JP2000283595A - Method for controlling engine heat pump - Google Patents

Method for controlling engine heat pump

Info

Publication number
JP2000283595A
JP2000283595A JP11086455A JP8645599A JP2000283595A JP 2000283595 A JP2000283595 A JP 2000283595A JP 11086455 A JP11086455 A JP 11086455A JP 8645599 A JP8645599 A JP 8645599A JP 2000283595 A JP2000283595 A JP 2000283595A
Authority
JP
Japan
Prior art keywords
outdoor heat
heat exchanger
refrigerant
engine
heat exchangers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11086455A
Other languages
Japanese (ja)
Inventor
Masaki Inoue
雅樹 井上
Takeo Imura
武生 井村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Diesel Engine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Diesel Engine Co Ltd filed Critical Yanmar Diesel Engine Co Ltd
Priority to JP11086455A priority Critical patent/JP2000283595A/en
Publication of JP2000283595A publication Critical patent/JP2000283595A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve a heating cycle by individually controlling the switching of each inflation valve according to an engine speed and maintaining the speed of a refrigerant flowing into an outdoor heat exchanger at a specific value or higher. SOLUTION: In an engine heat pump with a plurality of outdoor heat exchangers 4 and inflation valves 45 corresponding to each of the plurality of outdoor heat exchangers 4, each of the inflation valves is individually switched and controlled according to an engine speed, and the inflation valves 45 are successively selected for switching control so that the total evaporation capacity of the outdoor heat exchanger 4 changes in steps in case of the different evaporation capacity of the outdoor heat exchanger 4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、エンジンヒートポ
ンプの制御方法に関するもので、特に、暖房運転時にお
ける冷媒速度の最適化方法に関する。
The present invention relates to a method for controlling an engine heat pump, and more particularly to a method for optimizing a refrigerant speed during a heating operation.

【0002】[0002]

【従来の技術】従来より、複数の室外熱交換器と該各室
外熱交換器に対応した複数の膨張弁を具備する構成のエ
ンジンヒートポンプが公知となっている。そして、この
構成における暖房サイクルにおいて、室内熱交換器から
送られる高圧液状冷媒は複数の配管に分岐した後、それ
ぞれの配管に配設された膨張弁によって膨張し、低温低
圧蒸気状態の冷媒となって対応する室外熱交換器へと送
られるよう構成していた。
2. Description of the Related Art Conventionally, an engine heat pump including a plurality of outdoor heat exchangers and a plurality of expansion valves corresponding to the respective outdoor heat exchangers has been known. Then, in the heating cycle in this configuration, the high-pressure liquid refrigerant sent from the indoor heat exchanger is branched into a plurality of pipes, and then expanded by expansion valves provided in each of the pipes, to become a refrigerant in a low-temperature low-pressure vapor state. To be sent to the corresponding outdoor heat exchanger.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記従来技術
において、複数ある室内機の稼動台数が変化する場合に
は、各室外熱交換器へ送られる冷媒速度が変化する。こ
のため、室内機の稼動台数が減少した場合には、各室外
熱交換器へ送られる冷媒速度が減少し、暖房サイクルが
非効率的となっていた。
However, in the above prior art, when the number of operating indoor units changes, the speed of the refrigerant sent to each outdoor heat exchanger changes. For this reason, when the number of operating indoor units decreases, the speed of refrigerant sent to each outdoor heat exchanger decreases, and the heating cycle becomes inefficient.

【0004】[0004]

【課題を解決するための手段】以上が本発明の解決する
課題であり、次に課題を解決するための手段を説明す
る。即ち、複数の室外熱交換器及び各室外熱交換器に対
応した膨張弁を有するエンジンヒートポンプにおいて、
エンジン回転数に応じて各膨張弁を個別に開閉制御可能
とした。
The above is the problem to be solved by the present invention. Next, means for solving the problem will be described. That is, in an engine heat pump having a plurality of outdoor heat exchangers and an expansion valve corresponding to each outdoor heat exchanger,
Each expansion valve can be individually opened and closed according to the engine speed.

【0005】また、前記各室外熱交換器の蒸発能力が互
いに異る場合、該室外熱交換器の蒸発能力の総和が段階
的に変化するように、前記膨張弁を順次選択して開閉制
御した。
Further, when the evaporation capacities of the outdoor heat exchangers are different from each other, the expansion valves are sequentially selected and opened / closed so that the sum of the evaporation capacities of the outdoor heat exchangers changes stepwise. .

【0006】[0006]

【発明の実施の形態】次に本発明の実施の形態を添付の
図面を用いて説明する。図1は本発明に係るエンジンヒ
ートポンプの回路図である。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a circuit diagram of an engine heat pump according to the present invention.

【0007】図1において、本発明のエンジンヒートポ
ンプに係る冷却サイクルについて説明する。圧縮器を構
成するコンプレッサ2(本実施例においてはマルチコン
プレッサとしている。)により冷媒を圧縮して、高温高
圧過飽和蒸気の冷媒として、四方弁3を経由して、室外
熱交換器4A・4Bに圧送する。該室外熱交換器4A・
4Bにおいて、冷却フィンを通過する間に、冷却ファン
41の冷却風により冷却されて、高温高圧過熱状態の冷
媒が、高圧液相冷媒に変換される。
Referring to FIG. 1, a cooling cycle according to the engine heat pump of the present invention will be described. The refrigerant is compressed by the compressor 2 (a multi-compressor in the present embodiment) constituting the compressor, and the refrigerant is converted into a high-temperature, high-pressure supersaturated vapor refrigerant through the four-way valve 3 to the outdoor heat exchangers 4A and 4B. Pump. The outdoor heat exchanger 4A
In 4B, while passing through the cooling fins, the refrigerant is cooled by the cooling air of the cooling fan 41, and the refrigerant in a high-temperature and high-pressure superheated state is converted into a high-pressure liquid-phase refrigerant.

【0008】また、コンプレッサ2はエンジン1により
駆動する構成としている。そして、エンジン1の熱を吸
収して温度上昇した冷却水が冷却回路10を介してラジ
エータ11に案内され、ラジエータ11において放熱し
た後、再びエンジン1を冷却する冷却サイクルを行うよ
う構成している。また、冷却回路10には後述する補助
熱吸収器8へと至る補助回路12が並列接続されてい
る。
The compressor 2 is driven by the engine 1. Then, the cooling water whose temperature has been increased by absorbing the heat of the engine 1 is guided to the radiator 11 through the cooling circuit 10 and radiated by the radiator 11, and then the cooling cycle for cooling the engine 1 is performed again. . Further, an auxiliary circuit 12 leading to an auxiliary heat absorber 8 described later is connected in parallel to the cooling circuit 10.

【0009】室外熱交換器4A・4Bにおいて、高圧液
相冷媒に変換された冷媒は、レシーバ5を経由し、冷房
用膨張弁71において蒸発しやすい圧力まで減圧させた
後、室内機7へと送られるが、その際、レシーバ5の内
部に配置された過冷却器6の伝熱管60内の冷媒により
冷却されて、通常型冷却回路の場合よりも更に低温の状
態とされるのである。
In the outdoor heat exchangers 4A and 4B, the refrigerant converted into the high-pressure liquid-phase refrigerant passes through the receiver 5, is reduced to a pressure at which the cooling expansion valve 71 can easily evaporate, and then to the indoor unit 7. At this time, it is cooled by the refrigerant in the heat transfer tube 60 of the supercooler 6 disposed inside the receiver 5, so that the temperature is further lowered than in the case of the normal cooling circuit.

【0010】そして、室内用パイプ75を通過した冷媒
が室内機7の室内熱交換器70において室内空気から熱
を吸収して蒸発し室内空気を冷却する。更に、クーラフ
ァン72の送風により室内に冷房効果をもたらすのであ
る。そして、室内熱交換器70において気化した冷媒が
戻り配管76を通過して、四方弁3を経由した後、補助
熱吸収器8、アキュムレータ9等を介してコンプレッサ
2に戻り、上述したサイクルを繰り返すのである。
Then, the refrigerant having passed through the indoor pipe 75 absorbs heat from the indoor air in the indoor heat exchanger 70 of the indoor unit 7 and evaporates, thereby cooling the indoor air. Further, the cooling fan 72 blows air into the room to provide a cooling effect. Then, the refrigerant vaporized in the indoor heat exchanger 70 passes through the return pipe 76, passes through the four-way valve 3, returns to the compressor 2 via the auxiliary heat absorber 8, the accumulator 9, and the like, and repeats the above-described cycle. It is.

【0011】上述した冷却サイクルにおいては、室外熱
交換器4(4A・4B)とレシーバ6の間に膨張弁45
・45・・・を配置することにより、室外熱交換器4か
ら冷媒が無制限にレシーバ5へ流出するのに抵抗を与え
ることとなり、室外熱交換器4の内部において、高圧液
相冷媒を適度に滞留させることができ、室外熱交換器4
の冷却効果を全面にわたり十分に作用させることが出来
る効果が作用し、膨張弁45の無い場合より、過冷却器
6での冷媒間同士の熱交換による冷却効果を向上させる
ことが出来るのである。
In the cooling cycle described above, the expansion valve 45 is provided between the outdoor heat exchanger 4 (4A and 4B) and the receiver 6.
········································································································································································ 45 抵抗 冷媒 冷媒 抵抗 抵抗 冷媒 45 45 冷媒 レ シ ー バ. The outdoor heat exchanger 4
Therefore, the cooling effect by the heat exchange between the refrigerants in the supercooler 6 can be improved as compared with the case where the expansion valve 45 is not provided.

【0012】次に、暖房サイクルについて説明する。エ
ンジン1によりコンプレッサ2を駆動し、冷媒を高温高
圧加熱蒸気の状態として、オイルセパレータ22によ
り、潤滑のために冷媒内に混合している油分を分離す
る。油分を分離した後の高温高圧加熱蒸気を、暖房方向
に切換えられた四方弁3により室内熱交換器70を有し
た室内機7へ案内する。該室内機7の室内熱交換器70
において、高温高圧加熱蒸気の冷媒から、室内空気に熱
が放熱されて、該冷媒は高圧液体状態となる。この放出
熱により室内の暖房が行われる。
Next, the heating cycle will be described. The compressor 1 is driven by the engine 1 to make the refrigerant into a state of high-temperature and high-pressure heated steam, and the oil separator 22 separates oil mixed in the refrigerant for lubrication. The high-temperature and high-pressure heating steam after separating the oil is guided to the indoor unit 7 having the indoor heat exchanger 70 by the four-way valve 3 switched to the heating direction. The indoor heat exchanger 70 of the indoor unit 7
In the above, heat is radiated from the refrigerant of the high-temperature and high-pressure heating steam to the indoor air, and the refrigerant becomes a high-pressure liquid state. The released heat heats the room.

【0013】高圧液体状態の冷媒は、冷房用膨張弁71
はそのまま通り抜けて、レシーバ5へ入る。そして、レ
シーバ5の下部に設けられたレシーバ流出管55から流
出した高圧液体状態の冷媒が、暖房用の膨張弁45にお
いて急激に膨張して、低温低圧蒸気状態の冷媒となり、
室外熱交換器4を通過する間に、外気より熱を得て過熱
状態の蒸気となる。
The refrigerant in the high-pressure liquid state is supplied to the cooling expansion valve 71.
Passes through as it is and enters the receiver 5. Then, the refrigerant in the high-pressure liquid state flowing out of the receiver outlet pipe 55 provided at the lower part of the receiver 5 rapidly expands in the heating expansion valve 45, and becomes a low-temperature low-pressure vapor state refrigerant,
While passing through the outdoor heat exchanger 4, heat is obtained from the outside air to become overheated steam.

【0014】この際に、外気の温度が低くて、低温低圧
蒸気状態の冷媒が、充分に過熱状態の蒸気となるだけの
熱を得ることができない場合には、該冷媒が補助熱吸収
器8を通過する間に、エンジン1の廃熱を得て過熱状態
の蒸気となる。この過熱状態の冷媒はアキュムレータ9
に戻り、完全な気相となって再びコンプレッサ2に案内
される。その後、このサイクルを繰り返し行うのであ
る。
At this time, if the temperature of the outside air is low and the refrigerant in the low-temperature and low-pressure vapor state cannot obtain enough heat to become sufficiently superheated vapor, the refrigerant is supplied to the auxiliary heat absorber 8. , The waste heat of the engine 1 is obtained, and the steam becomes overheated. The overheated refrigerant is stored in the accumulator 9
And is returned to the compressor 2 as a complete gas phase. Thereafter, this cycle is repeated.

【0015】以上の暖冷房システムは、室内熱交換器7
0、室内機膨張弁71、クーラファン72等が室内機7
に内在されて室内に配置され、その他のコンプレッサ
2、四方弁3、膨張弁45、補助熱吸収器8、アキュム
レータ9、室外熱交換器4、レシーバ5等は、室外機と
して全て、屋外や屋上に配置されているのである。
The above heating / cooling system comprises the indoor heat exchanger 7
0, the indoor unit expansion valve 71, the cooler fan 72, etc.
The compressor 2, the four-way valve 3, the expansion valve 45, the auxiliary heat absorber 8, the accumulator 9, the outdoor heat exchanger 4, the receiver 5, etc. are all outdoor units and rooftops. It is arranged in.

【0016】次に本発明に係る暖房サイクル運転時の室
外熱交換器4の制御方法について説明する。図1に示す
実施例においては、2つの室外熱交換器4(4A・4
B)を配する構成としているが、室外熱交換器4及び室
内熱交換器70は、冷暖房能力、設置環境に合わせて、
自由にその設置台数を選択できる。そして、図に示すよ
うに、各室外熱交換器4A・4Bに対して、レシーバ5
との間にそれぞれ膨張弁45A・45Bが介装されてお
り、前述の如く、膨張弁45(45A・45B)におい
て高圧液体状態の冷媒が急激に膨張して、低温低圧蒸気
状態の冷媒となり、室外熱交換器4に送られるのであ
る。以下においては、室外熱交換器4Aの蒸発能力PA
が、室外熱交換器4Bの蒸発能力PBよりも高い場合
(PA>PB)の構成例について説明する。
Next, a method for controlling the outdoor heat exchanger 4 during the heating cycle operation according to the present invention will be described. In the embodiment shown in FIG. 1, two outdoor heat exchangers 4 (4A.4
B), the outdoor heat exchanger 4 and the indoor heat exchanger 70 are arranged in accordance with the cooling and heating capacity and the installation environment.
The number of installations can be freely selected. Then, as shown in the figure, the receiver 5 is connected to each of the outdoor heat exchangers 4A and 4B.
The expansion valves 45A and 45B are interposed between the expansion valves 45A and 45B, respectively. As described above, the refrigerant in the high-pressure liquid state rapidly expands in the expansion valves 45 (45A and 45B) to become the refrigerant in the low-temperature and low-pressure vapor state, It is sent to the outdoor heat exchanger 4. Hereinafter, the evaporation capacity PA of the outdoor heat exchanger 4A will be described.
However, a description will be given of an example of a configuration in which the temperature is higher than the evaporation capacity PB of the outdoor heat exchanger 4B (PA> PB).

【0017】まず、2つの膨張弁45A・45Bを介し
て冷媒が室外熱交換器4A・4Bに供給されている状態
を通常運転状態とする。この場合、室外熱交換器4の蒸
発能力の総和はPA+PBとなる。一方、室内熱交換器
70が複数台設置されている場合には、室内熱交換器7
0・70・・・の稼動台数に応じて、エンジン1、コン
プレッサ2の負荷を変化させるよう制御している。つま
り、室内熱交換器70・70・・・の稼動台数が増加す
れば、エンジン1の回転数を増大させ、コンプレッサ2
から圧送する冷媒量を増加させるのである。
First, a state where the refrigerant is supplied to the outdoor heat exchangers 4A and 4B via the two expansion valves 45A and 45B is referred to as a normal operation state. In this case, the sum of the evaporation capacities of the outdoor heat exchanger 4 is PA + PB. On the other hand, when a plurality of indoor heat exchangers 70 are installed, the indoor heat exchanger 7
.. Are controlled so as to change the loads of the engine 1 and the compressor 2 in accordance with the operating number of 0. That is, if the number of operating indoor heat exchangers 70, 70...
The amount of refrigerant to be pumped from is increased.

【0018】そして、逆に室内熱交換器70・70・・
・の稼動台数が減少した場合には、エンジン1の回転数
を低下させ、コンプレッサ2から圧送する冷媒量を減少
させる。この場合、室内熱交換器70側から膨張弁45
を介して室外熱交換器4側へ送られる冷媒量も減少する
こととなる。そこで、本発明においては、エンジン1の
回転数が設定値以下の低回転数となった場合には、複数
ある膨張弁45・45・・・(本実施例においては45
A・45B)のうちのいくつかの膨張弁45・45・・
・を閉鎖させるのである。
On the contrary, the indoor heat exchangers 70, 70,.
When the number of operating units decreases, the number of revolutions of the engine 1 is reduced, and the amount of refrigerant pumped from the compressor 2 is reduced. In this case, the expansion valve 45 is connected from the indoor heat exchanger 70 side.
, The amount of the refrigerant sent to the outdoor heat exchanger 4 side also decreases. Therefore, in the present invention, when the rotation speed of the engine 1 becomes a low rotation speed equal to or lower than the set value, a plurality of expansion valves 45, 45,.
A.45B), some of the expansion valves 45.45.
・ It is closed.

【0019】このような制御を行うことで、少ない流量
の冷媒が複数の室外熱交換器4に分散して供給されて、
その冷媒速度が低下することはなく、室外熱交換器4に
は通常運転状態と同様の冷媒速度を保ちながら冷媒を送
ることが可能となり、暖房サイクルの効率化が図れるの
である。また、いくつかの膨張弁45を閉鎖させること
で、その膨張弁45に対応して接続された室外熱交換器
4を停止させることが可能となる。つまり、本実施例に
おいて、例えば膨張弁45Bを閉鎖させた場合には、室
外熱交換器4Bの運転を停止させることができるので、
室内熱交換器70・70・・・の稼動台数に応じて燃料
節約が可能となるのである。
By performing such control, a small amount of refrigerant is supplied to the plurality of outdoor heat exchangers 4 in a dispersed manner.
The refrigerant speed does not decrease, and the refrigerant can be sent to the outdoor heat exchanger 4 while maintaining the same refrigerant speed as in the normal operation state, so that the efficiency of the heating cycle can be improved. In addition, by closing some of the expansion valves 45, the outdoor heat exchanger 4 connected to the expansion valves 45 can be stopped. That is, in the present embodiment, for example, when the expansion valve 45B is closed, the operation of the outdoor heat exchanger 4B can be stopped.
It is possible to save fuel according to the number of operating indoor heat exchangers 70.

【0020】さらに、本発明においては、膨張弁45を
以下のように制御する。前述の如く室外熱交換器4A・
4Bの蒸発能力PA・PBがPA>PBの関係を有する
場合に、エンジン1の回転数が設定値以下となった場合
には、まず、膨張弁45Bを閉鎖するとともに室外熱交
換器4Bを停止させて、室外熱交換器4の蒸発能力をP
Aとする。そして、室外熱交換器4Aに流入する冷媒速
度が、まだ通常運転状態よりも小さい場合には、次に、
膨張弁45Bを開いて有効にして室外熱交換器4Bを稼
動させるとともに、膨張弁45Aを閉鎖して室外熱交換
器4Bを停止し、室外熱交換器4の蒸発能力をPBとす
るのである。
Further, in the present invention, the expansion valve 45 is controlled as follows. As mentioned above, the outdoor heat exchanger 4A
When the rotation speed of the engine 1 becomes equal to or less than the set value when the evaporation capacity PA · PB of 4B has a relationship of PA> PB, first, the expansion valve 45B is closed and the outdoor heat exchanger 4B is stopped. Then, the evaporation capacity of the outdoor heat exchanger 4 becomes P
A. Then, when the speed of the refrigerant flowing into the outdoor heat exchanger 4A is still smaller than the normal operation state, next,
The outdoor heat exchanger 4B is activated by opening the expansion valve 45B to make it effective, and the expansion valve 45A is closed to stop the outdoor heat exchanger 4B, so that the evaporation capacity of the outdoor heat exchanger 4 is set to PB.

【0021】以上の制御を行うことにより、室外熱交換
器4の蒸発能力はPA+PBから、まずPAに低下し、
さらにPBへと段階的に低下されることとなる。このよ
うな制御をとることで、室外熱交換器4の蒸発能力が急
激に変化するのを防止して、暖房サイクルの負荷変動を
小さくして安定した運転を可能としているのである。ま
た、以上の説明は室外熱交換器4を2台制御した場合の
例であるが、異なる蒸発能力を有する室外熱交換器4が
3台以上の場合においても、同様に、膨張弁45を制御
して蒸発能力の急激な変化を防止するよう構成すればよ
い。つまり、室外熱交換器4が異なる蒸発能力を有する
場合、蒸発能力の総和が段階的に変化するよう膨張弁4
5を順次選択し、開閉制御することで同様の効果を奏す
るのである。
By performing the above control, the evaporation capacity of the outdoor heat exchanger 4 first decreases from PA + PB to PA,
Further, it is gradually reduced to PB. By taking such control, the evaporation capacity of the outdoor heat exchanger 4 is prevented from changing abruptly, and the load fluctuation in the heating cycle is reduced to enable stable operation. Although the above description is an example in which two outdoor heat exchangers 4 are controlled, the expansion valve 45 is similarly controlled when three or more outdoor heat exchangers 4 having different evaporation capacities are used. Then, it may be configured to prevent a rapid change in the evaporation ability. That is, when the outdoor heat exchangers 4 have different evaporation capacities, the expansion valve 4 is controlled so that the sum of the evaporation capacities changes stepwise.
The same effect can be obtained by sequentially selecting 5 and controlling the opening and closing.

【0022】[0022]

【発明の効果】本発明のエンジンヒートポンプは以上の
如く構成したので、以下のような効果を奏するものであ
る。即ち、複数の室外熱交換器及び各室外熱交換器に対
応した膨張弁を有するエンジンヒートポンプにおいて、
エンジン回転数に応じて各膨張弁を個別に開閉制御可能
としたので、室外熱交換器へ流入される冷媒速度を所定
値以上に維持することが可能となり、暖房サイクルの効
率化が図れた。また、室内機の稼動台数に合わせて、室
外熱交換器の稼動台数を制御することが可能となり、燃
料節約による暖房サイクルの効率化が実現した。
The engine heat pump of the present invention has the following effects because it is configured as described above. That is, in an engine heat pump having a plurality of outdoor heat exchangers and an expansion valve corresponding to each outdoor heat exchanger,
Since the opening and closing of each expansion valve can be individually controlled according to the engine speed, the speed of the refrigerant flowing into the outdoor heat exchanger can be maintained at a predetermined value or more, and the efficiency of the heating cycle can be improved. In addition, the number of operating outdoor heat exchangers can be controlled in accordance with the number of operating indoor units, thereby realizing more efficient heating cycles by saving fuel.

【0023】また、前記各室外熱交換器の蒸発能力が互
いに異る場合、該室外熱交換器の蒸発能力の総和が段階
的に変化するように、前記膨張弁を順次選択して開閉制
御したので、室外熱交換器の蒸発能力を急激に変動させ
ることを防止し、安定した暖房サイクルを維持しながら
効率化が図れた。
When the evaporation capacities of the outdoor heat exchangers are different from each other, the expansion valves are sequentially selected and opened / closed so that the sum of the evaporation capacities of the outdoor heat exchangers changes stepwise. Therefore, it was possible to prevent the evaporation ability of the outdoor heat exchanger from fluctuating abruptly, and to improve efficiency while maintaining a stable heating cycle.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るエンジンヒートポンプの回路図で
ある。
FIG. 1 is a circuit diagram of an engine heat pump according to the present invention.

【符号の説明】[Explanation of symbols]

1 エンジン 2 コンプレッサ 3 四方弁 4 室内熱交換器 5 レシーバ 8 補助熱吸収器 10 冷却回路 70 室内熱交換器 DESCRIPTION OF SYMBOLS 1 Engine 2 Compressor 3 Four-way valve 4 Indoor heat exchanger 5 Receiver 8 Auxiliary heat absorber 10 Cooling circuit 70 Indoor heat exchanger

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 複数の室外熱交換器及び各室外熱交換器
に対応した膨張弁を有するエンジンヒートポンプにおい
て、エンジン回転数に応じて各膨張弁を個別に開閉制御
可能としたことを特徴とするエンジンヒートポンプの制
御方法。
1. An engine heat pump having a plurality of outdoor heat exchangers and expansion valves corresponding to the respective outdoor heat exchangers, wherein each of the expansion valves can be individually opened and closed according to the engine speed. Control method of engine heat pump.
【請求項2】 前記各室外熱交換器の蒸発能力が互いに
異る場合、該室外熱交換器の蒸発能力の総和が段階的に
変化するように、前記膨張弁を順次選択して開閉制御し
たことを特徴とする請求項1記載のエンジンヒートポン
プの制御方法。
2. When the evaporation capacities of the outdoor heat exchangers are different from each other, the expansion valves are sequentially selected and opened and closed so that the sum of the evaporation capacities of the outdoor heat exchangers changes stepwise. The control method for an engine heat pump according to claim 1, wherein:
JP11086455A 1999-03-29 1999-03-29 Method for controlling engine heat pump Pending JP2000283595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11086455A JP2000283595A (en) 1999-03-29 1999-03-29 Method for controlling engine heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11086455A JP2000283595A (en) 1999-03-29 1999-03-29 Method for controlling engine heat pump

Publications (1)

Publication Number Publication Date
JP2000283595A true JP2000283595A (en) 2000-10-13

Family

ID=13887429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11086455A Pending JP2000283595A (en) 1999-03-29 1999-03-29 Method for controlling engine heat pump

Country Status (1)

Country Link
JP (1) JP2000283595A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002318025A (en) * 2001-04-19 2002-10-31 Yanmar Diesel Engine Co Ltd Control device and control method for engine heat pump
KR100780345B1 (en) 2006-10-30 2007-11-30 삼성전자주식회사 Gas engine heat pump system and control method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002318025A (en) * 2001-04-19 2002-10-31 Yanmar Diesel Engine Co Ltd Control device and control method for engine heat pump
KR100780345B1 (en) 2006-10-30 2007-11-30 삼성전자주식회사 Gas engine heat pump system and control method thereof

Similar Documents

Publication Publication Date Title
JP4123829B2 (en) Refrigeration cycle equipment
JP3662557B2 (en) Heat pump system
MXPA02006289A (en) Multi-type gas heat pump air conditioner.
EP2489965A1 (en) Air-conditioning hot-water supply system
WO1996021830A1 (en) Two-dimensional refrigerating plant
KR20040050477A (en) An air-condition system
JP2006292313A (en) Geothermal unit
US11892203B2 (en) Method of operating refrigeration cycle device
KR20100059176A (en) Storage system
JP2000304374A (en) Engine heat pump
JP4898025B2 (en) Multi-type gas heat pump type air conditioner
KR20100005734U (en) Heat pump storage system
KR20100005735U (en) storage system
JP2000283595A (en) Method for controlling engine heat pump
JPH06257868A (en) Heat pump type ice heat accumulating device for air conditioning
JP2962311B1 (en) Binary refrigeration equipment
KR101258096B1 (en) Two step compression heat pump system
KR100441008B1 (en) Cooling and heating air conditioning system
JP3871207B2 (en) Refrigeration system combining absorption and compression
JP3918980B2 (en) Refrigeration equipment
JPH0886529A (en) Air conditioner
KR100612092B1 (en) Air-conditioner
JPH0854156A (en) Cooling and heating device utilizing exhaust heat of engine and operating method thereof
JPH05340641A (en) Heat pump
JP2833339B2 (en) Thermal storage type air conditioner