average particle diameter and specific surface area of the amorphous carbon powder were 2.0 to 1 respectively.
The negative electrodes of Examples 2 to 4 were produced by changing the thickness in the range of 0.0 μm and 5.0 to 25.0 m 2 / g. Except for the negative electrode, the same positive electrode, separator, and electrolyte as in Example 1 were used, and a cylindrical lithium secondary battery was assembled by the same manufacturing method (hereinafter, referred to as batteries of Examples 2 to 4).

【0017】[0017]

【表1】 [Table 1]

【0018】(実施例5〜8)マンガン酸リチウムのL
i/Mn比を表1に示すように0.50〜0.62の範
囲で変化させて実施例5から実施例8の正極を作製し
た。正極以外は実施例1と同様の負極、セパレータ及び
電解液を用い、同様の作製方法で円筒型リチウム二次電
池を組み立てた(以下、実施例5〜8の電池とい
う。)。
(Examples 5 to 8) L of lithium manganate
The positive electrodes of Examples 5 to 8 were produced by changing the i / Mn ratio in the range of 0.50 to 0.62 as shown in Table 1. Except for the positive electrode, the same negative electrode, separator and electrolytic solution as in Example 1 were used, and cylindrical lithium secondary batteries were assembled in the same manner (hereinafter referred to as batteries of Examples 5 to 8).

【0019】(比較例1)負極活物質に平均粒径が15
μmの非晶質炭素粉末(比表面積=3.0m/g)
を、正極活物質にマンガンの一部をCrで置換(置換量
5%)したマンガン酸リチウム(Li/Mn比=0.5
0)を用い、それ以外は実施例1と同様のセパレータ及
び電解液を用い、同様の作製方法で円筒型リチウム二次
電池を組み立てた(以下、比較例1の電池という。)。
Comparative Example 1 The negative electrode active material had an average particle size of 15
μm amorphous carbon powder (specific surface area = 3.0 m 2 / g)
Was replaced with lithium manganate (Li / Mn ratio = 0.5) in which a part of manganese was replaced with Cr (substitution amount: 5%) in the positive electrode active material.
0), and a cylindrical lithium secondary battery was assembled by the same method using the same separator and electrolyte solution as in Example 1 (hereinafter referred to as a battery of Comparative Example 1).

【0020】(比較例2)負極活物質に平均粒径が15
μmの非晶質炭素粉末(比表面積=3.0m/g)を
用い、それ以外は実施例1と同様の正極、セパレータ及
び電解液を用い、同様の作製方法で円筒型リチウム二次
電池を組み立てた(以下、比較例2の電池という。)。
Comparative Example 2 The negative electrode active material had an average particle size of 15
μm amorphous carbon powder (specific surface area = 3.0 m 2 / g), and using the same positive electrode, separator, and electrolyte as in Example 1 except for the above, and using the same manufacturing method as the cylindrical lithium secondary battery (Hereinafter, referred to as a battery of Comparative Example 2).

【0021】(試験・評価)<試験>次に、このように
して作製した実施例及び比較例の各電池について、放電
容量試験及び高温サイクル寿命性能試験を行った。
(Test / Evaluation) <Test> Next, a discharge capacity test and a high-temperature cycle life performance test were performed on each of the batteries of the examples and the comparative examples thus manufactured.

【0022】放電容量試験では、2時間率(1/2C)
で定電流定電圧充電(上限電圧=4.1V)を5時間行
った後、2時間率(1/2C)で終止電圧=2.7Vま
で放電した。
In the discharge capacity test, 2 hour rate (1 / 2C)
After performing 5 hours of constant current and constant voltage charging (upper limit voltage = 4.1 V), the battery was discharged to a final voltage of 2.7 V at a rate of 2 hours (1/2 C).

【0023】高温サイクル寿命性能試験では、初期容量
テスト後充放電効率が安定した後、50°Cの雰囲気に
て1時間率(1C)で定電流定電圧充電(上限電圧=
4.1V)を4時間行った後、1時間率(1C)で放電
深度(DOD)=40%(24分)だけ放電を行う条件
で評価した。寿命判定は初期容量の80%とした。
In the high-temperature cycle life performance test, after the charge / discharge efficiency is stabilized after the initial capacity test, constant-current constant-voltage charging (upper limit voltage = 1 C) is performed at an hourly rate (1 C) in an atmosphere of 50 ° C.
After performing 4.1 V) for 4 hours, evaluation was performed under the condition that discharge was performed at a rate of 1 hour (1C) and a depth of discharge (DOD) = 40% (24 minutes). The life was determined to be 80% of the initial capacity.

【0024】放電容量試験及び高温寿命性能試験の試験
結果を次表2に示す。
Table 2 shows the results of the discharge capacity test and the high temperature life performance test.

【0025】[0025]

【表2】 [Table 2]

【0026】<評価>放電容量試験の結果、非晶質炭素
粉末の平均粒径を10μm以下とした実施例1〜7の電
池は、いずれも4.0Ah以上と良好な放電容量特性を
示した。マンガン酸リチウムのLi/Mn比を0.62
と大きくした実施例8の電池はやや放電容量が小さくな
った。一方、比較例1の電池は放電容量が1割以上低下
した。正極活物質にCr置換したマンガン酸リチウムを
用いたことから正極の放電容量が小さくなり電池の放電
容量も小さくなったものと思われる。このことから、マ
ンガン酸リチウムのLi/Mn比は0.60以下である
ことが望ましい。
<Evaluation> As a result of the discharge capacity test, all of the batteries of Examples 1 to 7 in which the average particle size of the amorphous carbon powder was 10 μm or less showed good discharge capacity characteristics of 4.0 Ah or more. . Li / Mn ratio of lithium manganate is 0.62
And the discharge capacity of the battery of Example 8 was slightly reduced. On the other hand, in the battery of Comparative Example 1, the discharge capacity was reduced by 10% or more. It is considered that the use of Cr-substituted lithium manganate as the positive electrode active material reduced the discharge capacity of the positive electrode and the discharge capacity of the battery. For this reason, the Li / Mn ratio of lithium manganate is desirably 0.60 or less.

【0027】高温サイクル寿命性能試験の結果、非晶質
炭素粉末の平均粒径を10μm以下とした実施例1〜8
の電池は、いずれも大幅なサイクル寿命特性の向上が見
られたが、平均粒径が15μm、比表面積が3.0m
/gの非晶質炭素粉末を用いた比較例1及び比較例2の
電池は、75サイクル以下と高温サイクル寿命特性が劣
っていた。非晶質炭素粉末の比表面積が25m/gと
やや大きい実施例2の電池は、比表面積が大きすぎるた
めに電解液との反応面積が増え負極活物質そのものの劣
化が進み、150サイクルとやや高温サイクル寿命特性
の向上が小さかった。このことから、非晶質炭素粉末の
平均粒径は3.5μm以上10μm以下の範囲にあるこ
とが望ましい。
As a result of the high-temperature cycle life performance test, Examples 1 to 8 in which the average particle size of the amorphous carbon powder was 10 μm or less were performed.
In all of the batteries, the cycle life characteristics were significantly improved, but the average particle size was 15 μm and the specific surface area was 3.0 m 2.
/ G of the amorphous carbon powder of Comparative Example 1 and Comparative Example 2 had inferior high-temperature cycle life characteristics of 75 cycles or less. In the battery of Example 2 in which the specific surface area of the amorphous carbon powder was slightly large at 25 m 2 / g, the specific surface area was too large, the reaction area with the electrolytic solution increased, and the deterioration of the negative electrode active material itself proceeded. The improvement in the high-temperature cycle life characteristics was slightly small. For this reason, the average particle size of the amorphous carbon powder is desirably in the range of 3.5 μm to 10 μm.

【0028】また、高温サイクル寿命性能試験の結果、
実施例7の電池はマンガン酸リチウムのLi/Mn比を
0.5としたことから、200サイクルを越える他の実
施例の電池と比較し、180サイクルと実施例2の電池
に次いでやや高温サイクル寿命特性の向上が小さい。上
述した放電容量試験の結果を踏まえると、マンガン酸リ
チウムのLi/Mn比は0.5を超えて0.60以下の
範囲にあることが望ましい。
As a result of the high temperature cycle life performance test,
Since the battery of Example 7 had a Li / Mn ratio of lithium manganate of 0.5, it was compared with the batteries of the other examples exceeding 200 cycles, and had a 180 cycle and a slightly higher temperature cycle than the battery of Example 2. Small improvement in life characteristics. Based on the results of the above-described discharge capacity test, it is desirable that the Li / Mn ratio of lithium manganate is in the range of more than 0.5 and not more than 0.60.

【0029】なお、本実施形態では、電解液にエチレン
カーボネートとジメチルカーボネートの混合溶液中へ6
フッ化リン酸リチウムを1モル/リットル溶解したもの
を使用したが、電解液には特に制限はなく通常用いられ
ている電解液でも本実施形態と同等の効果が確認されて
いる。すなわち、一般的なリチウム塩を電解質とし、こ
れを有機溶媒に溶解した電解液を使用しても本発明を適
用することができ、これらリチウム塩や有機溶媒にも制
限ない。例えば、電解質としては、LiClO 、Li
AsF、LiPF、LiBF、LiB(C
、CHSOLi、CFSOLi等や
これらの混合物を使用することができる。また、有機溶
媒としては、プロピレンカーボネート、エチレンカーボ
ネート、1,2−ジメトキシエタン、1,2−ジエトキ
シエタン、γ−ブチロラクトン、テトラヒドロフラン、
1,3−ジオキソラン、4−メチル−1,3−ジオキソ
ラン、ジエチルエーテル、スルホラン、メチルスルホラ
ン、アセトニトリル、プロピオニトリル等又はこれら2
種類以上の混合溶媒を使用することができる。
In this embodiment, the electrolyte is ethylene.
Into a mixed solution of carbonate and dimethyl carbonate 6
1 mol / liter of lithium fluorophosphate dissolved
Was used, but there is no particular limitation on the electrolytic solution and it is usually used.
The same effect as this embodiment was confirmed with the electrolyte
I have. That is, a general lithium salt is used as the electrolyte,
The present invention is also applicable to the use of an electrolyte in which
It can control these lithium salts and organic solvents.
No limit. For example, as the electrolyte, LiClO 4, Li
AsF6, LiPF6, LiBF4, LiB (C
6H5)4, CH3SO3Li, CF3SO3Li, etc.
These mixtures can be used. In addition, organic solvents
As the medium, propylene carbonate, ethylene carbonate
Nate, 1,2-dimethoxyethane, 1,2-diethoxy
Cietan, γ-butyrolactone, tetrahydrofuran,
1,3-dioxolan, 4-methyl-1,3-dioxo
Run, diethyl ether, sulfolane, methyl sulfora
, Acetonitrile, propionitrile, etc. or these 2
More than one type of mixed solvent can be used.

【0030】また、本実施形態では円筒型リチウム二次
電池に本発明を適用した場合について例示したが、本発
明はこれに限定されるものではなく、上述した特許請求
の範囲内で種々のリチウム二次電池に適用できることは
いうまでもない。
Further, in the present embodiment, the case where the present invention is applied to a cylindrical lithium secondary battery has been exemplified. However, the present invention is not limited to this, and various lithium lithium batteries fall within the scope of the claims described above. It goes without saying that the present invention can be applied to a secondary battery.

【0031】[0031]

【発明の効果】以上説明したように本発明によれば、非
晶質炭素材の平均粒径を10μm以下とすることで非晶
質炭素材の表面積が大きくなり、正極からのマンガン溶
出/析出により負極表面に不活性被膜が形成されても全
体の表面積が大きいので、高温サイクル劣化を起こさず
高温サイクル特性を改善することができる、という効果
を得ることができる。
As described above, according to the present invention, by setting the average particle size of the amorphous carbon material to 10 μm or less, the surface area of the amorphous carbon material increases, and manganese elution / precipitation from the positive electrode occurs. Accordingly, even if an inert coating is formed on the negative electrode surface, the overall surface area is large, so that it is possible to obtain an effect that high-temperature cycle characteristics can be improved without causing high-temperature cycle deterioration.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年5月6日(1999.5.6)[Submission Date] May 6, 1999 (1999.5.6)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0011】この場合において、非晶質炭素材の平均粒
径が10μmの非晶質炭素材の比表面積は約5m/g
程度であり比表面積が5m/g以下では表面積増加の
効果がほとんど見られず、平均粒径が3.5μmの非晶
質炭素材の比表面積は約20m/g程度であり比表面
が20m/g以上では比表面積が大きくなりすぎる
ことにより不可逆容量増加といった他の性能面での劣化
が起こるので、非晶質炭素材の平均粒径を3.5μm以
上10μm以下とすることが好ましい。また、マンガン
酸リチウムのLi/Mn比を0.5を超えて0.6以下
とすれば、量論組成(0.5)と比べ極端な放電容量低
下を招くことなくマンガン溶出量を低減することができ
る。
In this case, the specific surface area of the amorphous carbon material having an average particle size of 10 μm is about 5 m 2 / g.
Hardly observed effect of surface increasing in there specific surface area is below 5 m 2 / g extent, the specific surface area of an average particle size of 3.5μm amorphous carbon material is in the order of about 20 m 2 / g specific surface
When the product is 20 m 2 / g or more, the specific surface area becomes too large, and other performances such as an increase in irreversible capacity are deteriorated. Therefore, the average particle size of the amorphous carbon material should be 3.5 μm or more and 10 μm or less. Is preferred. If the Li / Mn ratio of lithium manganate is more than 0.5 and not more than 0.6, the manganese elution amount is reduced without causing an extreme decrease in discharge capacity as compared with the stoichiometric composition (0.5). be able to.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 弘中 健介 東京都中央区日本橋本町二丁目8番7号 新神戸電機株式会社内 Fターム(参考) 5H003 AA01 AA04 BB01 BB05 BC01 BC06 BD02 BD03 5H029 AJ02 AJ05 AK03 AL06 AM03 AM05 AM07 BJ02 BJ14 DJ16 DJ18 HJ01 HJ05  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Kensuke Hironaka 2-7-7 Nihonbashi Honcho, Chuo-ku, Tokyo F-term in Shin-Kobe Electric Co., Ltd. 5H003 AA01 AA04 BB01 BB05 BC01 BC06 BD02 BD03 5H029 AJ02 AJ05 AK03 AL06 AM03 AM05 AM07 BJ02 BJ14 DJ16 DJ18 HJ01 HJ05

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 非晶質炭素材を負極活物質としマンガン
酸リチウムを正極活物質としたリチウム二次電池におい
て、前記非晶質炭素材の平均粒径が10μm以下である
ことを特徴とするリチウム二次電池。
1. A lithium secondary battery using an amorphous carbon material as a negative electrode active material and lithium manganate as a positive electrode active material, wherein the amorphous carbon material has an average particle size of 10 μm or less. Lithium secondary battery.
【請求項2】 前記非晶質炭素材の平均粒径が3.5μ
m以上10μm以下であることを特徴とする請求項1に
記載のリチウム二次電池。
2. The amorphous carbon material has an average particle size of 3.5 μm.
2. The lithium secondary battery according to claim 1, wherein the thickness is not less than m and not more than 10 μm.
【請求項3】 前記マンガン酸リチウムのLi/Mn比
が0.5を超えて0.6以下であることを特徴とする請
求項1又は請求項2に記載のリチウム二次電池。
3. The lithium secondary battery according to claim 1, wherein the Li / Mn ratio of the lithium manganate is more than 0.5 and not more than 0.6.
JP11896199A 1999-04-27 1999-04-27 Lithium secondary battery Expired - Fee Related JP3463601B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP11896199A JP3463601B2 (en) 1999-04-27 1999-04-27 Lithium secondary battery
US09/525,264 US6506518B1 (en) 1999-04-27 2000-03-14 Lithium secondary battery
DE60001196T DE60001196T2 (en) 1999-04-27 2000-03-16 Lithium secondary battery
EP00302150A EP1052719B1 (en) 1999-04-27 2000-03-16 Lithium secondary battery
TW089105981A TW456063B (en) 1999-04-27 2000-03-30 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11896199A JP3463601B2 (en) 1999-04-27 1999-04-27 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2000311716A true JP2000311716A (en) 2000-11-07
JP3463601B2 JP3463601B2 (en) 2003-11-05

Family

ID=14749570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11896199A Expired - Fee Related JP3463601B2 (en) 1999-04-27 1999-04-27 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3463601B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007287622A (en) * 2006-04-20 2007-11-01 Nec Tokin Corp Lithium ion secondary battery
JP2009193924A (en) * 2008-02-18 2009-08-27 Nec Tokin Corp Negative electrode for lithium ion secondary battery, and lithium ion secondary battery using the same
JP2012079566A (en) * 2010-10-04 2012-04-19 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
JP2015527288A (en) * 2012-07-13 2015-09-17 コーニング インコーポレイテッド Electrochemical high rate storage material, method and electrode

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007287622A (en) * 2006-04-20 2007-11-01 Nec Tokin Corp Lithium ion secondary battery
JP2009193924A (en) * 2008-02-18 2009-08-27 Nec Tokin Corp Negative electrode for lithium ion secondary battery, and lithium ion secondary battery using the same
JP2012079566A (en) * 2010-10-04 2012-04-19 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
JP2015527288A (en) * 2012-07-13 2015-09-17 コーニング インコーポレイテッド Electrochemical high rate storage material, method and electrode

Also Published As

Publication number Publication date
JP3463601B2 (en) 2003-11-05

Similar Documents

Publication Publication Date Title
JP6072688B2 (en) Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
CN103415947B (en) Rechargeable nonaqueous electrolytic battery
JP3625680B2 (en) Lithium secondary battery
WO2014049964A1 (en) Nonaqueous electrolyte secondary battery and positive electrode active material for nonaqueous electrolyte secondary batteries
JP2011070789A (en) Nonaqueous electrolyte secondary battery
US20070054191A1 (en) Non- aqueous electrolyte secondary battery
JP2009224307A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2011187435A (en) Nonaqueous electrolyte secondary battery
JP2008210618A (en) Nonaqueous electrolyte secondary battery
JP2008091236A (en) Nonaqueous electrolyte secondary battery
KR20120062748A (en) Non-aqueous electrolyte secondary battery
JP2009277395A (en) Nonaqueous secondary battery, and nonaqueous secondary battery system
JP5216973B2 (en) Non-aqueous secondary battery and non-aqueous secondary battery system
JP2009218112A (en) Nonaqueous electrolyte secondary battery and manufacturing method therefor
WO2013129376A1 (en) Active material for non-aqueous electrolyte secondary cell, electrode for non-aqueous electrolyte secondary cell, non-aqueous electrolyte secondary cell, and method for producing active material for non-aqueous electrolyte secondary cell
JP4436611B2 (en) Non-aqueous electrolyte secondary battery
JP2004087284A (en) Lithium secondary cell
JP4984390B2 (en) Non-aqueous electrolyte secondary battery charging method
JP2000311716A (en) Lithium secondary battery
EP1052719B1 (en) Lithium secondary battery
KR20150116222A (en) Positive active material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same
JP2000311686A (en) Lithium secondary battery
JP2014049288A (en) Negative electrode for nonaqueous electrolyte secondary battery, manufacturing method therefor and nonaqueous electrolyte secondary battery
KR101609244B1 (en) Positive active material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same
JP2001143689A (en) Lithium secondary cell

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100822

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees