JP2000297105A - Manufacture of water soluble copolymer - Google Patents

Manufacture of water soluble copolymer

Info

Publication number
JP2000297105A
JP2000297105A JP2000009104A JP2000009104A JP2000297105A JP 2000297105 A JP2000297105 A JP 2000297105A JP 2000009104 A JP2000009104 A JP 2000009104A JP 2000009104 A JP2000009104 A JP 2000009104A JP 2000297105 A JP2000297105 A JP 2000297105A
Authority
JP
Japan
Prior art keywords
polymerization
water
copolymer
polymer
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000009104A
Other languages
Japanese (ja)
Inventor
Nobuko Ogami
暢子 大上
Masayuki Toyama
昌之 遠山
Koji Nishida
耕二 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2000009104A priority Critical patent/JP2000297105A/en
Publication of JP2000297105A publication Critical patent/JP2000297105A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide

Abstract

PROBLEM TO BE SOLVED: To obtain an aqueous solution of a polymer in a relatively short polymerization time and at a high conversion rate which can be used as it is without solvent substitution or the like by polymerizing at least two monomers selected from 4 water soluble amide monomers in water using a water soluble polymerization initiator. SOLUTION: Monomers to be use are represented by formula I to IV (wherein R1 to R8 are each H or a 1-3C hydrocarbon; and (m) and (n) are each 1 to 3). The water may be distilled water or deionized water and it is preferable to remove oxygen dissolved in water before polymerization. The polymerization initiator is preferably a water soluble azo-based polymerization initiator and pH of the polymerization solution is preferably adjusted at 6.5 to 10. The polymerization is conducted by firstly adding the polymerization initiator to the polymerization solution dissolving the whole monomer represented by formula I and a part of a monomer to be copolymerized, and then adding the residual monomer gradually to the polymerization reaction system. The polymerization temperature is preferably in the range from a temperature lower than a lower critical consolute temperature by 20 deg.C corresponding to a concentration of the produced polymer in water to the lower critical consolute temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は水溶性共重合体の製
造方法に関し、詳しくは、水を重合溶媒として用い、高
い転化率で重合体を得る製造方法に関する。
The present invention relates to a method for producing a water-soluble copolymer, and more particularly to a method for producing a polymer at a high conversion using water as a polymerization solvent.

【0002】[0002]

【従来の技術】水溶性の重合可能なモノマーの重合体を
得る方法としては、一般的には、重合開始剤を用いてモ
ノマーと重合開始剤が溶解する有機溶媒中で重合する方
法、水に可溶な重合開始剤を用いて水を溶媒とした水系
重合方法がある。例えば、ドイツ特許第4342281
号には、N−ビニルカプロラクタムを主成分とするポリ
マーを得る手法として、水性溶媒またはメタノール中で
重合させる手法が記載されている。この場合、メタノー
ルを重合溶媒として使用した場合には、重合終了後メタ
ノールを水と置換する必要がある。
2. Description of the Related Art As a method for obtaining a polymer of a water-soluble polymerizable monomer, generally, a method in which a polymerization is carried out in an organic solvent in which the monomer and the polymerization initiator are dissolved using a polymerization initiator, There is an aqueous polymerization method using water as a solvent by using a soluble polymerization initiator. For example, German Patent No. 4,342,281
No. 4,878,098 describes a method for polymerizing in an aqueous solvent or methanol as a method for obtaining a polymer containing N-vinylcaprolactam as a main component. In this case, when methanol is used as the polymerization solvent, it is necessary to replace the methanol with water after the completion of the polymerization.

【0003】また、特開平10−212321号公報に
はメタノール/水混合溶媒中でN−ビニルカプロラクタ
ムを主成分とするポリマーを窒素ガスによる加圧下、お
よび添加剤を用いることによって高いモノマーのポリマ
ーへの転化率で重合体を得る手法が記載されている。
Japanese Patent Application Laid-Open No. 10-212321 discloses that a polymer containing N-vinylcaprolactam as a main component in a mixed solvent of methanol / water can be converted into a polymer having a high monomer by pressurizing with nitrogen gas and using an additive. A method for obtaining a polymer at a conversion of is described.

【0004】上記2つの手法は、重合溶媒として有機溶
媒を使用するということから、重合終了後該ポリマーの
水溶液を得る場合には、有機溶媒を水と置換する必要が
あり、置換された溶媒処理を必須とする。したがって、
溶媒置換と言う煩雑な操作が必要な上に加え、置換溶剤
の処理と言う環境問題の観点からも問題がある。
Since the above two methods use an organic solvent as a polymerization solvent, when an aqueous solution of the polymer is obtained after the polymerization, it is necessary to replace the organic solvent with water. Is required. Therefore,
In addition to the need for a complicated operation called solvent replacement, there is also a problem from the viewpoint of environmental problems such as treatment of the replacement solvent.

【0005】さらに、上記の2つの特許文献に記述され
ている重合方法は、高いモノマーの重合転化率を得るこ
とを目的として重合系を加圧しているにもかかわらず、
重合時間に10時間以上要している。
Further, the polymerization methods described in the above two patent documents, despite the fact that the polymerization system is pressurized in order to obtain a high polymerization conversion of the monomer,
It takes 10 hours or more for the polymerization time.

【0006】一方、米国特許5567786号には、重
合溶媒として水のみを使用してN−ビニルピロリドンや
N−ビニルカプロラクタムのポリマーを得る手法が述べ
られている。しかしながら、この処方も重合時間が一晩
と長い。
On the other hand, US Pat. No. 5,567,786 describes a method for obtaining a polymer of N-vinylpyrrolidone or N-vinylcaprolactam using only water as a polymerization solvent. However, this formulation also has a long polymerization time of overnight.

【0007】前記−般式(1)〜(4)で表わされるモ
ノマーは、分子内に親水性のアミド基と疎水性のアルキ
ル基を持つため、それらの重合体は水中で下限臨界共溶
温度を有する。すなわち、下限臨界共溶温度以上の温度
において重合を行うと、重合体は水に不溶となり析出が
起こるので、重合が進行しにくくなる。この重合のしに
くさを回避するためにも、従来は前述のように主に有機
溶媒が重合溶媒として用いられてきた。
Since the monomers represented by the above-mentioned general formulas (1) to (4) have a hydrophilic amide group and a hydrophobic alkyl group in the molecule, their polymers have a lower critical solution temperature in water. Having. That is, when the polymerization is performed at a temperature equal to or higher than the lower critical solution temperature, the polymer becomes insoluble in water and precipitates, so that the polymerization hardly proceeds. In order to avoid this difficulty in polymerization, conventionally, an organic solvent has been mainly used as a polymerization solvent as described above.

【0008】N−ビニルアミドの水溶媒での重合処方と
しては、Journal of Polymer Sc
ience,Part A 1997年35巻1763
ペ−ジから1768ペ−ジ中に記載されているアゾ系開
始剤を用いた水系重合法があるが、この場合のモノマー
の重合体への転化率はおよそ60%程度である。これは
用いる重合触媒の特性上、その重合温度が低く重合反応
が遅いためである。さらにこの文献によれば、N−ビニ
ルアミドはレドックス系開始剤では重合がほとんど進行
せず、そのため該モノマーの重合はどうしても有機溶媒
中で開始剤効率が高く重合反応速度が高い温度領域で重
合を行う必要があった。
[0008] The polymerization formulation of N-vinylamide in an aqueous solvent includes Journal of Polymer Sc
ence, Part A 1997, 35, 1763
There is an aqueous polymerization method using an azo initiator described on pages 1768 to 1768. In this case, the conversion of the monomer to the polymer is about 60%. This is because, due to the characteristics of the polymerization catalyst used, the polymerization temperature is low and the polymerization reaction is slow. Further, according to this document, polymerization of N-vinyl amide hardly proceeds with a redox-based initiator, and therefore polymerization of the monomer inevitably takes place in an organic solvent in a temperature range where the initiator efficiency is high and the polymerization reaction rate is high. Needed.

【0009】しかしながら前述の通り、これらモノマー
をベンゼンやアルコール等の有機溶媒を重合溶媒として
用いた重合により得られた重合体を水溶液として使用す
る場合には有機溶媒を水と置換する必要があり、コスト
がかかる上に、環境問題への配慮から使用済みの有機溶
媒を適切に処理する必要があった。
However, as described above, when a polymer obtained by polymerization of these monomers using an organic solvent such as benzene or alcohol as a polymerization solvent is used as an aqueous solution, it is necessary to replace the organic solvent with water. In addition to the cost, it is necessary to properly treat the used organic solvent in consideration of environmental issues.

【0010】さらに、特開平4−346833号公報に
もN−ビニルアミドを重合溶媒とする重合方法が記載さ
れているが、該重合法はモノマーの重合体への転化率を
上げるために16時間もの長時間を要しているにも関わ
らず、その転化率は未だ低いものにとどまっている。
Further, Japanese Patent Application Laid-Open No. 4-346833 discloses a polymerization method using N-vinylamide as a polymerization solvent, but the polymerization method requires 16 hours in order to increase the conversion of a monomer into a polymer. Despite taking a long time, the conversion is still low.

【0011】[0011]

【発明が解決しようとする課題】本発明の目的は、N−
ビニルカプロラクタムなどの水溶性モノマーの共重合体
の製造に水を重合溶媒として使用することによって、溶
剤置換などによらずに最終的にポリマーの水溶液を得る
こと、また該ポリマーの水溶液をそのまま利用可能な重
合体を得る重合方法であり、かつ、比較的短時間の重合
でモノマーのポリマーへの高い重合転化率を達成しうる
重合方法を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide an N-
By using water as a polymerization solvent for the production of copolymers of water-soluble monomers such as vinylcaprolactam, it is possible to obtain an aqueous solution of the polymer without resorting to solvent replacement, etc. It is an object of the present invention to provide a polymerization method for obtaining a high-quality polymer and capable of achieving a high polymerization conversion rate of a monomer into a polymer in a relatively short time.

【0012】[0012]

【課題を解決するための手段】本発明は、下記式(1)
〜(4)で表されるモノマーのうち少なくとも2種を、
水を溶媒として用い、かつ水溶性の重合開始剤を用いて
重合させることを特徴とする水溶性共重合体の製造方法
に関する。
Means for Solving the Problems The present invention provides the following formula (1)
At least two of the monomers represented by (4)
The present invention relates to a method for producing a water-soluble copolymer, wherein polymerization is performed using water as a solvent and a water-soluble polymerization initiator.

【0013】[0013]

【化5】 Embedded image

【0014】[0014]

【化6】 Embedded image

【0015】[0015]

【化7】 Embedded image

【0016】[0016]

【化8】 ここで、式中、R1、R2、R3、R4、R5、R6、R7
よびR8は水素原子または炭素数1〜3の炭化水素基、
nは1〜3の整数、mは1〜3の整数である。
Embedded image Here, in the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms,
n is an integer of 1 to 3, and m is an integer of 1 to 3.

【0017】本発明者らは、水溶性共重合体を得る重合
方法について鋭意検討を重ねた結果、上記式(1)〜
(4)で表される水溶性のアミド系モノマーのうち少な
くとも2種を共重合させる際に、水溶性の重合開始剤を
用いることで水を溶媒として用いて重合できることを見
出し、本発明に至ったものである。特に、水素イオン濃
度指数を調整した水中で重合することにより、具体的に
は、水素イオン濃度指数が6.5〜10の範囲で重合す
ることにより、水中であっても短い重合時間で高い重合
転化率にて水溶性ポリマーを得ることができる。また、
特に、得られる水溶性共重合体の水中の下限臨界共溶温
度未満から、その20℃以下までの範囲に重合温度を保
つことによっても水中で高い転化率で効率良く共重合体
が得られる。
The present inventors have conducted intensive studies on a polymerization method for obtaining a water-soluble copolymer, and as a result,
When copolymerizing at least two of the water-soluble amide-based monomers represented by (4), they have found that polymerization can be performed using water as a solvent by using a water-soluble polymerization initiator, and the present invention has been achieved. It is a thing. In particular, by performing polymerization in water having a hydrogen ion concentration index adjusted, specifically, by performing polymerization in a range of 6.5 to 10 in a hydrogen ion concentration index, a high polymerization can be performed in a short polymerization time even in water. A water-soluble polymer can be obtained at a conversion rate. Also,
In particular, by maintaining the polymerization temperature in a range from lower than the lower critical solution temperature of the obtained water-soluble copolymer to 20 ° C. or lower, the copolymer can be efficiently obtained at a high conversion rate in water.

【0018】[0018]

【発明の実施の形態】以下、本発明について更に詳しく
説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail.

【0019】発明を実施するに際して用いる前記式
(1)〜(4)のモノマーにおいて、R 1、R2、R3
4、R5、R6、R7およびR8は水素原子または炭素数
1〜3の炭化水素基である。炭素数1〜3の炭化水素基
としては、メチル基、エチル基、プロピル基、イソプロ
ピル基、シクロプロピル基が挙げられる。
The above formula used in carrying out the invention
In the monomers (1) to (4), R 1, RTwo, RThree,
RFour, RFive, R6, R7And R8Is a hydrogen atom or carbon number
1 to 3 hydrocarbon groups. C1-C3 hydrocarbon group
Are methyl, ethyl, propyl, isopropyl
A pill group and a cyclopropyl group.

【0020】前記式(1)で表されるモノマーとして
は、N−ビニルホルムアミド、N−ビニルアセトアミ
ド、N−ビニル−N−メチルアセトアミド、N−ビニル
−N−メチルホルムアミド、N−ビニルプロピオンアミ
ドなどが挙げられる。好ましくはN−ビニルアセトアミ
ド、N−ビニル−N−メチルアセトアミドである。
Examples of the monomer represented by the above formula (1) include N-vinylformamide, N-vinylacetamide, N-vinyl-N-methylacetamide, N-vinyl-N-methylformamide, N-vinylpropionamide and the like. Is mentioned. Preferred are N-vinylacetamide and N-vinyl-N-methylacetamide.

【0021】また、前記式(2)で表されるモノマーと
しては、(メタ)アクリルアミド、N−メチル(メタ)
アクリルアミド、N,N−ジメチル(メタ)アクリルア
ミド、N−エチル−N−メチル(メタ)アクリルアミ
ド、N,N−ジエチル(メタ)アクリルアミド、N−n
−プロピル(メタ)アクリルアミド、N−イソプロピル
(メタ)アクリルアミド、N,N−ジ−n−プロピル
(メタ)アクリルアミドなどが挙げられる。好ましくは
N,N−ジエチル(メタ)アクリルアミド、N−n−プ
ロピル(メタ)アクリルアミド、N−イソプロピル(メ
タ)アクリルアミドである。
The monomers represented by the above formula (2) include (meth) acrylamide and N-methyl (meth)
Acrylamide, N, N-dimethyl (meth) acrylamide, N-ethyl-N-methyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, Nn
-Propyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N, N-di-n-propyl (meth) acrylamide and the like. Preferred are N, N-diethyl (meth) acrylamide, Nn-propyl (meth) acrylamide, and N-isopropyl (meth) acrylamide.

【0022】また、前記式(3)で表わされるモノマ−
としては、N−ビニルピロリドン、N−ビニルカプロラ
クタム、N−イソプロペニルピロリドン、N−イソプロ
ペニルカプロラクタムなどが挙げられる。好ましくはN
−ビニルピロリドン、N−ビニルカプロラクタムであ
る。
The monomer represented by the above formula (3)
Examples include N-vinylpyrrolidone, N-vinylcaprolactam, N-isopropenylpyrrolidone, N-isopropenylcaprolactam and the like. Preferably N
-Vinylpyrrolidone, N-vinylcaprolactam.

【0023】また、前記式(4)で表されるモノマーと
しては、(メタ)アクリロイルピロリジン、(メタ)ア
クリロイルピペリジン、(メタ)アクリロイルヘキサメ
チレンイミンなどが挙げられる。好ましくは(メタ)ア
クリロイルピロリジン、(メタ)アクリロイルピペリジ
ンである。
Examples of the monomer represented by the formula (4) include (meth) acryloylpyrrolidine, (meth) acryloylpiperidine, (meth) acryloylhexamethyleneimine and the like. Preferred are (meth) acryloylpyrrolidine and (meth) acryloylpiperidine.

【0024】本発明では、以上のモノマーのうち、少な
くとも2種を用いて、水を重合溶媒として、かつ水溶性
の重合開始剤を用いて重合を行う。重合溶媒として用い
る水は蒸留水、脱イオン水のいずれでも良いが、重合す
る前に溶存酸素を除去することが好ましい。特に、モノ
マー投入前に溶存酸素を予め除去した水を用いることが
好ましい。溶存酸素の除去は、窒素ガス、アルゴンガス
などの不活性ガスを水中に吹き込むことで容易に行うこ
とができる。
In the present invention, polymerization is carried out using at least two of the above monomers, using water as a polymerization solvent and a water-soluble polymerization initiator. The water used as the polymerization solvent may be distilled water or deionized water, but it is preferable to remove dissolved oxygen before polymerization. In particular, it is preferable to use water from which dissolved oxygen has been removed before the introduction of the monomer. Removal of dissolved oxygen can be easily performed by blowing an inert gas such as a nitrogen gas or an argon gas into water.

【0025】水溶性の重合開始剤としては、水に溶解す
るものであればいずれでも使用可能であるが、水溶性の
アゾ系重合開始剤が好ましい。アゾ系の重合開始剤とし
ては、例えば、2−シアノ−2−プロピルアゾホルムア
ミド、2,2’−アゾビス[2−(5−メチル−2−イ
ミダゾリン−2−イル)プロパン]二塩酸塩、2,2’
−アゾビス[2−(2−イミダゾリン−2−イル)プロ
パン]二塩酸塩、2,2’−アゾビス[2−(2−イミ
ダゾリン−2−イル)プロパン]二硫酸塩二水和物、
2,2’−アゾビス[2−(3,4,5,6−テトラヒ
ドロピリミジン−2−イル)プロパン]二塩酸塩、2,
2’−アゾビス{2−[1−(2−ヒドロキシエチル)
−2−イミダゾリン−2−イル]プロパン}二塩酸塩、
2,2’−アゾビス(2−アミジノプロパン)二塩酸
塩、2,2’−アゾビス{2−[N−(2−カルボキシ
エチル)アミジノ]プロパン}等が挙げられる。好まし
くは2,2’−アゾビス[2−(2−イミダゾリン−2
−イル)プロパン]二塩酸塩、2,2’−アゾビス(2
−アミジノプロパン)二塩酸塩である。
Any water-soluble polymerization initiator can be used as long as it is soluble in water, but a water-soluble azo polymerization initiator is preferred. Examples of the azo-based polymerization initiator include 2-cyano-2-propylazoformamide, 2,2′-azobis [2- (5-methyl-2-imidazolin-2-yl) propane] dihydrochloride, , 2 '
-Azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride, 2,2′-azobis [2- (2-imidazolin-2-yl) propane] disulfate dihydrate,
2,2′-azobis [2- (3,4,5,6-tetrahydropyrimidin-2-yl) propane] dihydrochloride, 2,
2'-azobis {2- [1- (2-hydroxyethyl)
-2-imidazolin-2-yl] propane dihydrochloride,
2,2′-azobis (2-amidinopropane) dihydrochloride, 2,2′-azobis {2- [N- (2-carboxyethyl) amidino] propane} and the like. Preferably, 2,2'-azobis [2- (2-imidazoline-2)
-Yl) propane] dihydrochloride, 2,2'-azobis (2
-Amidinopropane) dihydrochloride.

【0026】重合開始剤の添加量は、重合モノマ−であ
るアミド系モノマー100質量部に対し0.01〜10
質量部、好ましくは0.05〜5質量部である。
The amount of the polymerization initiator to be added is 0.01 to 10 parts by mass per 100 parts by mass of the amide monomer which is a polymerization monomer.
It is part by mass, preferably 0.05 to 5 parts by mass.

【0027】本発明において、重合開始剤は重合開始時
に全量を重合液に加えておいてもよいし、重合途中に適
宜分割して加えてもよい。
In the present invention, the polymerization initiator may be added to the polymerization solution in its entirety at the start of the polymerization, or may be added as appropriate during the polymerization.

【0028】上記開始剤は一般的に無機酸との塩化合物
であるものが多い。このような開始剤を使用してアミド
系モノマーの水系重合を行うと、重合溶液が不活性ガス
下での重合でも重合液が次第に酸性側、すなわち水素イ
オン濃度指数(以下「pH」という)が7末満となるこ
とがしばしば生じる。重合溶液の水素イオン濃度が過度
に酸性側にシフトすると、前記アミド系モノマーが加水
分解され目的とする実質的な重合体が得られないばかり
か、モノマーの分解によって重合転化率が極端に低下す
る。特に前記モノマ−のうち式(1)で表わされるN−
ビニルアミド類についてその傾向が顕著であり、水溶性
共重合体の水中での重合を困難にしている原因となって
いた。
Many of the above-mentioned initiators are generally salt compounds with inorganic acids. When an aqueous polymerization of an amide monomer is performed using such an initiator, the polymerization solution gradually becomes acidic even when the polymerization solution is polymerized under an inert gas, that is, the hydrogen ion concentration index (hereinafter referred to as “pH”). It often happens that it is full. If the hydrogen ion concentration of the polymerization solution is excessively shifted to the acidic side, not only the amide-based monomer is hydrolyzed and a practical polymer is not obtained, but also the polymerization conversion rate is extremely lowered due to the decomposition of the monomer. . In particular, among the above monomers, N- represented by the formula (1)
The tendency is remarkable for vinylamides, which has made it difficult to polymerize the water-soluble copolymer in water.

【0029】本発明では重合溶液のpHを好ましくは
6.5〜10の範囲、さらに好ましくは7.0〜9.0
の範囲に調整する。重合溶液がこの範囲にすることによ
り前記アミド系モノマーの加水分解を少なくすることが
できる。
In the present invention, the pH of the polymerization solution is preferably in the range of 6.5 to 10, more preferably 7.0 to 9.0.
Adjust to the range. By setting the polymerization solution in this range, hydrolysis of the amide monomer can be reduced.

【0030】重合溶液のpH調整は、重合系へのアルカ
リ水溶液の添加、弱アルカリ性緩衝液の添加などが挙げ
られるが、重合時間の範囲内で水素イオン濃度の範囲を
保つためには、緩衝溶液の使用が望ましい。pHを6.
5〜10の範囲内に保つ緩衝溶液としては、グリシン+
塩化ナトリウム−水酸化ナトリウム溶液、四ホウ酸ナト
リウム−塩酸溶液、リン酸二水素カリウム−リン酸水素
二ナトリウム溶液などのSorensenの緩衝液、四
ホウ酸ナトリウム−塩酸溶液リン酸二水素カリウム−四
ホウ酸ナトリウム溶液、四ホウ酸ナトリウム−炭酸ナト
リウム溶液などのKolthoffの緩衝液、リン酸二
水素カリウム−リン酸二水素ナトリウム溶液、塩化アン
モニウム−アンモニア溶液、ジエチルバルビルツル酸ナ
トリウム+酢酸ナトリウム−塩酸溶液、ジエチルバルビ
ルツル酸ナトリウム−塩酸溶液、N,N−ジエチルグリ
シンナトリウム塩−塩酸溶液などのMichaelis
の緩衝液、リン酸水素二ナトリウム−クエン酸溶液など
のMcIlvaineの緩衝液、クエン酸+リン酸二水
素カリウム+ホウ酸+ジエチルバルビルツル酸−リン酸
三ナトリウム溶液などのBritton−Robins
onの緩衝液、ホウ酸+クエン酸−リン酸三ナトリウム
溶液などのCarmodyの緩衝液、トリス(ヒドロキ
シメチル)アミノメタン−塩酸溶液などのBates−
BowerのTris緩衝液、HEPES緩衝液などが
挙げられる。好ましいpHの範囲である7.0〜9.0
の範囲とし、緩衝液によるN−アミド体の加水分解を少
なくするためには、リン酸塩系の緩衝液が望ましい。
The pH of the polymerization solution may be adjusted by adding an aqueous alkali solution to the polymerization system, or by adding a weakly alkaline buffer, etc. In order to maintain the hydrogen ion concentration within the polymerization time, the pH of the buffer solution must be adjusted. Is preferred. Adjust the pH to 6.
The buffer solution to be kept in the range of 5 to 10 includes glycine +
Sorensen's buffers such as sodium chloride-sodium hydroxide solution, sodium tetraborate-hydrochloric acid solution, potassium dihydrogen phosphate-disodium hydrogen phosphate solution, sodium tetraborate-hydrochloric acid solution potassium dihydrogen phosphate-tetraborate Sodium acid solution, Kolthoff buffer such as sodium tetraborate-sodium carbonate solution, potassium dihydrogen phosphate-sodium dihydrogen phosphate solution, ammonium chloride-ammonia solution, sodium diethyl barbirutrate + sodium acetate-hydrochloric acid solution, Michaelis such as sodium diethyl barbirutulate-hydrochloric acid solution, N, N-diethyl glycine sodium salt-hydrochloric acid solution
Buffer, McIlvine buffer such as disodium hydrogen phosphate-citric acid solution, Britton-Robins such as citric acid + potassium dihydrogen phosphate + boric acid + diethyl barbirutolic acid-trisodium phosphate solution
buffer, Carmody's buffer such as boric acid + citric acid-trisodium phosphate solution, and Bates- such as tris (hydroxymethyl) aminomethane-hydrochloric acid solution.
Bower's Tris buffer, HEPES buffer and the like. A preferred pH range of 7.0 to 9.0.
In order to reduce the hydrolysis of the N-amide by the buffer, a phosphate buffer is preferred.

【0031】前記式(1)〜(4)で示されるアミド系
モノマーの中で、式(1)で表わされるN−ビニルアミ
ド類は、他の式(2)〜(4)で表される3種のモノマ
ー類と比べて、相対的に重合反応性が低い。そのため、
重合溶媒中に式(1)で表わされるモノマーとそれ以外
の式(2)〜(3)で示されるモノマーを等モル仕込ん
だ後、重合させて得られた共重合体は、式(1)で示さ
れるN−ビニルアミド類の割合は仕込組成よりかなり低
くなる。この重合の問題を避けるためには、例えば国際
公開特許WO97/07320号、英国公開特許230
1837号、国際公開特許WO96/41786号など
に記載されている有機溶媒中での重合の場合と同様に、
水を溶媒とする本発明の重合においても、式(1)で表
わされるN−ビニルアミド体の全量と共重合するモノマ
ーの一部を溶解した重合液に重合開始剤を添加して重合
を開始した後、式(2)〜(4)で表わされるモノマー
の残りを徐々に重合系に添加するという手法が好まし
い。
Among the amide monomers represented by the above formulas (1) to (4), N-vinylamides represented by the formula (1) are represented by the following formulas (2) to (4). The polymerization reactivity is relatively low as compared with the various monomers. for that reason,
The copolymer obtained by equimolarly charging the monomer represented by the formula (1) and the other monomers represented by the formulas (2) to (3) in a polymerization solvent and then polymerizing the monomer is represented by the formula (1) The proportion of N-vinyl amides represented by is considerably lower than the charge composition. In order to avoid this polymerization problem, for example, WO 97/07320, GB 230
1837, WO96 / 41786, and the like, in the case of polymerization in an organic solvent,
Also in the polymerization of the present invention using water as a solvent, the polymerization was started by adding a polymerization initiator to a polymerization solution in which a part of a monomer to be copolymerized with the entire amount of the N-vinylamide represented by the formula (1) was dissolved. Thereafter, it is preferable to gradually add the rest of the monomers represented by the formulas (2) to (4) to the polymerization system.

【0032】式(1)で表わされるN−ビニルアミド類
と共重合する式(2)〜(4)で表わされるモノマー類
については、その常温・常圧における形状が液体のもの
についてはそのまま滴下するか、あるいは溶存酸素を除
いた水とモノマーを任意の割合で混合した後滴下すれば
よい。常温・常圧におけるモノマーの形態が固体状のも
のについては、粉末状とした後そのまま重合液中に添加
することが望ましい。常温・常圧で固体形状のモノマー
であっても、水に可溶のものであれば、液体状のモノマ
ーの場合と同様に溶存酸素を除いた水に任意の濃度で溶
解後、重合系へ滴下しても良い。
With respect to the monomers represented by the formulas (2) to (4) which are copolymerized with the N-vinylamides represented by the formula (1), those having a liquid shape at normal temperature and pressure are dropped as they are. Alternatively, water after removing dissolved oxygen and the monomer may be mixed at an arbitrary ratio and then added dropwise. When the monomer is in a solid form at normal temperature and normal pressure, it is preferable to add the monomer as it is to the polymerization liquid as it is. Even if the monomer is in solid form at normal temperature and normal pressure, if it is soluble in water, it is dissolved in water at any concentration, excluding dissolved oxygen, as in the case of the liquid monomer, and then enters the polymerization system. It may be dropped.

【0033】さらに本発明では、重合を下限臨界共溶温
度未満で行うことが好ましい。下限臨界共溶温度は、式
(1)〜(4)で表わされるモノマーのうち少なくとも
2種を共重合して得られる共重合体の組成比、分子量お
よび水中におけるその共重合体の濃度に依存する。表1
に式(1)のモノマーとしてN−ビニル−N−メチルア
セトアミド、式(2)のモノマーとしてN−イソプロピ
ルメタクリルアミドを選んだ場合における、共重合体の
組成、および蒸留水中でのポリマー濃度変化に対する下
限臨界共溶温度を示した。
Further, in the present invention, it is preferable to carry out the polymerization at a temperature lower than the lower critical solution temperature. The lower critical solution temperature depends on the composition ratio, molecular weight, and the concentration of the copolymer in water obtained by copolymerizing at least two of the monomers represented by formulas (1) to (4). I do. Table 1
In the case where N-vinyl-N-methylacetamide is selected as the monomer of the formula (1) and N-isopropylmethacrylamide is selected as the monomer of the formula (2), the composition of the copolymer and the change in polymer concentration in distilled water The lower critical solution temperature is shown.

【0034】[0034]

【表1】 このように、下限臨界共溶温度は共重合体中の組成比に
よって変化し、さらに水中での共重合体の濃度に大きく
依存する。さらに厳密には、共重合体の分子量および共
重合体中のモノマーの配列にも依存する。したがって本
発明を実施する際には、最終的に得られる共重合体の組
成、分子量及び水中ポリマー濃度などから下限臨界共溶
温度を予め求めておき、それに基いて重合温度を決定し
ておくことが望ましい。
[Table 1] As described above, the lower critical solution temperature changes depending on the composition ratio in the copolymer, and further largely depends on the concentration of the copolymer in water. More precisely, it also depends on the molecular weight of the copolymer and the sequence of the monomers in the copolymer. Therefore, when practicing the present invention, the lower critical solution temperature must be determined in advance from the composition, molecular weight, polymer concentration in water, and the like of the finally obtained copolymer, and the polymerization temperature must be determined based on the lower critical solution temperature. Is desirable.

【0035】重合温度は低すぎると重合開始剤の開始剤
効率が低下すると共に重合反応速度が小さくなったり、
モノマーのポリマーへの転化率の低下と共に得られる共
重合体の分子量が目的とする分子量よりも大幅に大きく
なり、下限臨界共溶温度が重合温度以下となって共重合
体が析出することがある。したがって、重合温度は、生
成する共重合体の水中濃度に対応する下限臨界共溶温度
未満とし、その温度から20℃以下までの範囲が好まし
い。
If the polymerization temperature is too low, the initiator efficiency of the polymerization initiator decreases and the polymerization reaction rate decreases,
With the decrease in the conversion of the monomer to the polymer, the molecular weight of the obtained copolymer becomes significantly larger than the target molecular weight, and the lower critical copolymerization temperature becomes lower than the polymerization temperature and the copolymer may precipitate. . Therefore, the polymerization temperature is preferably lower than the lower critical solution temperature corresponding to the concentration of the copolymer to be formed in water, and is preferably in a range from the temperature to 20 ° C. or lower.

【0036】連鎖移動剤の使用は必須ではないが、付加
的に連鎖移動剤を使用してもよい。連鎖移動剤の例とし
ては、ホルムアルデヒド、アセトアルデヒド、プロピオ
ンアルデヒド、n−ブチルアルデヒド、イソブチルアル
デヒド、ジアセチルスルフィド、エチルチオグリコレー
ト、2−メルカプトエタノール、1,3−メルカプトプ
ロパノール、3−メルカプトプロパン−1,2−ジオー
ル、1,4−メルカプトブタノール、チオグリセリン、
ジエタノールスルフィド、チオジグリコール、エチルチ
オエタノール、チオ尿素、アリルアルコール、亜リン酸
ナトリウム、次亜リン酸ナトリウムなどが挙げられる。
好ましくは亜リン酸ナトリウム、次亜リン酸ナトリウム
である。
The use of a chain transfer agent is not essential, but a chain transfer agent may additionally be used. Examples of chain transfer agents include formaldehyde, acetaldehyde, propionaldehyde, n-butyraldehyde, isobutyraldehyde, diacetyl sulfide, ethyl thioglycolate, 2-mercaptoethanol, 1,3-mercaptopropanol, 3-mercaptopropane-1, 2-diol, 1,4-mercaptobutanol, thioglycerin,
Examples include diethanol sulfide, thiodiglycol, ethyl thioethanol, thiourea, allyl alcohol, sodium phosphite, sodium hypophosphite and the like.
Preferred are sodium phosphite and sodium hypophosphite.

【0037】本発明の重合は以下の方法で行うことがで
きる。まず、式(1)〜(4)から少なくとも2種のモ
ノマーを選び、不活性ガスで溶在酸素を除去した水に溶
解させる。この時、2種以上のモノマーの相対反応性比
が大きく異なる場合には、重合しにくいモノマーを水と
共に重合系中に入れ、残りのモノマーを水に溶解後滴下
したり、あるいはそのまま添加することが好ましい。重
合温度は、得られる共重合体組成とその濃度から求めた
下限臨界共溶温度未満からその20℃低い範囲が好まし
く、さらに好ましくはその下限臨界共溶温度未満からそ
の10℃低い範囲である。
The polymerization of the present invention can be carried out by the following method. First, at least two types of monomers are selected from the formulas (1) to (4) and dissolved in water from which dissolved oxygen has been removed with an inert gas. At this time, if the relative reactivity ratios of the two or more monomers are significantly different, put the monomer that is difficult to polymerize into the polymerization system together with water and dissolve the remaining monomer in water and then drop it or add it as it is Is preferred. The polymerization temperature is preferably in the range of less than the lower critical solution temperature and 20 ° C lower than the lower critical solution temperature obtained from the obtained copolymer composition and concentration, and more preferably in the range of less than the lower critical solution temperature and 10 ° C lower.

【0038】重合温度が下限臨界共溶温度未満からその
20℃低い範囲の場合、重合時間は、滴下・添加を行わ
ない場合で5〜6時間、滴下・添加を行った場合で滴下
・添加終了後から4〜5時間である。このようにして得
られるポリマーの数平均分子量は約1,000〜10
0,000の範囲である。本発明の方法によれば、重合
開始から短時間で高い重合転化率を得ることができる。
When the polymerization temperature is lower than the lower critical solution temperature and lower by 20 ° C., the polymerization time is 5 to 6 hours when no dropping / addition is performed, and the dropping / addition is completed when dropping / addition is performed. 4-5 hours later. The number average molecular weight of the polymer thus obtained is about 1,000 to 10
It is in the range of 0000. According to the method of the present invention, a high polymerization conversion rate can be obtained in a short time from the start of polymerization.

【0039】重合終了後の残存モノマーはガスクロマト
グラフ(GC)法により、分子量はゲルパーミエーショ
ンクロマトグラフ(GPC)法により求められる。ま
た、共重合体組成はNMRスペクトルを用いるかあるい
は元素分析により求められる。得られる共重合体は重合
溶媒である水に溶解しているため、必要により真空乾
燥、熱風乾燥などの公知の乾燥法により水を除去した
後、固体として利用することができる。あるいは重合後
の共重合体を水溶液としてそのまま、または用途に合わ
せて任意の濃度になるよう希釈または濃縮して利用する
ことができる。また、モノマーからポリマーへの転化率
が高いため、精製工程を省略することも可能であり、工
業的に極めて有利である。
The residual monomer after completion of the polymerization can be determined by gas chromatography (GC), and the molecular weight can be determined by gel permeation chromatography (GPC). The copolymer composition can be determined by using an NMR spectrum or by elemental analysis. Since the obtained copolymer is dissolved in water as a polymerization solvent, it can be used as a solid after removing water by a known drying method such as vacuum drying or hot air drying as necessary. Alternatively, the copolymer after polymerization can be used as it is as an aqueous solution, or diluted or concentrated to an arbitrary concentration according to the use. Further, since the conversion rate from the monomer to the polymer is high, the purification step can be omitted, which is industrially extremely advantageous.

【0040】本発明で製造される共重合体は、種々の用
途に使用することが可能であり、例えばテキスタイル染
色用のストリッピング及びレベリング助剤、記録媒体、
コンクリート添加剤、転写印刷用バインダー、電荷移動
カソード、ポリオレフィンの被覆、分散助剤、印刷イン
キ、電気ゲル、感温性ゲル、感温性材料、皮膚密着ゲ
ル、多価カチオンの除去、油分含有水からの石油の回
収、表面湿潤性の向上、ポリオレフィンの着色、写真用
着色剤、混濁抑制剤、拡散担体材料、色移り抑制剤、固
体バッテリー(例えばリチウムバッテリー)、固体電解
物、香油定着剤、凝集剤、写真法、写真紙、ギプス包
帯、着色剤用接着促進剤、石油及び天然ガスの抽出及び
その移動での助剤、写真工業での助剤、表面親水化、免
疫化学、または薬剤の活性原理に関する薬剤、天然ガス
抽出および輸送でのガス水和物生成の抑制、イオン交
換、ジェットインク、グラフィックインク及びボールペ
ンペースト、触媒、カテーテルの被膜、スケール抑制剤
又はスケール除去剤、粘着性基材、接着剤及び、吸着性
/疎水性増強用、コンタクトレンズ、プラスチック添加
剤、被覆助剤、リソグラフィー、溶解剤、膜製造、金属
コロイド、微カプセル包入、水からの油又は着色剤の除
去、相転移触媒、顔料分散、排水浄化成分、滑剤助剤、
保護コロイド、徐放性肥料調整物、耐汚染、三級石油回
収、テキスタイル助剤、炭化水素混合物の分離、繊維の
改善着色、毛染め剤中の増粘剤又は膜形成剤、ヘアセッ
ティング又はヘアスプレー添加剤、水溶性被膜及び煙草
用フィルター、入浴剤等に用いることができる。本発明
で製造される共重合体は、特に、石油及び天然ガスの抽
出及びその移動でのガスハイドレートの生成を制御する
ための助剤、いわゆるガスハイドレート生成制御剤とし
て好適である。
The copolymer produced by the present invention can be used for various applications, for example, stripping and leveling aids for textile dyeing, recording media,
Concrete additive, transfer printing binder, charge transfer cathode, polyolefin coating, dispersing aid, printing ink, electrogel, temperature-sensitive gel, temperature-sensitive material, skin adhesion gel, removal of polyvalent cation, oil-containing water Recovery of petroleum, improvement of surface wettability, coloring of polyolefin, photographic colorant, turbidity inhibitor, diffusion carrier material, color transfer inhibitor, solid battery (eg lithium battery), solid electrolyte, balm fixing agent, Flocculants, photographic methods, photographic paper, gypsum bandages, adhesion promoters for colorants, auxiliaries in the extraction and transfer of petroleum and natural gas, auxiliaries in the photographic industry, surface hydrophilization, immunochemistry, or pharmaceuticals. Drugs relating to the principle of activity, suppression of gas hydrate formation in natural gas extraction and transport, ion exchange, jet inks, graphic inks and ballpoint pen pastes, catalysts, catheters Film, scale inhibitor or descaling agent, sticky substrate, adhesive and adsorbent / hydrophobic enhancer, contact lens, plastic additive, coating aid, lithography, dissolving agent, film production, metal colloid , Microcapsule encapsulation, removal of oil or colorant from water, phase transfer catalyst, pigment dispersion, wastewater purification component, lubricant aid,
Protective colloids, controlled release fertilizer preparations, stain resistance, tertiary oil recovery, textile aids, separation of hydrocarbon mixtures, improved coloring of fibers, thickeners or film formers in hair dyes, hair setting or hair It can be used for spray additives, water-soluble coatings, filters for cigarettes, bath additives and the like. The copolymer produced by the present invention is particularly suitable as an auxiliary for controlling the production of gas hydrate by extracting and moving petroleum and natural gas, that is, a so-called gas hydrate production control agent.

【0041】[0041]

【実施例】以下、本発明を実施例により、更に具体的に
説明するが、本発明はこれらの範囲に限定されるもので
はない。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these ranges.

【0042】(実施例1) {有機溶媒中での重合(比較例1を兼ねる)}まず、下
限臨界共溶温度を推定するために、有機溶媒中で重合を
行った。即ち、国際特許WO97/07320、英国特
許GB2301837A、国際特許WO96/4178
6に記載されている重合および精製方法に従い、重合溶
媒として、ベンゼン(和光純薬工業社製)を用い、また
重合開始剤として2,2’−アゾビスイソブチロニトリ
ル(AIBN:V−60、和光純薬工業社製)を用いて
44:56モル比、数平均分子量9,000、重量平均
分子量28,000のN−ビニル−N−メチルアセトア
ミドとN−イソプロピルメタクリルアミドの共重合体を
得た。この共重合体の蒸留水中30質量%濃度で溶解
し、20℃から80℃まで0.5℃/minの昇温速度
で加温し下限臨界共溶温度を測定した結果、この共重合
体の下限臨界共溶温度は55℃であった。
Example 1 Polymerization in Organic Solvent (Comparison Example 1) First, polymerization was performed in an organic solvent in order to estimate the lower critical solution temperature. That is, International Patent WO97 / 07320, British Patent GB2301837A, International Patent WO96 / 4178.
According to the polymerization and purification method described in No. 6, benzene (manufactured by Wako Pure Chemical Industries, Ltd.) is used as a polymerization solvent, and 2,2′-azobisisobutyronitrile (AIBN: V-60) is used as a polymerization initiator. (Wako Pure Chemical Industries, Ltd.), a copolymer of N-vinyl-N-methylacetamide and N-isopropylmethacrylamide having a 44:56 molar ratio, a number average molecular weight of 9,000 and a weight average molecular weight of 28,000. Obtained. The copolymer was dissolved at a concentration of 30% by mass in distilled water, heated from 20 ° C. to 80 ° C. at a heating rate of 0.5 ° C./min, and the lower critical copolymerization temperature was measured. The lower critical solution temperature was 55 ° C.

【0043】{水溶媒中での重合}次に、50ml三つ
口フラスコに、N−ビニル−N−メチルアセトアミド
(クラリアント社製)3.1g、N−イソプロピルメタ
クリルアミド(三菱レイヨン社製)0.44g、蒸留水
15mlを入れた後、窒素バブリングして溶存酸素を除
去した。その後目的とする共重合体の下限臨界共溶温度
より5℃低い50℃まで温度を上げ、重合開始剤として
水溶性のアゾ化合物である2,2’−アゾビス[2−
(2−イミダゾリン−2−イル)プロパン]二塩酸塩
(和光純薬工業社製、VA−044)0.2gを投入し
重合を開始させた。窒素流通下、重合開始直後より、
3.56gの粉末状のN−イソプロピルメタクリルアミ
ドを3時間かけて添加した。添加終了後攪拌しながら5
0℃で4時間反応を継続させた。放冷後、70℃におい
て真空乾燥して重合溶媒として使用した水を除いて重合
体を得た。
{Polymerization in Water Solvent} Next, 3.1 g of N-vinyl-N-methylacetamide (manufactured by Clariant) and 0 g of N-isopropylmethacrylamide (manufactured by Mitsubishi Rayon) are placed in a 50 ml three-necked flask. After 44 g of distilled water was added thereto, dissolved oxygen was removed by bubbling with nitrogen. Thereafter, the temperature was raised to 50 ° C., which is 5 ° C. lower than the lower critical solution temperature of the target copolymer, and a water-soluble azo compound 2,2′-azobis [2-
0.2 g of (2-imidazolin-2-yl) propane] dihydrochloride (VA-044, manufactured by Wako Pure Chemical Industries, Ltd.) was charged to initiate polymerization. Under nitrogen flow, immediately after the start of polymerization,
3.56 g of powdered N-isopropylmethacrylamide were added over 3 hours. After completion of addition, stir 5
The reaction was continued at 0 ° C. for 4 hours. After allowing to cool, the polymer was vacuum-dried at 70 ° C. to obtain a polymer except for water used as a polymerization solvent.

【0044】得られた重合体の組成を1H−NMRを用
いて測定した結果、N−ビニル−N−メチルアセトアミ
ドとN−イソプロピルメタクリルアミドの共重合体中の
モル百分率比は44:56であった。この共重合体の蒸
留水中の30質量%における下限臨界共溶温度は53℃
であった。また、クロロホルムを移動相としたGPCを
用いて分子量を測定した結果、標準PMMA換算で数平
均分子量が8,000、重量平均分子量が24,000
であった。
The composition of the obtained polymer was measured by 1 H-NMR. As a result, the molar percentage ratio in the copolymer of N-vinyl-N-methylacetamide and N-isopropylmethacrylamide was 44:56. there were. The lower critical solution temperature of this copolymer at 30% by mass in distilled water is 53 ° C.
Met. The molecular weight was measured using GPC using chloroform as a mobile phase. As a result, the number average molecular weight was 8,000 and the weight average molecular weight was 24,000 in terms of standard PMMA.
Met.

【0045】また、反応終了後の重量溶液中に残存する
N−ビニル−N−メチルアセトアミドおよびN−イソプ
ロピルメタクリルアミドをガスクロマトグラフィ−を用
いて定量分析を行った結果、いずれも重合開始時に仕込
んだそれぞれの量の0.1%未満であり、単量体の転化
率は99.9%以上であった。また、モノメチルアセト
アミドの生成量は0.1%未満であった。
Further, quantitative analysis of N-vinyl-N-methylacetamide and N-isopropylmethacrylamide remaining in the weight solution after the completion of the reaction was carried out by gas chromatography, and as a result, all were charged at the start of polymerization. The respective amounts were less than 0.1%, and the conversion of the monomer was 99.9% or more. The amount of monomethylacetamide produced was less than 0.1%.

【0046】(実施例2) {有機溶媒中での重合(比較例2を兼ねる)}実施例1
と同様にして48:52モル比、数平均分子量20,0
00、重量平均分子量60,000のN−ビニル−N−
メチルアセトアミドとN−イソプロピルメタクリルアミ
ドの共重合体を得た。この共重合体の蒸留水中30質量
%濃度での下限臨界共溶温度を実施例1と同様の方法で
測定した結果54℃であった。 {水溶媒中での重合}50ml三つ口フラスコに、N−
ビニル−N−メチルアセトアミド(クラリアント社製)
2.42g、N−イソプロピルメタクリルアミド(三菱
レイヨン社製)0.783g、蒸留水12mlを入れた
後、窒素バブリングして溶存酸素を除去した。その後目
的とする共重合体の下限臨界共溶温度より4℃低い50
℃まで温度を上げ、重合開始剤として水溶性のアゾ化合
物である2,2’−アゾビス[2−(2−イミダゾリン
−2−イル)プロパン]二塩酸塩(和光純薬工業社製、
VA−044)0.1gをリン酸塩緩衝溶液(pH7.
4)に溶解させた溶液2mlを投入し重合を開始させ
た。窒素流通下、重合開始直後より、2.33gの粉末状
のN−イソプロピルメタクリルアミドおよび2,2’−
アゾビス[2−(2−イミダゾリン−2−イル)プロパ
ン]二塩酸塩0.033gをリン酸塩緩衝溶液(pH
7.4)に溶解させた溶液1mlを2時間かけて添加し
た。添加終了後攪拌しながら50℃で4時間反応を継続
させた。放冷後、70℃において真空乾燥して重合溶媒
として使用した水を除いて重合体を得た。
Example 2 << Polymerization in Organic Solvent (Comparison Example 2) >> Example 1
48:52 molar ratio, number average molecular weight 20,0
00, N-vinyl-N- having a weight average molecular weight of 60,000
A copolymer of methylacetamide and N-isopropylmethacrylamide was obtained. The lower critical solution temperature of this copolymer at a concentration of 30% by mass in distilled water was measured in the same manner as in Example 1, and the result was 54 ° C. << Polymerization in water solvent >> In a 50 ml three-necked flask, add N-
Vinyl-N-methylacetamide (Clariant)
After 2.42 g, 0.783 g of N-isopropylmethacrylamide (manufactured by Mitsubishi Rayon Co., Ltd.) and 12 ml of distilled water were added, dissolved oxygen was removed by bubbling with nitrogen. Thereafter, 50 ° C. lower than the lower critical solution temperature of the target copolymer by 50 ° C.
C., and a water-soluble azo compound 2,2′-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride (manufactured by Wako Pure Chemical Industries, Ltd.)
(VA-044) 0.1 g of a phosphate buffer solution (pH 7.0).
2 ml of the solution dissolved in 4) was added to initiate polymerization. Under nitrogen flow, 2.33 g of powdery N-isopropylmethacrylamide and 2,2′-
0.033 g of azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride was added to a phosphate buffer solution (pH
1 ml of the solution dissolved in 7.4) was added over 2 hours. After completion of the addition, the reaction was continued at 50 ° C. for 4 hours with stirring. After allowing to cool, the polymer was vacuum-dried at 70 ° C. to obtain a polymer except for water used as a polymerization solvent.

【0047】得られた重合体の組成を1H−NMRを用
いて測定した結果、N−ビニル−N−メチルアセトアミ
ドとN−イソプロピルメタクリルアミドの共重合体中の
モル百分率比は46:54であった。この共重合体の蒸
留水中の30質量%における下限臨界共溶温度は54℃
であった。また、実施例1と同様にして求めた重合体の
分子量は、数平均分子量が16,000、重量平均分子
量が53,000であった。
The composition of the obtained polymer was measured by using 1 H-NMR. As a result, the molar percentage ratio in the copolymer of N-vinyl-N-methylacetamide and N-isopropylmethacrylamide was 46:54. there were. The lower critical solution temperature of this copolymer at 30% by mass in distilled water is 54 ° C.
Met. As for the molecular weight of the polymer obtained in the same manner as in Example 1, the number average molecular weight was 16,000 and the weight average molecular weight was 53,000.

【0048】また、反応終了後の重合溶液中に残存する
N−ビニル−N−メチルアセトアミドおよびN−イソプ
ロピルメタクリルアミドをガスクロマトグラフィ−を用
いて定量分析を行った結果、いずれも重合開始時に仕込
んだそれぞれの量の0.1%以下であり、単量体の転化
率は99.9%以上であった。また、モノメチルアセト
アミドの生成量は0.1%未満であった。
Further, N-vinyl-N-methylacetamide and N-isopropylmethacrylamide remaining in the polymerization solution after the completion of the reaction were quantitatively analyzed by gas chromatography, and as a result, all were charged at the start of polymerization. The respective amounts were 0.1% or less, and the conversion of the monomer was 99.9% or more. The amount of monomethylacetamide produced was less than 0.1%.

【0049】(実施例3) {有機溶媒中での重合(比較例3を兼ねる)}実施例1
と同様にして50:50モル比、数平均分子量10,0
00、重量平均分子量34,000のN−ビニル−N−
メチルアセトアミドとN−ビニルカプロラクタムの共重
合体を得た。この共重合体の蒸留水中30質量%濃度で
の下限臨界共溶温度を実施例1と同様の方法で測定した
結果69℃であった。
Example 3 Polymerization in Organic Solvent (Comparison Example 3) Example 1
50:50 molar ratio, number average molecular weight 10,000
00, N-vinyl-N- having a weight average molecular weight of 34,000
A copolymer of methylacetamide and N-vinylcaprolactam was obtained. The lower critical solution temperature of this copolymer at a concentration of 30% by mass in distilled water was measured in the same manner as in Example 1, and the result was 69 ° C.

【0050】{水溶媒中での重合}50ml三つ口フラ
スコに、N−ビニル−N−メチルアセトアミド(クラリ
アント社製)2.42g、N−ビニルカプロラクタム
(Aldrich社製)3.4g、蒸留水12mlを入
れた後、窒素バブリングして溶存酸素を除去した。その
後その後目的とする共重合体の下限臨界共溶温度より4
℃低い65℃まで温度を上げ、重合開始剤として水溶性
のアゾ化合物である2,2’−アゾビス[2−(2−イ
ミダゾリン−2−イル)プロパン]二塩酸塩(和光純薬
工業社製、VA−044)0.14gをリン酸塩緩衝溶
液(pH7.4)に溶解させた溶液2mlを投入し重合
を開始させた。窒素流通下攪拌しながら4時間反応を継
続させた。放冷後、70℃において真空乾燥して重合溶
媒として使用した水を除いて重合体を得た。
{Polymerization in Water Solvent} In a 50 ml three-necked flask, 2.42 g of N-vinyl-N-methylacetamide (manufactured by Clariant), 3.4 g of N-vinylcaprolactam (manufactured by Aldrich), and distilled water After adding 12 ml, dissolved oxygen was removed by bubbling with nitrogen. Then, after the lower critical solution temperature of the target copolymer, 4
The temperature was raised to 65 ° C. lower by 65 ° C., and 2,2′-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride which is a water-soluble azo compound as a polymerization initiator (manufactured by Wako Pure Chemical Industries, Ltd.) , VA-044) in 2 ml of a phosphate buffer solution (pH 7.4). The reaction was continued for 4 hours while stirring under nitrogen flow. After allowing to cool, the polymer was vacuum-dried at 70 ° C. to obtain a polymer except for water used as a polymerization solvent.

【0051】得られた重合体の組成を1H−NMRを用
いて測定した結果、N−ビニル−N−メチルアセトアミ
ドとN−ビニルカプロラクタムの共重合体中のモル百分
率比は49:51であった。この共重合体の蒸留水中の
30質量%における下限臨界共溶温度は68℃であっ
た。また、実施例1と同様にして求めた重合体の分子量
は、数平均分子量が12,000、重量平均分子量が4
0,000であった。
The composition of the obtained polymer was measured by 1 H-NMR. As a result, the molar percentage ratio in the copolymer of N-vinyl-N-methylacetamide and N-vinylcaprolactam was 49:51. Was. The lower critical solution temperature of this copolymer at 30% by mass in distilled water was 68 ° C. The molecular weight of the polymer determined in the same manner as in Example 1 was such that the number average molecular weight was 12,000 and the weight average molecular weight was 4
It was 0000.

【0052】また、反応終了後の重合溶液中に残存する
N−ビニル−N−メチルアセトアミドおよびN−ビニル
カプロラクタムをガスクロマトグラフィ−を用いて定量
分析を行った結果、いずれも重合開始時に仕込んだそれ
ぞれの量の0.1%以下であり、単量体の転化率は9
9.9%以上であった。また、モノメチルアセトアミド
の生成量は0.1%未満であった。
The quantitative analysis of N-vinyl-N-methylacetamide and N-vinylcaprolactam remaining in the polymerization solution after the completion of the reaction was carried out by gas chromatography. And the conversion of the monomer is 9% or less.
It was 9.9% or more. The amount of monomethylacetamide produced was less than 0.1%.

【0053】(実施例4) {有機溶媒中での重合(比較例4を兼ねる)}300m
lセパラブルフラスコに、N−イソプロピルメタクリル
アミド11.42g(三菱レイヨン社製)、N−ビニル
カプロラクタム(Aldrich社製)12.5g、t
−ブタノール100g、アゾ系重合開始剤として2,
2’−アゾビス−(2−メチルブチロニトリル)(和光
純薬工業社製)0.25gを入れ攪拌溶解した後、窒素
バブリングして溶存酸素を除去した。その後、80℃ま
でフラスコ内の温度を上げ、窒素流通下攪拌しながら重
合を行い、24時間反応を継続させた。放冷後、この重
合液をn−ヘキサン2L中に攪拌しつつ投入し、沈殿物
として得られたポリマーを70℃で真空乾燥した。この
ポリマーを200gのアセトンに溶解した後、再度n−
ヘキサン2L中に滴下し、沈殿物として得られたポリマ
ーを70℃で一晩真空乾燥して、9.14gの白色粉末
状の共重合体を得た。この共重合体は50:50モル
比、数平均分子量10,000、重量平均分子量34,
000であり、蒸留水中30質量%濃度での下限臨界共
溶温度を実施例1と同様の方法で測定した結果33℃で
あった。
Example 4 Polymerization in Organic Solvent (Comparison with Comparative Example 4) 300 m
In a l separable flask, 11.42 g of N-isopropyl methacrylamide (manufactured by Mitsubishi Rayon), 12.5 g of N-vinylcaprolactam (manufactured by Aldrich), t
-Butanol 100 g, 2,2 as an azo-based polymerization initiator
After 0.25 g of 2'-azobis- (2-methylbutyronitrile) (manufactured by Wako Pure Chemical Industries, Ltd.) was added and dissolved by stirring, dissolved oxygen was removed by bubbling with nitrogen. Thereafter, the temperature in the flask was raised to 80 ° C., and polymerization was carried out with stirring under a nitrogen flow, and the reaction was continued for 24 hours. After standing to cool, this polymerization solution was poured into 2 L of n-hexane while stirring, and the polymer obtained as a precipitate was vacuum-dried at 70 ° C. After dissolving this polymer in 200 g of acetone, n-
The polymer was dropped into 2 L of hexane, and the polymer obtained as a precipitate was vacuum-dried at 70 ° C. overnight to obtain 9.14 g of a white powdery copolymer. This copolymer had a 50:50 molar ratio, a number average molecular weight of 10,000, a weight average molecular weight of 34,
000, and the lower critical solution temperature at a concentration of 30% by mass in distilled water was measured in the same manner as in Example 1. The result was 33 ° C.

【0054】{水溶媒中での重合}次に、50ml三つ
口フラスコに、N−イソプロピルメタクリルアミド(三
菱レイヨン社製)3.1g、N−ビニルカプロラクタム
(Aldrich社製)3.4g、蒸留水12mlを入
れた後、窒素バブリングして溶存酸素を除去した。その
後目的とする共重合体の下限臨界共溶温度より3℃低い
30℃まで温度を上げ、重合開始剤として水溶性のアゾ
化合物である2,2’−アゾビス[2−(2−イミダゾ
リン−2−イル)プロパン]二塩酸塩(和光純薬工業社
製、VA−044)0.14gをリン酸塩緩衝溶液(p
H7.4)に溶解させた溶液2mlを投入し重合を開始
させた。窒素流通下攪拌しながら12時間反応を継続さ
せた。放冷後、70℃において真空乾燥して重合溶媒と
して使用した水を除いて重合体を得た。
{Polymerization in Water Solvent} Next, 3.1 g of N-isopropylmethacrylamide (manufactured by Mitsubishi Rayon), 3.4 g of N-vinylcaprolactam (manufactured by Aldrich) were placed in a 50 ml three-necked flask, and distilled. After adding 12 ml of water, dissolved oxygen was removed by bubbling with nitrogen. Thereafter, the temperature is raised to 30 ° C., which is 3 ° C. lower than the lower critical solution temperature of the target copolymer, and 2,2′-azobis [2- (2-imidazoline-2), which is a water-soluble azo compound, is used as a polymerization initiator. -Yl) propane] dihydrochloride (VA-044, manufactured by Wako Pure Chemical Industries, Ltd.) in a phosphate buffer solution (p
H7.4) was added and 2 ml of the solution was added to initiate polymerization. The reaction was continued for 12 hours while stirring under nitrogen flow. After allowing to cool, the polymer was vacuum-dried at 70 ° C. to obtain a polymer except for water used as a polymerization solvent.

【0055】得られた重合体の組成を1H−NMRを用
いて測定した結果、N−イソプロピルメタクリルアミド
とN−ビニルカプロラクタムの共重合体中のモル百分率
比は49:51であった。この共重合体の蒸留水中の3
0質量%における下限臨界共溶温度は30℃であった。
また、実施例1と同様にして求めた重合体の分子量は、
数平均分子量が13,000、重量平均分子量が25,
000であった。
The composition of the obtained polymer was measured by 1 H-NMR. As a result, the molar percentage ratio in the copolymer of N-isopropylmethacrylamide and N-vinylcaprolactam was 49:51. 3 of this copolymer in distilled water
The lower critical solution temperature at 0% by mass was 30 ° C.
The molecular weight of the polymer obtained in the same manner as in Example 1 was
The number average molecular weight is 13,000, the weight average molecular weight is 25,
000.

【0056】また、反応終了後の重合溶液中に残存する
N−イソプロピルメタクリルアミドおよびN−ビニルカ
プロラクタムをガスクロマトグラフィ−を用いて定量分
析を行った結果、いずれも重合開始時に仕込んだそれぞ
れの量の0.1%未満であり、単量体の転化率は99.
9%以上であった。
Further, it remains in the polymerization solution after the completion of the reaction.
As a result of quantitative analysis of N-isopropylmethacrylamide and N-vinylcaprolactam using gas chromatography, each was less than 0.1% of the amount charged at the start of polymerization, and the conversion of the monomer was 99.
9% or more.

【0057】(実施例5) {有機溶媒中での重合(比較例5を兼ねる)}300m
lセパラブルフラスコに、N−イソプロピルアクリルア
ミド10.16g(興人社製)、N−ビニルピロリドン
(Aldrich社製)10.0g、t−ブタノール1
00g、アゾ系重合開始剤として2,2’−アゾビス−
(2−メチルブチロニトリル)(和光純薬工業社製)
0.30gを入れ攪拌溶解した後、窒素バブリングして
溶存酸素を除去した。その後、80℃までフラスコ内の
温度を上げ、窒素流通下攪拌しながら重合を行い、24
時間反応を継続させた。放冷後、この重合液をn−ヘキ
サン2L中に攪拌しつつ投入し、沈殿物として得られた
ポリマーを70℃で真空乾燥した。このポリマーを20
0gのアセトンに溶解した後、再度n−ヘキサン2L中
に滴下し、沈殿物として得られたポリマーを70℃で一
晩真空乾燥して、15.1gの白色粉末状の共重合体を
得た。この共重合体は50:50モル比、数平均分子量
8,000、重量平均分子量17,000であり、蒸留
水中30質量%濃度での下限臨界共溶温度を実施例1と
同様の方法で測定した結果44℃であった。
Example 5 Polymerization in Organic Solvent (Comparison Example 5) 300 m
In a l separable flask, 10.16 g of N-isopropylacrylamide (produced by Kojin), 10.0 g of N-vinylpyrrolidone (produced by Aldrich), t-butanol 1
00g, 2,2′-azobis- as an azo polymerization initiator
(2-methylbutyronitrile) (manufactured by Wako Pure Chemical Industries, Ltd.)
After adding 0.30 g and stirring and dissolving, dissolved oxygen was removed by bubbling nitrogen. Thereafter, the temperature in the flask was raised to 80 ° C., and the polymerization was carried out while stirring under a nitrogen flow.
The reaction was continued for a time. After allowing to cool, this polymerization solution was poured into 2 L of n-hexane while stirring, and the polymer obtained as a precipitate was vacuum-dried at 70 ° C. This polymer is
After dissolving in 0 g of acetone, the solution was again added dropwise to 2 L of n-hexane, and the polymer obtained as a precipitate was vacuum-dried at 70 ° C. overnight to obtain 15.1 g of a white powdery copolymer. . This copolymer had a molar ratio of 50:50, a number average molecular weight of 8,000 and a weight average molecular weight of 17,000. The lower critical solution temperature at a concentration of 30% by mass in distilled water was measured by the same method as in Example 1. As a result, the temperature was 44 ° C.

【0058】{水溶媒中での重合}次に、50ml三つ
口フラスコに、N−イソプロピルアクリルアミド(興人
社製)2.8g、N−ピロリドン(Aldrich社
製)2.7g、蒸留水12mlを入れた後、窒素バブリ
ングして溶存酸素を除去した。その後目的とする共重合
体の下限臨界共溶温度より4℃低い40℃まで温度を上
げ、重合開始剤として水溶性のアゾ化合物である2,
2’−アゾビス[2−(2−イミダゾリン−2−イル)
プロパン]二塩酸塩(和光純薬工業社製、VA−04
4)0.14gをリン酸塩緩衝溶液(pH7.4)に溶
解させた溶液2mlを投入し重合を開始させた。窒素流
通下攪拌しながら12時間反応を継続させた。放冷後、
70℃において真空乾燥して重合溶媒として使用した水
を除いて重合体を得た。
{Polymerization in Water Solvent} Next, 2.8 g of N-isopropylacrylamide (produced by Kojin), 2.7 g of N-pyrrolidone (produced by Aldrich), and 12 ml of distilled water were placed in a 50-ml three-necked flask. , And dissolved oxygen was removed by bubbling with nitrogen. Thereafter, the temperature was raised to 40 ° C., which is 4 ° C. lower than the lower critical solution temperature of the target copolymer, and the water-soluble azo compound 2,2 was used as a polymerization initiator.
2'-azobis [2- (2-imidazolin-2-yl)
Propane] dihydrochloride (VA-04, manufactured by Wako Pure Chemical Industries, Ltd.
4) 2 ml of a solution prepared by dissolving 0.14 g in a phosphate buffer solution (pH 7.4) was added to initiate polymerization. The reaction was continued for 12 hours while stirring under nitrogen flow. After cooling down,
Vacuum drying was performed at 70 ° C. to obtain a polymer except for water used as a polymerization solvent.

【0059】得られた重合体の組成を1H−NMRを用
いて測定した結果、N−イソプロピルアクリルアミドと
N−ビニルピロリドンの共重合体中のモル百分率比は4
9:51であった。この共重合体の蒸留水中の30質量
%における下限臨界共溶温度は44℃であった。また、
実施例1と同様にして求めた重合体の分子量は、数平均
分子量が11,000、重量平均分子量が22,000
であった。
The composition of the obtained polymer was measured using 1 H-NMR. As a result, the molar percentage ratio in the copolymer of N-isopropylacrylamide and N-vinylpyrrolidone was 4%.
9:51. The lower critical solution temperature of this copolymer at 30% by mass in distilled water was 44 ° C. Also,
The molecular weight of the polymer obtained in the same manner as in Example 1 was such that the number average molecular weight was 11,000 and the weight average molecular weight was 22,000.
Met.

【0060】また、反応終了後の重合溶液中に残存する
N−イソプロピルアクリルアミドおよびN−ビニルピロ
リドンをガスクロマトグラフィ−を用いて定量分析を行
った結果、いずれも重合開始時に仕込んだそれぞれの量
の0.1%未満であり、単量体の転化率は99.9%以
上であった。
Further, it remains in the polymerization solution after the completion of the reaction.
As a result of quantitative analysis of N-isopropylacrylamide and N-vinylpyrrolidone using gas chromatography, each was less than 0.1% of the amount charged at the start of the polymerization, and the conversion of the monomer was 99%. 0.9% or more.

【0061】(実施例6) {有機溶媒中での重合(比較例6を兼ねる)}300m
lセパラブルフラスコに、N−アクリロイルピロリジン
11.23g(Aldrich社製)、N−ビニルピロ
リドン(Aldrich社製)10.0g、t−ブタノ
ール100g、アゾ系重合開始剤として2,2’−アゾ
ビス−(2−メチルブチロニトリル)(和光純薬工業社
製)0.15gを入れ攪拌溶解した後、窒素バブリング
して溶存酸素を除去した。その後、80℃までフラスコ
内の温度を上げ、窒素流通下攪拌しながら重合を行い、
24時間反応を継続させた。放冷後、この重合液をn−
ヘキサン2L中に攪拌しつつ投入し、沈殿物として得ら
れたポリマーを70℃で真空乾燥した。このポリマーを
200gのアセトンに溶解した後、再度n−ヘキサン2
L中に滴下し、沈殿物として得られたポリマーを70℃
で一晩真空乾燥して、16.1gの白色粉末状の共重合
体を得た。この共重合体は40:60モル比、数平均分
子量18,000、重量平均分子量43,000であ
り、蒸留水中30質量%濃度での下限臨界共溶温度を実
施例1と同様の方法で測定した結果64℃であった。
Example 6 << Polymerization in Organic Solvent (Comparison with Comparative Example 6) >> 300 m
In a l separable flask, 11.23 g of N-acryloylpyrrolidine (manufactured by Aldrich), 10.0 g of N-vinylpyrrolidone (manufactured by Aldrich), 100 g of t-butanol, and 2,2′-azobis- as an azo polymerization initiator were added. After 0.15 g of (2-methylbutyronitrile) (manufactured by Wako Pure Chemical Industries, Ltd.) was added and dissolved by stirring, dissolved oxygen was removed by bubbling with nitrogen. Thereafter, the temperature in the flask was raised to 80 ° C., and polymerization was performed while stirring under a nitrogen flow.
The reaction was continued for 24 hours. After standing to cool, this polymerization solution was n-
The polymer was poured into 2 L of hexane while stirring, and the polymer obtained as a precipitate was dried in vacuo at 70 ° C. After dissolving this polymer in 200 g of acetone, n-hexane 2
The polymer obtained as a precipitate was dropped at 70 ° C.
Vacuum drying overnight to obtain 16.1 g of a white powdery copolymer. This copolymer had a molar ratio of 40:60, a number average molecular weight of 18,000 and a weight average molecular weight of 43,000. The lower critical solution temperature at a concentration of 30% by mass in distilled water was measured in the same manner as in Example 1. As a result, the temperature was 64 ° C.

【0062】{水溶媒中での重合}次に、50ml三つ
口フラスコに、N−アクリロイルピロリジン(Aldr
ich社製)3.1g、N−ビニルピロリドン(Ald
rich社製)2.75g、蒸留水12mlを入れた
後、窒素バブリングして溶存酸素を除去した。その後そ
の後目的とする共重合体の下限臨界共溶温度より4℃低
い60℃まで温度を上げ、重合開始剤として水溶性のア
ゾ化合物である2,2’−アゾビス[2−(2−イミダ
ゾリン−2−イル)プロパン]二塩酸塩(和光純薬工業
社製、VA−044)0.15gをリン酸塩緩衝溶液
(pH7.4)に溶解させた溶液2mlを投入し重合を
開始させた。窒素流通下攪拌しながら12時間反応を継
続させた。放冷後、70℃において真空乾燥して重合溶
媒として使用した水を除いて重合体を得た。
{Polymerization in Water Solvent} Next, N-acryloylpyrrolidine (Aldr
3.1 g, N-vinylpyrrolidone (Ald)
After adding 2.75 g of distilled water and 12 ml of distilled water, dissolved oxygen was removed by bubbling with nitrogen. Thereafter, the temperature is raised to 60 ° C., which is 4 ° C. lower than the lower critical solution temperature of the target copolymer, and 2,2′-azobis [2- (2-imidazoline), which is a water-soluble azo compound, is used as a polymerization initiator. 2-yl) propane] dihydrochloride (VA-044, manufactured by Wako Pure Chemical Industries, Ltd., 0.15 g) dissolved in a phosphate buffer solution (pH 7.4) was charged with 2 ml to start polymerization. The reaction was continued for 12 hours while stirring under nitrogen flow. After allowing to cool, the polymer was vacuum-dried at 70 ° C. to obtain a polymer except for water used as a polymerization solvent.

【0063】得られた重合体の組成を1H−NMRを用
いて測定した結果、N−アクリロイルピロリジンとN−
ビニルピロリドンの共重合体中のモル百分率比は49:
51であった。この共重合体の蒸留水中の30質量%に
おける下限臨界共溶温度は66℃であった。また、実施
例1と同様にして求めた重合体の分子量は、数平均分子
量が11,000、重量平均分子量が22,000であ
った。
The composition of the obtained polymer was measured by using 1 H-NMR. As a result, N-acryloylpyrrolidine and N-
The molar percentage ratio of vinylpyrrolidone in the copolymer was 49:
51. The lower critical solution temperature of this copolymer at 30% by mass in distilled water was 66 ° C. As for the molecular weight of the polymer obtained in the same manner as in Example 1, the number average molecular weight was 11,000 and the weight average molecular weight was 22,000.

【0064】また、反応終了後の重合溶液中に残存する
N−アクリロイルピロリジンおよびN−ビニルピロリド
ンをガスクロマトグラフィ−を用いて定量分析を行った
結果、いずれも重合開始時に仕込んだそれぞれの量の
0.1%未満であり、単量体の転化率は99.9%以上
であった。
Further, it remains in the polymerization solution after the completion of the reaction.
As a result of quantitative analysis of N-acryloylpyrrolidine and N-vinylpyrrolidone using gas chromatography, each was less than 0.1% of the amount charged at the start of the polymerization, and the conversion of the monomer was 99%. 0.9% or more.

【0065】(比較例1〜6)上記のように実施例1〜
6において、下限臨界共溶温度を推定するために、有機
溶媒中で重合した時に、それぞれ重合後に残存モノマー
をガスクロマトグラフィーによって測定した。その結果
を、実施例1〜6の結果と共に表2に示す。
(Comparative Examples 1 to 6)
In 6, in order to estimate the lower critical solution temperature, when polymerization was carried out in an organic solvent, the residual monomers after each polymerization were measured by gas chromatography. Table 2 shows the results together with the results of Examples 1 to 6.

【0066】[0066]

【表2】 [Table 2]

【0067】[0067]

【発明の効果】本発明の方法によれば、N−ビニルカプ
ロラクタムなどの水溶性共重合体を水を重合溶媒として
使用することによって、最終的に得られるポリマーの水
溶液としてそのまま利用可能な重合体が得られ、かつ、
比較的短時間で高い重合転化率を達成することが可能で
ある。
According to the method of the present invention, a water-soluble copolymer such as N-vinylcaprolactam is used as a polymerization solvent to obtain a polymer which can be directly used as an aqueous solution of a finally obtained polymer. Is obtained, and
It is possible to achieve high polymerization conversions in a relatively short time.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 下記式(1)〜(4)で表されるモノマ
ーのうち少なくとも2種を、水を溶媒として用い、かつ
水溶性の重合開始剤を用いて重合させることを特徴とす
る水溶性共重合体の製造方法。 【化1】 【化2】 【化3】 【化4】 (式中、R1、R2、R3、R4、R5、R6、R7およびR8
は水素原子または炭素数1〜3の炭化水素基、nは1〜
3の整数、mは1〜3の整数である。)
1. A water-soluble polymer, wherein at least two of the monomers represented by the following formulas (1) to (4) are polymerized using water as a solvent and a water-soluble polymerization initiator. Production method of functional copolymer. Embedded image Embedded image Embedded image Embedded image Wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8
Is a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms, and n is 1 to
An integer of 3 and m is an integer of 1 to 3. )
【請求項2】重合溶液の水素イオン濃度指数が6.5〜
10の範囲で重合することを特徴とする請求項1記載の
水溶性共重合体の製造方法。
2. The polymerization solution has a hydrogen ion concentration index of 6.5 to 6.5.
The method for producing a water-soluble copolymer according to claim 1, wherein the polymerization is carried out in the range of 10.
【請求項3】重合温度が、得られる水溶性共重合体の水
中の下限臨界共溶温度未満から、その20℃以下までの
範囲であることを特徴とする請求項1または2記載の水
溶性共重合体の製造方法。
3. The water-soluble polymer according to claim 1, wherein the polymerization temperature ranges from lower than the lower critical solubility temperature of the obtained water-soluble copolymer in water to 20 ° C. or lower. A method for producing a copolymer.
JP2000009104A 1999-02-12 2000-01-18 Manufacture of water soluble copolymer Pending JP2000297105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000009104A JP2000297105A (en) 1999-02-12 2000-01-18 Manufacture of water soluble copolymer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-34274 1999-02-12
JP3427499 1999-02-12
JP2000009104A JP2000297105A (en) 1999-02-12 2000-01-18 Manufacture of water soluble copolymer

Publications (1)

Publication Number Publication Date
JP2000297105A true JP2000297105A (en) 2000-10-24

Family

ID=26373055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000009104A Pending JP2000297105A (en) 1999-02-12 2000-01-18 Manufacture of water soluble copolymer

Country Status (1)

Country Link
JP (1) JP2000297105A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003040928A (en) * 2001-08-01 2003-02-13 Dai Ichi Kogyo Seiyaku Co Ltd Production method of vinyllactam polymer
JP2003105154A (en) * 2001-09-28 2003-04-09 Kuraray Co Ltd Vinyl alcohol-based polymer composition
JP2014189888A (en) * 2013-03-28 2014-10-06 Jsr Corp Method for producing silver nano-wire, silver nano-wire obtained by the method, and coating agent containing silver nano-wire
CN115260394A (en) * 2022-06-30 2022-11-01 海安启弘纺织科技有限公司 Preparation method of phase-change microcapsule for intelligent temperature-regulating textile

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003040928A (en) * 2001-08-01 2003-02-13 Dai Ichi Kogyo Seiyaku Co Ltd Production method of vinyllactam polymer
JP2003105154A (en) * 2001-09-28 2003-04-09 Kuraray Co Ltd Vinyl alcohol-based polymer composition
JP2014189888A (en) * 2013-03-28 2014-10-06 Jsr Corp Method for producing silver nano-wire, silver nano-wire obtained by the method, and coating agent containing silver nano-wire
CN115260394A (en) * 2022-06-30 2022-11-01 海安启弘纺织科技有限公司 Preparation method of phase-change microcapsule for intelligent temperature-regulating textile
CN115260394B (en) * 2022-06-30 2024-02-23 海安启弘纺织科技有限公司 Preparation method of phase-conversion microcapsule for intelligent temperature-regulating textile

Similar Documents

Publication Publication Date Title
JP5993467B2 (en) Method for producing polyvinylamide polymer containing polymerizable functional group
JP3798501B2 (en) Method for producing water-soluble copolymer and water-soluble copolymer
JPH10279637A (en) Production of water-base copolymer dispersion, and dispersion of this type
KR20070112706A (en) Process for producing vinylpyrrolidone polymer
JP3999022B2 (en) Vinyl pyrrolidone polymer
JP2000297105A (en) Manufacture of water soluble copolymer
EP2617742B1 (en) N-vinyl lactam polymer and method for producing same
JP2002265508A (en) Method of producing mercapto group-terminated polymer
WO2018159740A1 (en) Method for producing graft polymer, graft polymer, and initiator for graft polymer
JP3672489B2 (en) Method for producing vinylpyrrolidone polymer
SG171412A1 (en) Modified polyvinyllactams
JP2012082409A (en) N-vinyllactam-based polymer and manufacturing method thereof
EP3377546B1 (en) Process for the preparation of hydroxyethylpyrrolidone methacrylate/glycidyl methacrylate copolymers
JP5788783B2 (en) N-vinyl lactam polymer composition and process for producing the same
JP5867851B2 (en) Method for producing N-vinyl lactam polymer
KR100674373B1 (en) Dispersing agent for vinyl polymers suspension polymerization and manufacturing method thereof
CN103724572B (en) A kind of have Gradient molecular brush polymer of low surface energy and temperature response characteristics and preparation method thereof
JP2021021020A (en) Diallylamine-based/diallyl ether-based copolymer, manufacturing method and applications thereof
JP3570618B2 (en) Method for producing allylamine-based copolymer
JPH11292908A (en) Polymerization of n-vinylcarboxylic acid amide, polymer and production of polymer
RU2734242C1 (en) Method of producing copolymers of acrylonitrile in mass
GB2025990A (en) Cross-linked carboxylic polymer and their use as thickening agents
RU2734241C1 (en) Method of producing acrylonitrile copolymers in a solution
JPH0361687B2 (en)
JP2007238774A (en) Production method for vinylpyrrolidone polymer