JP2000294292A - Nonaqueous electrolyte battery and design method therefor - Google Patents

Nonaqueous electrolyte battery and design method therefor

Info

Publication number
JP2000294292A
JP2000294292A JP11098289A JP9828999A JP2000294292A JP 2000294292 A JP2000294292 A JP 2000294292A JP 11098289 A JP11098289 A JP 11098289A JP 9828999 A JP9828999 A JP 9828999A JP 2000294292 A JP2000294292 A JP 2000294292A
Authority
JP
Japan
Prior art keywords
battery
resistance
less
battery body
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11098289A
Other languages
Japanese (ja)
Inventor
Mikio Iwata
幹夫 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP11098289A priority Critical patent/JP2000294292A/en
Publication of JP2000294292A publication Critical patent/JP2000294292A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To restrain an abnormal temperature rise by internal heating when an external short circuit is caused by setting the battery body delivery volume and a resistance value of a battery not less than a specific value. SOLUTION: A battery is not less than 1000 cc in the battery body deliver volume, and has battery resistance not less than 0.5 mΩ. To set the battery resistance not less than 0.5 mΩ, for example, internal resistance of a battery body is set not less than 0.5 mΩ, or a resistance member is arranged in a terminal part of a battery body external part. When adjusting the internal resistance, it is effective in adjusting a thickness of an active material layer of a positive electrode. A method of arranging the resistance member in the terminal part of the battery body external part is desirable since a part of heating at short- circuiting time can be performed outside the battery body, and is particularly suitable when the internal resistance becomes less than 0.5 mΩin optimizing a battery body structure for improving a battery characteristic since a the battery becomes large. To arrange the resistance member, a construction material of an electrode terminal itself is properly selected, and a resistance value of itself may be set to a prescribed value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、大型の非水電解質
電池の構造とその設計方法に関する。
The present invention relates to a structure of a large non-aqueous electrolyte battery and a method of designing the same.

【0002】[0002]

【従来の技術】リチウム二次電池に代表される非水電解
質電池は、電解質の抵抗が大きいため水系電解液を用い
た電池に比べ大電流を取り出すことが難しい。このた
め、極板面積をできるだけ大きくするとともに極板の活
物質層の厚さをできるだけ薄くし、これによって内部抵
抗を小さくして大きな電流の取り出しを可能にしてい
る。例えば、このようにして作製された巻回式のリチウ
ム二次電池は、ノート型パソコンや携帯電話等の電源と
して用いられており、大きいもので電池本体外容積が3
5cc程度で3Ah程度の容量を有している。
2. Description of the Related Art A non-aqueous electrolyte battery represented by a lithium secondary battery has a large electrolyte resistance, so that it is difficult to obtain a large current compared to a battery using an aqueous electrolyte. Therefore, the area of the electrode plate is made as large as possible and the thickness of the active material layer of the electrode plate is made as thin as possible, whereby the internal resistance is reduced and a large current can be taken out. For example, the wound type lithium secondary battery manufactured as described above is used as a power source for a notebook personal computer, a mobile phone, or the like.
It has a capacity of about 3 Ah at about 5 cc.

【0003】[0003]

【発明が解決しようとする課題】これまでリチウム二次
電池については、小型のものが実用化されているが、電
気自動車や夜間電力を貯えてロードレベリングに用いら
れるような大型のものについては未だ本格的な実用化に
至っておらず、現在、精力的な開発が進められている。
電池を大型化し容量を大きくする場合、極板の設計方法
に関しては、活物質層の厚さを厚くする方法、活物質層
の厚さは変えずに面積を大きくする方法等が考えられる
が、いずれにしても塗布厚には限界があるため必然的に
極板の面積は大きくなる。このことは内部抵抗の一層の
低下に繋がるため、より大きな電流を流すことが可能と
なり非常に好都合である。
Although small lithium secondary batteries have been put to practical use, electric vehicles and large batteries that store nighttime electric power and are used for load leveling have not been developed yet. It has not yet been fully commercialized and is currently being vigorously developed.
When increasing the size and capacity of the battery, regarding the design method of the electrode plate, a method of increasing the thickness of the active material layer, a method of increasing the area without changing the thickness of the active material layer, and the like can be considered. In any case, since the coating thickness has a limit, the area of the electrode plate is inevitably increased. This leads to a further decrease in the internal resistance, which makes it possible to flow a larger current, which is very convenient.

【0004】しかしながら、電池の容量を大きくするた
めに電池の体積を大きくしていくにつれて、電池内部で
発生する熱を無視することが出来なくなってきた。特
に、電池が外部短絡した場合には、電池内部において過
大な電流が流れて電池外表面からは放熱しきれない熱が
発生し、電池が異常な発熱を引き起こすという問題が生
じることが分かった。これは、電池が大きくなるに従っ
て体積当りの表面積が小さくなり、放熱効率が低下する
一方で、電池の内部抵抗は小さくなって発熱量が急激に
増加するためである。
However, as the volume of the battery is increased in order to increase the capacity of the battery, the heat generated inside the battery cannot be ignored. In particular, it has been found that when the battery is short-circuited externally, an excessive current flows inside the battery and heat that cannot be completely radiated from the outer surface of the battery is generated, which causes a problem that the battery causes abnormal heat generation. This is because as the size of the battery increases, the surface area per volume decreases and the heat radiation efficiency decreases, while the internal resistance of the battery decreases and the heat generation increases rapidly.

【0005】本発明は、上記する課題に対処するために
なされたものであり、外部短絡を生じた場合にも内部発
熱による異常な温度上昇を抑制することのできる非水電
解質電池とその設計指針を提供することを目的としてい
る。
SUMMARY OF THE INVENTION The present invention has been made to address the above-mentioned problems, and a non-aqueous electrolyte battery capable of suppressing an abnormal temperature rise due to internal heat generation even when an external short circuit occurs, and a design guideline thereof. It is intended to provide.

【0006】[0006]

【課題を解決するための手段】本発明者は、内部抵抗の
大きさに着目し、内部抵抗の大きさをどのように調整す
れば外部短絡を生じた場合にも内部発熱による異常な温
度上昇を抑制することができるかを検討した。この結
果、電池本体外容積が1000cc以上を有する非水電
解質電池においては、電池の抵抗値が0.5mΩ以上と
なるように設計することによって外部短絡を生じた場合
にも内部発熱による異常な温度上昇を抑制することがで
きることを見出したのである。
The present inventor pays attention to the magnitude of the internal resistance, and how to adjust the magnitude of the internal resistance can cause an abnormal temperature rise due to internal heat even when an external short circuit occurs. It was examined whether or not it could be suppressed. As a result, in the case of a non-aqueous electrolyte battery having a battery body outer volume of 1000 cc or more, by designing the battery to have a resistance value of 0.5 mΩ or more, even when an external short circuit occurs, abnormal temperature due to internal heat generation is obtained. They found that the rise could be suppressed.

【0007】すなわち、本発明の設計方法は、電池本体
外容積が1000cc以上を有する非水電解質電池の設
計方法であって、電池の抵抗が0.5mΩ以上となるよ
うにすることを特徴とするものである。尚、電池の抵抗
とは、電池の正極端子と負極端子間の抵抗を意味し、電
池本体外部に抵抗部材を設ける場合は、抵抗部材を含め
た電極端子間の抵抗を意味する。
That is, the design method of the present invention is a method of designing a non-aqueous electrolyte battery having a battery main body external volume of 1000 cc or more, wherein the battery resistance is 0.5 mΩ or more. Things. The resistance of the battery means the resistance between the positive electrode terminal and the negative electrode terminal of the battery. When a resistance member is provided outside the battery body, it means the resistance between the electrode terminals including the resistance member.

【0008】この方法は、3V以上の開放端子電圧、特
に3.9V以上の開放端子電圧を有する非水電解質電池
を設計する場合においてより効果的な方法であって、こ
のような指針に従って電池を設計することによって外部
短絡時にも異常な温度上昇を引き起こすことのない安全
性に優れた電池を設計することが可能となる。
This method is more effective when designing a non-aqueous electrolyte battery having an open terminal voltage of 3 V or more, particularly an open terminal voltage of 3.9 V or more. By designing, it becomes possible to design a battery excellent in safety that does not cause abnormal temperature rise even when an external short circuit occurs.

【0009】本発明の非水電解質電池は、上記本発明の
設計方法を用いることに得られる電池であって、電池本
体外容積が1000cc以上であって、電池の抵抗値が
0.5mΩ以上であることを特徴とする。
The non-aqueous electrolyte battery of the present invention is a battery obtained by using the above-described design method of the present invention. The non-aqueous electrolyte battery has a battery body external volume of 1000 cc or more and a battery resistance value of 0.5 mΩ or more. There is a feature.

【0010】また、本発明の別の非水電解質電池は、電
池本体に抵抗部材を備えてなる電池であって、電池本体
の内部抵抗値が0.5mΩ未満であって、電池本体の内
部抵抗値と抵抗部材の抵抗値との合計が0.5mΩ以上
であることを特徴とする。
Another non-aqueous electrolyte battery according to the present invention is a battery having a battery body provided with a resistance member, wherein the internal resistance of the battery body is less than 0.5 mΩ, and the internal resistance of the battery body is less than 0.5 mΩ. The sum of the resistance value and the resistance value of the resistance member is 0.5 mΩ or more.

【0011】本発明の電池は、抵抗部材を設けることに
より電池の抵抗値が0.5mΩ以上となるように調整さ
れていることを特徴とし、上記電池同様、電池本体外容
積が1000cc以上の電池、特に3V以上の開放端子
電圧、より良くは3.9V以上の開放端子電圧を有する
非水電解質電池に適した構造であって、このような構造
とすることによって外部短絡時にも異常な温度上昇を引
き起こすことのない安全性に優れた電池となる。
[0011] The battery of the present invention is characterized in that the resistance of the battery is adjusted to be 0.5 mΩ or more by providing a resistance member. In particular, the structure is suitable for a non-aqueous electrolyte battery having an open terminal voltage of 3 V or more, and more preferably, an open terminal voltage of 3.9 V or more. And a battery with excellent safety that does not cause any problem.

【0012】さらに、特に容量が700Ah以上の電池
の場合、極板の厚さやセパレータの種類、電解液の組成
等の電池必須構成要素の調整により内部抵抗を0.5m
Ω以上にするのが難しく、このような抵抗部材を備えた
電池が好ましい。
Further, particularly in the case of a battery having a capacity of 700 Ah or more, the internal resistance is adjusted to 0.5 m by adjusting the essential components of the battery such as the thickness of the electrode plate, the type of separator, and the composition of the electrolytic solution.
It is difficult to increase the resistance to Ω or more, and a battery provided with such a resistance member is preferable.

【0013】また、抵抗部材は、電池本体外部に設るの
が好ましく、これにより電池本体外部で発熱させること
ができ、電池本体内部での発熱をより一層低減すること
ができる。さらに、抵抗部材を電池容器外部に設け、こ
れを水冷、油冷、空冷等の方法により冷却するようにす
るのが好ましく、これにより抵抗部材での発熱が電池本
体に与える影響を低減することが出来る。
Further, the resistance member is preferably provided outside the battery main body, so that heat can be generated outside the battery main body, and the heat generation inside the battery main body can be further reduced. Further, it is preferable to provide a resistance member outside the battery container and cool it by a method such as water cooling, oil cooling, or air cooling, thereby reducing the influence of heat generated by the resistance member on the battery body. I can do it.

【0014】[0014]

【発明の実施の形態】以下、本発明を実施するに適した
リチウム電池の実施形態により、本発明についてさらに
説明する。本発明は、リチウム電池の中でもLiCoO
2 、LiNiO2 等の金属酸化物正極活物質を用いた満
充電時の開放端子電圧が3.9V以上となるリチウム二
次電池等の3.9V以上の開放端子電圧を取りうるリチ
ウム二次電池に適している。以下では、LiCoO2
LiNiO2 等の金属酸化物正極活物質を用いた満充電
時の開放端子電圧が3.9V以上となるリチウム二次電
池を例にして本発明について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be further described with reference to an embodiment of a lithium battery suitable for carrying out the present invention. The present invention is directed to LiCoO among lithium batteries.
2. Lithium secondary batteries capable of obtaining an open terminal voltage of 3.9 V or more, such as lithium secondary batteries having an open terminal voltage of 3.9 V or more when fully charged using a metal oxide positive electrode active material such as LiNiO 2. Suitable for. In the following, LiCoO 2 ,
The present invention will be described by taking as an example a lithium secondary battery having an open terminal voltage of 3.9 V or more when fully charged using a metal oxide positive electrode active material such as LiNiO 2 .

【0015】電池抵抗を0.5mΩ以上とするには、例
えば、電池本体の内部抵抗を0.5mΩ以上とするか、
電池本体外部の端子部分に抵抗部材を設けるかすれば良
いが、内部抵抗を調整する場合には、正極の活物質層を
調整するのが効果的である。これは、正極の活物質層が
内部抵抗に対して最も大きな影響を与えるからである。
また、内部での発熱は均一に行われるようにするのが良
いからである。
In order to make the battery resistance 0.5 mΩ or more, for example, the internal resistance of the battery body is made 0.5 mΩ or more,
It is sufficient to provide a resistance member at a terminal portion outside the battery body, but when adjusting the internal resistance, it is effective to adjust the active material layer of the positive electrode. This is because the active material layer of the positive electrode has the greatest effect on the internal resistance.
In addition, it is preferable that the internal heat generation is performed uniformly.

【0016】この場合、例えば、正極活物質層の厚さを
厚くする方法を用いることが出来るが、厚くする場合に
は電極構造は巻き式よりも積層式の方が好ましい。これ
は、電極が厚くなると巻くのが難しくなるためである。
このような電極活物質層を厚くした積層式の電池は、そ
れほど高い率の放電特性が必要とされない電池、例え
ば、最大でも1Cの放電しか行わないような電池に適し
ている。そして、このような積層式の電池の場合、電池
外形状は方形であるのが好ましく、このような形状とす
ることでエネルギー密度をより大きくすることができ
る。
In this case, for example, a method of increasing the thickness of the positive electrode active material layer can be used, but in the case of increasing the thickness, it is preferable that the electrode structure is a laminated type rather than a wound type. This is because it becomes difficult to wind the electrode when the electrode is thick.
Such a stacked battery having a thicker electrode active material layer is suitable for a battery that does not require a very high rate of discharge characteristics, for example, a battery that only discharges at a maximum of 1C. In the case of such a stacked battery, it is preferable that the outer shape of the battery is rectangular, and by adopting such a shape, the energy density can be further increased.

【0017】電池本体外部の電極端子部分に抵抗部材を
設ける方法は、短絡時の発熱の一部を電池本体外部で行
わせることができるという意味から好ましい方法である
が、特に、電池が大きくなり、通常使用時の電池特性を
良好にするための電池本体構造の適正化を行った場合に
電池本体内部抵抗が0.5mΩ未満となってしまう場合
に特に適した方法である。抵抗部材を設ける方法として
は、例えば電極端子自体の材質を選択することにより電
極端子自体の抵抗値を所定の値になるようにしても良い
し、いわゆる抵抗素子を電極端子に直列接続しても良
い。
The method of providing a resistance member at the electrode terminal portion outside the battery main body is a preferable method from the viewpoint that a part of heat generation at the time of short circuit can be performed outside the battery main body. This is a method particularly suitable when the internal resistance of the battery main body becomes less than 0.5 mΩ when the battery main body structure is optimized for improving the battery characteristics during normal use. As a method of providing the resistance member, for example, the resistance value of the electrode terminal itself may be set to a predetermined value by selecting the material of the electrode terminal itself, or a so-called resistance element may be connected in series to the electrode terminal. good.

【0018】電池本体は、通常のリチウム二次電池同様
に、正極、負極、電解質、セパレータ等から構成され、
例えば積層式の場合、正極板と負極板とをセパレータを
介しながらこの順に必要枚数重ねたものを電池容器に収
納し、これに電解液を注入して封口することによって作
製される。そして、各部材は例えば以下のようにして作
製することが出来る。
The battery body is composed of a positive electrode, a negative electrode, an electrolyte, a separator, etc., as in a normal lithium secondary battery.
For example, in the case of a stacked type, a battery is prepared by stacking a required number of positive and negative plates in this order with a separator interposed therebetween in a battery container, injecting an electrolytic solution into the container, and sealing the battery. Each member can be manufactured, for example, as follows.

【0019】正極板は、LiCoO2 、LiNiO2
の金属酸化物粒子を活物質とし、これにアセチレンブラ
ックやグラファイト等の導電剤とポリフッ化ビニリデ
ン、ポリテトラフルオロエチレン等の結着剤を混合して
活物質合剤とし、これをペースト状にしてアルミニウム
箔等の電極基体に塗布、乾燥させることによって作製で
きる。
The positive electrode plate uses metal oxide particles such as LiCoO 2 and LiNiO 2 as an active material, and mixes a conductive agent such as acetylene black or graphite with a binder such as polyvinylidene fluoride and polytetrafluoroethylene. An active material mixture can be prepared by applying the mixture to an electrode substrate such as an aluminum foil in the form of a paste, followed by drying.

【0020】負極板は、活物質として金属リチウムやリ
チウム合金、リチウムの吸蔵・放出が可能な黒鉛、人造
黒鉛、低結晶性炭素材料、または金属酸化物など種々の
ものを用いることができるが、例えば、黒鉛粉末を上記
正極同様、結着剤を用いて銅箔等の電極基体に塗布、乾
燥させることによって作製できる。
As the negative electrode plate, various materials such as lithium metal, lithium alloy, graphite capable of inserting and extracting lithium, artificial graphite, low-crystalline carbon material, and metal oxide can be used as the active material. For example, it can be produced by applying and drying a graphite powder on an electrode substrate such as a copper foil using a binder similarly to the above positive electrode.

【0021】非水電解質は、固体状、液体状いずれのも
のも用いることができ、ゲル状のものでもよい。液体の
場合、溶媒としては例えば、プロピレンカーボネート、
エチレンカーボネート、γ−ブチロラクトン、ジメチル
スルホキシドなどの高誘電率溶媒にジメトキシエタン、
ジメチルカーボネート、エチルメチルカーボネート、ジ
エチルカーボネートなどの低粘度溶媒を混合したものを
用い、電解質塩として、LiClO4 、LiBF4 、L
iPF6 、LiCF3 SO3 、LiN(CF3SO2
2 、LiN(Cn F2n+1SO2 2 (但し、nは各独立
して1,2,3または4)などのリチウム塩を溶解させ
ることに作製できる。特に、LiPF6およびLiN
(CF3 SO2 2 は、安全性が高くかつ溶解させた電
解質のイオン導電率が高いという点で、特に好ましい。
The non-aqueous electrolyte may be either solid or liquid, and may be a gel. In the case of a liquid, as the solvent, for example, propylene carbonate,
Dimethoxyethane in a high dielectric constant solvent such as ethylene carbonate, γ-butyrolactone, and dimethyl sulfoxide;
Using a mixture of low-viscosity solvents such as dimethyl carbonate, ethyl methyl carbonate and diethyl carbonate, and using LiClO 4 , LiBF 4 , L
iPF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 )
2 , LiN (Cn F 2n + 1 SO 2 ) 2 (where n is 1, 2, 3 or 4 independently) and can be prepared by dissolving a lithium salt. In particular, LiPF 6 and LiN
(CF 3 SO 2 ) 2 is particularly preferable because it has high safety and high ionic conductivity of the dissolved electrolyte.

【0022】セパレータは、例えばポリエチレン製の微
多孔膜を用いれば良い。
As the separator, for example, a microporous film made of polyethylene may be used.

【0023】[0023]

【実施例】以下、実施例を用いて本発明についてさらに
詳細に説明する。 (実施例1)図1は、本発明の実施例であるリチウムイ
オン二次電池の外観形状を示す斜視図である。本電池は
長方形箱型形状を有しており、ステンレス鋼板製の筒状
の電池本体容器8にステンレス鋼板製の蓋板9が溶接接
合されたものである。そして、相対する面からそれぞれ
2本の正極端子1と負極端子2が引き出された構造をし
ている。なお、電池本体外容積は、約4000ccであ
る。
The present invention will be described in more detail with reference to the following examples. Embodiment 1 FIG. 1 is a perspective view showing an external shape of a lithium ion secondary battery according to an embodiment of the present invention. This battery has a rectangular box shape, and is formed by welding a stainless steel plate lid plate 9 to a cylindrical battery body container 8 made of stainless steel plate by welding. Then, the two positive electrode terminals 1 and the two negative electrode terminals 2 are drawn out from the opposing surfaces. The external volume of the battery body is about 4000 cc.

【0024】図2は、本実施例電池内部の発電要素の積
層構造を示す断面模式図、図3は、この電池の集電構造
を示す断面模式図である。本実施例の電池は、正極板4
と負極板3とがセパレータ5を介して交互に積層されて
なる積層構造電池であって、電極板は共に長方形板状
で、端部一辺で活物質層が形成されずに集電体金属が露
出するようにされており、この集電体金属が露出した集
電部で同極性電極板同士重ねられ、両側から固定板6で
この部分を挟み込んだ後、溶接し、さらにリベット7で
かしめて強固に固定された集電構造を有している。この
ような構造とすることによって、本電池では、振動・衝
撃性能が向上したものとなっている。なお、正極端子1
と負極端子2は、それぞれ予め蓋板9の開口孔に上端部
が挿入され、封止材を介してナット(図1では省略され
ている。)でネジ止めされることによって絶縁封止され
るようになっている。
FIG. 2 is a schematic sectional view showing a laminated structure of power generating elements inside the battery of this embodiment, and FIG. 3 is a schematic sectional view showing a current collecting structure of the battery. The battery of the present embodiment has a positive electrode plate 4
And a negative electrode plate 3 are alternately laminated with a separator 5 interposed therebetween, wherein the electrode plates are both rectangular plates, and an active material layer is not formed on one side of the end, and the current collector metal is formed. The collector metal is superposed on the exposed current collector, and the same-polarity electrode plates are overlapped with each other. After sandwiching this portion with the fixing plate 6 from both sides, welding is performed, and further, caulking with the rivet 7 is performed. It has a strongly fixed current collecting structure. With such a structure, the present battery has improved vibration / shock performance. The positive terminal 1
The negative electrode terminal 2 and the negative electrode terminal 2 are respectively insulated and sealed by being inserted in advance into the opening holes of the cover plate 9 and screwed with nuts (omitted in FIG. 1) via a sealing material. It has become.

【0025】電池内部には、図3に示されるような発電
要素が2個収納されており、一つの発電要素で、正極板
4が60枚、負極板3が61枚積層されている。本実施
例の電池は、このようなスタック型の発電要素を方形箱
型の電池容器に収納しているので、隙間を少なくするこ
とができ、電池のエネルギー密度を大きくすることがで
きるという利点を有するものである。
In the battery, two power generating elements as shown in FIG. 3 are housed, and one power generating element has 60 positive electrode plates 4 and 61 negative electrode plates 3 stacked. The battery of this embodiment has the advantage that such a stack-type power generation element is housed in a rectangular box-shaped battery container, so that the gap can be reduced and the energy density of the battery can be increased. Have

【0026】次に内部の構造についてさらに説明する。
正極板4は、LiCoO2 粒子94重量部、ケッチェン
ブラック1重量部とポリフッ化ビニリデン(PVdF)
5重量部とを混合し、溶媒としてN−メチル−2−ピロ
リドン(NMP)を添加して活物質合材ペーストとし、
これを厚さ40μmのアルミニウム箔に均一に塗布し、
乾燥させた後にロールプレスすることによって作製され
ており、正極板の活物質層の形成された部分の大きさ
は、117mm×380mmで、活物質層の厚さは35
0μm、活物質合剤の塗布重量は4g/100cm2
ある。
Next, the internal structure will be further described.
The positive electrode plate 4 is composed of 94 parts by weight of LiCoO 2 particles, 1 part by weight of Ketjen black, and polyvinylidene fluoride (PVdF).
5 parts by weight, and N-methyl-2-pyrrolidone (NMP) was added as a solvent to obtain an active material mixture paste.
This is uniformly applied to an aluminum foil having a thickness of 40 μm,
It is manufactured by roll pressing after drying. The size of the active material layer formed on the positive electrode plate is 117 mm × 380 mm, and the thickness of the active material layer is 35 mm.
0 μm, and the applied weight of the active material mixture was 4 g / 100 cm 2 .

【0027】負極板3は、鱗片状人造黒鉛粒子94重量
部とPVdF6重量重量部とを混合し、溶媒としてN−
メチル−2−ピロリドン(NMP)を添加して活物質合
剤ペーストとし、これを厚さ40μmの銅箔に均一に塗
布し、乾燥させた後にロールプレスすることによって作
製されており、負極板の活物質層の形成された部分の大
きさは117mm×380mmで、活物質層の厚さは3
50μm、活物質合材の塗布重量は2g/100cm2
である。セパレータ5は、40μm厚のポリエチレン製
微多孔膜2枚で15μm厚のポリプロピレン製不織布を
挟み込んでなる積層体からなる。非水電解液は、エチレ
ンカーボネートとジエチルカーボネートとの体積比1:
1の混合溶媒に、LiPF6 を1モル/l溶かしたもの
である。
The negative electrode plate 3 was prepared by mixing 94 parts by weight of flaky artificial graphite particles and 6 parts by weight of PVdF, and using N-
Methyl-2-pyrrolidone (NMP) is added to form an active material mixture paste, which is uniformly applied to a copper foil having a thickness of 40 μm, dried, and roll-pressed to produce a negative electrode plate. The size of the portion where the active material layer is formed is 117 mm × 380 mm, and the thickness of the active material layer is 3 mm.
50 μm, application weight of active material mixture is 2 g / 100 cm 2
It is. The separator 5 is made of a laminate in which two 15 μm-thick polypropylene nonwoven fabrics are sandwiched between two 40 μm-thick polyethylene microporous membranes. The non-aqueous electrolyte is a mixture of ethylene carbonate and diethyl carbonate in a volume ratio of 1:
LiPF6 was dissolved at 1 mol / l in the mixed solvent of No. 1.

【0028】セパレ−タ5は、40μm厚のポリエチレ
ン製微多孔膜2枚で15μm厚のポリプロピレン製不織
布を挟み込んでなる積層体からなる。非水電解液は、エ
チレンカ−ボネ−トとジエチルカ−ボネ−トとの体積比
1:1の混合溶媒に、LiPF6 を1モル/l溶かした
ものである。
The separator 5 is composed of a laminate formed by sandwiching a 15 μm-thick polypropylene nonwoven fabric between two 40 μm-thick polyethylene microporous membranes. The non-aqueous electrolyte is obtained by dissolving 1 mol / l of LiPF 6 in a mixed solvent of ethylene carbonate and diethyl carbonate at a volume ratio of 1: 1.

【0029】以上のような構造を有する本実施例の電池
の容量は400Ahであり、内部抵抗をインピーダンス
測定法(1kHz、温度25℃)により測定したとこ
ろ、その値は0.8mΩであった。尚、内部抵抗の測定
は2本の正極端子1と2本の負極端子2をそれぞれ一つ
の端子となるように接続した後、この端子間を測定する
ことにより行った。本実施例では、正極板への活物質層
の塗布厚を厚くすることと、導電助材としてケッチェン
ブラックを用いることによって、電池の抵抗が0.5m
Ω以上となるように設計した。
The capacity of the battery of this embodiment having the above-mentioned structure was 400 Ah, and the internal resistance was measured by an impedance measuring method (1 kHz, temperature 25 ° C.), and the value was 0.8 mΩ. The internal resistance was measured by connecting two positive terminals 1 and two negative terminals 2 so as to be one terminal each, and then measuring the distance between these terminals. In this example, the resistance of the battery was 0.5 m by increasing the thickness of the active material layer applied to the positive electrode plate and using Ketjen black as a conductive additive.
It was designed to be Ω or more.

【0030】(比較例1)LiCoO2 粒子93重量
部、アセチレンブラック2重量部とポリフッ化ビニリデ
ン(PVdF)5重量部とを混合し、溶媒としてN−メ
チル−2−ピロリドン(NMP)を添加して活物質合剤
ペーストとし、これを厚さ40μmのアルミニウム箔に
均一に塗布し、乾燥させた後にロールプレスして正極板
を作製した以外は上記実施例と同じにして、上記実施例
と同様のリチウムイオン二次電池を作製した。
Comparative Example 1 93 parts by weight of LiCoO 2 particles, 2 parts by weight of acetylene black and 5 parts by weight of polyvinylidene fluoride (PVdF) were mixed, and N-methyl-2-pyrrolidone (NMP) was added as a solvent. As an active material mixture paste, this was uniformly applied to an aluminum foil having a thickness of 40 μm, dried, and then roll-pressed to produce a positive electrode plate. Was manufactured.

【0031】以上のような構造を有する本比較例の電池
の容量は400Ahであり、内部抵抗をインピーダンス
測定法(1kHz、温度25℃)により測定したとこ
ろ、その値は0.4mΩであった。尚、内部抵抗の測定
は2本の正極端子1と2本の負極端子2をそれぞれ一つ
の端子となるように接続した後、この端子間を測定する
ことにより行った。本比較例では、正極板への活物質層
の塗布厚を厚くすることは同じにしたが、導電助材とし
てアセチレンブラックを用いることによって、電池の抵
抗が0.5mΩ未満となるように設計した。
The capacity of the battery of this comparative example having the above-mentioned structure was 400 Ah, and the internal resistance was measured by an impedance measuring method (1 kHz, temperature 25 ° C.) and found to be 0.4 mΩ. The internal resistance was measured by connecting two positive terminals 1 and two negative terminals 2 so as to be one terminal each, and then measuring the distance between these terminals. In the present comparative example, the thickness of the active material layer applied to the positive electrode plate was increased to be the same, but by using acetylene black as a conductive additive, the battery was designed to have a resistance of less than 0.5 mΩ. .

【0032】(外部短絡試験)これらの電池を用いて外
部短絡試験を行った。試験は、25℃の温度条件で、2
00A定電流/4.1V定電圧×4hの定電流定電圧充
電と200Aでの定電流放電(3V終止電圧)を繰り返
した後、満充電状態において行った。この結果、実施例
電池では、電池温度は110℃以下であり、安全弁の開
放も無かったが、比較例電池では、電池温度が300℃
以上となり、安全弁が開放された。
(External Short-Circuit Test) An external short-circuit test was performed using these batteries. The test was performed at a temperature of 25 ° C.
After repeating constant current constant voltage charging of 00 A constant current / 4.1 V constant voltage × 4 h and constant current discharging at 200 A (3 V end voltage), the test was performed in a fully charged state. As a result, in the example battery, the battery temperature was 110 ° C. or less, and the safety valve was not opened. However, in the comparative example battery, the battery temperature was 300 ° C.
As a result, the safety valve was opened.

【0033】(実施例2)実施例1の電池と全く同じ構
造で、電池容器内部の発電要素のを5倍にすることによ
って容量が2000Ahの電池を作製し、上記実施例と
同様にして電池の内部抵抗を測定したところ、その値が
0.1mΩとなったので、10本ある正極端子を接続し
て一つにまとめた共通正極端子に0.4mΩの抵抗素子
を接続し、これを含めた形の電池として電池の抵抗を
0.5mΩとした。この電池について、上記と同様の外
部短絡試験を行ったところ、安全弁は開放しなかった。
これに対し、抵抗素子を接続する前の電池では、電池温
度が300℃以上となり、安全弁が開放された。
(Example 2) A battery having the same structure as that of the battery of Example 1 and having a capacity of 2,000 Ah by making the number of power generation elements inside the battery container five times was manufactured. When the internal resistance was measured, the value was 0.1 mΩ. Therefore, a positive resistance terminal of 0.4 mΩ was connected to a common positive terminal that was connected by connecting ten positive terminals, and this was included. The battery had a resistance of 0.5 mΩ as a battery having a rectangular shape. When the same external short-circuit test as described above was performed on this battery, the safety valve was not opened.
On the other hand, in the battery before the resistance element was connected, the battery temperature became 300 ° C. or higher, and the safety valve was opened.

【0034】このように、電池の抵抗が0.5mΩ以上
となるように電池を設計することによって、外部短絡時
の異常発熱が防止されることが確認されたが、特に、本
発明の設計方法と電池は、本実施例に示されているよう
な、電解液として炭酸エステル系の有機溶媒が用いら
れ、正極活物質としてコバルト酸リチウムが用いられた
方形箱型のリチウムイオン二次電池に特に適している。
As described above, it was confirmed that by designing the battery so that the resistance of the battery was 0.5 mΩ or more, abnormal heat generation at the time of external short circuit was prevented. And the battery, as shown in the present embodiment, a carbonate-based organic solvent is used as an electrolytic solution, and a rectangular box-type lithium ion secondary battery in which lithium cobalt oxide is used as a positive electrode active material is particularly used. Are suitable.

【0035】[0035]

【発明の効果】本発明によれば、外部短絡を生じた場合
にも内部発熱による異常な温度上昇を抑制することので
きる非水電解質電池の製造が可能となる。
According to the present invention, it is possible to manufacture a nonaqueous electrolyte battery capable of suppressing an abnormal rise in temperature due to internal heat generation even when an external short circuit occurs.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例のリチウムイオン二次電池の外
観形状を示す斜視図である。
FIG. 1 is a perspective view showing an external shape of a lithium ion secondary battery according to an embodiment of the present invention.

【図2】本発明の実施例電池内部の発電要素の積層構造
を示す断面模式図である。
FIG. 2 is a schematic sectional view showing a laminated structure of a power generating element inside a battery according to an embodiment of the present invention.

【図3】本発明の実施例電池の集電構造を示す断面模式
図である。 1 正極端子 2 負極端子 3 負極板 4 正極板 5:セパレータ
FIG. 3 is a schematic sectional view showing a current collecting structure of a battery according to an example of the present invention. DESCRIPTION OF SYMBOLS 1 Positive terminal 2 Negative terminal 3 Negative plate 4 Positive plate 5: Separator

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 電池本体外容積が1000cc以上であ
って、電池の抵抗値が0.5mΩ以上であることを特徴
とする非水電解質電池。
1. A non-aqueous electrolyte battery having a battery outer volume of at least 1,000 cc and a battery resistance of at least 0.5 mΩ.
【請求項2】 電池本体に抵抗部材を備えてなる電池で
あって、電池本体の内部抵抗値が0.5mΩ未満であっ
て、電池本体の内部抵抗値と抵抗部材の抵抗値との合計
が0.5mΩ以上であることを特徴とする非水電解液電
池。
2. A battery comprising a battery body provided with a resistance member, wherein the internal resistance value of the battery body is less than 0.5 mΩ and the sum of the internal resistance value of the battery body and the resistance value of the resistance member is less than 0.5 mΩ. A nonaqueous electrolyte battery having a resistance of 0.5 mΩ or more.
【請求項3】 抵抗部材が電池本体外部に設けられてい
ることを特徴とする請求項2記載の非水電解液電池。
3. The non-aqueous electrolyte battery according to claim 2, wherein the resistance member is provided outside the battery body.
【請求項4】 電池本体外容積が1000cc以上であ
り、電池本体に抵抗部材を備えてなる電池であって、電
池本体の内部抵抗値が0.5mΩ未満であって、電池本
体の内部抵抗値と抵抗部材の抵抗値との合計が0.5m
Ω以上であることを特徴とする非水電解液電池。
4. A battery comprising a battery body having an outer volume of not less than 1000 cc and a battery body provided with a resistance member, wherein an internal resistance value of the battery body is less than 0.5 mΩ and an internal resistance value of the battery body. And the resistance value of the resistance member is 0.5 m
A non-aqueous electrolyte battery characterized by being Ω or more.
【請求項5】 電池本体外容積が1000cc以上を有
する非水電解質電池の設計方法であって、電池の抵抗が
0.5mΩ以上となるようにすることを特徴とする非水
電解質電池の設計方法。
5. A method for designing a non-aqueous electrolyte battery having a battery main body external volume of 1000 cc or more, wherein the battery has a resistance of 0.5 mΩ or more. .
JP11098289A 1999-04-06 1999-04-06 Nonaqueous electrolyte battery and design method therefor Pending JP2000294292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11098289A JP2000294292A (en) 1999-04-06 1999-04-06 Nonaqueous electrolyte battery and design method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11098289A JP2000294292A (en) 1999-04-06 1999-04-06 Nonaqueous electrolyte battery and design method therefor

Publications (1)

Publication Number Publication Date
JP2000294292A true JP2000294292A (en) 2000-10-20

Family

ID=14215782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11098289A Pending JP2000294292A (en) 1999-04-06 1999-04-06 Nonaqueous electrolyte battery and design method therefor

Country Status (1)

Country Link
JP (1) JP2000294292A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100465654C (en) * 2006-09-15 2009-03-04 天津力神电池股份有限公司 Method for detecting short circuit of non-aqueous electrolyte secondary batteries
US9905895B2 (en) 2012-09-25 2018-02-27 Front Edge Technology, Inc. Pulsed mode apparatus with mismatched battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100465654C (en) * 2006-09-15 2009-03-04 天津力神电池股份有限公司 Method for detecting short circuit of non-aqueous electrolyte secondary batteries
US9905895B2 (en) 2012-09-25 2018-02-27 Front Edge Technology, Inc. Pulsed mode apparatus with mismatched battery

Similar Documents

Publication Publication Date Title
JP5257700B2 (en) Lithium secondary battery
JP2002352863A (en) Lithium secondary battery and prolonged structure of lithium secondary battery
US8012614B2 (en) Non-aqueous electrolyte battery, and power supply unit
JP2001176497A (en) Nonaqueous electrolyte secondary battery
WO2013038677A1 (en) Nonaqueous electrolyte secondary cell
US20050058896A1 (en) Non-aqueous electrolyte secondary battery
JP5761439B2 (en) Non-aqueous electrolyte secondary battery and storage circuit using the same
JP2002237292A (en) Nonaqueous electrolyte secondary battery
JP2000090932A (en) Lithium secondary battery
JP2001273880A (en) Nonaqueous electrolyte secondary battery
JP2001273930A (en) Manufacturing method of polymer battery
JP2001357874A (en) Nonaqueous electrolyte secondary battery
JP2000067918A (en) Lithium secondary battery
JP2019169346A (en) Lithium ion secondary battery
JP7365566B2 (en) Non-aqueous electrolyte secondary battery
JP2000306607A (en) Nonaqueous electrolyte battery
JPH06243856A (en) Electricity accumulating element
US20050237031A1 (en) Power supply, charging apparatus, and charging system
JP2000294292A (en) Nonaqueous electrolyte battery and design method therefor
JPH11238500A (en) Roll type cylindrical battery
JP2002231312A (en) Nonaqueous electrolyte secondary battery
JP3394484B2 (en) Lithium secondary battery and design method thereof
JP2000311691A (en) Nonaqueous electrolyte battery
JP3774095B2 (en) Transport method of lithium secondary battery
CN114267837B (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060119