JP2000282173A - High tensile strength steel plate excellent in workability, and its production - Google Patents

High tensile strength steel plate excellent in workability, and its production

Info

Publication number
JP2000282173A
JP2000282173A JP9611199A JP9611199A JP2000282173A JP 2000282173 A JP2000282173 A JP 2000282173A JP 9611199 A JP9611199 A JP 9611199A JP 9611199 A JP9611199 A JP 9611199A JP 2000282173 A JP2000282173 A JP 2000282173A
Authority
JP
Japan
Prior art keywords
steel
less
steel sheet
workability
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9611199A
Other languages
Japanese (ja)
Inventor
Chikako Fujinaga
千香子 藤長
Eiji Iizuka
栄治 飯塚
Tetsuo Shimizu
哲雄 清水
Osamu Furukimi
古君  修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP9611199A priority Critical patent/JP2000282173A/en
Publication of JP2000282173A publication Critical patent/JP2000282173A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a high tensile strength steel plate satisfying both of shape freezability and formability and provided with good workability and to provide a method for producing it. SOLUTION: A steel stock contg., by weight, 0.03 to 0.15% C, <=0.02% Si, 0.1 to 3.5% Mn, 0.04 to 0.15% P, <=0.002% S, 0.01 to 0.1% sol Al and <=0.004% N is hot-rolled, is subjected to pickling and cold rolling, is thereafter subjected to continuous annealing in which residence time in the temp. range of the Ac1 point to (the Ac1 point + 100 deg.C) is 10 sec to 10 min and is successively cooled at the average cooling rate of >=20 deg.C/sec in the temp. range of at 600 to 300 deg.C to form a structure contg. a low temp. transformed phase mainly composed of martensite by 5 to 25% at an occupying volume rate in a ferritic base, also, the surface roughness Ra is controlled to 0.6 to 1.8 μm, and this surface is coated with rust preventive oil of which viscosity at 40 deg.C is 10 to 30 cSt, and the concn. of phosphorus is 0.05 to 5.0 wt.% by 0.5 to 5 g/m2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主として自動車等
を製造する産業分野で使用される加工性に優れた高張力
鋼板およびその製造方法に関するものであり、とくに高
張力冷延鋼板に適用して好適である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-tensile steel sheet excellent in workability used mainly in the industrial field of manufacturing automobiles and the like, and a method for producing the same. It is suitable.

【0002】[0002]

【従来の技術】近年、自動車用鋼板の分野においては、
燃費の向上および耐衝突特性の向上のため、強度レベル
で440 〜780 MPa の高張力鋼板の適用が拡大しつつあ
る。このような適用鋼種の変更に伴い、従来は比較的軟
質な鋼板が使用されていた部位へ、高張力鋼板が使用さ
れるようになって、高張力鋼の低い伸びに起因する成形
性の低下が大きな問題となっている。また、高張力化に
伴い、プレス成形後の板反りに起因する形状凍結性の低
下も問題となる。ところで、高張力鋼板におけるこのよ
うな成形性や形状凍結性といった加工性の改善について
は、これまでにも幾つかの提案がある。例えば、特開昭
58−22332 号公報には、フェライトとマルテンサイトの
2相からなるDual Phase(DP)鋼が開発されている。
しかし、このような鋼でも、近年のより高度な成形技術
からの要請に対しては、プレス成形時に割れが発生し、
さらなる加工性の向上が求められている。そこで、最
近、特に伸び特性を改善し、良好な加工性を示すフェラ
イト、ベイナイトおよびオーステナイトの混合組織から
なる高強度複合組織鋼板、いわゆるTRIP鋼が提案さ
れている。しかし、TRIP鋼は、従来のDP鋼に比べ
て、伸び特性は良好であるものの、降伏比が大きく、形
状凍結性に劣るという欠点がある。このように、従来技
術では、良好な形状凍結性(耐スプリングバック性)と
成形性の両者を十分満足した鋼板を得ることができなか
った。
2. Description of the Related Art In recent years, in the field of steel sheets for automobiles,
The use of high-tensile steel sheets with a strength level of 440 to 780 MPa is expanding in order to improve fuel efficiency and collision resistance. Along with such a change in the type of applied steel, high-strength steel sheets have been used in areas where relatively soft steel sheets have been used in the past. Is a major problem. In addition, with the increase in the tension, there is also a problem that the shape freezing property is reduced due to the warpage of the sheet after press forming. By the way, there have been several proposals for improvement of workability such as formability and shape freezing property of a high-tensile steel sheet. For example,
In JP-A-58-22332, a dual phase (DP) steel comprising two phases of ferrite and martensite has been developed.
However, even with such steel, cracks occur during press forming in response to requests from more advanced forming technologies in recent years,
Further improvement in processability is required. Therefore, recently, a so-called TRIP steel, which is a high-strength composite steel sheet composed of a mixed structure of ferrite, bainite and austenite, which has particularly improved elongation properties and exhibits good workability, has been proposed. However, although the TRIP steel has good elongation properties as compared with the conventional DP steel, it has a drawback that the yield ratio is large and the shape freezing property is poor. As described above, in the prior art, it was not possible to obtain a steel sheet sufficiently satisfying both good shape freezing property (spring-back resistance) and formability.

【0003】成形性の改善に関しては、上述した組織制
御等による伸び向上のほか、溶融亜鉛めっき鋼板で行っ
ているような、プレス成形時の金型との摺動特性に着目
した、摩擦係数の低減が考えられる。この摩擦係数を小
さくするには、一般に、表面粗度を小さくすることが有
効である。例えば、特開平9−241801号公報には、C≦
0.01wt%の鋼板の少なくとも一方の面の表面粗さをRa
≦0.8 μmとし、鋼板の上に硫黄系極圧添加剤あるいは
りん系極圧添加剤を含有する防錆油層を形成することに
より、摺動性および耐型かじり性を改善する技術が開示
されている。
[0003] In order to improve the formability, in addition to the improvement of the elongation by controlling the structure as described above, the coefficient of friction of the friction coefficient which focuses on the sliding characteristics with the mold at the time of press forming as in the case of hot-dip galvanized steel sheet is considered. Reduction is conceivable. In order to reduce the friction coefficient, it is generally effective to reduce the surface roughness. For example, Japanese Patent Application Laid-Open No. 9-241801 discloses that C ≦
The surface roughness of at least one surface of the steel sheet of 0.01 wt% is Ra
≤0.8 μm, and a technique for improving slidability and mold galling resistance by forming a rust-preventive oil layer containing a sulfur-based extreme pressure additive or a phosphorus-based extreme pressure additive on a steel sheet has been disclosed. I have.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、この技
術はあくまで、C≦0.01wt%のような軟質材に適用でき
るものであり、この技術を高張力鋼板に適用しても、実
プレスにおいて型かじりの問題が大きくなるため好まし
くはない。すなわち、高張力鋼板では、表面粗度を小さ
くすると、型かじりが発生しやすくなるので、摩擦係数
の低下を主眼にした表面粗度の調整には限界がある。な
お、摩擦係数を潤滑剤により改善するには、例えば、潤
滑剤粘度を大きくすることが考えられるが、鋼板の脱脂
性が低下し、表面処理、塗装後の耐食性の低下の原因と
なる。
However, this technique can be applied only to soft materials such as C ≦ 0.01 wt%. This is not preferable because the problem becomes larger. That is, in the case of a high-tensile steel sheet, when the surface roughness is reduced, mold seizure is likely to occur, and there is a limit to the adjustment of the surface roughness with a focus on the reduction of the friction coefficient. In order to improve the friction coefficient with a lubricant, for example, it is conceivable to increase the viscosity of the lubricant. However, the degreasing property of the steel sheet is reduced, which causes a reduction in corrosion resistance after surface treatment and painting.

【0005】そこで、本発明の主たる目的は、従来技術
が抱えていた上記問題を解決して、形状凍結性と成形性
の両者を満足し、良好な加工性を具えた高張力鋼板とそ
の製造方法を提案するところにある。ここに、本発明鋼
板の具体的目標特性は、引張強さ(TS)490 MPa 以上、
降伏比(YR)55%以下、TS×El≧18000 、かつ摩擦係数
μ≦0.12である。
Accordingly, a main object of the present invention is to solve the above-mentioned problems of the prior art, to provide a high-strength steel sheet which satisfies both the shape freezing property and the formability and has good workability, and its production. I'm proposing a method. Here, the specific target properties of the steel sheet of the present invention are a tensile strength (TS) of 490 MPa or more,
The yield ratio (YR) is 55% or less, TS × El ≧ 18000, and the friction coefficient μ ≦ 0.12.

【0006】[0006]

【課題を解決するための手段】発明者らは、上記の目的
を達成すべく、DP鋼の製造方法および工具一鋼板間の
摩擦特性に関し検討した結果、鋼組成および表面粗度を
適正範囲に制御したうえ、潤滑剤を適正化することによ
り、摩擦特性を著しく改善でき、優れた加工性を具えた
高張力鋼板、とくに高張力冷延鋼板を提供できるとの結
論に達し、本発明を完成するに至った。すなわち本発明
は、
Means for Solving the Problems In order to achieve the above objects, the present inventors have studied the method for producing DP steel and the frictional characteristics between a tool and a steel plate, and have found that the steel composition and surface roughness are within appropriate ranges. By controlling and optimizing the lubricant, the friction characteristics can be remarkably improved and the conclusion is made that we can provide high-strength steel sheets with excellent workability, especially high-strength cold-rolled steel sheets, and completed the present invention. I came to. That is, the present invention

【0007】(1) C:0.03〜0.15wt%、Si:0.02wt%以
下、Mn:1.0 〜3.5 wt%、P:0.04〜0.15wt%、S:0.
002 wt%以下、sol Al:0.01〜0.1 wt%、N:0.004 wt
%以下を含有し、残部はFeおよび不可避的不純物よりな
る鋼組成であり、フェライト素地中に、主としてマルテ
ンサイトからなる低温変態相を占積率で5〜25%含む組
織であって、表面粗さRaが 0.6〜1.8 μmであり、し
かも表面には、40℃での粘度が10〜30 cSt、且つりん濃
度が0.05〜5.0 wt%である防錆油層が0.5 〜5 g/m2
成されていることを特徴とする加工性に優れる高張力鋼
板。
(1) C: 0.03 to 0.15 wt%, Si: 0.02 wt% or less, Mn: 1.0 to 3.5 wt%, P: 0.04 to 0.15 wt%, S: 0.
002 wt% or less, sol Al: 0.01-0.1 wt%, N: 0.004 wt
%, The balance being a steel composition comprising Fe and unavoidable impurities, and a structure in which the low-temperature transformation phase mainly composed of martensite is contained in the ferrite base material at a space factor of 5 to 25%, and the surface roughness is An anti-rust oil layer having a Ra of 0.6 to 1.8 μm and a viscosity at 40 ° C. of 10 to 30 cSt and a phosphorus concentration of 0.05 to 5.0 wt% is formed on the surface at 0.5 to 5 g / m 2. High tensile strength steel sheet with excellent workability, characterized by

【0008】(2) 上記 (1)において、鋼組成がさらに
B:0.0005〜0.01wt%を含有することを特徴とする加工
性に優れる高張力鋼板。
(2) A high-tensile steel sheet excellent in workability according to the above (1), wherein the steel composition further contains B: 0.0005 to 0.01 wt%.

【0009】(3) C:0.03〜0.15wt%、Si:0.02wt%以
下、Mn:1.0 〜3.5 wt%、P:0.04〜0.15wt%、S:0.
002 wt%以下、sol Al:0.01〜0.1 wt%、N:0.004 wt
%以下を含有し、残部はFeおよび不可避的不純物よりな
る鋼素材を熱間圧延し、次いで酸洗、冷間圧延した後、
Ac1点〜(Ac1点+150 ℃)の温度域における滞留時間
を10秒〜10分とする連続焼鈍を行い、引き続き600 〜30
0 ℃の平均冷却速度を20℃/秒以上として冷却し、その
後、調質圧延により表面粗さを 0.6〜1.8 μmに調整し
た後、表面に、40℃での粘度が10〜30 cSt、且つりん濃
度が0.05〜5.0 wt%である防錆油を0.5 〜5 g/m2 塗油
することを特徴とする加工性に優れる高張力鋼板の製造
方法。
(3) C: 0.03 to 0.15 wt%, Si: 0.02 wt% or less, Mn: 1.0 to 3.5 wt%, P: 0.04 to 0.15 wt%, S: 0.
002 wt% or less, sol Al: 0.01-0.1 wt%, N: 0.004 wt
%, And the remainder is hot-rolled, then pickled and cold-rolled, and
Continuous annealing is performed with a residence time of 10 seconds to 10 minutes in a temperature range of Ac 1 point to (Ac 1 point + 150 ° C.), and subsequently 600 to 30
After cooling at an average cooling rate of 0 ° C. of 20 ° C./second or more, and then adjusting the surface roughness to 0.6 to 1.8 μm by temper rolling, the surface has a viscosity at 40 ° C. of 10 to 30 cSt, and method for producing a high tensile steel sheet having excellent workability, wherein the phosphorus concentration is 0.5 ~5 g / m 2 coating oil anti-rust oil is 0.05 to 5.0 wt%.

【0010】(4) 上記 (3)において、鋼組成がさらに
B:0.0005〜0.01wt%を含有することを特徴とする加工
性に優れる高張力鋼板の製造方法。
(4) The method for producing a high-tensile steel sheet excellent in workability according to (3), wherein the steel composition further contains B: 0.0005 to 0.01 wt%.

【0011】[0011]

【発明の実施の形態】以下、鋼成分、鋼板表面の性状お
よび製造条件等を限定した理由について説明する。 (1)鋼成分 C:0.03〜0.15wt% C量が、0.03wt%未満では本発明で目指す複合組織を連
続焼鈍により形成することが困難となる。鋼中C含有量
を0.03wt%以上とすることにより、連続焼鈍によりフェ
ライト素地に主としてマルテンサイトからなる低温変態
相の形成が可能となる。一方、C含有量が0.15wt%を超
えると、スポット溶接性が極端に低下するため、その上
限を0.15wt%とする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The reasons for limiting the steel composition, the properties of the steel sheet surface, the manufacturing conditions, and the like will be described below. (1) Steel component C: 0.03 to 0.15 wt% If the C content is less than 0.03 wt%, it becomes difficult to form the composite structure aimed at by the present invention by continuous annealing. By setting the C content in the steel to 0.03 wt% or more, it is possible to form a low-temperature transformation phase mainly composed of martensite in a ferrite body by continuous annealing. On the other hand, if the C content exceeds 0.15 wt%, the spot weldability is extremely reduced, so the upper limit is made 0.15 wt%.

【0012】Si:0.02wt%以下 Siは、低温変態相の形成に有利な元素である。しかし一
方で、Siは焼鈍中に鋼板表面に濃化しやすい元素であ
り、鋼板表面に多量のSiが存在すると、鋼板表面への防
錆油中の添加元素の吸着あるいは鋼板表面との反応を阻
害することによると思われる、防錆油中の添加剤による
摺動性改善効果を減殺する作用もたらす。したがって、
Si量の上限を0.02wt%とする。
Si: 0.02 wt% or less Si is an element advantageous for forming a low-temperature transformation phase. However, on the other hand, Si is an element that tends to concentrate on the steel sheet surface during annealing, and if a large amount of Si is present on the steel sheet surface, adsorption of added elements in rust preventive oil on the steel sheet surface or reaction with the steel sheet surface is hindered. The effect of reducing the slidability improving effect of the additive in the rust-preventive oil, which is considered to be due to this, is brought about. Therefore,
The upper limit of the amount of Si is set to 0.02 wt%.

【0013】Mn:1.0 〜3.5 wt% Mnは、固溶体強化による強度確保のために、またマルテ
ンサイトを主体とする低温変態を生成させるためにも必
要な元素である。連続焼鈍工程で上記組織を形成するた
めには、Mn量を少なくとも1.0 wt%は必要である。一
方、Mn含有量が過多になると、スポット溶接性の劣化を
引き起こし、この傾向は3.5 wt%を超えると顕著にな
る。よって、その上限を3.5 wt%とする。
Mn: 1.0 to 3.5 wt% Mn is an element necessary for ensuring strength by solid solution strengthening and for generating low-temperature transformation mainly composed of martensite. In order to form the above structure in the continuous annealing step, the amount of Mn must be at least 1.0 wt%. On the other hand, when the Mn content is excessive, the spot weldability is deteriorated, and this tendency becomes remarkable when it exceeds 3.5 wt%. Therefore, the upper limit is set to 3.5 wt%.

【0014】P:0.04〜0.15wt% Pは、本発明において極めて重要な役割を有する元素で
ある。このPは、Mnと同様に固溶体強化作用を有し、強
度を確保する上で必要であるほか、マルテンサイトを主
体とする低温変態生成のためにも必要な元素である。さ
らにPは、焼鈍後にP系添加剤を含有する防錆油塗油と
組み合わせると、焼鈍中に形成されるりん酸化物によっ
て添加剤が吸着しやすくなるためと考えられるが、摩擦
特性の著しい改善をもたらす。このような組織制御およ
び摩擦特性改善の作用を発揮させるためには、少なくと
も0.04wt%のP量が必要である。一方、その含有が過多
になると、スポット溶接性が低下するので、上限量を0.
15wt%として添加する。
P: 0.04 to 0.15 wt% P is an element having a very important role in the present invention. This P has a solid solution strengthening action like Mn, is necessary for securing strength, and is also an element necessary for low-temperature transformation mainly composed of martensite. Further, it is considered that when P is combined with a rust-preventive oil-containing oil containing a P-based additive after annealing, the additive is likely to be adsorbed by phosphorous oxide formed during annealing, but the frictional characteristics are significantly improved. Bring. In order to exert such effects of controlling the structure and improving the friction characteristics, the amount of P must be at least 0.04 wt%. On the other hand, if the content is excessive, the spot weldability is reduced, so the upper limit is 0.
Add as 15 wt%.

【0015】S:0.002 wt%以下 Sは、表面に偏析しやすい元素であり、特にSi含有量が
低く、またMn含有量が多いと、焼鈍中に多量のSが鋼板
表面に偏析する。多量のSが鋼板表面に存在すると、鋼
板の表面エネルギーが低下するためと考えられるが、防
錆油中の添加材の吸着が妨げられ、摺動性に悪影響を及
ぼす。この観点からSの上限は、0.002wt%、より好ま
しくは0.001 wt%とする。
S: 0.002 wt% or less S is an element that is easily segregated on the surface. In particular, when the Si content is low and the Mn content is large, a large amount of S segregates on the steel sheet surface during annealing. It is considered that the presence of a large amount of S on the surface of the steel sheet reduces the surface energy of the steel sheet. However, the adsorption of the additive in the rust preventive oil is hindered, which adversely affects the slidability. From this viewpoint, the upper limit of S is set to 0.002 wt%, more preferably 0.001 wt%.

【0016】sol Al:0.01〜0.10wt% Alは、脱酸剤として添加されるが、sol Alにして0.01wt
%に満たないとその効果がなく、一方0.10wt%を超えて
添加しても、コストアップとなるばかりか鋼板の脆化を
引き起こすので、0.01〜0.10wt%とする。
Sol Al: 0.01 to 0.10 wt% Al is added as a deoxidizing agent,
%, The effect is not obtained. On the other hand, if added in excess of 0.10 wt%, not only increases the cost but also causes embrittlement of the steel sheet, so the content is set to 0.01 to 0.10 wt%.

【0017】N:0.004 wt%以下 Nは、Cと同様に、鋼板中に多量に存在すると、延性を
低下させるため好ましくはないので、その上限量を0.00
4 wt%とする。なお、現行の技術でN含有量を0.001 wt
%以下まで低下させるには、製鋼コストが著しく増大す
るので、経済的に好ましい範囲は0.001 〜0.004 wt%で
ある。
N: not more than 0.004 wt% N, like C, is not preferable if it is present in a large amount in the steel sheet, because it reduces ductility.
4 wt%. In addition, the N content is 0.001 wt
%, The steelmaking cost is significantly increased, so the economically preferable range is 0.001 to 0.004 wt%.

【0018】B:0.0005〜0.01wt% Bは、焼入れ性を高め、低温変態相の形成に有利な元素
である。特にスポット溶接時の溶接熱影響部の焼入れ性
を向上させ、溶接強度を改善するために有効な元素であ
る。その効果は、0.0005wt%以上のB添加で得られる。
一方、Bを過剰に添加すると、上記効果が飽和するばか
りか、摺動特性に悪影響を及ほすので、上限を0.01とし
て添加する。
B: 0.0005 to 0.01 wt% B is an element that enhances hardenability and is advantageous for forming a low-temperature transformation phase. In particular, it is an element effective for improving the hardenability of the heat affected zone during spot welding and improving the welding strength. The effect can be obtained by adding B of 0.0005 wt% or more.
On the other hand, if B is added excessively, not only the above effect is saturated, but also the sliding properties are adversely affected, so the upper limit is added as 0.01.

【0019】(2)組織 本発明鋼板の組織は、フェライト素地中に、主としてマ
ルテンサイトからなる低温変態相 (低温変態相に占める
マルテンサイトの占積率が50%以上) を占積率で5〜25
%含む組織としたものであることが必要である。低温変
態組織は強度確保のために少なくとも占積率で5%は必
要である。この低温変態相をマルテンサイト主体とする
ことにより、低降伏比を確保することができる。一方、
低温変態組織が多すぎると伸び特性が低下し、目的とす
る良好な加工性が確保できない。したがって低温変態組
織の量は体積比(占積率)で5〜25%とする。なお、マ
ルテンサイト以外に低温変態相として、ベイナイトや残
留オーステナイトなどを含有してもよい。
(2) Microstructure The microstructure of the steel sheet of the present invention is such that a low-temperature transformation phase mainly composed of martensite (occupation ratio of martensite in the low-temperature transformation phase is 50% or more) is 5% in the ferrite base material. ~twenty five
%. The low-temperature transformation structure needs at least 5% in space factor to secure strength. By making the low-temperature transformation phase mainly composed of martensite, a low yield ratio can be ensured. on the other hand,
If the low-temperature transformation structure is too large, the elongation properties are reduced, and the desired good workability cannot be secured. Therefore, the amount of the low-temperature transformation structure is set to 5 to 25% by volume ratio (space factor). In addition, bainite and retained austenite may be contained as a low-temperature transformation phase in addition to martensite.

【0020】(3)表面粗さRa 表面粗さが大きいと、摩擦係数が大きくなると同時に外
観も悪くなるため、その上限を1.8 μmとする。一方、
表面粗度が小さくなりすぎると、鋼板表面の保油力が小
さくなり、型かじりが起こりやすくなる。とくに高張力
鋼では、成形力が大きく、成形中の表面の潰れ量が大き
くなるため、型かじりが発生しやすくなる。したがっ
て、表面粗さの下限をRaで 0.6μmとする。
(3) Surface Roughness Ra If the surface roughness is large, the coefficient of friction increases and the appearance deteriorates, so the upper limit is set to 1.8 μm. on the other hand,
If the surface roughness is too small, the oil retention on the steel sheet surface will be small, and the mold will be easily seized. In particular, in the case of high-strength steel, the forming force is large, and the amount of crushing of the surface during forming is large, so that the mold is apt to seize. Therefore, the lower limit of the surface roughness is set to 0.6 μm in Ra.

【0021】(4)製造条件(焼鈍条件、塗油条件な
ど) 熱延前の鋼素材の加熱温度は完全な溶体化処理がなされ
ればよく、Ac3点以上に加熱されればよい。具体的に
は、通常のスラブ加熱温度範囲である1050〜1300℃が適
する。なお、連続鋳造で得られた鋼素材を大きく冷却す
ることなく、Ac3点以上の温度を熱延前に確保できる場
合には、鋳造後直接圧延を行ってもよい。Ac3点以上の
温度からの熱間圧延の条件は特に定めないが、仕上げ圧
延終了温度がAr3点未満では熱延板に加工組織が残り、
冷間圧延性が低下するので、圧延仕上げ温度はAr3点以
上とするのがよい。熱間圧延終了後の巻取り温度は、高
すぎると板幅方向、長手方向の組織のばらつきが大きく
なり、その後冷間圧延、焼鈍を行った後も影響が残るの
で、700 ℃以下とするのが望ましい。熱間圧延に次い
で、常法に従い酸洗、冷間圧延を行ってから連続焼鈍す
る。
(4) Manufacturing conditions (annealing conditions, oiling conditions, etc.) The heating temperature of the steel material before hot rolling is only required to be a complete solution treatment, and may be heated to three or more Ac. Specifically, 1050 to 1300 ° C, which is a normal slab heating temperature range, is suitable. In addition, if the temperature of three or more Ac can be secured before hot rolling without cooling the steel material obtained by continuous casting largely, direct rolling may be performed after casting. The conditions of hot rolling from a temperature of 3 or more points of Ac are not particularly defined, but if the finish rolling end temperature is less than 3 points of Ar, the working structure remains in the hot-rolled sheet,
Since the cold rolling property is reduced, the rolling finish temperature is preferably set to three or more Ar points. If the coiling temperature after the completion of hot rolling is too high, the structure in the sheet width direction and longitudinal direction will vary greatly, and the effect will remain after cold rolling and annealing, so it should be 700 ° C or less. Is desirable. Following hot rolling, pickling and cold rolling are performed according to a conventional method, followed by continuous annealing.

【0022】連続焼鈍条件は、Ac1点〜(Ac1点+150
℃)の温度域における滞留時間を10秒〜10分として加熱
均熱し、その後600 〜300 ℃間の平均冷却速度を20℃/
秒以上として冷却する。連続焼鈍の加熱温度は、低温変
態相の母相であるオーステナイトにするため、Ac1変態
点以上とする必要がある。ただし、その温度が高すぎる
と、オーステナイト量が多過ぎるため、(Ac1点+150
℃)以下とする。加熱時間は、所定量のオーステナイを
出現させるため、10秒以上の保持が必要である。一方、
10分以上保持してもその効果が飽和するだけで、鋼帯の
通板速度を低下させねばならず、生産性が低下する。し
たがって滞留時間の上限を10分とする。
The continuous annealing conditions are from Ac 1 point to (Ac 1 point + 150
C), and the heating and soaking are performed with the residence time in the temperature range of 10 seconds to 10 minutes, and then the average cooling rate between 600 and 300 ° C is 20 ° C /
Cool for more than a second. The heating temperature of the continuous annealing must be equal to or higher than the Ac 1 transformation point in order to make austenite which is a parent phase of the low-temperature transformation phase. However, if the temperature is too high, the amount of austenite is too large, so (Ac 1 point + 150
° C) or less. The heating time must be maintained for 10 seconds or more in order to make a predetermined amount of austenite appear. on the other hand,
Even if the temperature is maintained for 10 minutes or more, the effect is only saturated, and the sheet passing speed of the steel strip must be reduced, and the productivity is reduced. Therefore, the upper limit of the residence time is set to 10 minutes.

【0023】均熱温度から、600 〜300 ℃までの平均冷
却速度を20℃/sec 以上として冷却する。この温度範囲
における平均冷却速度が20℃/sec 未満では、第2相を
マルテンサイトとすることができず、強度が低下するの
みでなく、目標とする降伏比も確保できない。なお、冷
却は水素を10%以下の範囲で混合した水素−窒素混合ガ
スを用いて行うことが好ましい。また、600 〜300 ℃ま
での平均冷却速度が100 ℃/sec を超えると、冷却中の
フェライト変態が進まず、TS−Elバランスが低下する。
従って、600 〜300 ℃の冷却速度は100 ℃/sec 以下、
より好ましくは60℃/sec 以下である。なお、冷却速度
を確保するという観点からは、気水冷却あるいは水冷が
一般的に用いられるが、本発明のように、焼鈍後に塗油
する防錆油との相互作用によって、良好な加工性を確保
しようとする場合には、水蒸気含有量の大きなガスを用
いると、摺動性改善効果が得られなくなるので避けるべ
きである。このような現象が起きるのは、鋼板表面の酸
化が進みすぎるためであると考えられる。また、均熱後
の冷却に関しては、急冷開始温度である600 ℃までは、
最終的に生成する低温変態相の占積率を調整するため
に、10℃/sec 以下の徐冷を行ってもよい。
Cooling is performed at an average cooling rate from the soaking temperature to 600 to 300 ° C. of 20 ° C./sec or more. If the average cooling rate in this temperature range is less than 20 ° C./sec, the second phase cannot be martensite, and not only does the strength decrease, but also the target yield ratio cannot be secured. Note that cooling is preferably performed using a hydrogen-nitrogen mixed gas in which hydrogen is mixed in a range of 10% or less. If the average cooling rate from 600 to 300 ° C. exceeds 100 ° C./sec, ferrite transformation during cooling does not proceed and the TS-El balance decreases.
Therefore, the cooling rate at 600-300 ° C is 100 ° C / sec or less,
More preferably, it is 60 ° C./sec or less. In addition, from the viewpoint of securing the cooling rate, air-water cooling or water cooling is generally used, but as in the present invention, good workability is achieved by interaction with rust preventive oil applied after annealing. In the case where a gas having a large water vapor content is used, the effect of improving the slidability cannot be obtained. It is considered that such a phenomenon occurs because oxidation of the steel sheet surface proceeds excessively. Regarding cooling after soaking, up to 600 ° C, the quenching start temperature,
In order to adjust the space factor of the finally formed low-temperature transformation phase, slow cooling at 10 ° C./sec or less may be performed.

【0024】以上述べた工程により連続焼鈍を終えた鋼
板に、通常行われている形状矯正、粗度調整のための調
質圧延を施した後、防錆油を塗油する。調質圧延は、圧
延後の鋼板の表面粗さRaが0.6 〜1.8 μmの範囲内とな
るように、圧延ロールの粗度、圧延荷重等を調整する。
Raを上記範囲とする理由は既に述べた通りである。塗油
する防錆油は、本発明において、摩擦係数の低下の点か
ら重要な役割を担っている。すなわち、りん添加を行っ
た鋼板に、りん系極圧添加剤を添加した防錆油を塗油す
ることにより、摺動性を飛躍的に改善することができる
のである。防錆油の基油としては、通常用いられる鉱物
油、常温で液体の油脂および合成エステルから選ばれる
1種または2種以上とする。また、添加剤として、以下
に述べる極圧添加剤を添加することが必須とする。な
お、防錆油には、通常の防錆油で添加されているよう
な、スルフォン酸塩、カルボン酸塩、石油酸化ワックス
等の防錆剤のほか、酸化防止剤、油性向上剤、水置換剤
等の添加剤を加えてもよい。上記の極圧添加剤として
は、従来から、硫黄系極圧添加剤あるいはりん系の極圧
添加剤が用いられている。極圧剤の効果は、プレス加工
時の局部的な温度上昇によりこれが化学分解して、工具
や鋼板と反応し、硫黄系化合物の場合には硫化鉄系の、
りん化合物の場合にはりん化鉄やりん酸鉄系の固体潤滑
膜を形成することにより、潤滑性を向上させ、摺動性を
改善することにある。本発明では、鋼板中にPを含有す
る鋼板に対してりん系極圧添加剤を含有する防錆油を塗
油することにより相乗効果が発揮され、従来得られた以
上の摩擦特性向上効果が得られるのである。
The steel sheet which has been subjected to the continuous annealing in the above-described steps is subjected to a conventional temper rolling for shape correction and roughness adjustment, and then coated with a rust preventive oil. In the temper rolling, the roughness of the rolling roll, the rolling load, and the like are adjusted so that the surface roughness Ra of the steel sheet after rolling falls within the range of 0.6 to 1.8 μm.
The reason for setting Ra in the above range is as described above. The rust preventive oil to be applied plays an important role in the present invention from the viewpoint of lowering the friction coefficient. That is, slidability can be drastically improved by applying a rust-preventive oil containing a phosphorus-based extreme pressure additive to a steel sheet to which phosphorus has been added. As the base oil for the rust-preventive oil, one or more selected from mineral oils, oils and fats that are liquid at ordinary temperature, and synthetic esters are used. In addition, it is essential to add an extreme pressure additive described below as an additive. In addition to rust preventive oils, such as sulfonate, carboxylate, petroleum oxidized wax, etc., antioxidants, oil improvers, An additive such as an agent may be added. As the above extreme pressure additive, a sulfur type extreme pressure additive or a phosphorus type extreme pressure additive has been conventionally used. The effect of the extreme pressure agent is that it is chemically decomposed due to local temperature rise during press working, reacts with tools and steel sheets, and in the case of sulfur compounds, iron sulfide,
In the case of a phosphorus compound, an object is to form a solid lubricating film of iron phosphide or iron phosphate, thereby improving lubricity and improving slidability. In the present invention, a synergistic effect is exerted by applying a rust-preventive oil containing a phosphorus-based extreme pressure additive to a steel sheet containing P in the steel sheet, and a synergistic effect is exhibited, and the effect of improving the frictional properties more than conventionally obtained is obtained. You get it.

【0025】本発明において、防錆油に添加するりん系
極圧剤に含まれるりん濃度は0.05〜5.0 wt%とする。極
圧添加剤中のりん含有量が上記下限未満では、極圧性が
不十分であり、また上記含有量を超えると、オイルステ
インと呼ばれる鋼板表面の変色が発生する恐れがあり好
ましくない。なお、極圧添加剤として、りん系に加え
て、硫黄系の極圧添加剤をも用いる場合も、りん系極圧
剤の添加量が上記範囲にあれば、硫黄系極圧剤を共存さ
せても性能上は問題ない。また、防錆柚の粘度は40℃で
10〜30 cStとする必要がある。というのは、プレス後に
施される脱脂工程における洗浄除去性を確保するために
は、40℃での粘度を30 cSt以下、好ましくは20 cSt以下
とする必要があるからであり、一方、プレス加工時の潤
滑性を十分に発揮させるには、10 cSt以上は必要となる
からである。
In the present invention, the phosphorus concentration in the phosphorus-based extreme pressure agent added to the rust preventive oil is 0.05 to 5.0 wt%. If the phosphorus content in the extreme pressure additive is less than the above lower limit, the extreme pressure property is insufficient, and if it exceeds the above content, discoloration of the steel sheet surface called oil stain may occur, which is not preferable. In addition, in the case where a sulfur-based extreme-pressure additive is also used as an extreme-pressure additive in addition to a phosphorus-based extreme-pressure additive, if the amount of the phosphorus-based extreme-pressure agent is within the above range, the sulfur-based extreme-pressure agent is allowed to coexist. There is no problem in performance. In addition, the viscosity of rust preventive yuzu is 40 ℃
Must be 10-30 cSt. This is because the viscosity at 40 ° C. must be 30 cSt or less, preferably 20 cSt or less, in order to secure the cleaning and removability in the degreasing step performed after pressing. This is because 10 cSt or more is required to sufficiently exhibit lubrication at the time.

【0026】さらに、塗油された油膜の付着量は、0.5
〜5 g/m2 、好ましくは1.0 〜2.0g/m2 とするのがよ
い。というのは、油膜付着量が0.5 g/m2 未満では摩擦
係数が大きくなり、また実製造工程における装置の能力
から、塗油量を0.5 g/m2 未満に制御するのが難しいた
めである。一方、防錆油を5 g/m2 以上塗油しても、コ
イル巻き取りやシート切断を行い梱包した後に、防錆油
が外部に流出するのみで無駄となったり、需要家での脱
脂性や接着性を悪くするからである。以上のような条件
を具えた油膜を、前述のように粗度調整した低降伏比の
鋼板表面に形成させることにより、潤滑性、耐型かじり
性を具え、優れた加工性を有する高張力冷延鋼板を得る
ことが可能となる。
Further, the adhesion amount of the oiled oil film is 0.5
~5 g / m 2, and it is preferably a 1.0 ~2.0g / m 2. The friction coefficient becomes large in the oil film adhering amount is less than 0.5 g / m 2, also from the ability of the device in the real production process, it is because it is difficult to control the coating amount of oil to less than 0.5 g / m 2 because . On the other hand, even if 5 g / m 2 or more of rust-preventive oil is applied, the rust-preventive oil only leaks to the outside after coil winding or sheet cutting and packing, and it is wasted or degreasing by customers. This is because the properties and adhesion are deteriorated. By forming an oil film satisfying the above conditions on the surface of a steel sheet having a low yield ratio whose roughness has been adjusted as described above, lubricating properties, anti-galling properties, and high-strength cooling with excellent workability are provided. It becomes possible to obtain a rolled steel sheet.

【0027】[0027]

【実施例】以下、本発明を実施例に基づいて具体的に説
明する。表1および表2に示す組成の鋼素材を仕上げ温
度880 ℃〜820 ℃、巻き取り温度600 ℃〜500 ℃にて熱
間圧延し、続いて酸洗した後、板厚1.0 mmまで冷間圧
延した。次いで、この冷延板を、表中に示す条件にて連
続焼鈍し、引き続き、調質圧延にて粗度調整及び形状矯
正を行った。その後、以下に示す潤滑油Aまたは潤滑油
Bを、片面当り1.5 g/m2 で鋼板の両面に塗油した。
なお、発明鋼のAc1点は700 ℃〜710 ℃の範囲であっ
た。塗油量の測定は、塗油有無の鋼板の重量を測定する
ことにより行った。 ・防錆油A:鉱油を基油とし、りん0.3 wt%を含有する
りん系極圧剤を添加したもの(粘度:40℃で14〜16 cS
t) ・防錆油B:鉱油を基油とし、硫黄0.6 wt%を含有する
硫黄系極圧剤を添加したもの(粘度:40℃で14〜16 cS
t)
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on embodiments. A steel material having a composition shown in Tables 1 and 2 is hot-rolled at a finishing temperature of 880 ° C. to 820 ° C. and a winding temperature of 600 ° C. to 500 ° C., then pickled, and then cold-rolled to a thickness of 1.0 mm. did. Next, this cold-rolled sheet was continuously annealed under the conditions shown in the table, and subsequently, roughness adjustment and shape correction were performed by temper rolling. Thereafter, the following lubricating oil A or lubricating oil B was applied to both sides of the steel sheet at 1.5 g / m 2 per side.
The Ac 1 point of the invention steel was in the range of 700 ° C to 710 ° C. The measurement of the amount of oiling was performed by measuring the weight of the steel sheet with or without oiling. Rust preventive oil A: Mineral oil as base oil to which phosphorus-based extreme pressure agent containing 0.3 wt% of phosphorus is added (viscosity: 14 to 16 cS at 40 ° C)
t) Anti-corrosion oil B: Mineral oil as base oil, added with sulfur extreme pressure agent containing 0.6 wt% sulfur (viscosity: 14-16 cS at 40 ° C)
t)

【0028】得られた冷延鋼板を供試材として、低温変
態相占積率、引張特性、摩擦係数、成形性、耐型かじり
性の評価を以下に示す方法で行った。 ・占積率:鋼板圧延方向の断面を腐食し、倍率1000倍の
光学顆微鏡写真から求めた。 ・引張特性:JIS5号試験片を用い、JIS Z2241の
方法に準じて行った。 ・摩擦係数:JIS G4404に記載の冷間金型用鋼SKD
ll製の治具を用い、平均面圧9.8 MPa、引き抜き速
度100 mm/sec の条件で求めた。 ・成形性:50mmφの円筒成形試験において、絞り比2.
2 としたときの成形の良否で評価した。 ・耐型かじり性:JIS G4404に記載の冷間金型用鋼S
KDll製の曲率半径20mmの円柱治具を用い、荷重7.
8 KN、引き抜き速度100 mm/sec にて、治具で供試
材を押しつけながら100 mmの距離を引き抜く摺動操作
を、目視観察でかじりが確認できるまで繰り返して行
い、摺動の積算距離が長いものほど良好であるとして評
価した。これらの結果も併せて表1および表2に示す。
Using the obtained cold-rolled steel sheet as a test material, the low-temperature transformation phase space factor, tensile properties, friction coefficient, moldability, and mold resistance were evaluated by the following methods. -Space factor: Corrosion of the cross section in the rolling direction of the steel sheet was obtained from an optical condyle micrograph at a magnification of 1000 times. -Tensile properties: Performed according to JIS Z2241 using a JIS No. 5 test piece.・ Coefficient of friction: Cold mold steel SKD described in JIS G4404
The average surface pressure was 9.8 MPa and the drawing speed was 100 mm / sec.・ Formability: In a 50 mmφ cylindrical molding test, a draw ratio of 2.
Evaluation was made based on the quality of the molding when it was set to 2.・ Die-resistant galling: Cold mold steel S described in JIS G4404
Using a KD11 cylindrical jig with a radius of curvature of 20 mm, load 7.
At 8 KN, withdrawing speed of 100 mm / sec, the sliding operation of pulling out the distance of 100 mm while pressing the test material with the jig is repeated until the galling can be confirmed by visual observation. The longer one was evaluated as being better. Tables 1 and 2 also show these results.

【0029】鋼No. 1〜15は発明例であり、低降伏比で
TS−Elバランスが良好であり、さらに成形性、耐型
かじり性も問題のない、優れた加工性を示している。一
方、比較鋼である、鋼No. 16はPの添加量が少なく、降
伏比、摩擦係数に劣り、形状凍結性、加工性に問題があ
る。鋼No. 17、18は、S、Si含有量が大きく、摩擦特性
が悪く、加工性が悪い。鋼No. 19はC含有量が少なく、
低温変態相の占積率が小さく、降伏比が大きくなり、ま
たTS−Elバランスも劣る。鋼No.20は焼鈍温度が高
く(鋼No. 20のAc1点は707 ℃)、低温変態相の占積率
が大きくなりすぎて、降伏比が大きくなり、またTS−
Elバランスも劣る。鋼No. 21は600 ℃〜300 ℃の冷却
速度が小さく、低温変態相中のマルテンサイが十分に確
保できないため、降伏比が大きくなり、またTS−El
バランスも劣る。気水冷却で冷却した鋼No. 22は、引張
試験特性は良好であるが、摩擦特性が悪く、加工性に劣
る。鋼No. 23は表面粗度が小さくなりすぎ、摩擦係数は
小さいが、型かじり性に劣る。鋼No. 24は表面粗度が大
きくなりすぎ、摩擦係数が大きくなって加工性に劣る。
鋼No. 25は鋼No. 1と同じ鋼板であり、塗布する防錆油
中に添加する極圧添加剤をりん系ではなく硫黄系のもの
を用いた場合である。また、鋼No. 26は鋼中のPの含有
量が少ない鋼No. 16と同じ鋼板であり、鋼No. 25と同じ
く、りん系極圧添加剤の代わりに硫黄系極圧添加剤を含
有する防錆油を塗布したものである。鋼No. 16と鋼No.
26の摩擦係数は等しく、鋼中のP含有量が少ない鋼板で
は、油Aと油Bの間でその性能に差が無いことが判る。
一方、P添加鋼でも極圧添加剤としてりん系を含有しな
い油Bを用いた鋼No. 25では、鋼No. 1に比べその摩擦
係数は大きく、鋼No. 16、26と同程度の摩擦特性しか得
られておらず、鋼1のような良好な摩擦特性は、りん添
加鋼に油Aのような極圧添加剤としてりん系のものを含
有する場合に初めて得られることが判る。
Steel Nos. 1 to 15 are examples of the invention, exhibiting a low yield ratio, a good TS-El balance, and exhibiting excellent workability with no problems in moldability and mold galling resistance. On the other hand, steel No. 16, which is a comparative steel, contains a small amount of P, is inferior in yield ratio and friction coefficient, and has problems in shape freezing and workability. Steel Nos. 17 and 18 have high S and Si contents, poor friction characteristics, and poor workability. Steel No. 19 has a low C content,
The space factor of the low-temperature transformation phase is small, the yield ratio is large, and the TS-El balance is poor. Steel No. 20 has a high annealing temperature (Ac 1 point of steel No. 20 is 707 ° C), the space factor of the low-temperature transformation phase becomes too large, the yield ratio becomes large, and the TS-
El balance is also poor. Steel No. 21 has a low cooling rate at 600 ° C to 300 ° C and cannot sufficiently secure martensite in the low-temperature transformation phase, so that the yield ratio increases and the TS-El
The balance is also poor. Steel No. 22 cooled by steam cooling has good tensile test properties, but has poor friction properties and poor workability. Steel No. 23 has too small a surface roughness and a small coefficient of friction, but is inferior in mold galling. Steel No. 24 has an excessively large surface roughness, a large friction coefficient and poor workability.
Steel No. 25 is the same steel plate as Steel No. 1, in which the extreme pressure additive to be added to the rust preventive oil to be applied is not phosphorus-based but sulfur-based. Also, steel No. 26 is the same steel plate as steel No. 16 which has a low P content in steel, and like steel No. 25, contains sulfur-based extreme pressure additives instead of phosphorus-based extreme pressure additives. Rust preventive oil applied. Steel No. 16 and Steel No.
It can be seen that there is no difference in the performance between Oil A and Oil B in a steel sheet having the same friction coefficient of 26 and a low P content in steel.
On the other hand, even with P-added steel, the friction coefficient of steel No. 25 using oil B containing no phosphorus system as an extreme pressure additive is larger than that of steel No. 1, and the same friction as steels No. 16 and 26. Only the characteristics are obtained, and it can be seen that good friction characteristics such as steel 1 can be obtained only when the phosphorus-containing steel contains a phosphorus-based one as an extreme pressure additive such as oil A.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】[0032]

【発明の効果】以上説明したように、本発明によれば、
成形性、形状凍結性とも優れる高張力冷延鋼板を提供す
ることが可能となる。したがって、本発明は、自動車部
材の軽量化および耐衝突安全性向上に大きく貢献するも
のである。
As described above, according to the present invention,
It is possible to provide a high-tensile cold-rolled steel sheet having excellent formability and shape-freezing property. Therefore, the present invention greatly contributes to reducing the weight of automobile parts and improving collision safety.

フロントページの続き (72)発明者 清水 哲雄 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 (72)発明者 古君 修 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 Fターム(参考) 4K037 EA01 EA02 EA05 EA15 EA16 EA18 EA23 EA25 EA27 FH01 FJ05 FK03 FM02 Continuing from the front page (72) Inventor Tetsuo Shimizu 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Pref. In Kawasaki Steel Research Laboratory (72) Inventor Osamu Furukun 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Pref. F-term in Technical Research Institute Co., Ltd. (Reference) 4K037 EA01 EA02 EA05 EA15 EA16 EA18 EA23 EA25 EA27 FH01 FJ05 FK03 FM02

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】C:0.03〜0.15wt%、 Si:0.02wt%以下、 Mn:1.0 〜3.5 wt%、 P:0.04〜0.15wt%、 S:0.002 wt%以下、 sol Al:0.01〜0.1 wt%、 N:0.004 wt%以下 を含有し、残部はFeおよび不可避的不純物よりなる鋼組
成であり、フェライト素地中に、主としてマルテンサイ
トからなる低温変態相を占積率で5〜25%含む組織であ
って、表面粗さRaが 0.6〜1.8 μmであり、しかも表
面には、40℃での粘度が10〜30 cSt、且つりん濃度が0.
05〜5.0 wt%である防錆油層が0.5 〜5 g/m2 形成され
ていることを特徴とする加工性に優れる高張力鋼板。
1. C: 0.03 to 0.15 wt%, Si: 0.02 wt% or less, Mn: 1.0 to 3.5 wt%, P: 0.04 to 0.15 wt%, S: 0.002 wt% or less, sol Al: 0.01 to 0.1 wt% %, N: 0.004 wt% or less, with the balance being a steel composition consisting of Fe and unavoidable impurities, and a structure in which the low-temperature transformation phase mainly composed of martensite is contained in the ferrite base material at a space factor of 5 to 25%. The surface roughness Ra is 0.6 to 1.8 μm, and the surface has a viscosity at 40 ° C. of 10 to 30 cSt and a phosphorus concentration of 0.
High-tensile steel sheet excellent in workability from 05 to 5.0 antirust oil layer is wt% is characterized in that it is 0.5 ~5 g / m 2 formed.
【請求項2】請求項1において、鋼組成がさらにB:0.
0005〜0.01wt%を含有することを特徴とする加工性に優
れる高張力鋼板。
2. The steel composition according to claim 1, wherein the steel composition further comprises B: 0.
A high tensile strength steel sheet having excellent workability, characterized by containing 0005 to 0.01 wt%.
【請求項3】C:0.03〜0.15wt%、 Si:0.02wt%以下、 Mn:1.0 〜3.5 wt%、 P:0.04〜0.15wt%、 S:0.002 wt%以下、 sol Al:0.01〜0.1 wt%、 N:0.004 wt%以下 を含有し、残部はFeおよび不可避的不純物よりなる鋼素
材を熱間圧延し、次いで酸洗、冷間圧延した後、Ac1
〜(Ac1点+150 ℃)の温度域における滞留時間を10秒
〜10分とする連続焼鈍を行い、引き続き600 〜300 ℃の
平均冷却速度を20℃/秒以上として冷却し、その後、調
質圧延により表面粗さRaを 0.6〜1.8 μmに調整した
後、表面に、40℃での粘度が10〜30 cSt、かつ、りん濃
度が0.05〜5.0 wt%である防錆油を0.5 〜5 g/m2 塗油
することを特徴とする加工性に優れる高張力鋼板の製造
方法。
3. C: 0.03 to 0.15 wt%, Si: 0.02 wt% or less, Mn: 1.0 to 3.5 wt%, P: 0.04 to 0.15 wt%, S: 0.002 wt% or less, sol Al: 0.01 to 0.1 wt% %, N: 0.004 wt% or less, and the remainder is hot-rolled, then pickled and cold-rolled from a steel material consisting of Fe and unavoidable impurities, and then from Ac 1 point to (Ac 1 point + 150 ° C.) , A continuous residence time of 10 seconds to 10 minutes in the temperature range, followed by cooling at an average cooling rate of 600 to 300 ° C. of 20 ° C./sec or more, followed by temper rolling to reduce the surface roughness Ra to 0.6. After adjusting to 1.8 μm, apply 0.5 to 5 g / m 2 of a rust preventive oil having a viscosity at 40 ° C. of 10 to 30 cSt and a phosphorus concentration of 0.05 to 5.0 wt% on the surface. A method for manufacturing high-strength steel sheets with excellent workability.
【請求項4】請求項3において、鋼組成がさらにB:0.
0005〜0.01wt%を含有することを特徴とする加工性に優
れる高張力鋼板の製造方法。
4. The steel according to claim 3, wherein the steel composition further comprises B: 0.
A method for producing a high-tensile steel sheet having excellent workability, characterized by containing 0005 to 0.01 wt%.
JP9611199A 1999-04-02 1999-04-02 High tensile strength steel plate excellent in workability, and its production Pending JP2000282173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9611199A JP2000282173A (en) 1999-04-02 1999-04-02 High tensile strength steel plate excellent in workability, and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9611199A JP2000282173A (en) 1999-04-02 1999-04-02 High tensile strength steel plate excellent in workability, and its production

Publications (1)

Publication Number Publication Date
JP2000282173A true JP2000282173A (en) 2000-10-10

Family

ID=14156290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9611199A Pending JP2000282173A (en) 1999-04-02 1999-04-02 High tensile strength steel plate excellent in workability, and its production

Country Status (1)

Country Link
JP (1) JP2000282173A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079255A (en) * 2007-09-26 2009-04-16 Jfe Steel Kk High-tensile-strength cold-rolled steel sheet and method for manufacturing the same
US7534312B2 (en) 2001-08-24 2009-05-19 Nippon Steel Corporation Steel plate exhibiting excellent workability and method for producing the same
WO2011013845A1 (en) * 2009-07-30 2011-02-03 Jfeスチール株式会社 High-strength steel sheet, and process for production thereof
CN102337454A (en) * 2010-07-21 2012-02-01 攀钢集团钢铁钒钛股份有限公司 Carbon structural steel plate and preparation method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7534312B2 (en) 2001-08-24 2009-05-19 Nippon Steel Corporation Steel plate exhibiting excellent workability and method for producing the same
US7749343B2 (en) 2001-08-24 2010-07-06 Nippon Steel Corporation Method to produce steel sheet excellent in workability
US7776161B2 (en) 2001-08-24 2010-08-17 Nippon Steel Corporation Cold-rolled steel sheet excellent in workability
US8052807B2 (en) 2001-08-24 2011-11-08 Nippon Steel Corporation Steel sheet excellent in workability
JP2009079255A (en) * 2007-09-26 2009-04-16 Jfe Steel Kk High-tensile-strength cold-rolled steel sheet and method for manufacturing the same
WO2011013845A1 (en) * 2009-07-30 2011-02-03 Jfeスチール株式会社 High-strength steel sheet, and process for production thereof
JP2011047034A (en) * 2009-07-30 2011-03-10 Jfe Steel Corp High-strength steel sheet, and process for production thereof
CN102337454A (en) * 2010-07-21 2012-02-01 攀钢集团钢铁钒钛股份有限公司 Carbon structural steel plate and preparation method thereof

Similar Documents

Publication Publication Date Title
RU2683397C1 (en) Steel sheet for hot stamping, method of manufacture steel sheet for hot stamping, and also hot formed by hot stamping body
JP5369663B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
CN109642288B (en) High-strength steel sheet and method for producing same
CN105829563B (en) High strength hot dip galvanized steel sheet and its manufacture method
RU2610995C2 (en) Manufacturing method for work-hardened steel parts with coating and pre-coated sheets for producing these parts
JP5825119B2 (en) High-strength steel sheet with excellent workability and material stability and method for producing the same
US10526676B2 (en) High-strength steel sheet and method for producing the same
CA2842896C (en) Galvannealed layer and steel sheet comprising the same, and method for producing the same
EP1444374B2 (en) High-strength thin steel sheet drawable and excellent in shape fixation property and method of producing the same
CA2742671C (en) High-strength cold-rolled steel sheet having excellent formability, high-strength galvanized steel sheet, and methods for manufacturing the same
RU2666392C2 (en) Micro-alloyed high-strength multi-phase steel containing silicon with minimum tensile strength of 750 mpa improved properties and method for producing a strip from said steel
CN114990431A (en) Alloyed hot-dip galvanized steel sheet and method for producing same
JP5082451B2 (en) Method for producing high-strength cold-rolled steel sheet excellent in deep drawability and ductility, and method for producing high-strength hot-dip galvanized steel sheet using the cold-rolled steel sheet
CN105814227A (en) High strength hot-dip galvanized steel sheet and manufacturing method therefor
CN104105807A (en) High-strength cold-rolled steel sheet and process for manufacturing same
JP6705561B2 (en) High-strength steel sheet and method for manufacturing the same
US20140360632A1 (en) Method for manufacturing high strength steel sheet having excellent formability
CN102712977A (en) High-strength hot-dip galvanized steel sheet with excellent processability and impact resistance and process for producing same
JP7001204B1 (en) Steel plate and members
CN104114731A (en) Steel sheet, plated steel sheet, method for producing steel sheet, and method for producing plated steel sheet
JP4311284B2 (en) Manufacturing method of high-strength cold-rolled steel sheet
JP2000282173A (en) High tensile strength steel plate excellent in workability, and its production
KR102296374B1 (en) Hot rolled steel with very high strength and method for producing same
JP3287270B2 (en) Manufacturing method of high strength galvannealed steel sheet
JP3572784B2 (en) Hot-rolled steel sheet excellent in slidability and mold galling resistance and method for producing the same