JP2000292408A - Sensor device - Google Patents

Sensor device

Info

Publication number
JP2000292408A
JP2000292408A JP11100752A JP10075299A JP2000292408A JP 2000292408 A JP2000292408 A JP 2000292408A JP 11100752 A JP11100752 A JP 11100752A JP 10075299 A JP10075299 A JP 10075299A JP 2000292408 A JP2000292408 A JP 2000292408A
Authority
JP
Japan
Prior art keywords
electrode
oxide
sensor device
solid electrolyte
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11100752A
Other languages
Japanese (ja)
Other versions
JP4231587B2 (en
Inventor
Hiroteru Fujita
弘輝 藤田
Norihiko Nadanami
紀彦 灘浪
Takaharu Inoue
隆治 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP10075299A priority Critical patent/JP4231587B2/en
Priority to DE60011825T priority patent/DE60011825T2/en
Priority to EP00102641A priority patent/EP1026133B1/en
Priority to US09/499,359 priority patent/US6337006B1/en
Publication of JP2000292408A publication Critical patent/JP2000292408A/en
Application granted granted Critical
Publication of JP4231587B2 publication Critical patent/JP4231587B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a sensor device largely enhanced in oxygen pumping capacity by reducing the interfacial resistance of the solid electrolyte comprising oxygen ion conductive oxide and a noble metal electrode to a large extent and operable even at low temp. of 700 deg.C or lower. SOLUTION: A sensor device is constituted by forming an electrode 2 containing at least one of metal oxide and composite oxide on an oxygen ion conductive solid electrolyte. MnO2 is preferably used as metal oxide and LaGaO3 composite oxide is preferably used as composite oxide. As the oxygen ion conductive solid electrolyte 1, LaGaO3 composite oxide, ZrO2 oxide or LeO2 oxide is preferable. The electrode 2 is formed from at least one component selected from Pt, Au, Pd, Ir, Rh, In, Ag, Tl and Cu.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、酸素イオン伝導性固体
電解質を用いたセンサデバイスに関するものである。更
に詳しくは、固体電解質と電極との密着性が向上すると
ともに、固体電解質と電極との界面に気相、電極、固体
電解質からなる三相界面を増加して電極界面抵抗を低下
させることにより、酸素ポンプ能が従来よりも向上した
限界電流式センサデバイスに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sensor device using an oxygen ion conductive solid electrolyte. More specifically, while improving the adhesion between the solid electrolyte and the electrode, the gas phase at the interface between the solid electrolyte and the electrode, the electrode, by increasing the three-phase interface consisting of the solid electrolyte to reduce the electrode interface resistance, The present invention relates to a limiting current type sensor device having an improved oxygen pumping ability as compared with the related art.

【0002】[0002]

【従来の技術】酸素イオン伝導性固体電解質を用いたセ
ンサデバイスには、一般に安定化ジルコニア固体電解質
が用いられている。例えば、自動車エンジン用酸素セン
サとしてジルコニア固体電解質型センサが実用化されて
いる。また、ジルコニア系酸化物は、化学的に安定であ
り、高酸素伝導体であるため、燃料電池やリアクター等
幅広い分野で使用されている。
2. Description of the Related Art A stabilized zirconia solid electrolyte is generally used for a sensor device using an oxygen ion conductive solid electrolyte. For example, a zirconia solid electrolyte sensor has been put to practical use as an oxygen sensor for an automobile engine. In addition, zirconia-based oxides are chemically stable and are high-oxygen conductors, and are therefore used in a wide range of fields such as fuel cells and reactors.

【0003】ジルコニア系酸化物を用いたセンサデバイ
スの例としては、特開平9−311120に示されてい
るような排気ガスセンサが挙げられる。検出室内に設置
された酸素イオン伝導性固体電解質からなる酸素センサ
セルの信号(酸素濃淡電池起電力)が一定になるように
酸素イオン伝導性固体電解質からなる酸素ポンプセルを
作動させ、検出室に配置されている半導体検出素子によ
り排気ガス中の被検出成分を抵抗変化から求めるもので
ある。
An example of a sensor device using a zirconia-based oxide is an exhaust gas sensor as disclosed in Japanese Patent Application Laid-Open No. 9-311120. The oxygen pump cell made of the oxygen ion-conductive solid electrolyte is operated so that the signal (electromotive force of the oxygen concentration battery) of the oxygen sensor cell made of the oxygen ion-conductive solid electrolyte installed in the detection chamber is constant, and is placed in the detection chamber. The detected component in the exhaust gas is obtained from the change in resistance by the semiconductor detecting element.

【0004】しかし、排ガス中の炭化水素(HC)を検出
しようとした場合、酸素ポンプセル及び酸素センサセル
に用いる貴金属系の電極が有する触媒作用により、炭化
水素と酸素が反応・分解(すなわち、被検ガス成分の濃
度が低下)し、検出精度が低下するおそれがある。そこ
で、酸素ポンプセル及び酸素センサセルの各電極のうち
少なくとも検出室に面している電極を、炭化水素に対し
て触媒不活性な材質で形成すれば、検出室内で炭化水素
が反応・分解されにくくなり、炭化水素を精度良く検出
することができるはずである。
However, when trying to detect hydrocarbons (HC) in the exhaust gas, the hydrocarbons and oxygen react and decompose (that is, to be detected) due to the catalytic action of the noble metal electrode used in the oxygen pump cell and oxygen sensor cell. The concentration of the gas component may decrease), and the detection accuracy may decrease. Therefore, if at least one of the electrodes of the oxygen pump cell and the oxygen sensor cell facing the detection chamber is formed of a material that is catalytically inactive with respect to hydrocarbons, hydrocarbons are less likely to react and decompose in the detection chamber. Should be able to accurately detect hydrocarbons.

【0005】[0005]

【発明が解決しようとする課題】しかし、ジルコニア系
酸化物を用いて高い酸素イオン導電性を発現させるため
には、作動温度を700℃以上と高くする必要がある。
これは、ジルコニア系酸化物自身が、低温ではあまり高
い酸素イオン伝導性を示さないからである。また、電極
(例えばPt、Au等)とジルコニア系酸化物との密着
性が悪いため界面抵抗が大きくなることも挙げられる。
However, in order to achieve high oxygen ion conductivity using a zirconia-based oxide, it is necessary to increase the operating temperature to 700 ° C. or higher.
This is because the zirconia-based oxide itself does not exhibit very high oxygen ion conductivity at low temperatures. Further, the interface resistance may be increased due to poor adhesion between an electrode (for example, Pt, Au, or the like) and a zirconia-based oxide.

【0006】作動温度が700℃以上と高いため、炭化
水素に対して触媒不活性な材質の電極を用いても、ほと
んどの炭化水素は高温のため燃焼してしまい、測定でき
ないという問題がある。さらに、センサシステムとして
考えた場合、作動温度が高くなると消費電力が高くなる
という問題も生じる。
Since the operating temperature is as high as 700 ° C. or more, even if an electrode made of a material which is inactive with respect to hydrocarbons is used, most hydrocarbons are burned due to high temperature and cannot be measured. Furthermore, when considered as a sensor system, there is a problem that power consumption increases as the operating temperature increases.

【0007】ジルコニア系酸化物よりも作動温度を下げ
ることが可能な酸素イオン導電性固体電解質としては、
LaGaO3系酸化物が知られている。しかし、従来の
研究から、貴金属系の電極(特にPt)と反応性がある
ため、Ptを電極に用いると電極界面抵抗が大きくなり
高い酸素ポンプ能が得られない問題があることが知られ
ている。500℃以上で使用されるセンサデバイスの電
極材料としては、高温でも酸化しにくい貴金属材料を用
いる必要がある。したがって、貴金属と反応性があると
いうことは、LaGaO3系酸化物のセンサデバイスへ
の適用の障害となっている。
As an oxygen ion conductive solid electrolyte capable of lowering the operating temperature than zirconia-based oxides,
LaGaO 3 -based oxides are known. However, it has been known from conventional research that, since Pt is used as an electrode, there is a problem that the electrode interface resistance increases and a high oxygen pumping ability cannot be obtained because of the reactivity with noble metal-based electrodes (particularly Pt). I have. As an electrode material of a sensor device used at 500 ° C. or higher, it is necessary to use a noble metal material which is hardly oxidized even at a high temperature. Therefore, being reactive with a noble metal is an obstacle to the application of LaGaO 3 -based oxides to sensor devices.

【0008】本発明は、これらの従来課題を解決するた
めになされたものであり、酸素イオン伝導性酸化物から
なる固体電解質と貴金属系の電極との界面抵抗を大幅に
低減さることにより、酸素ポンプ能が大きく向上すると
ともに、700℃以下の低温でも作動可能なセンサデバ
イスを提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve these problems in the prior art, and is intended to reduce the interfacial resistance between a solid electrolyte composed of an oxygen ion-conductive oxide and a noble metal-based electrode. It is an object of the present invention to provide a sensor device capable of greatly improving pumping performance and operating at a low temperature of 700 ° C. or lower.

【0009】[0009]

【課題を解決するための手段】請求項1の発明は、酸素
イオン伝導性固体電解質上に形成する電極が金属酸化物
及び複合酸化物のうち、少なくとも1種を含むセンサデ
バイスを要旨とする。係る構成により、酸素イオン伝導
性固体電解質を用いながらも、酸素ポンプ能の高いセン
サデバイスを得ることができる。
The gist of the present invention is a sensor device in which an electrode formed on an oxygen ion conductive solid electrolyte contains at least one of a metal oxide and a composite oxide. With this configuration, it is possible to obtain a sensor device having a high oxygen pumping ability while using the oxygen ion conductive solid electrolyte.

【0010】本発明に用いる酸素イオン伝導性固体電解
質には、公知の材料を用いることができるが、1000
℃以下で使用できるものが好ましい。貴金属系の電極材
料の選択の幅を広げるためには、800℃以下で使用で
きるものが好ましい。700℃以下で実用レベルにある
ものが特に好ましい。例えば、請求項3に記載の発明の
ように、LaGaO3系複合酸化物、ZrO2系酸化物又
はCeO2系酸化物が好ましい。特には、性能面ではL
aGaO3系酸化物、安定性や機械的強度の面ではジル
コニア系酸化物が好適である。
Known materials can be used for the oxygen ion conductive solid electrolyte used in the present invention.
Those which can be used at a temperature of not more than ° C are preferred. In order to expand the range of choice of noble metal-based electrode materials, those which can be used at 800 ° C. or lower are preferable. Those having a practical level at 700 ° C. or lower are particularly preferred. For example, a LaGaO 3 -based composite oxide, a ZrO 2 -based oxide, or a CeO 2 -based oxide is preferable as in the invention described in claim 3. In particular, in terms of performance, L
An aGaO 3 -based oxide and a zirconia-based oxide are preferable in terms of stability and mechanical strength.

【0011】LaGaO3系酸化物としては、例えばL
0.9Sr0.1Ga0.8Mg0.23(以下、LSGMと称
する。)を用いることができる。LSGMは酸素イオン
導電率が従来のYSZ等と比較して高いのが特徴であ
る。LSGMを用いることで、センサデバイスの作動温
度を大幅に低減可能である。
As the LaGaO 3 -based oxide, for example, L
a 0.9 Sr 0.1 Ga 0.8 Mg 0.2 O 3 (hereinafter referred to as LSGM) can be used. LSGM is characterized in that the oxygen ion conductivity is higher than that of conventional YSZ or the like. By using LSGM, the operating temperature of the sensor device can be significantly reduced.

【0012】ZrO2系酸化物としては、例えばY23
−ZrO2系(YSZ)やSc23−ZrO2系を用いる
ことができる。YSZは代表的な酸素イオン導電体であ
って、安定性、機械的強度の面で好ましい。Sc23
ZrO2系は酸素イオン電導率がYSZよりも高いた
め、性能重視の場合好ましい。
As the ZrO 2 -based oxide, for example, Y 2 O 3
It can be used -ZrO 2 system (YSZ) and Sc 2 O 3 -ZrO 2 system. YSZ is a representative oxygen ion conductor and is preferred in terms of stability and mechanical strength. Sc 2 O 3
Since the ZrO 2 system has a higher oxygen ion conductivity than YSZ, it is preferable when performance is important.

【0013】CeO2系酸化物としては、例えばGd2
3−CeO2系、Sm23−CeO2系、Y23−CeO2
系を用いることができる。CeO2系酸化物も酸素イオ
ン電導率がYSZよりも高いため、センサデバイスの作
動温度を低減できる。
As CeO 2 -based oxide, for example, Gd 2 O
3 -CeO 2 system, Sm 2 O 3 -CeO 2 system, Y 2 O 3 -CeO 2
A system can be used. Since the CeO 2 -based oxide also has higher oxygen ion conductivity than YSZ, the operating temperature of the sensor device can be reduced.

【0014】本発明では、上記の材質からなる酸素イオ
ン伝導性固体電解質に用いる電極として、金属酸化物及
び複合酸化物のうち、少なくとも1種を含む電極を用い
る。係る構成により、各酸素イオン伝導性固体電解質の
酸素ポンプ能をより高めることができるので、センサデ
バイスの作動温度の低減を図ることができる。
In the present invention, an electrode containing at least one of a metal oxide and a complex oxide is used as an electrode for the oxygen ion conductive solid electrolyte made of the above-mentioned material. With such a configuration, the oxygen pumping capability of each oxygen ion conductive solid electrolyte can be further increased, so that the operating temperature of the sensor device can be reduced.

【0015】電極に添加する「金属酸化物」は、センサ
デバイスからの出力電流密度を増加させることができる
ものであればよい。例えば、MnO2、MoO3、Nd2
3、Fe23、WO3、Nb25、Ta、TiO
2、In23、IrO2、Rh23、CuO、Cu2O等
の無機金属酸化物を挙げることができる。これらは焼成
後に無機金属酸化物として電極中に存在しておればよ
く、製造の段階では、これらの金属種を含む有機酸塩、
レジネート等のメタロオーガニックやオルガノメタリッ
クとして導体ペーストに添加して使用可能である。特に
は、請求項2の発明に記載のMnO2が優れた酸素ポン
プ能が得られる点で好ましい。
The "metal oxide" added to the electrode may be any as long as it can increase the output current density from the sensor device. For example, MnO 2 , MoO 3 , Nd 2
O 3 , Fe 2 O 3 , WO 3 , Nb 2 O 5 , Ta 2 O 5 , TiO
2 , inorganic metal oxides such as In 2 O 3 , IrO 2 , Rh 2 O 3 , CuO, and Cu 2 O. These may be present in the electrode as an inorganic metal oxide after firing, and at the stage of production, an organic acid salt containing these metal species,
Metallo organic such as resinate or organometallic can be added to the conductor paste and used. Particularly, MnO2 according to the second aspect of the present invention is preferable in that excellent oxygen pumping ability can be obtained.

【0016】電極に添加する「複合酸化物」も、上記金
属酸化物と同様に、センサデバイスからの出力電流密度
(酸素ポンプ能と比例する)を増加させることができる
ものであればよい。例えば、LaGaO3系酸化物、L
aMnO3系酸化物、LaCrO3系酸化物を挙げること
ができる。特には、請求項2の発明に記載のLaGaO
3系酸化物、特にはLSGMが優れた酸素ポンプ能が得
られる点で好ましい。
The "composite oxide" to be added to the electrode may be any as long as it can increase the output current density (in proportion to the oxygen pumping ability) from the sensor device, similarly to the metal oxide. For example, LaGaO 3 -based oxide, L
aMnO 3 -based oxides and LaCrO 3 -based oxides can be mentioned. In particular, the LaGaO according to the invention of claim 2
3 based oxide, particularly preferred in that the oxygen pump ability with excellent LSGM is obtained.

【0017】貴金属電極にMnO2等の金属酸化物やL
aGaO3系酸化物等の複合酸化物を添加することで、
電極界面抵抗が大幅に低下して高い酸素ポンプ能が得ら
れる。添加量としては、0.1〜50wt%(特に好ま
しくは10〜40wt%、更に好ましくは10〜35w
t%)が好ましい。添加の形態としては、金属酸化物単
体での添加、複合酸化物単体での添加も可能であるが、
特には、MnO2等の金属酸化物とLaGaO3系酸化物
等の複合酸化物とを併せて添加するのが効果的である。
例えば、PtやAuにMnO2を20wt%、LSGM
を14wt%、合計で34wt%添加した電極を用いれ
ば、極めて優れた酸素ポンプ能が得られる。尚、上記の
「wt%」とは、重量換算における比率(いわゆる重量
部)を示す。
A metal oxide such as MnO 2 or L
By adding a composite oxide such as aGaO 3 -based oxide,
The electrode interface resistance is greatly reduced, and a high oxygen pumping ability is obtained. The addition amount is 0.1 to 50 wt% (particularly preferably 10 to 40 wt%, and more preferably 10 to 35 w%).
t%) is preferred. As a form of addition, addition of a metal oxide alone or addition of a composite oxide alone is also possible,
In particular, it is effective to add a metal oxide such as MnO 2 and a composite oxide such as a LaGaO 3 -based oxide together.
For example, 20 wt% of MnO 2 in Pt or Au, LSGM
, An extremely excellent oxygen pumping ability can be obtained. The above “wt%” indicates a ratio in terms of weight (so-called part by weight).

【0018】本発明によれば、電極としてPtを用いた
ときの700℃における酸素ポンプ能が、従来と比較し
て、LaGaO3系酸化物で18倍以上、ジルコニア系
酸化物で2倍以上に向上させることが可能である。同様
に、電極としてAuを用いたときの700℃における酸
素ポンプ能が、従来と比較して、LaGaO3系酸化物
で100倍以上、ジルコニア系酸化物で6倍以上向上さ
せることが可能である。したがって、係るセンサデバイ
スは従来と比較して飛躍的な低温作動化が可能となる。
According to the present invention, the oxygen pumping ability at 700 ° C. when Pt is used as the electrode is 18 times or more with the LaGaO 3 -based oxide and 2 times or more with the zirconia-based oxide as compared with the conventional one. It is possible to improve. Similarly, the oxygen pumping ability at 700 ° C. when Au is used as the electrode can be improved by 100 times or more with LaGaO 3 -based oxide and 6 times or more with zirconia-based oxide, as compared with the related art. . Therefore, such a sensor device can be operated at a significantly lower temperature than before.

【0019】本発明に用いる電極の材質は、請求項4の
発明のように、Pt、Au、Pd、Ir、Rh、In、
Ag、Tl、Cuの少なくとも1種から選ばれる。セン
サデバイスとの同時焼成を重視するのであれば、融点の
高いPt主体の電極が好ましい。必要に応じて、Ptの
触媒作用を鈍化させる触媒毒となる金属(例えばAu、
Ir、Rh、In、Cu、Ag、Tl等)を添加するこ
とができる。また、従来のAu電極では作動温度が低く
て出力不可能であった場合でも、本発明によればAu電
極であっても十分な出力電流密度が得られる。厚膜技術
を用いて焼き付けるのであれば、上記の各種電極材料を
任意の組み合わせで使用できる。この場合においても、
Pt、Auを主体に用いることが特性上好ましい。
The material of the electrode used in the present invention may be Pt, Au, Pd, Ir, Rh, In, or Pt.
It is selected from at least one of Ag, Tl, and Cu. If emphasis is placed on simultaneous firing with the sensor device, an electrode mainly composed of Pt having a high melting point is preferable. If necessary, a metal that acts as a catalyst poison (for example, Au,
Ir, Rh, In, Cu, Ag, Tl, etc.) can be added. Further, even when the operating temperature is low and the output is impossible with the conventional Au electrode, according to the present invention, a sufficient output current density can be obtained even with the Au electrode. If the baking is performed using the thick film technique, the above various electrode materials can be used in any combination. Even in this case,
It is preferable in terms of characteristics that Pt or Au is mainly used.

【0020】[0020]

【実施例】(1)固体電解質の作製 固体電解質には、LSGMと組成比が4.5モル%Y2
3添加のYSZを用いる。LSGMは公知の共沈法
を、YSZは公知のスプレードライ法を用いて造粒した
各原料粉末を、70mm×70mm×10mmの角板に
CIPし、大気中で1500℃×3時間の条件で焼成
後、切断し、厚み0.5mmまで平面研磨して、LSG
MとYSZとからなる固体電解質を得る。
EXAMPLES (1) Preparation of solid electrolyte The solid electrolyte has a composition ratio of LSGM to 4.5 mol% Y 2.
YSZ to which O 3 is added is used. LSGM is a known coprecipitation method, YSZ is a raw material powder granulated using a known spray drying method, CIPed into a 70 mm × 70 mm × 10 mm square plate at 1500 ° C. for 3 hours in the atmosphere. After baking, cut and polished to a thickness of 0.5 mm, LSG
A solid electrolyte composed of M and YSZ is obtained.

【0021】(2)電極ペーストの作製 電極には、貴金属電極の例としてPtとAuを用いる。
Pt粉末又はAu粉末に対してMnO2粉末を20wt
%添加した混合粉末と、Pt粉末又はAu粉末に対して
MnO2粉末を20wt%とLSGM粉末を14wt%
添加したものを用意する。電極組成としては、表1に示
す6種類(A〜F)とする。各混合粉末にバインダーと
してエトセル、分散剤としてイオネットS−20、粘度
調整用としてブチルカルビトールを所定量添加して、ら
いかい機にて混練して電極ペーストを得る。
(2) Preparation of electrode paste Pt and Au are used as electrodes as examples of noble metal electrodes.
20 wt% MnO 2 powder with respect to Pt powder or Au powder
%, 20 wt% of MnO 2 powder and 14 wt% of LSGM powder based on Pt powder or Au powder.
Prepare the added one. The electrode compositions are six types (A to F) shown in Table 1. Ethosel as a binder, Ionet S-20 as a dispersant, and butyl carbitol for viscosity adjustment are added to each mixed powder in a predetermined amount, and the mixture is kneaded with a grinder to obtain an electrode paste.

【0022】(3)センサデバイスの作製 固体電解質に各種電極ペーストを塗布し、集電体として
Pt線を付けたPtメッシュを取り付けた後、850℃
×10分間の条件で焼き付けを行う。比較サンプルとし
てPt電極のみを1500℃×10分間の条件で焼き付
けを行ったものと、Au電極のみを850℃×10分間
の条件で焼き付けを行ったものも作製する。センサデバ
イスの概略図を図1に示す。
(3) Preparation of Sensor Device After applying various electrode pastes to the solid electrolyte, and attaching a Pt mesh with a Pt wire as a current collector, the temperature is 850 ° C.
Baking is performed under the condition of × 10 minutes. As a comparative sample, a sample in which only the Pt electrode was baked at 1500 ° C. for 10 minutes, and a sample in which only the Au electrode was baked at 850 ° C. for 10 minutes are also manufactured. A schematic diagram of the sensor device is shown in FIG.

【0023】(4)センサデバイスの評価 上記(3)で作製したセンサデバイスの酸素ポンプ能の
評価を行う。酸素ポンプ能は、センサデバイスに電圧を
印加した際に流れる電流値の大小により評価できる。L
SGMやYSZはほぼ純粋な酸素イオン伝導性固体電解
質だからである。測定条件は以下のようである。 測定温度;500℃、600℃、700℃の3条件 ガス組成;O2比 20%(N2バランス) ガス流量;12リットル/分 印加電圧;1V
(4) Evaluation of Sensor Device The oxygen pumping ability of the sensor device manufactured in the above (3) is evaluated. The oxygen pumping ability can be evaluated based on the magnitude of a current flowing when a voltage is applied to the sensor device. L
This is because SGM and YSZ are almost pure oxygen ion conductive solid electrolytes. The measurement conditions are as follows. Measurement temperature; 3 conditions of 500 ° C., 600 ° C., 700 ° C. Gas composition: O 2 ratio 20% (N 2 balance) Gas flow rate: 12 liter / min Applied voltage: 1 V

【0024】電極材料にPt系を用いた結果を表2に、
電極材料にAu系を用いた結果を表3に示す。また、電
流値の温度依存性の測定結果を電極材料系毎に図2(P
t電極系)及び図3(Au電極系)に示す。
Table 2 shows the results of using a Pt-based electrode material.
Table 3 shows the results obtained when Au was used as the electrode material. In addition, the measurement results of the temperature dependence of the current value are shown in FIG.
t electrode system) and FIG. 3 (Au electrode system).

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】[0027]

【表3】 [Table 3]

【0028】結果より、Pt電極やAu電極にMnO2
やLSGMを添加することにより、電流値が大幅に増加
し、酸素ポンプ能が向上することがわかる。特には、M
nO 2とLSGMを併せて添加した系である実施例5及
び実施例6(Pt系)、実施例12(Au系)の結果を
見ると、最高値で、従来のPtの18倍、従来のAu電
極の100倍の電流値が得られ、酸素ポンプ能が飛躍的
に向上することがわかる。以上のことから、上記電極を
用いたセンサデバイスは低温作動化が可能となる。
From the results, it was found that the Pt electrode or Au electrode had MnOTwo
Current value is greatly increased by adding LSGM
It can be seen that the oxygen pumping ability is improved. In particular, M
nO TwoAnd LSGM were added together in Examples 5 and
And the results of Example 6 (Pt-based) and Example 12 (Au-based)
Looking at the maximum value, the conventional Au was 18 times the conventional Pt,
100 times the current value of the pole is obtained, and the oxygen pumping ability is dramatically improved
It can be seen that it improves. From the above, the above electrode
The used sensor device can be operated at a low temperature.

【0029】[0029]

【発明の効果】本発明によれば、酸素イオン伝導性酸化
物からなる固体電解質と貴金属系の電極との界面抵抗を
大幅に低減さることにより、酸素ポンプ能が大きく向上
するとともに、700℃以下の低温でも作動可能なセン
サデバイスを提供できる。作動温度の低減が可能なた
め、炭化水素等の易可燃性ガスの正確な測定が可能なセ
ンサデバイスが得られる。
According to the present invention, by greatly reducing the interface resistance between the solid electrolyte composed of the oxygen ion conductive oxide and the noble metal-based electrode, the oxygen pumping ability is greatly improved and the temperature is 700 ° C. or lower. And a sensor device that can operate even at a low temperature. Since the operating temperature can be reduced, a sensor device capable of accurately measuring a flammable gas such as a hydrocarbon can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のセンサデバイスの評価サンプルの概略
図。
FIG. 1 is a schematic diagram of an evaluation sample of a sensor device of the present invention.

【図2】酸素濃度20%におけるPt電極系センサデバ
イスの電流値。
FIG. 2 shows a current value of a Pt electrode-based sensor device at an oxygen concentration of 20%.

【図3】酸素濃度20%におけるAu電極系センサデバ
イスの電流値。
FIG. 3 shows current values of an Au electrode-based sensor device at an oxygen concentration of 20%.

【符号の説明】[Explanation of symbols]

1 固体電解質 2 電極 3 Ptリード線 DESCRIPTION OF SYMBOLS 1 Solid electrolyte 2 Electrode 3 Pt lead wire

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年4月22日(1999.4.2
2)
[Submission date] April 22, 1999 (1999.4.2
2)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 酸素イオン伝導性固体電解質と、該酸素
イオン伝導性固体電解質上に形成された電極とを有する
センサデバイスであって、 該電極が金属酸化物及び複合酸化物のうち、少なくとも
一種を含むことを特徴とするセンサ素子。
1. A sensor device having an oxygen ion conductive solid electrolyte and an electrode formed on the oxygen ion conductive solid electrolyte, wherein the electrode is at least one of a metal oxide and a composite oxide. A sensor element comprising:
【請求項2】 前記金属酸化物がMnO2、MoO3、N
23、Fe23、WO3、Nb25、Ta、T
iO2、In23、IrO2、Rh23、CuO、Cu2
Oのうちから選ばれる、少なくとも一種であり、前記複
合酸化物がLaGaO3系複合酸化物であることを特徴
とする請求項1に記載のセンサデバイス。
2. The method according to claim 1, wherein the metal oxide is MnO 2 , MoO 3 , N
d 2 O 3, Fe 2 O 3, WO 3, Nb 2 O 5, Ta 2 O 5, T
iO 2 , In 2 O 3 , IrO 2 , Rh 2 O 3 , CuO, Cu 2
O chosen from among the at least one sensor device according to claim 1, wherein the composite oxide is characterized in that it is a LaGaO 3 type composite oxide.
【請求項3】 前記酸素イオン伝導性固体電解質がLa
GaO3系複合酸化物、ZrO2系酸化物又はCeO2
酸化物であることを特徴とする請求項1又は請求項2に
記載のセンサデバイス。
3. The method according to claim 2, wherein the oxygen ion conductive solid electrolyte is La.
The sensor device according to claim 1, wherein the sensor device is a GaO 3 -based composite oxide, a ZrO 2 -based oxide, or a CeO 2 -based oxide.
【請求項4】 前記電極がPt、Au、Pd、Ir、R
h、In、Ag、Tl、Cuの少なくとも1種からなる
ことを特徴とする請求項1乃至請求項3のいずれかに記
載のセンサデバイス。
4. The method according to claim 1, wherein the electrodes are Pt, Au, Pd, Ir, R
4. The sensor device according to claim 1, comprising at least one of h, In, Ag, Tl, and Cu.
JP10075299A 1999-02-08 1999-04-08 Sensor device Expired - Fee Related JP4231587B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP10075299A JP4231587B2 (en) 1999-04-08 1999-04-08 Sensor device
DE60011825T DE60011825T2 (en) 1999-02-08 2000-02-08 Sintered body made of LaGaO3
EP00102641A EP1026133B1 (en) 1999-02-08 2000-02-08 LaGaO3 sintered body
US09/499,359 US6337006B1 (en) 1999-02-08 2000-02-08 Lanthanum gallate sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10075299A JP4231587B2 (en) 1999-04-08 1999-04-08 Sensor device

Publications (2)

Publication Number Publication Date
JP2000292408A true JP2000292408A (en) 2000-10-20
JP4231587B2 JP4231587B2 (en) 2009-03-04

Family

ID=14282265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10075299A Expired - Fee Related JP4231587B2 (en) 1999-02-08 1999-04-08 Sensor device

Country Status (1)

Country Link
JP (1) JP4231587B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019027800A (en) * 2017-07-25 2019-02-21 株式会社デンソー Gas sensor
KR20200002993A (en) * 2017-08-03 2020-01-08 가부시끼가이샤 도시바 Super capacitor
JP2020085504A (en) * 2018-11-16 2020-06-04 株式会社Soken Gas sensor

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6111653A (en) * 1984-06-27 1986-01-20 Nissan Motor Co Ltd Air-fuel ratio detector
JPH02500774A (en) * 1986-10-16 1990-03-15 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Gas sensor with cermet electrode
JPH0474665B2 (en) * 1982-09-08 1992-11-26
JPH06502014A (en) * 1990-10-20 1994-03-03 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Layer system for gas sensor and its manufacturing method
JPH07198675A (en) * 1993-12-27 1995-08-01 Toyota Central Res & Dev Lab Inc Gas sensor using ion conductor and its manufacture
JPH09264872A (en) * 1996-03-27 1997-10-07 Ngk Spark Plug Co Ltd Gas sensor
JPH1048179A (en) * 1996-08-06 1998-02-20 Riken Corp Detecting apparatus for nox
JPH10325824A (en) * 1997-05-23 1998-12-08 Denso Corp Hydrocarbon sensor
JPH11281611A (en) * 1998-03-31 1999-10-15 Osaka Gas Co Ltd Limitation current type oxygen sensor and oxygen detection method
JP2000028576A (en) * 1998-07-08 2000-01-28 Ngk Insulators Ltd Gas sensor and nitrogen oxide sensor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0474665B2 (en) * 1982-09-08 1992-11-26
JPS6111653A (en) * 1984-06-27 1986-01-20 Nissan Motor Co Ltd Air-fuel ratio detector
JPH02500774A (en) * 1986-10-16 1990-03-15 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Gas sensor with cermet electrode
JPH06502014A (en) * 1990-10-20 1994-03-03 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Layer system for gas sensor and its manufacturing method
JPH07198675A (en) * 1993-12-27 1995-08-01 Toyota Central Res & Dev Lab Inc Gas sensor using ion conductor and its manufacture
JPH09264872A (en) * 1996-03-27 1997-10-07 Ngk Spark Plug Co Ltd Gas sensor
JPH1048179A (en) * 1996-08-06 1998-02-20 Riken Corp Detecting apparatus for nox
JPH10325824A (en) * 1997-05-23 1998-12-08 Denso Corp Hydrocarbon sensor
JPH11281611A (en) * 1998-03-31 1999-10-15 Osaka Gas Co Ltd Limitation current type oxygen sensor and oxygen detection method
JP2000028576A (en) * 1998-07-08 2000-01-28 Ngk Insulators Ltd Gas sensor and nitrogen oxide sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019027800A (en) * 2017-07-25 2019-02-21 株式会社デンソー Gas sensor
KR20200002993A (en) * 2017-08-03 2020-01-08 가부시끼가이샤 도시바 Super capacitor
KR102350812B1 (en) * 2017-08-03 2022-01-14 가부시끼가이샤 도시바 super capacitor
JP2020085504A (en) * 2018-11-16 2020-06-04 株式会社Soken Gas sensor
JP7102322B2 (en) 2018-11-16 2022-07-19 株式会社Soken Gas sensor

Also Published As

Publication number Publication date
JP4231587B2 (en) 2009-03-04

Similar Documents

Publication Publication Date Title
JP4608047B2 (en) Mixed ionic conductor and device using the same
US5037525A (en) Composite electrodes for use in solid electrolyte devices
CA2189360C (en) Nox sensor
KR100352099B1 (en) Mixed ions containing conductor and device using the same
JP4608506B2 (en) Mixed ionic conductor and device using the same
JPH01184457A (en) Oxygen sensor element
EP2330412A2 (en) Nitrogen-oxide gas sensor with long signal stability
JP2017167136A (en) Ammonia sensor detection electrode and ammonia sensor
KR101052617B1 (en) Nitrogen Oxide Gas Sensor
EP0281555A1 (en) Composite electrodes for use in solid electrolyte devices
JP2511095B2 (en) Electrode material
JP2000292408A (en) Sensor device
JP2002195978A (en) Gas detector element and gas sensing device using it
JP3801010B2 (en) Electrode material, solid oxide fuel cell, solid oxide gas sensor, and method for producing electrode material
JP3449642B2 (en) Carbon monoxide sensor
JP2566272B2 (en) Oxygen sensor
JPH0381959A (en) Solid electrolyte fuel cell
JP6933085B2 (en) Solid electrolyte, gas sensor, fuel cell
Hwang et al. Microstructure and NO decomposition behavior of sol–gel derived (La0. 8Sr0. 2) 0.95 MnO3/yttria-stabilized zirconia nanocomposite thin film
JPH09295866A (en) Mixed ion connector
JP2592067B2 (en) Oxygen electrode of solid oxide fuel cell
JPH08220060A (en) Oxygen sensor
RU2322730C2 (en) Double-layer active electrode for electrochemical devices using solid electrolyte
Doshi et al. Oxygen pumping characteristics of oxide ion electrolytes at low temperatures
JPH05190183A (en) Solid electrolyte type fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081208

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees