JP2000308287A - Permanent magnet embedded reluctance motor - Google Patents

Permanent magnet embedded reluctance motor

Info

Publication number
JP2000308287A
JP2000308287A JP11110843A JP11084399A JP2000308287A JP 2000308287 A JP2000308287 A JP 2000308287A JP 11110843 A JP11110843 A JP 11110843A JP 11084399 A JP11084399 A JP 11084399A JP 2000308287 A JP2000308287 A JP 2000308287A
Authority
JP
Japan
Prior art keywords
rotor
magnetic flux
permanent magnet
rotor core
core blocks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11110843A
Other languages
Japanese (ja)
Inventor
Hiroshi Murakami
浩 村上
Toshiyuki Tamamura
俊幸 玉村
Yukio Honda
幸夫 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11110843A priority Critical patent/JP2000308287A/en
Publication of JP2000308287A publication Critical patent/JP2000308287A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent magnetic flux generated from a permanent magnet from constituting a short circuit loop in the axial direction so as to minimize the decrease of a crosslinked magnetic flux, by putting thin plates consisting of nonmagnetic substance between plural pieces of rotor core blocks and uniting them. SOLUTION: Rotor core blocks 2 and 3 are united with each other, arranged axially and shifted further by a prescribed angle, with a nonmagnetic substance in the shape of a thin plate in between. At this time, an N-pole embedded in the rotary block 2 and an S-pole embedded in the rotary core block 3 are overlapping in the direction of rotational axis, but the nonmagnetic substance 5 can catch the magnetic flux flowing from the N-pole to S-pole. The rotary core blocks 2 and 3 are fixed in the same rotary shaft by press fitting or shrink fitting. The nonmagnetic substance 5 is fixed to a rotor 1, in the condition where it is put between the rotor core blocks 2 and 3. As a result, the magnetic flux generated from the permanent magnet 4 ceases to advance axially inside the rotor so as to constitute a short circuit magnetic flux, and the crosslinked magnetic flux by a permanent magnetic flux can be utilized to the utmost.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ロータ軸方向に複
数個の永久磁石あるいは複数個のスリットを設けること
で、リラクタンストルクを利用するモータに関するもの
である。
The present invention relates to a motor utilizing reluctance torque by providing a plurality of permanent magnets or a plurality of slits in a rotor axial direction.

【0002】[0002]

【従来の技術】従来から鉄など高透磁率材からなるロー
タ本体に永久磁石を埋設したロータ本体が知られてい
る。図6は、リラクタンストルクを有効に利用するた
め、本発明者らが開発した2層構造の永久磁石付ロータ
を示している(特第283817号)。
2. Description of the Related Art Conventionally, a rotor main body in which a permanent magnet is embedded in a rotor main body made of a material having high magnetic permeability such as iron is known. FIG. 6 shows a rotor with a permanent magnet of a two-layer structure developed by the present inventors in order to effectively use reluctance torque (Japanese Patent No. 283817).

【0003】この先行発明に係わるロータ1は中心にロ
ータ軸2を有し、鉄製ロータコア3にロータ半径方向に
1極当たり2層に間隔を置いて配置された4組の永久磁
石4a,4bを埋設してなり、各組の永久磁石4a,4
bはS極,N極が交互となるように隣接して配置され、
いずれもロータの求心方向へ凸形をなす円弧形状に形成
されている。
The rotor 1 according to the prior invention has a rotor shaft 2 at the center, and four sets of permanent magnets 4a and 4b arranged at intervals in two layers per pole in the rotor radial direction on a rotor core 3 made of iron. The permanent magnets 4a, 4
b is adjacently arranged so that the S pole and the N pole are alternately arranged;
Each of them is formed in an arc shape that is convex in the centripetal direction of the rotor.

【0004】この鉄製ロータコア3は多数の有穴のコア
シートを積層して構成されるが、穴の位置を合わせて積
層し、上述の円弧状の永久磁石を挿入埋め込むことにな
る。
The iron rotor core 3 is formed by laminating a large number of core sheets having holes. The iron rotor core 3 is laminated by aligning the positions of the holes, and the above-described arc-shaped permanent magnet is inserted and embedded.

【0005】[0005]

【発明が解決しようとする課題】上記先行発明の構成に
おいては、ロータ組み付け工数としては最も少なく、低
コストで製作可能であるが、ロータに設けたスリット部
分がロータ軸と平行に真っ直ぐに構成されているため、
ステータとの位置関係でロータが回転中のコギングトル
ク変動が大きくなってしまう不具合点があった。
In the structure of the above-mentioned prior invention, the number of man-hours for assembling the rotor is the smallest, and the rotor can be manufactured at low cost. However, the slit provided in the rotor is straight and parallel to the rotor shaft. Because
There was a problem that the cogging torque fluctuation during rotation of the rotor became large due to the positional relationship with the stator.

【0006】この課題を解決するために、特開平10−
80079号公報に示すように、ロータを回転軸方向に
複数個のコアブロックに分割し、各ブロックを回転方向
に所定の角度ずらして軸方向に一体構成されているモー
タが発明されている。
In order to solve this problem, Japanese Patent Laid-Open No.
As disclosed in Japanese Patent No. 80079, there has been invented a motor in which a rotor is divided into a plurality of core blocks in a rotation axis direction and each block is shifted by a predetermined angle in a rotation direction to be integrally formed in an axial direction.

【0007】しかしながら、この方法ではコギングトル
クを小さくできるが、各ブロック間で、軸方向に永久磁
石の発生する磁束が短絡するループができるため、ステ
ータに鎖交する磁束が減少し、発生トルクが小さくなる
という課題があった。
However, in this method, the cogging torque can be reduced. However, a loop in which the magnetic flux generated by the permanent magnet is short-circuited in the axial direction between each block, so that the magnetic flux linked to the stator is reduced, and the generated torque is reduced. There was a problem of becoming smaller.

【0008】簡単な一例として、図7をもとに説明す
る。図7はロータの内部に平板状の永久磁石を4個埋め
込んだ、埋め込み磁石型のロータであり、このロータを
2個のブロックに分割し、上下のブロックを回転方向に
ずらして、一体構成している。
A simple example will be described with reference to FIG. FIG. 7 shows an embedded magnet type rotor in which four permanent magnets in the form of a plate are embedded in the rotor. This rotor is divided into two blocks, and the upper and lower blocks are shifted in the rotation direction to be integrally formed. ing.

【0009】この図において、図示するように、上側の
N極から出た磁束が、下側のS極に入ってしまい、ロー
タ外部のステータに鎖交することなくロータ内部で短絡
ループを形成してしまい、トルク低下を起こしてしま
う。
In this figure, as shown in the figure, the magnetic flux from the upper N pole enters the lower S pole and forms a short-circuit loop inside the rotor without linking to the stator outside the rotor. This causes a decrease in torque.

【0010】[0010]

【課題を解決するための手段】本発明は上記先行発明の
問題点を解決するため、ロータの内部に永久磁石を軸方
向に埋設してなる永久磁石埋込型同期モータで、軸方向
に複数に分割した永久磁石を、軸方向に薄板状の電磁鋼
板を積層した複数個のロータコアブロックに個々に埋設
し、これら複数個のロータコアブロック完成品を、ロー
タの回転方向にずらして軸方向に一体構成してなるロー
タにおいて、これら複数個のロータコアブロック間に非
磁性体からなる薄板をはさみ込んで、一体構成したもの
である。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems of the prior invention, the present invention relates to a permanent magnet embedded synchronous motor having a permanent magnet embedded in the rotor in the axial direction. The permanent magnets divided into two parts are individually embedded in a plurality of rotor core blocks, each of which is made of laminated electromagnetic steel sheets in the axial direction, and these completed rotor core blocks are shifted in the direction of rotor rotation and integrated in the axial direction. In the rotor thus configured, a thin plate made of a non-magnetic material is sandwiched between the plurality of rotor core blocks to be integrally formed.

【0011】この発明によれば、各ロータブロック間あ
る非磁性体の薄板が磁束の短絡を防ぐため、トルクの減
少なしにコギングトルクを低減することが可能となる。
According to the present invention, the cogging torque can be reduced without reducing the torque because the thin plate of the non-magnetic material between the rotor blocks prevents short-circuit of the magnetic flux.

【0012】本願第2発明は上記先行発明の問題点を解
決するため、第1の発明のロータにおいて、非磁性体か
らなる薄板の外径がロータコアの外径より小さいことを
特徴とする永久磁石埋込型リラクタンスモータである。
According to a second aspect of the present invention, there is provided a rotor according to the first aspect, wherein the outer diameter of the thin plate made of a non-magnetic material is smaller than the outer diameter of the rotor core. It is an embedded type reluctance motor.

【0013】この発明によれば、各ロータブロック間あ
る非磁性体の薄板が磁束の短絡を防ぎ、非磁性体の外径
がロータコアの外径より小さいため、非磁性体に発生す
る渦電流損失を最小限に抑えることが可能となる。
According to the present invention, since the thin plate of the non-magnetic material between the rotor blocks prevents short-circuit of magnetic flux, and the outer diameter of the non-magnetic material is smaller than the outer diameter of the rotor core, eddy current loss generated in the non-magnetic material Can be minimized.

【0014】[0014]

【発明の実施の形態】上記の課題を解決するために本発
明は、ロータの内部に永久磁石を軸方向に埋設してなる
永久磁石埋込型同期モータで、軸方向に複数に分割した
永久磁石を、軸方向に薄板状の電磁鋼板を積層した複数
個のロータコアブロックに個々に埋設し、これら複数個
のロータコアブロック完成品を、ロータの回転方向にず
らして軸方向に一体構成してなるロータにおいて、これ
ら複数個のロータコアブロック間に非磁性体からなる薄
板を挟み込んで、一体構成したものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to solve the above-mentioned problems, the present invention relates to a permanent magnet embedded type synchronous motor having a permanent magnet embedded in a rotor in an axial direction. The magnets are individually buried in a plurality of rotor core blocks in which laminated electromagnetic steel sheets are laminated in the axial direction, and the completed plurality of rotor core blocks are integrally formed in the axial direction while being shifted in the rotation direction of the rotor. In the rotor, a thin plate made of a non-magnetic material is sandwiched between the plurality of rotor core blocks to be integrally formed.

【0015】[0015]

【実施例】(実施例1)図1に示すように、ロータ1は
図に示すような、複数に積層された電磁鋼板からなる、
ロータコアブロック2,3からなり、ロータコアブロッ
ク2,3の内部には永久磁石4が埋め込まれている。ロ
ータコアブロック2,3は薄板状の非磁性体5を挟み込
んで軸方向配置されており、さらにロータコアブロック
2,3は所定の角度ずらして一体構成されている。この
時、ロータコアブロック2に埋め込んだN極と、ロータ
コアブロック3に埋め込んだS極は回転軸方向に重なっ
ているが、非磁性体5によりN極からS極に流れる磁束
を抑えることができる。
(Embodiment 1) As shown in FIG. 1, a rotor 1 is composed of a plurality of laminated electromagnetic steel sheets as shown in FIG.
The rotor core blocks 2 and 3 have permanent magnets 4 embedded therein. The rotor core blocks 2 and 3 are arranged in the axial direction with the thin plate-shaped non-magnetic member 5 interposed therebetween, and the rotor core blocks 2 and 3 are integrally formed at a predetermined angle. At this time, although the N pole embedded in the rotor core block 2 and the S pole embedded in the rotor core block 3 overlap in the direction of the rotation axis, the magnetic flux flowing from the N pole to the S pole can be suppressed by the nonmagnetic material 5.

【0016】ロータコアブロック2とロータコアブロッ
ク3は、同一の回転軸に、圧入又は焼嵌めにより固定さ
れている。非磁性体5はロータコアブロック2とロータ
コアブロック3に挟まれ、ロータ1に固定されている。
薄板状の非磁性体は図3に示すような形状をしている。
非磁性体の材質としては、真鍮、アルミ、ステンレス等
の材質が挙げられる。
The rotor core block 2 and the rotor core block 3 are fixed to the same rotating shaft by press fitting or shrink fitting. The non-magnetic material 5 is sandwiched between the rotor core blocks 2 and 3 and is fixed to the rotor 1.
The thin non-magnetic material has a shape as shown in FIG.
Examples of the material of the non-magnetic material include materials such as brass, aluminum, and stainless steel.

【0017】このような構成にすることで、永久磁石4
から発生する磁束が、ロータ内部を軸方向に進んで短絡
磁束を構成することが無くなるため、永久磁束による鎖
交磁束を最大限に利用することが可能となる。
With such a configuration, the permanent magnet 4
Since the magnetic flux generated from the magnetic flux does not travel in the rotor in the axial direction to form a short-circuit magnetic flux, it is possible to make maximum use of the interlinkage magnetic flux due to the permanent magnetic flux.

【0018】(実施例2)図4は第2の実施例を示す図
である。第2の実施例は、第1の実施例の薄板状からな
る非磁性体の外径がロータコアの外径より小さいため、
非磁性体に発生する渦電流損失を最小限に抑えて、第1
の実施例と同様の効果を得ることができる。
(Embodiment 2) FIG. 4 is a diagram showing a second embodiment. In the second embodiment, since the outer diameter of the thin plate-shaped non-magnetic material of the first embodiment is smaller than the outer diameter of the rotor core,
By minimizing the eddy current loss generated in the non-magnetic material, the first
The same effect as that of the embodiment can be obtained.

【0019】(実施例3)第3の実施例は第1の実施例
のロータにおいて、非磁性体からなる薄板が、ロータコ
アを構成する電磁鋼板の板厚tに対して、0.5<t<
1.5であることを特徴とする永久磁石埋込型リラクタ
ンスモータである。非磁性体の薄板の厚みは厚くなるほ
ど、ロータ内部の短絡磁束を防ぐ効果が大きくなるが、
非磁性体部で発生する渦電流損失が大きくなる。そこ
で、非磁性体部の厚みを電磁鋼板の板板厚tに対して、
0.5<t<1.5にすることで、短絡磁束を防ぐとと
もに、渦電流損失も小さくすることが可能である。
(Embodiment 3) The third embodiment is directed to the rotor of the first embodiment, wherein the thin plate made of a non-magnetic material is 0.5 <t with respect to the thickness t of the electromagnetic steel plate constituting the rotor core. <
It is a permanent magnet embedded type reluctance motor characterized in that the ratio is 1.5. The effect of preventing short-circuit magnetic flux inside the rotor increases as the thickness of the nonmagnetic thin plate increases,
Eddy current loss generated in the non-magnetic part increases. Therefore, the thickness of the non-magnetic material part is set to the thickness t of the electromagnetic steel sheet.
By setting 0.5 <t <1.5, it is possible to prevent short-circuit magnetic flux and reduce eddy current loss.

【0020】(実施例4)第3の実施例は第1の実施例
のロータにおいて、非磁性体部が図5に示すように、薄
板状のものを複数枚重ねたことを特徴とする永久磁石埋
込型リラクタンスモータである。永久磁石に希土類磁石
のような起磁力の大きな永久磁石を用いた場合、非磁性
体部の厚みを厚くしなければならないが、ロータコアに
使用する電磁鋼板と同等の厚みをもつ非磁性体を複数枚
重ねることで短絡磁束を防ぐとともに、渦電流損失も小
さくすることが可能である。
(Embodiment 4) A third embodiment is characterized in that the rotor of the first embodiment is characterized in that a plurality of thin non-magnetic members are stacked as shown in FIG. It is a magnet embedded type reluctance motor. When a permanent magnet with a large magnetomotive force, such as a rare earth magnet, is used as the permanent magnet, the thickness of the nonmagnetic material must be increased.However, there are multiple nonmagnetic materials having the same thickness as the electromagnetic steel sheet used for the rotor core. By stacking the sheets, short-circuit magnetic flux can be prevented and eddy current loss can be reduced.

【0021】(実施例5)第1の実施例において、複数
個のロータコアブロック完成品を、ロータの回転方向に
ずらして軸方向に一体構成してなるロータにおいて、こ
れら複数個のロータコアブロック間に一定間隔のギャッ
プを設けることを特徴とした永久磁石埋込型リラクタン
スモータである。この構成では、非磁性体の代わりにギ
ャップを設けているが、空気も非磁性体であり、しかも
電気抵抗が非常に大きいので、渦電流損失を発生させる
ことなく、磁束の短絡を防ぐ効果を得ることが可能であ
る。
(Embodiment 5) In the first embodiment, in a rotor in which a plurality of completed rotor core blocks are integrally formed in the axial direction while being shifted in the rotation direction of the rotor, the rotor core blocks are interposed between the plurality of rotor core blocks. This is a permanent magnet embedded type reluctance motor characterized by providing gaps at regular intervals. In this configuration, a gap is provided in place of a non-magnetic material.However, air is also a non-magnetic material and has a very high electric resistance. It is possible to get.

【0022】[0022]

【発明の効果】上記実施例の記載から明らかなように、
本発明はロータの内部に永久磁石を軸方向に埋設してな
る永久磁石埋込型同期モータで、軸方向に複数に分割し
た永久磁石を、軸方向に薄板状の電磁鋼板を積層した複
数個のロータコアブロックに個々に埋設し、これら複数
個のロータコアブロック完成品を、ロータの回転方向に
ずらして軸方向に一体構成してなるロータにおいて、こ
れら複数個のロータコアブロック間に非磁性体からなる
薄板を挟み込んで、一体構成したものであり、ロータコ
アコアブロック間に非磁性体からなる薄板を設けること
で、永久磁石から発生する磁束が軸方向に短絡ループを
構成するのを防止して、鎖交磁束の減小を最小限にする
ことが可能になる。
As is clear from the description of the above embodiment,
The present invention is a permanent magnet embedded synchronous motor in which permanent magnets are embedded in the rotor in the axial direction, and a plurality of permanent magnets divided into a plurality in the axial direction are laminated with a thin electromagnetic steel sheet in the axial direction. A plurality of rotor core block finished products which are individually buried in the rotor core block, and are integrally formed in the axial direction by shifting the rotor core block in the direction of rotation of the rotor. A thin plate is sandwiched and integrally formed.By providing a thin plate made of a non-magnetic material between the rotor core and the core block, the magnetic flux generated from the permanent magnet is prevented from forming a short-circuit loop in the axial direction, and the chain is formed. It is possible to minimize the reduction of the magnetic flux.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本願第1の実施例を示すロータの斜視図FIG. 1 is a perspective view of a rotor showing a first embodiment of the present invention.

【図2】(a)(b)は本願第1の実施例を示すロータ
コアシートを示す図
FIGS. 2A and 2B are views showing a rotor core sheet according to a first embodiment of the present invention.

【図3】本願第1の実施例による非磁性体からなる薄板
を示す図
FIG. 3 is a view showing a thin plate made of a non-magnetic material according to the first embodiment of the present invention;

【図4】本願第2の実施例を示すロータの斜視図FIG. 4 is a perspective view of a rotor showing a second embodiment of the present invention.

【図5】本願第4の実施例による非磁性体からなる薄板
を示す図
FIG. 5 is a view showing a thin plate made of a non-magnetic material according to a fourth embodiment of the present invention;

【図6】従来のロータの斜視図FIG. 6 is a perspective view of a conventional rotor.

【符号の説明】[Explanation of symbols]

1 ロータ 2,3 ロータコアブロック 4 永久磁石 5 非磁性体 Reference Signs List 1 rotor 2, 3 rotor core block 4 permanent magnet 5 nonmagnetic material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 本田 幸夫 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H619 AA01 BB01 BB13 BB15 BB24 PP02 PP06 PP08 5H621 AA02 BB07 GA01 GA04 HH01 HH08 JK02 5H622 AA02 AA03 CA02 CA07 CA13 CB01 CB03 CB05 CB06 PP03 PP10 PP11 PP16 PP19 QB03 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Yukio Honda 1006 Kazuma Kadoma, Kazuma City, Osaka Prefecture F-term in Matsushita Electric Industrial Co., Ltd. 5H622 AA02 AA03 CA02 CA07 CA13 CB01 CB03 CB05 CB06 PP03 PP10 PP11 PP16 PP19 QB03

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ロータの内部に永久磁石を軸方向に埋設
してなる、永久磁石埋込型同期モータで、軸方向に複数
に分割した永久磁石を、軸方向に薄板状の電磁鋼板を積
層した複数個のロータコアブロックに個々に埋設し、こ
れら複数個のロータコアブロック完成品を、ロータの回
転方向にずらして軸方向に一体構成してなるロータにお
いて、これら複数個のロータコアブロック間に非磁性体
からなる薄板をはさみ込んで、一体構成したロータを有
することを特徴とした永久磁石埋込型リラクタンスモー
タ。
1. A permanent magnet embedded type synchronous motor in which permanent magnets are embedded in a rotor in an axial direction, wherein a plurality of permanent magnets divided in the axial direction are laminated with a thin electromagnetic steel sheet in the axial direction. Embedded in each of the plurality of rotor core blocks, and the completed rotor core blocks are integrally formed in the axial direction while being shifted in the rotation direction of the rotor. An embedded permanent magnet reluctance motor having a rotor integrally formed by sandwiching a thin plate made of a body.
【請求項2】 非磁性体からなる薄板がロータコアの外
径より小さいことを特徴とする請求項1記載の永久磁石
埋込型リラクタンスモータ。
2. The permanent magnet embedded type reluctance motor according to claim 1, wherein the thin plate made of a non-magnetic material is smaller than the outer diameter of the rotor core.
【請求項3】 非磁性体からなる薄板が、ロータコアを
構成する電磁鋼板の板厚tに対して、0.5<t<1.
5であることを特徴とする請求項1記載の永久磁石埋込
型リラクタンスモータ。
3. The thin plate made of a non-magnetic material has a thickness of 0.5 <t <1.
5. The permanent magnet embedded type reluctance motor according to claim 1.
【請求項4】 非磁性体からなる薄板を複数枚重ねたこ
とを特徴とする請求項1記載の永久磁石埋込型リラクタ
ンスモータ。
4. The permanent magnet embedded type reluctance motor according to claim 1, wherein a plurality of thin plates made of a non-magnetic material are stacked.
【請求項5】 複数個のロータコアブロック完成品を、
ロータの回転方向にずらして軸方向に一体構成してなる
ロータにおいて、これら複数個のロータコアブロック間
に一定間隔のギャップを設けることを特徴とした請求項
1記載の永久磁石埋込型リラクタンスモータ。
5. A plurality of completed rotor core blocks,
2. A permanent magnet embedded type reluctance motor according to claim 1, wherein a fixed gap is provided between said plurality of rotor core blocks in a rotor which is integrally formed in the axial direction shifted from the rotation direction of the rotor.
JP11110843A 1999-04-19 1999-04-19 Permanent magnet embedded reluctance motor Withdrawn JP2000308287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11110843A JP2000308287A (en) 1999-04-19 1999-04-19 Permanent magnet embedded reluctance motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11110843A JP2000308287A (en) 1999-04-19 1999-04-19 Permanent magnet embedded reluctance motor

Publications (1)

Publication Number Publication Date
JP2000308287A true JP2000308287A (en) 2000-11-02

Family

ID=14546081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11110843A Withdrawn JP2000308287A (en) 1999-04-19 1999-04-19 Permanent magnet embedded reluctance motor

Country Status (1)

Country Link
JP (1) JP2000308287A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1253701A2 (en) * 2001-04-25 2002-10-30 Matsushita Electric Industrial Co., Ltd. Motor
JP2003047186A (en) * 2001-07-31 2003-02-14 Isuzu Motors Ltd Rotor for rotary electric machine
JP2004343886A (en) * 2003-05-15 2004-12-02 Asmo Co Ltd Embedded magnet type motor
US6876115B2 (en) 2003-02-14 2005-04-05 Kabushiki Kaisha Moric Magnetic field type of rotary electric apparatus
JP2006304546A (en) * 2005-04-22 2006-11-02 Toshiba Corp Permanent magnet reluctance type rotary electric machine
DE102006052772A1 (en) * 2006-03-20 2007-09-27 Temic Automotive Electric Motors Gmbh Rotor for a permanent-magnet motor, in particular EC motor
WO2009069575A1 (en) * 2007-11-28 2009-06-04 Kabushiki Kaisha Toshiba Rotary machine rotor
WO2010023038A2 (en) * 2008-08-27 2010-03-04 Robert Bosch Gmbh Rotor for an electric machine with reduced detent torque
JP2011072125A (en) * 2009-09-25 2011-04-07 Toshiba Carrier Corp Permanent magnet motor, sealed compressor, and refrigeration cycle device
JP2012213289A (en) * 2011-03-31 2012-11-01 Daikin Ind Ltd Rotor and rotary electric machine
JP2012217283A (en) * 2011-04-01 2012-11-08 Denso Corp Rotor of rotary electric machine and method of manufacturing the same
JP2013031336A (en) * 2011-07-29 2013-02-07 Sim-Drive Co Ltd Permanent magnet type synchronous motor
DE102011080671A1 (en) * 2011-08-09 2013-02-14 Siemens Aktiengesellschaft Rotor for a permanent magnetic machine
DE102011086280A1 (en) * 2011-11-14 2013-05-16 Schaeffler Technologies AG & Co. KG Permanently-excited three-phase-synchronous machine for use as traction drive in motor car, has stator comprising tooth coil winding, and rotor comprising permanent magnets and partial rotors that are rotated opposite to each other
JP2014128116A (en) * 2012-12-26 2014-07-07 Toyota Industries Corp Permanent magnet embedded rotary electric machine
CN103929032A (en) * 2013-01-15 2014-07-16 日本电产株式会社 Rotary Motor
DE102014101221A1 (en) 2013-01-31 2014-07-31 Sanyo Denki Co., Ltd. Rotor for a permanent magnet motor, method for manufacturing a rotor for a permanent magnet motor and permanent magnet motor
DE102004036691B4 (en) * 2003-07-31 2015-11-05 Kabushiki Kaisha Toshiba Rotor for a rotating machine of a reluctance type
US9705366B2 (en) 2014-04-08 2017-07-11 Mitsubishi Electric Corporation Embedded permanent magnet rotary electric machine
CN108023417A (en) * 2016-11-04 2018-05-11 三菱电机株式会社 Magnet baried type electric rotating motivation and its manufacture method
JP2021175216A (en) * 2020-04-21 2021-11-01 三菱電機株式会社 Rotary electric machine

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1253701A2 (en) * 2001-04-25 2002-10-30 Matsushita Electric Industrial Co., Ltd. Motor
EP1253701A3 (en) * 2001-04-25 2003-01-29 Matsushita Electric Industrial Co., Ltd. Motor
US6919662B2 (en) 2001-04-25 2005-07-19 Matsushita Electric Industrial Co., Ltd. Motor
US6987343B2 (en) 2001-04-25 2006-01-17 Matsushita Electric Industrial Co., Ltd. Motor
JP2003047186A (en) * 2001-07-31 2003-02-14 Isuzu Motors Ltd Rotor for rotary electric machine
US6876115B2 (en) 2003-02-14 2005-04-05 Kabushiki Kaisha Moric Magnetic field type of rotary electric apparatus
JP2004343886A (en) * 2003-05-15 2004-12-02 Asmo Co Ltd Embedded magnet type motor
DE102004036691B4 (en) * 2003-07-31 2015-11-05 Kabushiki Kaisha Toshiba Rotor for a rotating machine of a reluctance type
JP2006304546A (en) * 2005-04-22 2006-11-02 Toshiba Corp Permanent magnet reluctance type rotary electric machine
DE102006052772A1 (en) * 2006-03-20 2007-09-27 Temic Automotive Electric Motors Gmbh Rotor for a permanent-magnet motor, in particular EC motor
WO2007107136A1 (en) * 2006-03-20 2007-09-27 Temic Automotive Electric Motors Gmbh Rotors for a permanently excited motor, in particular an ec motor
WO2009069575A1 (en) * 2007-11-28 2009-06-04 Kabushiki Kaisha Toshiba Rotary machine rotor
US8362668B2 (en) 2007-11-28 2013-01-29 Kabushiki Kaisha Toshiba Rotor for rotating electrical machine
JP2009136040A (en) * 2007-11-28 2009-06-18 Toshiba Corp Rotor of rotary electric machine
EP2216883A4 (en) * 2007-11-28 2016-08-24 Toshiba Kk Rotary machine rotor
CN101855808B (en) * 2007-11-28 2013-03-13 株式会社东芝 Rotary machine rotor
WO2010023038A2 (en) * 2008-08-27 2010-03-04 Robert Bosch Gmbh Rotor for an electric machine with reduced detent torque
WO2010023038A3 (en) * 2008-08-27 2010-12-09 Robert Bosch Gmbh Rotor for an electric machine with reduced detent torque
US8810102B2 (en) * 2008-08-27 2014-08-19 Robert Bosch Gmbh Rotor for an electric machine with reduced detent torque
JP2011072125A (en) * 2009-09-25 2011-04-07 Toshiba Carrier Corp Permanent magnet motor, sealed compressor, and refrigeration cycle device
JP2012213289A (en) * 2011-03-31 2012-11-01 Daikin Ind Ltd Rotor and rotary electric machine
JP2012217283A (en) * 2011-04-01 2012-11-08 Denso Corp Rotor of rotary electric machine and method of manufacturing the same
JP2013031336A (en) * 2011-07-29 2013-02-07 Sim-Drive Co Ltd Permanent magnet type synchronous motor
CN103733480A (en) * 2011-07-29 2014-04-16 Sim传动株式会社 Permanent magnet synchronous motor
WO2013018697A1 (en) * 2011-07-29 2013-02-07 株式会社SIM-Drive Permanent magnet synchronous motor
WO2013020846A3 (en) * 2011-08-09 2013-04-04 Siemens Aktiengesellschaft Rotor for a permanent-magnet machine
DE102011080671A1 (en) * 2011-08-09 2013-02-14 Siemens Aktiengesellschaft Rotor for a permanent magnetic machine
DE102011086280A1 (en) * 2011-11-14 2013-05-16 Schaeffler Technologies AG & Co. KG Permanently-excited three-phase-synchronous machine for use as traction drive in motor car, has stator comprising tooth coil winding, and rotor comprising permanent magnets and partial rotors that are rotated opposite to each other
JP2014128116A (en) * 2012-12-26 2014-07-07 Toyota Industries Corp Permanent magnet embedded rotary electric machine
CN103929032A (en) * 2013-01-15 2014-07-16 日本电产株式会社 Rotary Motor
JP2014138433A (en) * 2013-01-15 2014-07-28 Nippon Densan Corp Rotating electrical machine
WO2014112021A1 (en) * 2013-01-15 2014-07-24 Nidec Corporation Motor
US9966809B2 (en) 2013-01-15 2018-05-08 Nidec Corporation Motor
DE102014101221A1 (en) 2013-01-31 2014-07-31 Sanyo Denki Co., Ltd. Rotor for a permanent magnet motor, method for manufacturing a rotor for a permanent magnet motor and permanent magnet motor
US9705366B2 (en) 2014-04-08 2017-07-11 Mitsubishi Electric Corporation Embedded permanent magnet rotary electric machine
CN108023417A (en) * 2016-11-04 2018-05-11 三菱电机株式会社 Magnet baried type electric rotating motivation and its manufacture method
JP2021175216A (en) * 2020-04-21 2021-11-01 三菱電機株式会社 Rotary electric machine

Similar Documents

Publication Publication Date Title
JP2000308287A (en) Permanent magnet embedded reluctance motor
JP6826566B2 (en) Stator core for rotary electric machine and rotary electric machine
US4237396A (en) Electromagnetic machines with permanent magnet excitation
JP2001136721A (en) Axially-spaced permanent magnet synchronous machine
JPH11103546A (en) Permanent magnet motor
KR20080077128A (en) Arrangement of rotor laminates of a permanently excited electrical machine
JPH10271722A (en) Permanent magnet buried rotor
JPH11146584A (en) Synchronous motor with permanent magnet
JP7293371B2 (en) Rotor of rotary electric machine
JP2006158037A (en) Buried magnet rotor
JP4984347B2 (en) Electric motor
JPH0833246A (en) Rotor for permanent magnet synchronous electric rotating machine
JPH0479741A (en) Permanent magnet rotor
JPH0279738A (en) Rotor for synchronous type ac servomotor
JP2002084690A (en) Electric motor
JP3772819B2 (en) Coaxial motor rotor structure
JPH08107639A (en) Rotor of permanent magnet type synchronous electric rotating machine
JP3607137B2 (en) Permanent magnet embedded rotor
JPH1189134A (en) Permanent magnet type motor
JPH1080079A (en) Reluctance motor
JP3722126B2 (en) Reluctance motor
JP2004222466A (en) Embedded magnet type motor
JPH1189135A (en) Permanent magnet type motor
JP2001359247A (en) Rotor for permanent magnet motor
JP7308645B2 (en) Rotating electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060208

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060314

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070730