JP2000282176A - Steel wire for heat resistant spring, and its production - Google Patents

Steel wire for heat resistant spring, and its production

Info

Publication number
JP2000282176A
JP2000282176A JP11096539A JP9653999A JP2000282176A JP 2000282176 A JP2000282176 A JP 2000282176A JP 11096539 A JP11096539 A JP 11096539A JP 9653999 A JP9653999 A JP 9653999A JP 2000282176 A JP2000282176 A JP 2000282176A
Authority
JP
Japan
Prior art keywords
steel wire
heat
resistant spring
less
mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11096539A
Other languages
Japanese (ja)
Inventor
Nozomi Kawabe
望 河部
Koji Yamaguchi
浩司 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP11096539A priority Critical patent/JP2000282176A/en
Publication of JP2000282176A publication Critical patent/JP2000282176A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a steel wire for spring excellent in heat resistance in the temp. region of 130 to 250 deg.C and to provide a method for producing it. SOLUTION: This steel wire for a heat resistant spring contains, by weight, 0.7 to 0.9% C, 0.7 to 1.2% Si and 0.3 to 0.9% Mn and furthermore, contains plural elements selected from the group composed of 0.05 to 0.5% Cr, 0.005 to 0.05% Cu and 0.01 to 0.1% Mo. Its tensile strength is 1,400 to 1,900 MPa, twisting strength is 600 to 1000 MPa before aging and 800 to 1100 MPa after aging, and elongation is >=3%. The minimum width of the thickness of a ferritic layer in a pearlite lamellar is >=20 nm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐熱性に優れるば
ね用鋼線とその製造方法に関するものである。特に、13
0℃以上250℃以下程度の温度領域における耐熱性に優れ
たばね用鋼線とその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spring steel wire excellent in heat resistance and a method for manufacturing the same. In particular, 13
The present invention relates to a spring steel wire excellent in heat resistance in a temperature range of about 0 ° C. or more and about 250 ° C. or less, and a method for producing the same.

【0002】[0002]

【従来の技術】ばね用ピアノ線には中高炭素鋼線を伸線
加工して高強度化した鋼線が使用されている。これらの
鋼線では、従来より高強度、高靭性を両立させる研究が
多く行われており、例えば特開平5-98349号公報や特開
平8-337844号公報などのようにパーライト組織のラメラ
間隔の微細化や均一化を狙った提案がなされている。
2. Description of the Related Art As a piano wire for a spring, a high-strength steel wire obtained by drawing a medium-high carbon steel wire is used. In these steel wires, higher strength and higher toughness have been studied in the past, and many studies have been conducted.For example, as in JP-A-5-98349 and JP-A-8-337844, the lamella spacing of the pearlite structure is reduced. There have been proposals aimed at miniaturization and uniformity.

【0003】[0003]

【発明が解決しようとする課題】しかし、これらの従来
技術は130℃程度以上の高温における耐熱性や耐疲労特
性を目的としたものではなく、このような温度領域でも
十分な耐熱性を具えたばね用鋼線の開発が望まれてい
た。
However, these prior arts do not aim at heat resistance and fatigue resistance at a high temperature of about 130 ° C. or higher, and a spring having sufficient heat resistance even in such a temperature range. Development of steel wire for industrial use was desired.

【0004】従って、本発明の主目的は、耐熱性に優れ
たばね用鋼線とその製造方法とを提供することにある。
また、耐食性を向上させることもばねとして強い要求が
あるため、それも併せて本発明の目的とした。
Accordingly, it is a primary object of the present invention to provide a spring steel wire excellent in heat resistance and a method for manufacturing the same.
In addition, there is a strong demand for improving the corrosion resistance as a spring, which is also an object of the present invention.

【0005】[0005]

【課題を解決するための手段】本発明耐熱ばね用鋼線
は、重量%で、C:0.7〜0.9、Si:0.7〜1.2、Mn:0.3〜
0.9を含み、さらにCr:0.05〜0.5、Cu:0.005〜0.05お
よびMo:0.01〜0.1よりなる群より選択された複数の元
素を含む。また、引張り強さが1400〜1900MPaで、捻り
強さが、時効前で600〜1000MPa、時効後で800〜1100MPa
であり、伸びが3%以上である。そして、パーライトラ
メラにおけるフェライト層の厚さの最小幅が20nm以上で
あることを特徴とする。
Means for Solving the Problems The steel wire for heat-resistant springs of the present invention is, by weight%, C: 0.7-0.9, Si: 0.7-1.2, Mn: 0.3-0.3%.
0.9, and further includes a plurality of elements selected from the group consisting of Cr: 0.05 to 0.5, Cu: 0.005 to 0.05, and Mo: 0.01 to 0.1. In addition, the tensile strength is 1400-1900MPa, the torsional strength is 600-1000MPa before aging, and 800-1100MPa after aging.
And the elongation is 3% or more. And the minimum width of the thickness of the ferrite layer in the pearlite lamella is 20 nm or more.

【0006】ここで、鋼線表面が電解研磨されているこ
とが好ましい。電解研磨により除去する鋼線表面からの
深さは10μm程度以上が望ましい。この電解研磨により
鋼線の耐疲労特性を向上できる。特に研磨後の表面粗さ
をRzで10μm以下とすることが望ましい。
Here, it is preferable that the surface of the steel wire is electrolytically polished. The depth from the steel wire surface to be removed by electrolytic polishing is desirably about 10 μm or more. This electrolytic polishing can improve the fatigue resistance of the steel wire. In particular, it is desirable that the surface roughness after polishing be 10 μm or less in Rz.

【0007】また、鋼線表面にZnまたはZn-Al合金被覆
を施すことも好適である。この被覆の形成には、電解め
っき、化学めっき、溶融めっき、溶射などが利用でき
る。この被覆を形成した場合、ZnまたはZn-Al合金被覆
の上にクロメート処理を施しても良い。クロメート処理
には、光沢クロメート、有色クロメート、黒色クロメー
ト、緑色クロメートが挙げられる。これらの被覆形成ま
たはクロメート処理により鋼線の耐食性を改善できる。
[0007] It is also preferable to coat the surface of the steel wire with Zn or a Zn-Al alloy. For forming this coating, electrolytic plating, chemical plating, hot-dip plating, thermal spraying, or the like can be used. When this coating is formed, a chromate treatment may be performed on the Zn or Zn-Al alloy coating. The chromate treatment includes gloss chromate, colored chromate, black chromate, and green chromate. These coatings or chromate treatments can improve the corrosion resistance of the steel wire.

【0008】さらに、鋼線の表面粗さがRzで10μm以
下、引張りの残留応力が鋼線表面で200MPa以下、引張り
残留応力の存在する深さが鋼線表面から150μm以下、パ
ーライトラメラのフェライト中の転位密度が1×1011
/cm2以下とすることが望ましい。特にこのような条件
を満たす鋼線は、耐熱性および耐疲労特性の両方に優れ
る。
Further, the surface roughness of the steel wire is 10 μm or less in Rz, the residual tensile stress is 200 MPa or less on the surface of the steel wire, the depth where the residual tensile stress exists is 150 μm or less from the surface of the steel wire, and the ferrite of the pearlite lamella Is preferably 1 × 10 11 / cm 2 or less. In particular, a steel wire satisfying such conditions is excellent in both heat resistance and fatigue resistance.

【0009】本発明ばね用鋼線の線径には特に限定はな
いが、通常、10〜0.3mm程度が利用される。もちろん、
この範囲外であっても構わない。
Although the wire diameter of the spring steel wire of the present invention is not particularly limited, it is usually about 10 to 0.3 mm. of course,
It may be outside this range.

【0010】上記のような鋼線を製造する方法は、鋼線
にパテンティングを施してパーライト組織に変態させる
工程を含む耐熱ばね用鋼線の製造方法において、前記パ
テンティング処理におけるγ化条件で、γ結晶粒子の平
均粒径を10〜40μmとし、かつそのばらつきを標準偏差
が前記平均粒径の40%以内となるようにする。このパー
ライト変態は、鉛浴、塩浴、流動床、沸騰水、衝風のい
ずれかとし、変態の完了は550℃以上とする。その後、
減面率40〜90%の伸線加工を行う。さらに、350〜450℃
で時効することを特徴とする。時効時間は10〜30分程度
が好適である。
A method for producing a steel wire as described above is a method for producing a steel wire for a heat-resistant spring which includes a step of applying a patent to the steel wire to transform the steel wire into a pearlite structure. , The average particle size of the γ crystal particles is set to 10 to 40 μm, and the standard deviation is set to be within 40% of the average particle size. The pearlite transformation may be any of a lead bath, a salt bath, a fluidized bed, boiling water, and a blast, and the transformation is completed at 550 ° C. or more. afterwards,
Perform wire drawing with a surface reduction rate of 40 to 90%. In addition, 350-450 ° C
It is characterized by aging. The aging time is preferably about 10 to 30 minutes.

【0011】γ結晶粒子の平均粒径を10〜40μmとし、
かつそのばらつきを標準偏差で前記平均粒径の40%以内
とするには、圧延時、最終ロールでの加工歪を断面内で
任意の場所を比較し、10%以内の差におさえ、圧延から
1秒以内に断面内での温度差を150℃以上としないこと
が重要である。
The average particle size of the γ crystal particles is 10 to 40 μm,
In addition, in order to make the variation within 40% of the average particle diameter by the standard deviation, at the time of rolling, the processing strain in the final roll is compared at any place in the cross section, and the difference is kept within 10%, and the It is important that the temperature difference within the cross section not exceed 150 ° C. within one second.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。 (実施例1)表1の成分の鋼を100kg真空溶解炉で溶解鋳
造し、熱間で鍛造・圧延した後、鉛浴にてパテンティン
グ処理を行って伸線し、線径8mmの素線を製造した。次
に、この素線を7mm〜4mmの任意のサイズまで伸線加工を
行い試料を得た。7mmへの減面率は23%、6mmへの減面率
は44%、5mmへの減面率は61%、4mmへの減面率は75%で
ある。
Embodiments of the present invention will be described below. (Example 1) 100 kg of steel having the components shown in Table 1 was melted and cast in a vacuum melting furnace, hot forged and rolled, then patented in a lead bath, and drawn, and a wire having a wire diameter of 8 mm was drawn. Was manufactured. Next, this wire was drawn to an arbitrary size of 7 mm to 4 mm to obtain a sample. The reduction rate to 7mm is 23%, the reduction rate to 6mm is 44%, the reduction rate to 5mm is 61%, and the reduction rate to 4mm is 75%.

【0013】[0013]

【表1】 [Table 1]

【0014】そして、得られた試料について、引張り試
験、捻り試験、パーライトラメラにおけるフェライト層
の厚さの最小幅測定、耐熱評価(耐熱へたり試験)を行
った。引張り試験においては引張り強さと伸びを求め
た。捻り試験は試料の両端を保持してたわまない程度に
しながら、その一端を同一方向に破断するまで回転し、
その際の荷重を測定した。この捻り試験では、時効前後
の各々について測定を行った。フェライト層の厚さの最
小幅測定は試料の断面を電子顕微鏡により撮影した結果
から求めた。耐熱評価は、ワイヤをコの字型に曲げ、25
0℃で700MPaのせん断応力を60分間負荷した後の残留せ
ん断歪を測定することで行った。また、耐熱へたり試験
では、事前に全てのサンプルに400℃、30分間の時効を
行なった。評価基準は従来のピアノ線以上の耐熱性を目
標とし、残留せん断歪で0.2%以下とした。
The obtained sample was subjected to a tensile test, a twist test, a measurement of a minimum width of a ferrite layer thickness in a pearlite lamella, and a heat resistance evaluation (heat resistance set test). In the tensile test, tensile strength and elongation were determined. In the torsion test, while holding both ends of the sample so that it does not bend, rotate one end until it breaks in the same direction,
The load at that time was measured. In this torsion test, measurements were made before and after aging. The measurement of the minimum width of the thickness of the ferrite layer was obtained from the result of taking a cross section of the sample with an electron microscope. For heat resistance evaluation, bend the wire in a
The measurement was performed by measuring the residual shear strain after applying a shear stress of 700 MPa at 0 ° C. for 60 minutes. In the heat setting test, all samples were pre-aged at 400 ° C. for 30 minutes. The evaluation criteria aimed at heat resistance higher than that of the conventional piano wire, and the residual shear strain was set to 0.2% or less.

【0015】さらに、各試料についてパテンティング処
理時のγ結晶粒子の平均粒径と、そのばらつきを求め
た。γ結晶粒子の平均粒径はJIS G 0551に準じて測定
し、ばらつきは標準偏差を求め、「標準偏差/平均粒
径」の比率により評価した。
Further, for each sample, the average particle size of the γ crystal particles during the patenting process and the variation thereof were determined. The average particle size of the γ crystal particles was measured according to JIS G 0551, and the variation was determined by the standard deviation, and evaluated by the ratio of “standard deviation / average particle size”.

【0016】各試験結果を表2に示す。表2において、同
じ線径でも引張り強さなどが異なる試料が見られるが、
これはパテンティング条件や伸線条件が異なるためであ
る。各試料のパテンティングにおけるパーライト変態完
了温度は、試料1-1が580℃、1-2が520℃、1-4が540℃、
その他の試料は600℃である。また、伸線時の試料温度
は、1-3が230℃で、その他は150℃である。さらに、伸
線時のダイス角は1-6が14度以上のものとし、それ以外
のサンプルは14度未満とした。さらに、耐熱へたり試験
に用いたサンプルの時効条件は、全て400℃で30分間と
し、1-5のみ300、350、450、500℃で30分間を追加し
た。
Table 2 shows the test results. In Table 2, samples with the same wire diameter but different tensile strength are seen,
This is because the patenting conditions and the drawing conditions are different. The pearlite transformation completion temperature in the patenting of each sample was 580 ° C for sample 1-1, 520 ° C for 1-2, 540 ° C for 1-4,
Other samples are at 600 ° C. The sample temperature during wire drawing is 230 ° C for 1-3 and 150 ° C for the others. Furthermore, the die angle at the time of wire drawing was 1-6 at 14 degrees or more, and the other samples were less than 14 degrees. Further, the aging conditions of the samples used in the heat set test were all 400 ° C. for 30 minutes, and only 1-5 was added at 300, 350, 450 and 500 ° C. for 30 minutes.

【0017】[0017]

【表2】 [Table 2]

【0018】表2から明らかなように、引張り強さが19
00MPaを超える1-2と、1400MPa未満の1-9は耐熱評価が基
準を満たしていない。また、時効前の捻り強さが1000MP
aを超える1-3と、時効後の捻り強さ800MPa未満の1-4及
び1-9も耐熱評価が基準を満たしていない。さらに、フ
ェライト層の厚さの最小幅が15nmの1-6も同様に耐熱評
価が低かった。なお、伸び3%未満のものはばね加工で
きずに評価できなかった。この結果から推測すると、伸
線時の試料温度は200℃以下、ダイス角が14度未満が好
ましい条件と思われる。
As apparent from Table 2, the tensile strength is 19
The heat resistance evaluation of 1-2 exceeding 00 MPa and 1-9 of less than 1400 MPa does not meet the standard. In addition, the torsional strength before aging is 1000MP
The heat resistance evaluations of 1-3 exceeding a, and 1-4 and 1-9 having a torsional strength after aging of less than 800 MPa also do not meet the criteria. Furthermore, the heat resistance evaluation was similarly low for 1-6 in which the minimum width of the thickness of the ferrite layer was 15 nm. Those having an elongation of less than 3% could not be evaluated because they could not be spring processed. Estimated from these results, it is considered that the sample temperature at the time of drawing is preferably 200 ° C. or less and the die angle is preferably less than 14 degrees.

【0019】なお、各試料のγ結晶粒子の平均粒径(μ
m)と、そのばらつき(%:標準偏差/平均粒径)は次
の通りである。それぞれ「/」の左側の数値が平均粒径
を、右側の数値がばらつきを示している。 1-1:12/27 1-2:13/41 1-3:42/37 1-4:37/42 1-5:15/23 1-6:45/35.6 1-7:28/18 1-8:18/23 1-9:23/28
Incidentally, the average particle size (μ
m) and its variation (%: standard deviation / average particle size) are as follows. The numerical value on the left side of “/” indicates the average particle diameter, and the numerical value on the right side indicates the variation. 1-1: 12/27 1-2: 13/41 1-3: 42/37 1-4: 37/42 1-5: 15/23 1-6: 45 / 35.6 1-7: 28/18 1 -8: 18/23 1-9: 23/28

【0020】従って、引張り強さ:1400〜1900MPa、捻
り強さ:時効前で600〜1000MPa、時効後で800〜1100MP
a、伸び:3%以上、フェライト層の厚さの最小幅:20n
m以上が好ましいことが判る。
Therefore, tensile strength: 1400-1900 MPa, torsional strength: 600-1000 MPa before aging, 800-1100 MPa after aging.
a, elongation: 3% or more, minimum width of ferrite layer thickness: 20n
It turns out that m or more is preferable.

【0021】(実施例2)実施例1における鋼材の化学
成分を表3のように変えて同様の工程で5mmの試料を作製
し、実施例1と同様の条件で耐熱評価を行った。パテン
ティングにおけるパーライト変態完了温度は580℃であ
る。全て400℃で30分間時効した後、耐熱へたり試験を
行った。試験結果を表4に示す。
Example 2 A sample of 5 mm was prepared in the same process as in Example 1 except that the chemical composition of the steel material was changed as shown in Table 3, and the heat resistance was evaluated under the same conditions as in Example 1. The pearlite transformation completion temperature in patenting is 580 ° C. After all were aged at 400 ° C. for 30 minutes, a heat set test was performed. Table 4 shows the test results.

【0022】[0022]

【表3】 [Table 3]

【0023】[0023]

【表4】 [Table 4]

【0024】表4に示すように、発明材2-1〜2-5はいず
れも残留せん断歪が0.2%以下であり、耐熱性に優れる
ことが判る。一方、Cr,Cu,Moを全く含まないか1種類し
か含まない比較材2-1〜2-4はいずれも残留せん断歪が0.
2%を超えており、耐熱性に劣ることが判る。また、Cr,
Cu,Moのうち2種類を含むが、C含有量が0.7%未満の比較
材2-5及びSi含有量が0.7%未満の比較材2-7も耐熱性に
劣ることが判る。さらに、C含有量が0.9%を超える比較
材2-6、Si含有量が1.2%を超える比較材2-8はばね加工
できなかった。
As shown in Table 4, all of the inventive materials 2-1 to 2-5 have a residual shear strain of 0.2% or less, indicating that they are excellent in heat resistance. On the other hand, any of Comparative Materials 2-1 to 2-4 containing no Cr, Cu, or Mo or only one kind had a residual shear strain of 0.
It exceeds 2%, indicating that the heat resistance is inferior. Also, Cr,
It can be seen that the comparative material 2-5 containing two kinds of Cu and Mo, but having a C content of less than 0.7%, and the comparative material 2-7 having a Si content of less than 0.7% also have poor heat resistance. Further, the comparative material 2-6 having a C content of more than 0.9% and the comparative material 2-8 having a Si content of more than 1.2% could not be spring-processed.

【0025】従って、重量%で、C:0.7〜0.9、Si:0.7
〜1.2、Mn:0.3〜0.9を含み、さらにCr:0.05〜0.5、C
u:0.005〜0.05およびMo:0.01〜0.1よりなる群より選
択された複数の元素を含むことが必要と言える。
Therefore, in weight%, C: 0.7 to 0.9, Si: 0.7
~ 1.2, Mn: 0.3 ~ 0.9, Cr: 0.05 ~ 0.5, C
It is necessary to include a plurality of elements selected from the group consisting of u: 0.005 to 0.05 and Mo: 0.01 to 0.1.

【0026】なお、Mnについては、脱酸効果および焼入
れ性の点から0.3〜0.9%としているが、少なくともこの
範囲内であれば耐熱性は良好である。
The content of Mn is 0.3-0.9% from the viewpoints of deoxidizing effect and hardenability, but at least within this range, the heat resistance is good.

【0027】(実施例3)実施例1における試料1-5の
表面粗さ、残留応力、転位密度を種々に変化させて、耐
熱ばねとしての特性との関係を調べた。表面粗さ、残留
応力および転位密度は、伸線加工条件や時効条件を変化
させることで変えられる。具体的には、ダイズ角度を6
〜18度、伸線温度を100〜220℃、1パス加工度を6%〜3
5%の範囲で変化させて製造した。
Example 3 The surface roughness, residual stress, and dislocation density of Sample 1-5 in Example 1 were variously changed, and the relationship with the properties as a heat-resistant spring was examined. The surface roughness, residual stress and dislocation density can be changed by changing the drawing conditions and the aging conditions. Specifically, the soybean angle is set to 6
~ 18 degrees, wire drawing temperature 100 ~ 220 ℃, 1 pass processing degree 6% ~ 3
Manufactured with a range of 5%.

【0028】また、この残留応力はX線回折法(sin2ψ
法)で測定した。さらに、転位密度の測定は透過型電子
顕微鏡観察により、結晶内における種々の方向の面を通
る転移数の平均値を用いることで求めた。耐熱ばねとし
ての特性は中村式回転曲げ疲労試験で評価し、10回で
折損しないものを良好とした。試験に用いるばねの諸元
は実施例1に記載したものと同様である。その結果を表5
に示す。表5において、線表面の残留応力は、負の数値
が圧縮応力であることを、正の数値が引張り応力である
ことを示している。
The residual stress is measured by an X-ray diffraction method (sin2ψ
Method). Further, the dislocation density was measured by observation with a transmission electron microscope using an average value of the number of transitions passing through planes in various directions in the crystal. Properties as heat-resistant spring evaluated by bending fatigue test rotation Nakamura, was considered good which is not broken at 10 7 times. The specifications of the spring used in the test are the same as those described in the first embodiment. Table 5 shows the results.
Shown in In Table 5, the residual stress on the wire surface indicates that a negative value is a compressive stress and a positive value is a tensile stress.

【0029】[0029]

【表5】 [Table 5]

【0030】表5から明らかなように、表面粗さが10μm
を超える試料3-3は耐疲労特性が劣る。また、線表面の
残留応力が200MPaを超える3-6及び引張り応力の存在す
る深さが150μmを超える3-9は耐熱性および耐疲労特性
の双方に劣る。さらに、転位密度が1×1011を超える3-
12は耐熱性に劣る。これに対して、他の試料はいずれも
耐熱性と耐疲労特性の双方に優れている。
As is clear from Table 5, the surface roughness is 10 μm
The sample 3-3 having more than the above has inferior fatigue resistance. Also, 3-6 in which the residual stress on the wire surface exceeds 200 MPa and 3-9 in which the tensile stress exists in a depth exceeding 150 μm are inferior in both heat resistance and fatigue resistance. Furthermore, the dislocation density exceeds 1 × 10 11
12 is inferior in heat resistance. On the other hand, all of the other samples are excellent in both heat resistance and fatigue resistance.

【0031】従って、鋼線の表面粗さ:Rzで10μm以
下、鋼線表面における引張りの残留応力:200MPa以下、
引張り残留応力の存在する深さ:鋼線表面から150μm以
下、フェライト中の転位密度:1×1011個/cm2以下が
好ましいことが判る。
Therefore, the surface roughness of the steel wire: Rz of 10 μm or less, the tensile residual stress on the steel wire surface: 200 MPa or less,
It can be seen that the depth at which the residual tensile stress exists is preferably 150 μm or less from the surface of the steel wire, and the dislocation density in the ferrite is preferably 1 × 10 11 / cm 2 or less.

【0032】(実施例4)実施例1における試料1-5を
用いて、疲労特性、耐食性の向上を狙った表面処理を検
討した。表面処理としては、電解研磨、Zn被覆、Zn-Al
合金被覆およびZn-Al合金被覆に有色クロメート処理を
施したものの4種類とした。これらの表面処理は、いず
れも鋼線のばね特性を低下させることがほとんどない。
電解研磨したものは鋼線の表面粗さをRzで5μmとし
た。
Example 4 Using the sample 1-5 in Example 1, a surface treatment aimed at improving fatigue characteristics and corrosion resistance was studied. As the surface treatment, electrolytic polishing, Zn coating, Zn-Al
The alloy coating and the Zn-Al alloy coating were subjected to colored chromate treatment to provide four types. All of these surface treatments hardly degrade the spring properties of the steel wire.
The electrolytically polished steel wire had a surface roughness of 5 μm in Rz.

【0033】そして、表面処理のない試料と上記表面処
理を行った各試料について塩水噴霧テスト(JIS Z 23
71に準拠)を行い、白錆発生時間を測定した。その結
果、Zn被覆を施したものは表面処理のないものに比べて
5倍、Zn-Al合金被覆は同10倍、クロメート処理を施した
ものは同100倍以上も発錆時間が長くなった。
Then, a salt spray test (JIS Z 23) was performed on the sample without the surface treatment and each sample subjected to the surface treatment.
71), and the white rust generation time was measured. As a result, the one with Zn coating is compared with the one without surface treatment.
The rusting time was 5 times longer, the Zn-Al alloy coating 10 times longer, and the chromate-treated one more than 100 times longer.

【0034】なお、以上の実施例1〜4において、鋼線
として有する金属組織や表面状態などは全てばね加工後
もその特性を維持していると言える。
In the above Examples 1 to 4, it can be said that the metal structure and the surface state of the steel wire all maintain their properties even after the spring working.

【0035】[0035]

【発明の効果】以上説明したように、本発明ばね用鋼線
は、一般の圧縮・引張りコイルばね又は弁ばね等、耐熱
性や疲労特性の要求されるばね用として最適である。ま
た、靭性に優れるため、捻り特性の要求されるトーショ
ンバーとしての利用も好適である。特に、鋼線表面を
電解研磨する、鋼線表面にZnまたはZn-Al合金被覆を
施す、ZnまたはZn-Al合金被覆の上にクロメート処理
を施す、ことにより、耐食性にも優れたばね用鋼線とで
きる。
As described above, the spring steel wire of the present invention is most suitable for springs requiring heat resistance and fatigue characteristics, such as general compression / tensile coil springs or valve springs. Further, since it is excellent in toughness, it is also suitable to be used as a torsion bar requiring torsion characteristics. In particular, steel wire for springs with excellent corrosion resistance by electropolishing the steel wire surface, applying Zn or Zn-Al alloy coating on the steel wire surface, and performing chromate treatment on Zn or Zn-Al alloy coating And can be.

【0036】さらに、本発明鋼線の製造方法によれば、
耐熱性に優れたばね用鋼線を安価に製造することができ
る。
Further, according to the method for producing a steel wire of the present invention,
A spring steel wire excellent in heat resistance can be manufactured at low cost.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 38/22 C22C 38/22 C23C 28/00 C23C 28/00 C C25F 3/24 C25F 3/24 Fターム(参考) 4K032 AA06 AA11 AA14 AA16 AA19 AA31 AA32 BA02 CG01 CG02 CH04 CJ06 4K043 AA02 AB05 AB10 AB13 AB15 AB18 AB27 AB28 BB01 BB04 CA06 CA07 CB01 CB03 FA03 FA12 4K044 AA02 AB04 BA10 BA15 BB03 BB16 BC02 CA11 CA15 CA16 CA18 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22C 38/22 C22C 38/22 C23C 28/00 C23C 28/00 C C25F 3/24 C25F 3/24 F term (Reference) 4K032 AA06 AA11 AA14 AA16 AA19 AA31 AA32 BA02 CG01 CG02 CH04 CJ06 4K043 AA02 AB05 AB10 AB13 AB15 AB18 AB27 AB28 BB01 BB04 CA06 CA07 CB01 CB03 FA03 FA12 4K044 AA02 CA04 AB10 CA15

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.7〜0.9、Si:0.7〜1.2、
Mn:0.3〜0.9を含み、 さらにCr:0.05〜0.5、Cu:0.005〜0.05およびMo:0.01
〜0.1よりなる群より選択された複数の元素を含み、 引張り強さが1400〜1900MPaで、 捻り強さが、時効前で600〜1000MPa、時効後で800〜110
0MPaであり、 伸びが3%以上であり、 パーライトラメラにおけるフェライト層の厚さの最小幅
が20nm以上であることを特徴とする耐熱ばね用鋼線。
Claims: C: 0.7 to 0.9, Si: 0.7 to 1.2,
Mn: 0.3 to 0.9, Cr: 0.05 to 0.5, Cu: 0.005 to 0.05, and Mo: 0.01
Includes multiple elements selected from the group consisting of ~ 0.1, tensile strength of 1400 ~ 1900MPa, torsional strength of 600 ~ 1000MPa before aging, 800 ~ 110 after aging
A steel wire for a heat-resistant spring, wherein the steel wire has 0 MPa, an elongation of 3% or more, and a minimum width of a ferrite layer thickness in a pearlite lamella of 20 nm or more.
【請求項2】 鋼線表面が電解研磨されていることを特
徴とする請求項1記載の耐熱ばね用鋼線。
2. The steel wire for a heat-resistant spring according to claim 1, wherein the surface of the steel wire is electropolished.
【請求項3】 鋼線表面にZnまたはZn-Al合金被覆が施さ
れていることを特徴とする請求項1記載の耐熱ばね用鋼
線。
3. The steel wire for a heat-resistant spring according to claim 1, wherein a surface of the steel wire is coated with Zn or a Zn—Al alloy.
【請求項4】 ZnまたはZn-Al合金被覆の上にクロメート
処理が施されていることを特徴とする請求項3記載の耐
熱ばね用鋼線。
4. The steel wire for a heat-resistant spring according to claim 3, wherein a chromate treatment is applied on the Zn or Zn-Al alloy coating.
【請求項5】 鋼線の表面粗さがRzで10μm以下、 引張りの残留応力が鋼線表面で200MPa以下、 引張り残留応力の存在する深さが鋼線表面から150μm以
下、 パーライトラメラのフェライト中の転位密度が1×1011
個/cm2以下であることを特徴とする請求項1〜4のい
ずれかに記載の耐熱ばね用鋼線。
5. The steel wire has a surface roughness of 10 μm or less in Rz, a residual tensile stress of 200 MPa or less at the surface of the steel wire, a depth at which the residual tensile stress exists is 150 μm or less from the surface of the steel wire, and a ferrite of pearlite lamella. Dislocation density of 1 × 10 11
Heat a spring steel wire according to any one of claims 1 to 4, characterized in that pieces / cm 2 or less.
【請求項6】 鋼線にパテンティングを施してパーライ
ト組織に変態させる工程を含む耐熱ばね用鋼線の製造方
法において、 前記パテンティング処理におけるγ化条件で、γ結晶粒
子の平均粒径を10〜40μmとし、かつそのばらつきは標
準偏差を前記平均粒径の40%以内とし、 パーライト変態を行う条件を、鉛浴、塩浴、流動床、沸
騰水、衝風のいずれかとし、パーライト変態を550℃以
上で完了させ、 その後、減面率40〜90%の伸線加工を行い、 さらに350〜450℃で時効することを特徴とする耐熱ばね
用鋼線の製造方法。
6. A method for producing a heat-resistant spring steel wire comprising a step of applying a patenting to a steel wire to transform it into a pearlite structure, comprising: 4040 μm, and the variation thereof is such that the standard deviation is within 40% of the average particle diameter, and the conditions for performing the pearlite transformation are any of a lead bath, a salt bath, a fluidized bed, boiling water, and a blast. A method for producing a heat-resistant spring steel wire, which is completed at a temperature of 550 ° C or higher, then wire-drawn with a surface reduction rate of 40 to 90%, and then aged at 350 to 450 ° C.
JP11096539A 1999-04-02 1999-04-02 Steel wire for heat resistant spring, and its production Pending JP2000282176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11096539A JP2000282176A (en) 1999-04-02 1999-04-02 Steel wire for heat resistant spring, and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11096539A JP2000282176A (en) 1999-04-02 1999-04-02 Steel wire for heat resistant spring, and its production

Publications (1)

Publication Number Publication Date
JP2000282176A true JP2000282176A (en) 2000-10-10

Family

ID=14167924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11096539A Pending JP2000282176A (en) 1999-04-02 1999-04-02 Steel wire for heat resistant spring, and its production

Country Status (1)

Country Link
JP (1) JP2000282176A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349080A (en) * 2005-06-17 2006-12-28 Jtekt Corp Manufacturing method for torsion bar
JP2007162040A (en) * 2005-12-09 2007-06-28 Chuo Spring Co Ltd Method for evaluating corrosion resistance in highly corrosion resistant member, highly corrosion resistant member and its production method
WO2012093506A1 (en) * 2011-01-06 2012-07-12 中央発條株式会社 Spring having excellent corrosion fatigue strength
JP2013050195A (en) * 2011-08-31 2013-03-14 Sumitomo Electric Ind Ltd Spring steel wire and spring
US8789817B2 (en) 2009-09-29 2014-07-29 Chuo Hatsujo Kabushiki Kaisha Spring steel and spring having superior corrosion fatigue strength

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349080A (en) * 2005-06-17 2006-12-28 Jtekt Corp Manufacturing method for torsion bar
JP2007162040A (en) * 2005-12-09 2007-06-28 Chuo Spring Co Ltd Method for evaluating corrosion resistance in highly corrosion resistant member, highly corrosion resistant member and its production method
US8789817B2 (en) 2009-09-29 2014-07-29 Chuo Hatsujo Kabushiki Kaisha Spring steel and spring having superior corrosion fatigue strength
US8936236B2 (en) 2009-09-29 2015-01-20 Chuo Hatsujo Kabushiki Kaisha Coil spring for automobile suspension and method of manufacturing the same
WO2012093506A1 (en) * 2011-01-06 2012-07-12 中央発條株式会社 Spring having excellent corrosion fatigue strength
JP2012144752A (en) * 2011-01-06 2012-08-02 Chuo Spring Co Ltd Spring having excellent corrosion fatigue strength
US9068615B2 (en) 2011-01-06 2015-06-30 Chuo Hatsujo Kabushiki Kaisha Spring having excellent corrosion fatigue strength
JP2013050195A (en) * 2011-08-31 2013-03-14 Sumitomo Electric Ind Ltd Spring steel wire and spring

Similar Documents

Publication Publication Date Title
CN101389781B (en) High-strength stainless steel spring and method of manufacturing the same
US9243315B2 (en) High-strength Zn—Al coated steel wire for bridges with excellent corrosion resistance and fatigue properties and method for manufacturing the same
KR101615844B1 (en) High-strength stainless steel wire having excellent heat deformation resistance, high-strength spring, and method for manufacturing same
KR101723349B1 (en) Cold-rolled steel sheet for enameling, method for producing same, and enamel product
JP5711539B2 (en) Spring with excellent corrosion fatigue strength
WO2018012625A1 (en) Steel wire
WO2019004454A1 (en) High-strength steel wire
JP5653022B2 (en) Spring steel and spring with excellent corrosion fatigue strength
JP6638741B2 (en) Steel sheet with excellent delayed fracture resistance
WO2000044954A1 (en) Wire for high-fatigue-strength steel wire, steel wire and production method therefor
JP5550359B2 (en) Coil spring for automobile suspension
WO1999011836A1 (en) Steel wire and method of manufacturing the same
JP2010513713A (en) Ball pins and ball bushes made of rust-proof steel
JP4790539B2 (en) High-strength, high-elasticity stainless steel and stainless steel wire
JP2000282176A (en) Steel wire for heat resistant spring, and its production
US20070138138A1 (en) Hot rolled steel sheet excellent in chemical convertibility and method of production of the same
JP5633402B2 (en) Directional electrical steel sheet with chromeless tension coating
US4877462A (en) Process for producing oil quench hardening and tempering and hard drawn steel wire of shaped section
JPS5967365A (en) Production of machine parts
CN105543715A (en) High-intensity and corrosion-resistant high-nitrogen steel fastener and manufacturing process thereof
JP3011596B2 (en) Low thermal expansion high strength core wire for transmission line and low sag wire using the same
AU2017256502B2 (en) Upholstery spring, method for producing an upholstery spring, mattress, and upholstered furniture
JP2002241843A (en) Method for producing ferritic stainless steel sheet having excellent surface gloss and workability
JP6515294B2 (en) Container steel sheet
JPH066768B2 (en) High formability aluminum alloy