JP2000277728A - Insulated-gate semiconductor device and its manufacture - Google Patents

Insulated-gate semiconductor device and its manufacture

Info

Publication number
JP2000277728A
JP2000277728A JP11080975A JP8097599A JP2000277728A JP 2000277728 A JP2000277728 A JP 2000277728A JP 11080975 A JP11080975 A JP 11080975A JP 8097599 A JP8097599 A JP 8097599A JP 2000277728 A JP2000277728 A JP 2000277728A
Authority
JP
Japan
Prior art keywords
outer peripheral
eqr
electrode
region
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11080975A
Other languages
Japanese (ja)
Other versions
JP3417336B2 (en
Inventor
Teruhiro Shimomura
彰宏 下村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Original Assignee
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Semiconductor Manufacturing Co Ltd, Kansai Nippon Electric Co Ltd filed Critical Renesas Semiconductor Manufacturing Co Ltd
Priority to JP08097599A priority Critical patent/JP3417336B2/en
Publication of JP2000277728A publication Critical patent/JP2000277728A/en
Application granted granted Critical
Publication of JP3417336B2 publication Critical patent/JP3417336B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0638Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layer, e.g. with channel stopper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a short circuit between a source electrode and an EQR aluminum electrode in a temperature cycle test, by forming an EQR polysilicon electrode between the upside of a field oxide film and the underside of a layer insulating film. SOLUTION: Since an EQR polysilicon electrode 37 is formed on a field oxide film 36, an EQR effect is enhanced, and the peripheral of the chip is shortened by shortening the length of the EQR. and the chip area is reduced. Since an EQR aluminum electrode 38 connects the polysilicon electrode 37 with a high-concentration one conductivity impurity region electrically, a clearance from a source electrode 32 can be made larger. Besides, a short circuit between the source electrode 32 and the aluminum electrode 38 by an aluminum slide phenomenon generated in temperature cycle test is prevented, since the polysilicon electrode 37 is formed under a layer insulating film 31, and the source electrode 32 and the polysilicon electrode 37 are separated from each other by the insulating film 31.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ゲート電極を溝の
内部に設けた縦型のMOSFETやIGBT(Insu
lated Gate Bipolar Transi
stor)等の絶縁ゲート型半導体装置およびその製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vertical MOSFET or an IGBT (Insu) having a gate electrode provided inside a groove.
lated Gate Bipolar Transi
and a method of manufacturing the same.

【0002】[0002]

【従来の技術】この種の絶縁ゲート型半導体装置の代表
例としての電力用のMOSFETでは、チップ内部のセ
ル部にトランジスタ機能を有する多数の並列接続された
ユニットセルを設け、チップ外周部にEQR(Equi Po
tential Ring)によるチャネルストッパ構造を設けてい
るのが一般的である。このMOSFETはチャネルが半
導体本体の溝方向に形成されており、チャネルが半導体
本体の面方向に形成されるゲートプレーナ型のMOSF
ETに比較してユニットセルの高集積化が可能であり、
単位面積あたりのチャネル幅を大きくとれ、素子の低オ
ン抵抗化に非常に有効であることが知られている。以
下、従来のNチャネル型MOSFETの構成について、
図6乃至図7を参照して説明する。
2. Description of the Related Art In a power MOSFET as a typical example of this type of insulated gate semiconductor device, a plurality of parallel-connected unit cells having a transistor function are provided in a cell portion inside a chip, and an EQR is provided on an outer peripheral portion of the chip. (Equi Po
It is common to provide a channel stopper structure by a tential ring). In this MOSFET, a channel is formed in a groove direction of the semiconductor body, and a channel is formed in a plane direction of the semiconductor body.
Higher integration of unit cells is possible compared to ET,
It is known that a large channel width per unit area can be obtained, which is very effective in reducing the on-resistance of the device. Hereinafter, regarding the configuration of the conventional N-channel MOSFET,
This will be described with reference to FIGS.

【0003】図6において、1は半導体本体で、高濃度
N型であるN+ 型半導体基板2と、この半導体基板2上
に設け、セル部A表面にU字型溝3が格子状に形成され
るとともにチップ外周部B表面に外周端から所定距離離
間して外周溝4がリング状に形成されたエピタキシャル
層5とを有している。まず、セル部Aについて説明す
る。エピタキシャル層5表面に形成されたU字型溝3の
内部にゲート酸化膜6を介してポリシリコンからなるゲ
ート電極7が形成されている。エピタキシャル層5はエ
ピタキシャル層5の初期層であり低濃度N型であるN-
型ドレイン領域8と、このドレイン領域8表面層のU字
型溝3により分離された領域にU字型溝3より浅く設け
たP型ベース領域9と、ベース領域9の表面層にベース
領域9を一部残して設けたN+ 型ソース領域10とを含
んでいる。エピタキシャル層5上にはゲート電極7を被
覆するように層間絶縁膜11を設け、更にその上にソー
ス領域10およびベース領域9表面とオーミック接触に
より電気的接続するアルミニウムを主金属とするソース
電極12を設けている。ソース電極12はその一部を外
部への電気的接続のためのソースパッドとしている。
In FIG. 6, reference numeral 1 denotes a semiconductor body, which is an N + type semiconductor substrate 2 which is a high concentration N type, and a U-shaped groove 3 is formed on the surface of the cell portion A in a lattice shape. And an epitaxial layer 5 in which a peripheral groove 4 is formed in a ring shape at a predetermined distance from the peripheral end on the surface of the chip peripheral portion B. First, the cell section A will be described. A gate electrode 7 made of polysilicon is formed via a gate oxide film 6 inside a U-shaped groove 3 formed on the surface of the epitaxial layer 5. The epitaxial layer 5 is an initial layer of the epitaxial layer 5 and has a low concentration of N-type N-.
Drain region 8, a P-type base region 9 provided shallower than the U-shaped groove 3 in a region separated by the U-shaped groove 3 in the surface layer of the drain region 8, and a base region 9 in the surface layer of the base region 9. And an N + type source region 10 provided partially. An interlayer insulating film 11 is provided on the epitaxial layer 5 so as to cover the gate electrode 7, and a source electrode 12 made of aluminum as a main metal and electrically connected to the surfaces of the source region 10 and the base region 9 by ohmic contact. Is provided. Part of the source electrode 12 is used as a source pad for electrical connection to the outside.

【0004】次に、チップ外周部Bについて説明する。
エピタキシャル層5はセル部Aと共通のドレイン領域8
と、このドレイン領域8表面層のチップ外周端と外周溝
4に挟まれた領域に設けベース領域9と同時に形成され
たP型不純物領域14と、このP型不純物領域14表面
層に設けソース領域10と同時に設けたN+ 型不純物領
域15とを含んでいる。外周溝4内面にはフィールド酸
化膜16を設け、このフィールド酸化膜16上にはフィ
ールド酸化膜16を被覆するようにセル部Aと共通の層
間絶縁膜11を設けている。更にN+ 型不純物領域15
上のスクライブ領域Dを除く位置から層間絶縁膜11上
のチップ外周端から所定距離離間した位置までに跨って
アルミニウムを主金属とするEQRアルミニウム電極1
7を図7に示すようにリング状にソース電極12と同時
に設けている。尚、図6に示すEQRアルミニウム電極
17は図7のB−B断面を示したものである。図示しな
いが、ゲート電極7は外部への電気的接続のためのゲー
トパッドに接続されている。
Next, the outer peripheral portion B of the chip will be described.
The epitaxial layer 5 has a common drain region 8 with the cell portion A.
A P-type impurity region 14 formed in the surface layer of the drain region 8 between the chip outer peripheral end and the outer peripheral groove 4 and formed simultaneously with the base region 9; and a source region provided in the surface layer of the P-type impurity region 14. 10 and an N @ + -type impurity region 15 provided at the same time. A field oxide film 16 is provided on the inner surface of the outer peripheral groove 4, and an interlayer insulating film 11 common to the cell portion A is provided on the field oxide film 16 so as to cover the field oxide film 16. Further, the N + type impurity region 15
An EQR aluminum electrode 1 made of aluminum as the main metal, extending from a position excluding the upper scribe region D to a position separated by a predetermined distance from a peripheral edge of the chip on the interlayer insulating film 11.
7 is provided simultaneously with the source electrode 12 in a ring shape as shown in FIG. It should be noted that the EQR aluminum electrode 17 shown in FIG. 6 shows the BB section of FIG. Although not shown, the gate electrode 7 is connected to a gate pad for external electrical connection.

【0005】[0005]

【発明が解決しようとする課題】ところで上記構成のM
OSFETではEQRアルミニウム電極17をフィール
ド酸化膜16と層間絶縁膜11を介して設けているため
EQR効果が低く、チャネルストッパとして十分機能さ
せるためEQRアルミニウム電極17を長くする必要が
あり、その結果チップ外周部面積が大きくなり、チップ
面積も大きくなるという問題がある。EQR効果を高く
するためEQRアルミニウム電極を層間絶縁膜を介さず
にフィールド酸化膜のみを介して設けることも考えられ
るが、フィールド酸化膜上を層間絶縁膜で被覆した後に
EQRアルミニウム電極をN+ 型不純物領域に電気的接
続するためにN+ 型不純物領域上を露出する製造方法を
使用する場合には、フィールド酸化膜上の層間絶縁膜を
精度良くエッチングすることが難しい。また、EQRア
ルミニウム電極17はアルミニウムを主金属としてチッ
プ外周部にリング状に設けており、製品での温度サイク
ル試験で、チップと樹脂間の膨張係数の違いでチップ表
面にストレスが掛かり、材質的に柔らかいアルミが押し
伸ばされたような状態になるアルミスライドと呼ばれる
現象が発生することがある。特にチップのコーナー部に
位置するリング状のEQRアルミニウム電極17のコー
ナー部はチップ中心部からの距離が4辺の中央部より大
きいためアルミスライドが大きく起こり、隣接するソー
ス電極と接触しソース−ドレイン間ショートが発生する
ことがある。本発明は上記問題点を解決するためにEQ
Rポリシリコン電極をフィールド酸化膜と層間絶縁膜と
の間に設け、このEQRポリシリコン電極と半導体本体
との電気的接続をEQRアルミニウム電極でとるように
して、EQR効果を大きくするとともに、アルミスライ
ド現象によるソース電極とEQRアルミニウム電極との
間のショートを防止した絶縁ゲート型半導体装置および
その製造方法を提供することを目的とする。
By the way, M having the above structure
In the OSFET, since the EQR aluminum electrode 17 is provided via the field oxide film 16 and the interlayer insulating film 11, the EQR effect is low, and it is necessary to lengthen the EQR aluminum electrode 17 in order to sufficiently function as a channel stopper. There is a problem that the area of the part increases and the chip area also increases. It is conceivable to provide an EQR aluminum electrode only via a field oxide film without an interlayer insulating film in order to enhance the EQR effect. However, after covering the field oxide film with an interlayer insulating film, the EQR aluminum electrode is replaced with an N + type. When using a manufacturing method that exposes the N + type impurity region to electrically connect to the impurity region, it is difficult to accurately etch the interlayer insulating film on the field oxide film. In addition, the EQR aluminum electrode 17 is provided in a ring shape around the chip with aluminum as a main metal, and in a temperature cycle test on a product, stress is applied to the chip surface due to a difference in expansion coefficient between the chip and the resin. A phenomenon called an aluminum slide, in which soft aluminum is stretched out, may occur. In particular, the corner of the ring-shaped EQR aluminum electrode 17 located at the corner of the chip has a large aluminum slide because the distance from the center of the chip is larger than the center of the four sides, and the source-drain contacts the adjacent source electrode. A short circuit may occur during operation. The present invention provides EQ to solve the above problem.
An R polysilicon electrode is provided between the field oxide film and the interlayer insulating film, and an electrical connection between the EQR polysilicon electrode and the semiconductor body is made by an EQR aluminum electrode, so that the EQR effect is enhanced and an aluminum slide is provided. An object of the present invention is to provide an insulated gate semiconductor device in which a short circuit between a source electrode and an EQR aluminum electrode due to a phenomenon is prevented, and a method of manufacturing the same.

【0006】[0006]

【課題を解決するための手段】(1)本発明に係る絶縁
ゲート型半導体装置は、セル部にU字型溝およびチップ
外周部の外周端から所定距離離間した位置に外周溝が形
成されセル部およびチップ外周部に共通の低濃度一導電
型ドレイン領域を含む半導体本体を具備し、セル部にお
いて、前記半導体本体に含まれ前記ドレイン領域の表面
層で前記U字型溝に分離された領域に設けた他導電型ベ
ース領域と、このベース領域の表面層に設けた高濃度一
導電型ソース領域と、前記U字型溝の内面に設けたゲー
ト酸化膜と、前記U字型溝にゲート酸化膜を介して設け
たポリシリコンからなるゲート電極と、このゲート電極
と層間絶縁膜で絶縁し前記ベース領域およびソース領域
に電気的接続したアルミニウムを主金属とするソース電
極とを具備し、チップ外周部において、前記半導体本体
に含まれ前記ドレイン領域の表面層でチップ外周端と前
記外周溝間に挟まれた領域に設けた他導電型不純物領域
と、この他導電型不純物領域の表面層に設けた高濃度一
導電型不純物領域と、前記外周溝内に設けたフィールド
酸化膜と、このフィールド酸化膜上と前記層間絶縁膜下
間に所定長で前記高濃度一導電型不純物領域上に跨って
リング状に設けたポリシリコンからなるEQRポリシリ
コン電極と、このEQRポリシリコン電極のチップ外周
端側の端部および前記高濃度一導電型不純物領域に電気
的接続したアルミニウムを主金属とするEQRアルミニ
ウム電極とを具備している。上記手段によれば、EQR
ポリシリコン電極を外周溝内に設けたフィールド酸化膜
と層間絶縁膜下との間に設け、EQRポリシリコン電極
と高濃度一導電型型不純物領域との電気的接続をEQR
アルミニウム電極によりとっているので、従来のEQR
アルミニウム電極だけの場合のようにフィールド酸化膜
+層間絶縁膜上にEQRアルミニウム電極を設けた場合
よりEQR効果を高くできるとともに、従来のEQRア
ルミニウム電極だけの場合よりEQRアルミニウム電極
とソース電極との離間距離を大きくとれ、更にソース電
極とEQRポリシリコン電極間は段差があり、かつ、層
間絶縁膜により分離されているため、温度サイクル試験
で発生するアルミスライドによるソース電極とEQRア
ルミニウム電極とのショートを防止できる。 (2)本発明に係る絶縁ゲート型半導体装置は(1)に
おいて、前記EQRアルミニウム電極が方形チップのコ
ーナー部を除いて設けられている。上記手段によれば、
特に、EQRアルミニウム電極をリング状にするのでは
なく、チップのコーナー部に設けないようにしたので、
アルミスライドが大きく起こりやすいコーナー部でのソ
ース電極とEQRアルミニウム電極とのショートを完全
に防止できる。 (3)本発明に係る絶縁ゲート型半導体装置は(2)に
おいて、前記EQRアルミニウム電極が方形チップの4
辺の各中央部4個所に設けられている。上記手段によれ
ば、前記EQRアルミニウム電極は方形チップの4辺の
各中央部4個所に設けることによりEQRポリシリコン
電極と高濃度一導電型型不純物領域との電気的接続をと
ることができる。 (4)本発明に係る絶縁ゲート型半導体装置は(1)に
おいて、前記EQRアルミニウム電極がリング状に設け
られている。上記手段によれば、(2)よりはチップの
コーナー部でのアルミスライドに対して少し不利になる
が従来のEQRアルミニウム電極だけの場合よりはソー
ス電極とEQRアルミニウム電極とのショートをより防
止できる。 (5)本発明に係る絶縁ゲート型半導体装置は(1)に
おいて、前記EQRポリシリコン電極が前記ゲート電極
と同時に設けられている。 (6)本発明に係る絶縁ゲート型半導体装置は(1)に
おいて、前記半導体本体が半導体基板上に形成されたエ
ピタキシャル層である。 (7)本発明に係る絶縁ゲート型半導体装置は(6)に
おいて、前記半導体基板が高濃度一導電型である。 (8)本発明に係る絶縁ゲート型半導体装置は(6)に
おいて、前記半導体基板が高濃度他導電型である。 (9)本発明に係る絶縁ゲート型半導体装置の製造方法
は、ドレイン領域となる低濃度一導電型半導体層を表面
側に含む半導体本体上にシリコン酸化膜とシリコン窒化
膜を順次形成した後、エッチングにより半導体本体表面
のセル部に初期溝とチップ外周部の外周端から所定距離
離間した位置に外周初期溝とを形成する第1工程と、第
1工程完了後、前記シリコン窒化膜をマスクに前記初期
溝および外周初期溝の内面にLOCOS酸化膜を形成す
ることより初期溝がU字型溝および外周初期溝が外周溝
に形状変形され、このLOCOS酸化膜をマスクに、セ
ル部において、前記半導体層の表面層の前記U字型溝に
分離された領域に他導電型ベース領域を形成するととも
にこのベース領域の表面層に高濃度一導電型ソース領域
を形成し、チップ外周部において、前記半導体層の表面
層のチップ外周端と前記外周溝に挟まれた領域に他導電
型不純物領域を形成するとともにこの他導電型不純物領
域の表面層に高濃度一導電型不純物領域を形成する第2
工程と、第2工程完了後、前記U字型溝のLOCOS酸
化膜を除去するとともに前記外周溝のLOCOS酸化膜
をフィールド酸化膜として残す第3工程と、第3工程完
了後、U字型溝内面を含む露出した半導体本体表面にゲ
ート酸化膜を形成した後、その上からポリシリコン膜を
被覆する第4工程と、第4工程完了後、ポリシリコン膜
をエッチングして、セル部において、前記ソース領域表
面の一部およびU字型溝のポリシリコン膜を残してゲー
ト電極を形成し、チップ外周部において、前記フィール
ド酸化膜上に所定長で前記高濃度一導電型不純物領域上
の一部に跨ってリング状にポリシリコン膜を残してEQ
Rポリシリコン電極を形成し、その上から層間絶縁膜を
被覆する第5工程と、第5工程完了後、前記層間絶縁膜
およびゲート酸化膜をエッチングして、セル部におい
て、前記ソース領域表面の一部およびベース領域表面を
露出し、チップ外周部において、前記高濃度一導電型不
純物領域表面を露出するとともに、前記EQRポリシリ
コン電極表面のチップ外周端側の端部を露出して後、そ
の上からアルミニウム膜を被覆し、このアルミニウム膜
をエッチングして、セル部において前記ベース領域およ
びソース領域と電気的に接続するソース電極を形成し、
チップ外周部において、前記EQRポリシリコン電極の
チップ外周端側の端部および前記高濃度一導電型不純物
領域に電気的接続したアルミニウムを主金属とするEQ
Rアルミニウム電極を形成する第6工程とを有する。上
記手段によれば、EQRポリシリコン電極をゲート電極
と同時に形成することにより、従来のEQRアルミニウ
ム電極だけの場合と同じ工程数で製造できる。
(1) In an insulated gate semiconductor device according to the present invention, a cell portion has a U-shaped groove and an outer peripheral groove formed at a predetermined distance from an outer peripheral end of an outer peripheral portion of a chip. A semiconductor body including a low-concentration one-conductivity-type drain region common to a portion and an outer peripheral portion of the chip, and a region included in the semiconductor body and separated by the U-shaped groove in a surface layer of the drain region in the cell portion. And a high-concentration one-conductivity-type source region provided in a surface layer of the base region, a gate oxide film provided on an inner surface of the U-shaped groove, and a gate formed in the U-shaped groove. A gate electrode made of polysilicon provided through an oxide film, and a source electrode mainly composed of aluminum insulated from the gate electrode by an interlayer insulating film and electrically connected to the base region and the source region. A second conductive type impurity region provided in a region between the outer circumferential end of the chip and the outer circumferential groove in a surface layer of the drain region, which is included in the semiconductor body, and a surface layer of the other conductive type impurity region, A high-concentration one-conductivity-type impurity region, a field oxide film provided in the outer peripheral groove, and a predetermined length on the high-concentration one-conductivity-type impurity region between the field oxide film and the interlayer insulating film. The main metal is an EQR polysilicon electrode made of polysilicon which is provided in a ring shape over the straddle, and aluminum which is electrically connected to the end of the EQR polysilicon electrode on the chip outer peripheral end side and the high concentration one conductivity type impurity region. And an EQR aluminum electrode. According to the above means, the EQR
A polysilicon electrode is provided between the field oxide film provided in the outer peripheral groove and under the interlayer insulating film, and an electrical connection between the EQR polysilicon electrode and the high-concentration one-conductivity-type impurity region is provided by EQR.
Conventional EQR because it uses aluminum electrodes
The EQR effect can be enhanced as compared with the case where the EQR aluminum electrode is provided on the field oxide film + interlayer insulating film as in the case of only the aluminum electrode, and the distance between the EQR aluminum electrode and the source electrode can be increased as compared with the case where only the conventional EQR aluminum electrode is used alone. The distance between the source electrode and the EQR polysilicon electrode is large, and there is a step between them. Also, the source electrode and the EQR polysilicon electrode are separated by an interlayer insulating film. Can be prevented. (2) In the insulated gate semiconductor device according to the present invention, in (1), the EQR aluminum electrode is provided except for a corner of a rectangular chip. According to the above means,
In particular, since the EQR aluminum electrode was not provided in the corner of the chip instead of being formed in a ring shape,
It is possible to completely prevent a short circuit between the source electrode and the EQR aluminum electrode at a corner where an aluminum slide easily occurs. (3) In the insulated gate semiconductor device according to the present invention, in (2), the EQR aluminum electrode is a square chip 4
It is provided at each of the four central portions of the side. According to the above means, the EQR aluminum electrode is provided at each of the four central portions of the four sides of the rectangular chip so that the EQR polysilicon electrode can be electrically connected to the high-concentration one-conductivity-type impurity region. (4) In the insulated gate semiconductor device according to the present invention, in (1), the EQR aluminum electrode is provided in a ring shape. According to the above-mentioned means, although it is slightly disadvantageous to the aluminum slide at the corner of the chip than in (2), a short circuit between the source electrode and the EQR aluminum electrode can be prevented more than in the case of using only the conventional EQR aluminum electrode. . (5) In the insulated gate semiconductor device according to the present invention, in (1), the EQR polysilicon electrode is provided simultaneously with the gate electrode. (6) In the insulated gate semiconductor device according to the present invention, in (1), the semiconductor body is an epitaxial layer formed on a semiconductor substrate. (7) In the insulated gate semiconductor device according to the present invention, in (6), the semiconductor substrate is a high concentration one conductivity type. (8) In the insulated gate semiconductor device according to the present invention, in (6), the semiconductor substrate is of a high concentration other conductivity type. (9) In the method of manufacturing an insulated gate semiconductor device according to the present invention, after a silicon oxide film and a silicon nitride film are sequentially formed on a semiconductor body including a low-concentration one-conductivity-type semiconductor layer serving as a drain region on a surface side, A first step of forming an initial groove in the cell portion on the surface of the semiconductor body by etching and an outer peripheral initial groove at a position separated by a predetermined distance from the outer peripheral end of the chip outer peripheral portion; and after the first step is completed, using the silicon nitride film as a mask. By forming a LOCOS oxide film on the inner surface of the initial groove and the outer peripheral initial groove, the initial groove is deformed into a U-shaped groove and the outer peripheral initial groove into an outer peripheral groove. Using the LOCOS oxide film as a mask, Forming a base region of another conductivity type in a region separated by the U-shaped groove in a surface layer of the semiconductor layer, and forming a high-concentration one conductivity type source region in a surface layer of the base region; In the peripheral portion, an impurity region of another conductivity type is formed in a region between the chip outer peripheral end of the surface layer of the semiconductor layer and the outer circumferential groove, and a high-concentration one conductivity type impurity region is formed in a surface layer of the impurity region of the other conductivity type. Forming a second
After the completion of the second step, the third step of removing the LOCOS oxide film of the U-shaped groove and leaving the LOCOS oxide film of the outer peripheral groove as a field oxide film, and after the completion of the third step, the U-shaped groove Forming a gate oxide film on the exposed surface of the semiconductor body including the inner surface, covering the polysilicon film from above, and etching the polysilicon film after completion of the fourth step; A gate electrode is formed while leaving a part of the source region surface and the polysilicon film of the U-shaped groove, and a part of the high-concentration one-conductivity-type impurity region having a predetermined length on the field oxide film at a chip outer peripheral portion. Leave the polysilicon film in a ring shape across the EQ
A fifth step of forming an R-polysilicon electrode and covering the interlayer insulating film from above, and after the completion of the fifth step, etching the interlayer insulating film and the gate oxide film to form a cell surface portion of the source region surface; After exposing the surface of the part and the base region, and exposing the surface of the high-concentration one-conductivity-type impurity region at the chip outer periphery, and exposing the end of the EQR polysilicon electrode surface on the chip outer peripheral end side, An aluminum film is coated from above, and the aluminum film is etched to form a source electrode electrically connected to the base region and the source region in a cell portion,
In a chip outer peripheral portion, an EQ mainly composed of aluminum electrically connected to an end portion of the EQR polysilicon electrode on the chip outer peripheral end side and the high-concentration one-conductivity-type impurity region.
A sixth step of forming an R aluminum electrode. According to the above means, by forming the EQR polysilicon electrode at the same time as the gate electrode, it can be manufactured in the same number of steps as in the case of the conventional EQR aluminum electrode alone.

【0007】[0007]

【発明の実施の形態】以下に、本発明に基づき1実施例
のNチャネル型MOSFETおよびその製造方法を図1
乃至図4を参照して説明する。まず、構成を説明する
と、図1において、21は半導体本体で、基板表面の結
晶面が(100)面の高濃度一導電型であるN+ 型半導
体基板22と、この半導体基板22上に設け、セル部A
表面にU字型溝23が格子状に形成されるとともにチッ
プ外周部B表面に外周端から所定距離離間して外周溝2
4がリング状に形成されたエピタキシャル層25とを有
している。まず、セル部Aについて説明する。エピタキ
シャル層25表面に形成されたU字型溝23の内部にゲ
ート酸化膜26を介してポリシリコンからなるゲート電
極27が形成されている。エピタキシャル層25はエピ
タキシャル層25の初期層であり低濃度N型であるN-
型ドレイン領域28と、このドレイン領域28表面層の
U字型溝23により分離された領域にU字型溝23より
浅く設けた他導電型であるP型ベース領域29と、ベー
ス領域29の表面層にベース領域29を一部残して設け
たN+ 型ソース領域30とを含んでいる。エピタキシャ
ル層25表面のU字型溝23により分離された各領域の
平面的な構造は図2に示すように、ソース領域30は全
体が略正方形であり、且つ、所定の一定幅で離隔した非
環状の略4等分に分割された略3角形の4分割ソース領
域30aであり、ベース領域29は4分割ソース領域3
0a間の幅狭なソース分割ベース領域29aである。エ
ピタキシャル層25上にはゲート電極27を被覆するよ
うに層間絶縁膜31を設け、更にその上にソース領域3
0およびベース領域29表面とオーミック接触により電
気的接続するアルミニウムを主金属とするソース電極3
2を設けている。ソース電極32はその一部を外部への
電気的接続のためのソースパッドとしている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An N-channel MOSFET according to one embodiment of the present invention and a method of manufacturing the same will now be described with reference to FIG.
This will be described with reference to FIGS. First, the structure will be described. In FIG. 1, reference numeral 21 denotes a semiconductor body, which is an N + -type semiconductor substrate 22 of a high-concentration one conductivity type having a (100) crystal plane on a substrate surface, and provided on the semiconductor substrate 22. , Cell part A
A U-shaped groove 23 is formed in a lattice shape on the surface, and the outer peripheral groove 2 is spaced from the outer peripheral end by a predetermined distance on the surface of the chip outer peripheral portion B.
4 has an epitaxial layer 25 formed in a ring shape. First, the cell section A will be described. A gate electrode 27 made of polysilicon is formed inside a U-shaped groove 23 formed on the surface of the epitaxial layer 25 via a gate oxide film 26. The epitaxial layer 25 is an initial layer of the epitaxial layer 25 and has a low concentration of N-type N-.
Drain region 28, a P-type base region 29 of another conductivity type provided shallower than U-shaped groove 23 in a region separated by U-shaped groove 23 in the surface layer of drain region 28, and a surface of base region 29. And an N + type source region 30 provided with a part of the base region 29 left in the layer. As shown in FIG. 2, the planar structure of each region separated by the U-shaped groove 23 on the surface of the epitaxial layer 25 is such that the source region 30 is substantially square in its entirety and is separated by a predetermined constant width. The base region 29 is a quadrilateral source region 30a, which is a substantially triangular quadrilateral source region 30a which is divided into four substantially equal parts.
This is a narrow source division base region 29a between 0a. An interlayer insulating film 31 is provided on the epitaxial layer 25 so as to cover the gate electrode 27, and the source region 3 is further formed thereon.
Source electrode 3 made of aluminum as a main metal electrically connected to the surface of O and base region 29 by ohmic contact
2 are provided. Part of the source electrode 32 is used as a source pad for external electrical connection.

【0008】次に、チップ外周部Bについて説明する。
エピタキシャル層25はセル部Aと共通のドレイン領域
28と、このドレイン領域28表面層のチップ外周端と
外周溝24に挟まれた領域に設けベース領域29と同時
に形成されたP型不純物領域34と、このP型不純物領
域34表面層に設けソース領域30と同時に設けたN+
型不純物領域35とを含んでいる。外周溝24内面には
フィールド酸化膜36を設け、このフィールド酸化膜3
6上のチップ外周端から所定距離離間した位置からN+
型不純物領域35上のゲート酸化膜26を介した一部に
跨ってポリシリコンからなるEQRポリシリコン電極3
7を図3に示すようにリング状にゲート電極7と同時に
設けている。更にN+ 型不純物領域35上のスクライブ
領域Dを除く位置、EQRポリシリコン電極37上およ
びフィールド酸化膜36上に、EQRポリシリコン電極
37のチップ外周端側の端部およびN+ 型不純物領域3
5の一部を除いて、セル部Aと共通の層間絶縁膜31を
設け、このEQRポリシリコン電極37上のチップ外周
端側の端部およびN+ 型不純物領域35の一部上と層間
絶縁膜31上のEQRポリシリコン電極37のチップ内
側端よりチップ外周端側の位置にアルミニウムを主金属
とするEQRアルミニウム電極38を図3に示すように
チップのコーナー部には設けず、チップ4辺の各中央部
4個所に分散してソース電極12と同時に設けている。
尚、図1に示すEQRポリシリコン電極37およびEQ
Rアルミニウム電極38は図3のA−A断面を示したも
のである。図示しないが、ゲート電極27は外部への電
気的接続のためのゲートパッドに接続されている。
Next, the outer peripheral portion B of the chip will be described.
The epitaxial layer 25 has a drain region 28 common to the cell portion A, and a P-type impurity region 34 formed at the same time as the base region 29 provided in a region between the chip outer peripheral end and the outer peripheral groove 24 on the surface layer of the drain region 28. N + provided on the surface layer of P-type impurity region 34 and provided simultaneously with source region 30.
And a type impurity region 35. A field oxide film 36 is provided on the inner surface of the outer peripheral groove 24.
N + from a position separated by a predetermined distance from the outer edge of the chip on
Polysilicon electrode 3 made of polysilicon over a part of gate impurity film 35 over gate oxide film 26
7, is provided simultaneously with the gate electrode 7 in a ring shape as shown in FIG. Further, on the N + -type impurity region 35 except for the scribe region D, on the EQR polysilicon electrode 37 and the field oxide film 36, the end of the EQR polysilicon electrode 37 on the chip outer peripheral side and the N + -type impurity region 3
5 is provided with an interlayer insulating film 31 common to the cell portion A, and an interlayer insulating film 31 on the end of the EQR polysilicon electrode 37 on the chip outer peripheral side and a portion of the N @ + -type impurity region 35. As shown in FIG. 3, an EQR aluminum electrode 38 made of aluminum as a main metal is not provided at the corner of the chip at a position on the outer peripheral end side of the chip than the inner end of the chip of the EQR polysilicon electrode 37 on the film 31, and the four sides of the chip are provided. Are distributed and provided at the same time as the source electrode 12 at four central portions.
The EQR polysilicon electrode 37 and the EQR shown in FIG.
The R aluminum electrode 38 shows the AA cross section of FIG. Although not shown, the gate electrode 27 is connected to a gate pad for external electrical connection.

【0009】上記構成によれば、EQRポリシリコン電
極37をフィールド酸化膜36と層間絶縁膜31との間
に設け、EQRポリシリコン電極37とN+ 型不純物領
域35との電気的接続をチップ4辺の各中央部4個所に
分散して設けたEQRアルミニウム電極38によりとっ
ているので、従来のEQRアルミニウム電極だけの場合
のようにフィールド酸化膜+層間絶縁膜上にEQRアル
ミニウム電極を設けた場合よりEQR効果を高くできる
のでEQRポリシリコン電極37を短くでき、チップ面
積を縮小することができるとともに、従来のEQRアル
ミニウム電極だけの場合よりEQRアルミニウム電極3
8とソース電極32との離間距離を大きくとれ、更にE
QRポリシリコン電極37は外周溝24内に形成したフ
ィールド酸化膜36上で、かつ、層間絶縁膜31の下に
設けられており、ソース電極32とEQRポリシリコン
電極間は段差があり、かつ、層間絶縁膜により分離され
ているため、温度サイクル試験で発生するアルミスライ
ドによるソース電極とEQRアルミニウム電極とのショ
ートを防止でき、信頼性を高くすることができる。特
に、EQRアルミニウム電極38をリング状にするので
はなく、チップのコーナー部に設けないようにしたの
で、アルミスライドが大きく起こりやすいコーナー部で
のソース電極とEQRアルミニウム電極とのショートを
防止でき、信頼性を高くすることができる。
According to the above structure, the EQR polysilicon electrode 37 is provided between the field oxide film 36 and the interlayer insulating film 31, and the electrical connection between the EQR polysilicon electrode 37 and the N + -type impurity region 35 is formed by the chip 4. Since it is taken by the EQR aluminum electrodes 38 dispersedly provided at four places at the center of each side, when the EQR aluminum electrode is provided on the field oxide film + interlayer insulating film as in the case of only the conventional EQR aluminum electrode. Since the EQR effect can be further enhanced, the EQR polysilicon electrode 37 can be shortened, the chip area can be reduced, and the EQR aluminum electrode 3 can be reduced as compared with the conventional case using only the EQR aluminum electrode.
8 and the source electrode 32 can be made large, and E
The QR polysilicon electrode 37 is provided on the field oxide film 36 formed in the outer peripheral groove 24 and below the interlayer insulating film 31. There is a step between the source electrode 32 and the EQR polysilicon electrode, and Since they are separated by the interlayer insulating film, a short circuit between the source electrode and the EQR aluminum electrode due to the aluminum slide generated in the temperature cycle test can be prevented, and the reliability can be increased. In particular, since the EQR aluminum electrode 38 is not provided in a corner portion of the chip, instead of being formed in a ring shape, it is possible to prevent a short circuit between the source electrode and the EQR aluminum electrode at the corner portion where aluminum sliding is likely to occur, Reliability can be increased.

【0010】次に製造方法を図5(a)〜(e)と図1
を参照して説明する。先ず、第1工程はこの工程の完了
後を図5(a)に示すように、基板表面の結晶面が(1
00)面でオリエーテーションフラットの結晶面が{1
00}面のN+ 型半導体基板22上にN- 型のエピタキ
シャル初期層を形成した後、この初期層の表面に熱酸化
法によりシリコン酸化膜53を膜厚500Å程度に形成
し、更にその上にシリコン窒化膜54をCVD法により
膜厚900Å程度に成長させた後、フォトリソグラフィ
法およびドライエッチ法により選択的に窒化膜54、酸
化膜53およびエピタキシャル層をエッチングしてセル
部Aに初期溝55が格子状に形成されるとともに、チッ
プ外周部Bのチップ外周端から所定距離離間した位置よ
り内側に外周初期溝56がリング状に形成されたエピタ
キシャル層25aを形成する。初期溝55は側壁面の結
晶面が{100}面に対し0〜30度の範囲内になるよ
うにエッチングし、深さを例えば、1.3μmねらいで
エッチングして形成される。尚、初期溝55の深さは
1.3μmねらい以外でもよい。酸化膜53は後工程で
のLOCOS酸化時の窒化膜54による応力の緩衝膜と
して形成され、膜厚が厚いほうが応力が緩和されると同
時に溝肩部の曲率半径も大きくなるので、曲率半径が適
正値となるような膜厚としている。また、窒化膜54は
後工程でのLOCOS酸化時のマスクとして形成され、
膜厚が薄いほうが窒化膜54自身による応力を低減する
と同時に溝肩部の曲率半径も大きくなるが、逆に膜厚が
薄いことによる窒化膜54の損傷や窒化膜54を酸素が
通り抜ける等の工程上の不具合が発生するので、工程上
の不具合が発生せず曲率半径が適正値となるような膜厚
としている。
Next, the manufacturing method will be described with reference to FIGS.
This will be described with reference to FIG. First, in the first step, after the completion of this step, as shown in FIG.
The crystal plane of the orientation flat on the (00) plane is $ 1
After an N- type epitaxial initial layer is formed on the N + type semiconductor substrate 22 on the 00 ° plane, a silicon oxide film 53 is formed on the surface of the initial layer by thermal oxidation to a thickness of about 500 °, and further thereon. After growing a silicon nitride film 54 to a thickness of about 900 ° by the CVD method, the nitride film 54, the oxide film 53 and the epitaxial layer are selectively etched by the photolithography method and the dry etching method to form an initial groove in the cell portion A. 55 is formed in a lattice shape, and an epitaxial layer 25a is formed in which a peripheral initial groove 56 is formed in a ring shape inside a position at a predetermined distance from the chip outer peripheral end of the chip outer peripheral portion B. The initial groove 55 is formed by etching such that the crystal plane of the side wall surface is in the range of 0 to 30 degrees with respect to the {100} plane, and is etched at a depth of, for example, 1.3 μm. Note that the depth of the initial groove 55 may be other than 1.3 μm. The oxide film 53 is formed as a buffer film for the stress caused by the nitride film 54 at the time of LOCOS oxidation in a later process. The larger the film thickness is, the more the stress is relieved and the larger the radius of curvature of the groove shoulder becomes. The film thickness is set to an appropriate value. Further, the nitride film 54 is formed as a mask at the time of LOCOS oxidation in a later process,
A thinner film reduces the stress caused by the nitride film 54 itself, and at the same time, increases the radius of curvature of the groove shoulder. On the other hand, a process such as damage to the nitride film 54 due to the thin film thickness and oxygen passing through the nitride film 54 are performed. Since the above problems occur, the film thickness is set such that the process radius does not occur and the radius of curvature becomes an appropriate value.

【0011】次に、第2工程はこの工程の完了後を図5
(b)に示すように、第1工程完了後、窒化膜54をマ
スクとして初期溝55、56の内面を酸化温度1140
℃程度で熱酸化して膜厚7000Å程度のLOCOS酸
化膜57を形成すると、初期溝55がU字型溝23、外
周初期溝56が外周溝24に形状変形される。LOCO
S酸化膜57の形成温度は酸化膜57の粘性を高くして
応力を低減するように設定している。溝肩部の曲率半径
は適正値0.2〜0.7μmとなる。U字型溝23の側
壁面は結晶面が{100}面に対して0〜30度の範囲
内で形成される。その後、窒化膜54および酸化膜53
をウェットエッチ法により全面除去し、熱酸化法により
イオン注入のためのシリコン酸化膜58を膜厚100Å
程度に形成して後、LOCOS酸化膜57をマスクにし
てシリコン酸化膜58を介してホウ素をイオン注入およ
び熱拡散してU字型溝23の深さより浅く、U字型溝2
3により分離された領域にP型ベース領域29を形成す
るとともにチップ外周端と外周溝24に挟まれた領域に
P型不純物領域34を形成する。尚、この後、図示しな
いがフォトリソグラフィ法でのレジストパターンでマス
クしてホウ素または弗化ホウ素をイオン注入しフォトレ
ジスト膜除去後に熱拡散してベース領域29表面層に含
まれるP+ 型コンタクトベース領域を形成する。さら
に、LOCOS酸化膜57をマスクにするとともにベー
ス領域29上をフォトリソグラフィ法でのレジストパタ
ーンでマスクして砒素またはリンをイオン注入しフォト
レジスト膜除去後に熱拡散してベース領域29表面層に
N+ 型ソース領域30を形成するとともにP型不純物領
域34表面層全面にN+ 型不純物領域35を形成する。
この結果、図5(a)のエピタキシャル層25aは、表
面に溝23,24が形成されエピタキシャル層の初期層
であるN- 型ドレイン領域28と、ベース領域29と、
ソース領域30と、P型不純物領域34と、N+ 型不純
物領域35とを含むエピタキシャル層25となる。
Next, in a second step, FIG.
As shown in (b), after completion of the first step, the inner surfaces of the initial grooves 55 and 56 are exposed to an oxidation temperature 1140 using the nitride film 54 as a mask.
When the LOCOS oxide film 57 having a thickness of about 7000 ° is formed by thermal oxidation at about ℃, the initial groove 55 is deformed into the U-shaped groove 23 and the outer peripheral initial groove 56 is deformed into the outer peripheral groove 24. LOCO
The formation temperature of the S oxide film 57 is set so as to increase the viscosity of the oxide film 57 and reduce the stress. The radius of curvature of the groove shoulder is an appropriate value of 0.2 to 0.7 μm. The side wall surface of U-shaped groove 23 has a crystal plane formed within a range of 0 to 30 degrees with respect to the {100} plane. Thereafter, the nitride film 54 and the oxide film 53
Is entirely removed by wet etching, and a silicon oxide film 58 for ion implantation is formed to a thickness of 100 .ANG. By thermal oxidation.
Then, boron is ion-implanted and thermally diffused through the silicon oxide film 58 using the LOCOS oxide film 57 as a mask, so that the depth is smaller than the depth of the U-shaped groove 23.
The P-type base region 29 is formed in the region separated by 3 and the P-type impurity region 34 is formed in the region between the outer peripheral edge of the chip and the outer peripheral groove 24. After that, although not shown, boron or boron fluoride is ion-implanted by masking with a resist pattern by a photolithography method, the photoresist film is removed, and then heat diffusion is performed to remove the P + type contact base contained in the surface layer of the base region 29. Form an area. Further, arsenic or phosphorus is ion-implanted by using the LOCOS oxide film 57 as a mask and the base region 29 is masked with a resist pattern by a photolithography method, and the photoresist film is removed. A source region 30 is formed, and an impurity region 35 is formed over the entire surface layer of the p-type impurity region 34.
As a result, the epitaxial layer 25a of FIG. 5A has grooves 23 and 24 formed on the surface thereof, an N − -type drain region 28 which is an initial layer of the epitaxial layer, a base region 29, and
The epitaxial layer 25 includes the source region 30, the P-type impurity region 34, and the N + -type impurity region 35.

【0012】次に、第3工程はこの工程の完了後を図5
(c)に示すように、第2工程完了後、溝24内のLO
COS酸化膜57をフォトリソグラフィ法でのレジスト
パターン59でマスクしウェットエッチ法により溝23
内のLOCOS酸化膜57とベース領域29、ソース領
域30およびN+ 型不純物領域35上の酸化膜58を除
去することによりベース領域29、ソース領域30およ
びN+ 型不純物領域35の表面と溝23の内面を露出さ
せ、外周溝24に形成されたLOCOS酸化膜57をフ
ィールド酸化膜36として残す。
Next, a third step is a step after completion of this step in FIG.
After completion of the second step, as shown in FIG.
The COS oxide film 57 is masked with a resist pattern 59 by photolithography, and the groove 23 is wet-etched.
By removing the LOCOS oxide film 57 and the oxide film 58 on the base region 29, the source region 30 and the N + type impurity region 35 therein, the surface of the base region 29, the source region 30 and the N + type impurity region 35 and the groove 23 are removed. Is exposed, leaving the LOCOS oxide film 57 formed in the outer peripheral groove 24 as the field oxide film 36.

【0013】次に、第4工程はこの工程の完了後を図5
(d)に示すように、第3工程完了後、ベース領域2
9、ソース領域30およびN+ 型不純物領域35の表面
と溝23の内面に熱酸化法によりゲート酸化膜26を形
成する。ゲート酸化膜26の膜厚は、例えば、溝23の
内面のベース領域29上で500Å程度に形成される。
以上の工程を経たエピタキシャル層25の表面をCVD
法によりポリシリコン膜60で被覆する。
Next, in a fourth step, FIG.
After completion of the third step, as shown in FIG.
9. A gate oxide film 26 is formed on the surface of the source region 30 and the N @ + -type impurity region 35 and on the inner surface of the groove 23 by a thermal oxidation method. The gate oxide film 26 is formed to a thickness of, for example, about 500 ° on the base region 29 on the inner surface of the groove 23.
The surface of the epitaxial layer 25 having undergone the above steps is
It is covered with a polysilicon film 60 by a method.

【0014】次に、第5工程はこの工程の完了後を図5
(e)に示すように、第4工程完了後、フォトリソグラ
フィ法およびドライエッチ法により、セル部Aにおいて
ソース領域30表面の一部および溝23のポリシリコン
膜60を残してゲート電極27を形成するとともに、チ
ップ外周部Bにおいてフィールド酸化膜36上に所定長
でN+ 型不純物領域35上のゲート酸化膜26を介した
一部に跨ってリング状にポリシリコン膜60を残してE
QRポリシリコン電極37を形成した後、以上の工程を
経たエピタキシャル層25の表面をCVD法により層間
絶縁膜31で被覆する。
Next, in a fifth step, the completion of this step is shown in FIG.
As shown in (e), after completion of the fourth step, a gate electrode 27 is formed by photolithography and dry etching, leaving a part of the surface of the source region 30 and the polysilicon film 60 in the groove 23 in the cell part A. At the same time, the polysilicon film 60 is left in a ring shape over the field oxide film 36 over the part of the N + type impurity region 35 via the gate oxide film 26 on the field oxide film 36 at the chip outer peripheral portion B.
After the formation of the QR polysilicon electrode 37, the surface of the epitaxial layer 25 that has undergone the above steps is covered with the interlayer insulating film 31 by the CVD method.

【0015】次に、第6工程はこの工程の完了後を図1
に示すように、第5工程完了後、セル部Aにおいてソー
ス領域30表面の一部およびベース領域29表面が露出
するように層間絶縁膜31およびゲート酸化膜26にコ
ンタクト窓を形成するとともに、チップ外周部Bにおい
てN+ 型不純物領域35のスクライブ領域Dの層間絶縁
膜31およびゲート酸化膜26を除去するとともに、E
QRポリシリコン電極37表面のチップ外周端側の端部
およびN+ 型不純物領域35上がチップ4辺の各中央部
4個所で部分的に露出するように層間絶縁膜31および
ゲート酸化膜26を除去する。以上の工程を経たエピタ
キシャル層25の表面をスパッタ法によりアルミニウム
膜で被覆し、このアルミニウム膜をフォトリソグラフィ
法およびドライエッチ法により選択的に除去して、セル
部Aにおいてベース領域29およびソース領域30とオ
ーミック接触により電気的に接続するソース電極32
と、チップ外周部BにおいてEQRポリシリコン電極3
7上のチップ外周端側の端部およびN+ 型不純物領域3
5の上記部分的に露出した表面から層間絶縁膜31上の
EQRポリシリコン電極37のチップ内側端よりチップ
外周端側の位置にアルミニウムを主金属とするEQRア
ルミニウム電極38を図3に示すようにチップのコーナ
ー部を除く4辺の各中央部4個所に分散して形成する。
図示しないが、ゲート電極27から外部に電気的に接続
するためのゲートパッドが同時形成され、ソース電極3
2はその一部を外部への電気的接続のためのソースパッ
ドとしている。
Next, a sixth step is shown in FIG. 1 after the completion of this step.
After completion of the fifth step, contact windows are formed in the interlayer insulating film 31 and the gate oxide film 26 so that a part of the surface of the source region 30 and the surface of the base region 29 are exposed in the cell portion A, and the chip In the outer peripheral portion B, the interlayer insulating film 31 and the gate oxide film 26 in the scribe region D of the N + -type impurity region 35 are removed and
The interlayer insulating film 31 and the gate oxide film 26 are so formed that the end of the surface of the QR polysilicon electrode 37 on the outer peripheral end side of the chip and the N + -type impurity region 35 are partially exposed at four central portions of the four sides of the chip. Remove. The surface of the epitaxial layer 25 having undergone the above steps is covered with an aluminum film by sputtering, and this aluminum film is selectively removed by photolithography and dry etching, so that the base region 29 and the source region 30 are formed in the cell portion A. Electrode 32 electrically connected to the source electrode by ohmic contact
And an EQR polysilicon electrode 3 at the chip outer peripheral portion B.
7 and N + type impurity region 3
5 shows an EQR aluminum electrode 38 mainly composed of aluminum at a position on the outer peripheral end side of the chip of the EQR polysilicon electrode 37 on the interlayer insulating film 31 from the partially exposed surface of the interlayer insulating film 31 as shown in FIG. The chips are formed separately at the four central portions of each of the four sides excluding the corner portions of the chip.
Although not shown, a gate pad for electrically connecting the gate electrode 27 to the outside is simultaneously formed, and the source electrode 3
Reference numeral 2 designates a part thereof as a source pad for external electrical connection.

【0016】この製造方法によれば、EQRポリシリコ
ン電極37はゲート電極27と同時に形成でき、工程を
増加させる必要がない。
According to this manufacturing method, the EQR polysilicon electrode 37 can be formed simultaneously with the gate electrode 27, and there is no need to increase the number of steps.

【0017】上記実施例において、EQRアルミニウム
電極を図3に示す平面パターンのもので説明したが、図
4に示すようにリング状のものであってもよい。ただ
し、この場合は、図3に示すものよりチップコーナー部
でのアルミスライドに対して少し不利となる。尚、図4
のA−A断面のEQRポリシリコン電極77およびEQ
Rアルミニウム電極78は図1に示すEQRポリシリコ
ン電極37およびEQRアルミニウム電極38と同一で
ある。上記実施例において、セル部Aのエピタキシャル
層表面の平面的な構造を図2に示すソースが非環状パタ
ーンのもので説明したが、これに限定されることなく、
他の非環状パターンやソース領域がベース領域を取り囲
む環状パターンであってもよい。また、U字型溝を格子
状に形成されたもので説明したが、ストライプ状に形成
されたものであってもよい。また、一導電型としてN型
および他導電型としてP型で説明したが、一導電型とし
てP型および他導電型としてN型であってもよい。ま
た、半導体基板を高不純物濃度の一導電型で説明した
が、高不純物濃度の他導電型であってもよい。この場合
は、IGBTに利用できる。また、半導体本体を半導体
基板とエピタキシャル層からなるもので説明したが、エ
ピタキシャル層を含まない半導体基板だけであってもよ
い。この場合、半導体基板の裏面を高濃度のN型不純物
層またはP型不純物層とする。
In the above embodiment, the EQR aluminum electrode has been described as having the plane pattern shown in FIG. 3, but may be ring-shaped as shown in FIG. However, in this case, there is a slight disadvantage to the aluminum slide at the chip corner portion as compared with the one shown in FIG. FIG.
Polysilicon electrode 77 and EQ of AA cross section of FIG.
The R aluminum electrode 78 is the same as the EQR polysilicon electrode 37 and the EQR aluminum electrode 38 shown in FIG. In the above embodiment, the planar structure of the epitaxial layer surface of the cell portion A has been described with the source shown in FIG. 2 having a non-annular pattern, but is not limited thereto.
Another non-annular pattern or an annular pattern in which the source region surrounds the base region may be used. In addition, although the U-shaped grooves are described as being formed in a lattice shape, they may be formed in a stripe shape. Further, the N-type as one conductivity type and the P-type as another conductivity type have been described, but the P-type as one conductivity type and the N-type as another conductivity type may be used. In addition, although the semiconductor substrate has been described as one conductivity type with a high impurity concentration, another conductivity type with a high impurity concentration may be used. In this case, it can be used for IGBT. Further, although the semiconductor body has been described as including the semiconductor substrate and the epitaxial layer, the semiconductor body may include only the semiconductor substrate not including the epitaxial layer. In this case, the back surface of the semiconductor substrate is a high-concentration N-type impurity layer or a P-type impurity layer.

【0018】[0018]

【発明の効果】本発明によれば、EQRポリシリコン電
極をフィールド酸化膜上に設けたので、従来のEQRア
ルミニウム電極だけの場合のようにフィールド酸化膜+
層間絶縁膜上にEQRを設けた場合よりEQR効果を高
くできるので、EQRの長さ短縮によりチップ外周部を
短縮でき、チップ面積を縮小することができる。また、
本発明でのEQRアルミニウム電極はEQRポリシリコ
ン電極と高濃度一導電型不純物領域との電気的接続を取
る機能を有すればよいので面積を小さくでき、従来のE
QRアルミニウム電極だけの場合よりソース電極との離
間距離を大きくとれ、更にEQRポリシリコン電極は層
間絶縁膜の下に設けられておりソース電極とEQRポリ
シリコン電極間は層間絶縁膜により分離されるため、温
度サイクル試験で発生するアルミニウムスライド現象に
よるソース電極とEQRアルミニウム電極とのショート
を防止でき、信頼性を高くすることができる。また、E
QRアルミニウム電極はリング状でもよいが、チップの
コーナー部に設けないようにした方が、特にアルミスラ
イドが大きく起こりやすいコーナー部でのソース電極と
EQRアルミニウム電極とのショートを完全に防止で
き、信頼性をより高くすることができる。また、本発明
の製造方法によれば、EQRポリシリコン電極をゲート
電極と同時に形成することにより、従来のEQRアルミ
ニウム電極だけの場合と同じ工程数で製造でき、ウェー
ハ1枚当りの製造コストを従来と同一でチップ面積を縮
小することができるため、信頼性の高いチップを低コス
トで製造することができる。
According to the present invention, since the EQR polysilicon electrode is provided on the field oxide film, the field oxide film is formed as in the case of the conventional EQR aluminum electrode alone.
Since the EQR effect can be enhanced as compared with the case where the EQR is provided on the interlayer insulating film, the outer peripheral portion of the chip can be shortened by shortening the length of the EQR, and the chip area can be reduced. Also,
The EQR aluminum electrode according to the present invention may have a function of establishing an electrical connection between the EQR polysilicon electrode and the high-concentration one-conductivity-type impurity region.
The distance between the source electrode and the QRR electrode is larger than that of the case of using only the QR aluminum electrode. Further, the EQR polysilicon electrode is provided below the interlayer insulating film, and the source electrode and the EQR polysilicon electrode are separated by the interlayer insulating film. In addition, the short circuit between the source electrode and the EQR aluminum electrode due to the aluminum slide phenomenon generated in the temperature cycle test can be prevented, and the reliability can be increased. Also, E
The QR aluminum electrode may be ring-shaped, but if it is not provided at the corner of the chip, it is possible to completely prevent a short circuit between the source electrode and the EQR aluminum electrode, especially at the corner where aluminum sliding is likely to occur greatly, and to improve reliability. Sex can be made higher. Further, according to the manufacturing method of the present invention, by forming the EQR polysilicon electrode and the gate electrode at the same time, it is possible to manufacture the same number of steps as in the case of using only the conventional EQR aluminum electrode, and to reduce the manufacturing cost per wafer. Since the chip area can be reduced in the same manner as described above, a highly reliable chip can be manufactured at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の1実施例である縦型パワーMOSF
ETの要部断面図。
FIG. 1 is a vertical power MOSF according to an embodiment of the present invention.
Sectional drawing of the principal part of ET.

【図2】 図1の縦型パワーMOSFETのU字型溝で
分離された半導体本体表面の1セル分の平面パターンを
示す1実施例のパターン図。
FIG. 2 is a pattern diagram of one embodiment showing a planar pattern of one cell on the surface of a semiconductor body separated by a U-shaped groove of the vertical power MOSFET of FIG. 1;

【図3】 図1の縦型パワーMOSFETのEQRの平
面パターンを示す1実施例のパターン図。
FIG. 3 is a pattern diagram of one embodiment showing a planar pattern of an EQR of the vertical power MOSFET of FIG. 1;

【図4】 図1の縦型パワーMOSFETのEQRの平
面パターンを示す他の実施例のパターン図。
FIG. 4 is a pattern diagram of another embodiment showing a planar pattern of the EQR of the vertical power MOSFET of FIG. 1;

【図5】 図1の縦型パワーMOSFETの製造工程を
示す要部断面図
FIG. 5 is a cross-sectional view of a main part showing a manufacturing process of the vertical power MOSFET of FIG. 1;

【図6】 従来の縦型パワーMOSFETの要部断面
図。
FIG. 6 is a sectional view of a main part of a conventional vertical power MOSFET.

【図7】 図6に示す縦型パワーMOSFETのEQR
の平面パターンを示すパターン図。
7 is an EQR of the vertical power MOSFET shown in FIG.
FIG.

【符号の説明】[Explanation of symbols]

21 半導体本体 22 半導体基板 23 U字型溝 24 外周溝 25 エピタキシャル層 26 ゲート酸化膜 27 ゲート電極 28 ドレイン領域 29 ベース領域 30 ソース領域 31 層間絶縁膜 32 ソース電極 34 P型不純物領域 35 N+型不純物領域 36 フィールド酸化膜 37 EQRポリシリコン電極 38 EQRアルミニウム電極 53 シリコン酸化膜 54 窒化膜 55 初期溝 56 外周初期溝 57 LOCOS酸化膜 58 シリコン酸化膜 59 レジストパターン 60 ポリシリコン膜 Reference Signs List 21 semiconductor body 22 semiconductor substrate 23 U-shaped groove 24 outer peripheral groove 25 epitaxial layer 26 gate oxide film 27 gate electrode 28 drain region 29 base region 30 source region 31 interlayer insulating film 32 source electrode 34 P-type impurity region 35 N + -type impurity region Reference Signs List 36 field oxide film 37 EQR polysilicon electrode 38 EQR aluminum electrode 53 silicon oxide film 54 nitride film 55 initial groove 56 outer peripheral initial groove 57 LOCOS oxide film 58 silicon oxide film 59 resist pattern 60 polysilicon film

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】セル部にU字型溝およびチップ外周部の外
周端から所定距離離間した位置に外周溝が形成されセル
部およびチップ外周部に共通の低濃度一導電型ドレイン
領域を含む半導体本体を具備し、 セル部において、前記半導体本体に含まれ前記ドレイン
領域の表面層で前記U字型溝に分離された領域に設けた
他導電型ベース領域と、このベース領域の表面層に設け
た高濃度一導電型ソース領域と、前記U字型溝の内面に
設けたゲート酸化膜と、前記U字型溝にゲート酸化膜を
介して設けたポリシリコンからなるゲート電極と、この
ゲート電極と層間絶縁膜で絶縁し前記ベース領域および
ソース領域に電気的接続したアルミニウムを主金属とす
るソース電極とを具備し、 チップ外周部において、前記半導体本体に含まれ前記ド
レイン領域の表面層でチップ外周端と前記外周溝間に挟
まれた領域に設けた他導電型不純物領域と、この他導電
型不純物領域の表面層に設けた高濃度一導電型不純物領
域と、前記外周溝内に設けたフィールド酸化膜と、この
フィールド酸化膜上と前記層間絶縁膜下間に所定長で前
記高濃度一導電型不純物領域上に跨ってリング状に設け
たポリシリコンからなるEQRポリシリコン電極と、こ
のEQRポリシリコン電極のチップ外周端側の端部およ
び前記高濃度一導電型不純物領域に電気的接続したアル
ミニウムを主金属とするEQRアルミニウム電極とを具
備した絶縁ゲート型半導体装置。
1. A semiconductor including a U-shaped groove in a cell portion and an outer peripheral groove formed at a predetermined distance from an outer peripheral end of an outer peripheral portion of a chip, and a low-concentration one conductivity type drain region common to the outer peripheral portion of the cell portion and the chip. A main body, a cell region, a base region of another conductivity type provided in a region included in the semiconductor body and separated by the U-shaped groove in a surface layer of the drain region, and provided in a surface layer of the base region. A high-concentration one-conductivity-type source region, a gate oxide film provided on the inner surface of the U-shaped groove, a gate electrode made of polysilicon provided in the U-shaped groove with a gate oxide film interposed therebetween, And a source electrode made of aluminum as a main metal insulated by an interlayer insulating film and electrically connected to the base region and the source region. The drain region included in the semiconductor body in a chip outer peripheral portion. An impurity region of another conductivity type provided in a region sandwiched between the outer peripheral edge of the chip and the outer peripheral groove in the surface layer; a high-concentration one-conductivity-type impurity region provided in a surface layer of the other conductive type impurity region; And an EQR polysilicon electrode made of polysilicon provided in a ring shape over the field oxide film and the high concentration one conductivity type impurity region with a predetermined length between the field oxide film and the interlayer insulating film. And an EQR aluminum electrode having aluminum as a main metal electrically connected to an end of the EQR polysilicon electrode on the outer peripheral end of the chip and to the high-concentration one-conductivity-type impurity region.
【請求項2】前記EQRアルミニウム電極が方形チップ
のコーナー部を除いて設けられている請求項1記載の絶
縁ゲート型半導体装置。
2. The insulated gate semiconductor device according to claim 1, wherein said EQR aluminum electrode is provided except for a corner of a rectangular chip.
【請求項3】前記EQRアルミニウム電極が方形チップ
の4辺の各中央部4個所に設けられている請求項2記載
の絶縁ゲート型半導体装置。
3. The insulated gate semiconductor device according to claim 2, wherein said EQR aluminum electrodes are provided at four central portions on each of four sides of a rectangular chip.
【請求項4】前記EQRアルミニウム電極がリング状に
設けられている請求項1記載の絶縁ゲート型半導体装
置。
4. The insulated gate semiconductor device according to claim 1, wherein said EQR aluminum electrode is provided in a ring shape.
【請求項5】前記EQRポリシリコン電極が前記ゲート
電極と同時に設けられた請求項1記載の絶縁ゲート型半
導体装置。
5. The insulated gate semiconductor device according to claim 1, wherein said EQR polysilicon electrode is provided simultaneously with said gate electrode.
【請求項6】前記半導体本体が半導体基板上に形成され
たエピタキシャル層である請求項1記載の絶縁ゲート型
半導体装置。
6. The insulated gate semiconductor device according to claim 1, wherein said semiconductor body is an epitaxial layer formed on a semiconductor substrate.
【請求項7】前記半導体基板が高濃度一導電型である請
求項6記載の絶縁ゲート型半導体装置。
7. The insulated gate semiconductor device according to claim 6, wherein said semiconductor substrate is of a high concentration one conductivity type.
【請求項8】前記半導体基板が高濃度他導電型である請
求項6記載の絶縁ゲート型半導体装置。
8. The insulated gate semiconductor device according to claim 6, wherein said semiconductor substrate is of a high concentration and other conductivity type.
【請求項9】ドレイン領域となる低濃度一導電型半導体
層を表面側に含む半導体本体上にシリコン酸化膜とシリ
コン窒化膜を順次形成した後、エッチングにより半導体
本体表面のセル部に初期溝とチップ外周部の外周端から
所定距離離間した位置に外周初期溝とを形成する第1工
程と、 第1工程完了後、前記シリコン窒化膜をマスクに前記初
期溝および外周初期溝の内面にLOCOS酸化膜を形成
することより初期溝がU字型溝および外周初期溝が外周
溝に形状変形され、このLOCOS酸化膜をマスクに、
セル部において、前記半導体層の表面層の前記U字型溝
に分離された領域に他導電型ベース領域を形成するとと
もにこのベース領域の表面層に高濃度一導電型ソース領
域を形成し、チップ外周部において、前記半導体層の表
面層のチップ外周端と前記外周溝に挟まれた領域に他導
電型不純物領域を形成するとともにこの他導電型不純物
領域の表面層に高濃度一導電型不純物領域を形成する第
2工程と、 第2工程完了後、前記U字型溝のLOCOS酸化膜を除
去するとともに前記外周溝のLOCOS酸化膜をフィー
ルド酸化膜として残す第3工程と、 第3工程完了後、U字型溝内面を含む露出した半導体本
体表面にゲート酸化膜を形成した後、その上からポリシ
リコン膜を被覆する第4工程と、 第4工程完了後、ポリシリコン膜をエッチングして、セ
ル部において、前記ソース領域表面の一部およびU字型
溝のポリシリコン膜を残してゲート電極を形成し、チッ
プ外周部において、前記フィールド酸化膜上に所定長で
前記高濃度一導電型不純物領域上の一部に跨ってリング
状にポリシリコン膜を残してEQRポリシリコン電極を
形成し、その上から層間絶縁膜を被覆する第5工程と、 第5工程完了後、前記層間絶縁膜およびゲート酸化膜を
エッチングして、セル部において、前記ソース領域表面
の一部およびベース領域表面を露出し、チップ外周部に
おいて、前記高濃度一導電型不純物領域表面を露出する
とともに、前記EQRポリシリコン電極表面のチップ外
周端側の端部を露出して後、その上からアルミニウム膜
を被覆し、このアルミニウム膜をエッチングして、セル
部において前記ベース領域およびソース領域と電気的に
接続するソース電極を形成し、チップ外周部において、
前記EQRポリシリコン電極のチップ外周端側の端部お
よび前記高濃度一導電型不純物領域に電気的接続したア
ルミニウムを主金属とするEQRアルミニウム電極を形
成する第6工程とを有する絶縁ゲート型半導体装置の製
造方法。
9. A silicon oxide film and a silicon nitride film are sequentially formed on a semiconductor body including a low-concentration one-conductivity-type semiconductor layer serving as a drain region on a surface side, and an initial groove is formed in a cell portion on the semiconductor body surface by etching. A first step of forming an outer peripheral initial groove at a position separated from the outer peripheral end of the chip outer peripheral part by a predetermined distance; and after completion of the first step, LOCOS oxidation is performed on the inner surfaces of the initial groove and the outer peripheral initial groove using the silicon nitride film as a mask. By forming the film, the initial groove is deformed into a U-shaped groove and the outer peripheral initial groove is deformed into an outer peripheral groove. Using this LOCOS oxide film as a mask,
In the cell portion, a different conductivity type base region is formed in a region of the surface layer of the semiconductor layer separated by the U-shaped groove, and a high concentration one conductivity type source region is formed in a surface layer of the base region; In the outer peripheral portion, an impurity region of another conductivity type is formed in a region between the chip outer peripheral end of the surface layer of the semiconductor layer and the outer peripheral groove, and a high-concentration one conductivity type impurity region is formed in a surface layer of the impurity region of the other conductivity type. A second step of forming a LOCOS oxide film in the U-shaped groove and leaving the LOCOS oxide film in the outer peripheral groove as a field oxide film after the completion of the second step; and Forming a gate oxide film on the exposed surface of the semiconductor body including the inner surface of the U-shaped groove, and then covering the polysilicon film from above, and etching the polysilicon film after completion of the fourth process In the cell portion, a gate electrode is formed while leaving a part of the source region surface and the polysilicon film of the U-shaped groove. A fifth step of forming an EQR polysilicon electrode while leaving a polysilicon film in a ring shape over a part of the mold impurity region, and covering the interlayer insulating film from above; The film and the gate oxide film are etched to expose a part of the source region surface and the base region surface in the cell portion, and to expose the high concentration one conductivity type impurity region surface in the chip outer peripheral portion, After exposing the end portion of the surface of the polysilicon electrode on the chip outer peripheral end side, an aluminum film is coated thereon, and the aluminum film is etched to form a cell portion. Said base region and forming a source region and electrically source electrode connected, in the chip peripheral portion,
Forming an EQR aluminum electrode having aluminum as a main metal electrically connected to an end of the EQR polysilicon electrode on the chip outer peripheral end side and the high-concentration one-conductivity-type impurity region. Manufacturing method.
JP08097599A 1999-03-25 1999-03-25 Insulated gate semiconductor device and method of manufacturing the same Expired - Fee Related JP3417336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08097599A JP3417336B2 (en) 1999-03-25 1999-03-25 Insulated gate semiconductor device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08097599A JP3417336B2 (en) 1999-03-25 1999-03-25 Insulated gate semiconductor device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2000277728A true JP2000277728A (en) 2000-10-06
JP3417336B2 JP3417336B2 (en) 2003-06-16

Family

ID=13733525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08097599A Expired - Fee Related JP3417336B2 (en) 1999-03-25 1999-03-25 Insulated gate semiconductor device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3417336B2 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6710403B2 (en) 2002-07-30 2004-03-23 Fairchild Semiconductor Corporation Dual trench power MOSFET
US6710418B1 (en) 2002-10-11 2004-03-23 Fairchild Semiconductor Corporation Schottky rectifier with insulation-filled trenches and method of forming the same
US6713813B2 (en) 2001-01-30 2004-03-30 Fairchild Semiconductor Corporation Field effect transistor having a lateral depletion structure
US6803626B2 (en) 2002-07-18 2004-10-12 Fairchild Semiconductor Corporation Vertical charge control semiconductor device
US6818513B2 (en) 2001-01-30 2004-11-16 Fairchild Semiconductor Corporation Method of forming a field effect transistor having a lateral depletion structure
US7652326B2 (en) 2003-05-20 2010-01-26 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
US7655981B2 (en) 2003-11-28 2010-02-02 Fairchild Korea Semiconductor Ltd. Superjunction semiconductor device
US7713822B2 (en) 2006-03-24 2010-05-11 Fairchild Semiconductor Corporation Method of forming high density trench FET with integrated Schottky diode
US7732876B2 (en) 2004-08-03 2010-06-08 Fairchild Semiconductor Corporation Power transistor with trench sinker for contacting the backside
US7745289B2 (en) 2000-08-16 2010-06-29 Fairchild Semiconductor Corporation Method of forming a FET having ultra-low on-resistance and low gate charge
US7772668B2 (en) 2007-12-26 2010-08-10 Fairchild Semiconductor Corporation Shielded gate trench FET with multiple channels
US7799636B2 (en) 2003-05-20 2010-09-21 Fairchild Semiconductor Corporation Power device with trenches having wider upper portion than lower portion
US7859047B2 (en) 2006-06-19 2010-12-28 Fairchild Semiconductor Corporation Shielded gate trench FET with the shield and gate electrodes connected together in non-active region
US7936008B2 (en) 2003-12-30 2011-05-03 Fairchild Semiconductor Corporation Structure and method for forming accumulation-mode field effect transistor with improved current capability
US8084327B2 (en) 2005-04-06 2011-12-27 Fairchild Semiconductor Corporation Method for forming trench gate field effect transistor with recessed mesas using spacers
US8198677B2 (en) 2002-10-03 2012-06-12 Fairchild Semiconductor Corporation Trench-gate LDMOS structures
JP2012119711A (en) * 2007-04-30 2012-06-21 Infineon Technologies Ag Anchoring structure and fitting structure
US8319290B2 (en) 2010-06-18 2012-11-27 Fairchild Semiconductor Corporation Trench MOS barrier schottky rectifier with a planar surface using CMP techniques
US8673700B2 (en) 2011-04-27 2014-03-18 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8772868B2 (en) 2011-04-27 2014-07-08 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8786010B2 (en) 2011-04-27 2014-07-22 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8836028B2 (en) 2011-04-27 2014-09-16 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8928077B2 (en) 2007-09-21 2015-01-06 Fairchild Semiconductor Corporation Superjunction structures for power devices
US9076821B2 (en) 2007-04-30 2015-07-07 Infineon Technologies Ag Anchoring structure and intermeshing structure
US9431481B2 (en) 2008-09-19 2016-08-30 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
CN108878514A (en) * 2018-06-29 2018-11-23 上海华虹宏力半导体制造有限公司 Groove grid super node device and its manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5957171B2 (en) 2010-06-30 2016-07-27 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8710584B2 (en) 2000-08-16 2014-04-29 Fairchild Semiconductor Corporation FET device having ultra-low on-resistance and low gate charge
US7745289B2 (en) 2000-08-16 2010-06-29 Fairchild Semiconductor Corporation Method of forming a FET having ultra-low on-resistance and low gate charge
US8101484B2 (en) 2000-08-16 2012-01-24 Fairchild Semiconductor Corporation Method of forming a FET having ultra-low on-resistance and low gate charge
US6713813B2 (en) 2001-01-30 2004-03-30 Fairchild Semiconductor Corporation Field effect transistor having a lateral depletion structure
US6818513B2 (en) 2001-01-30 2004-11-16 Fairchild Semiconductor Corporation Method of forming a field effect transistor having a lateral depletion structure
US9368587B2 (en) 2001-01-30 2016-06-14 Fairchild Semiconductor Corporation Accumulation-mode field effect transistor with improved current capability
US8829641B2 (en) 2001-01-30 2014-09-09 Fairchild Semiconductor Corporation Method of forming a dual-trench field effect transistor
US7977744B2 (en) 2002-07-18 2011-07-12 Fairchild Semiconductor Corporation Field effect transistor with trench filled with insulating material and strips of semi-insulating material along trench sidewalls
US6803626B2 (en) 2002-07-18 2004-10-12 Fairchild Semiconductor Corporation Vertical charge control semiconductor device
US6710403B2 (en) 2002-07-30 2004-03-23 Fairchild Semiconductor Corporation Dual trench power MOSFET
US8198677B2 (en) 2002-10-03 2012-06-12 Fairchild Semiconductor Corporation Trench-gate LDMOS structures
US6710418B1 (en) 2002-10-11 2004-03-23 Fairchild Semiconductor Corporation Schottky rectifier with insulation-filled trenches and method of forming the same
US8143123B2 (en) 2003-05-20 2012-03-27 Fairchild Semiconductor Corporation Methods of forming inter-poly dielectric (IPD) layers in power semiconductor devices
US8936985B2 (en) 2003-05-20 2015-01-20 Fairchild Semiconductor Corporation Methods related to power semiconductor devices with thick bottom oxide layers
US7652326B2 (en) 2003-05-20 2010-01-26 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
US7855415B2 (en) 2003-05-20 2010-12-21 Fairchild Semiconductor Corporation Power semiconductor devices having termination structures and methods of manufacture
US7982265B2 (en) 2003-05-20 2011-07-19 Fairchild Semiconductor Corporation Trenched shield gate power semiconductor devices and methods of manufacture
US8013391B2 (en) 2003-05-20 2011-09-06 Fairchild Semiconductor Corporation Power semiconductor devices with trenched shielded split gate transistor and methods of manufacture
US8013387B2 (en) 2003-05-20 2011-09-06 Fairchild Semiconductor Corporation Power semiconductor devices with shield and gate contacts and methods of manufacture
US8350317B2 (en) 2003-05-20 2013-01-08 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
US8034682B2 (en) 2003-05-20 2011-10-11 Fairchild Semiconductor Corporation Power device with trenches having wider upper portion than lower portion
US8889511B2 (en) 2003-05-20 2014-11-18 Fairchild Semiconductor Corporation Methods of manufacturing power semiconductor devices with trenched shielded split gate transistor
US7799636B2 (en) 2003-05-20 2010-09-21 Fairchild Semiconductor Corporation Power device with trenches having wider upper portion than lower portion
US8129245B2 (en) 2003-05-20 2012-03-06 Fairchild Semiconductor Corporation Methods of manufacturing power semiconductor devices with shield and gate contacts
US8716783B2 (en) 2003-05-20 2014-05-06 Fairchild Semiconductor Corporation Power device with self-aligned source regions
US8786045B2 (en) 2003-05-20 2014-07-22 Fairchild Semiconductor Corporation Power semiconductor devices having termination structures
US7655981B2 (en) 2003-11-28 2010-02-02 Fairchild Korea Semiconductor Ltd. Superjunction semiconductor device
US8518777B2 (en) 2003-12-30 2013-08-27 Fairchild Semiconductor Corporation Method for forming accumulation-mode field effect transistor with improved current capability
US7936008B2 (en) 2003-12-30 2011-05-03 Fairchild Semiconductor Corporation Structure and method for forming accumulation-mode field effect transistor with improved current capability
US8026558B2 (en) 2004-08-03 2011-09-27 Fairchild Semiconductor Corporation Semiconductor power device having a top-side drain using a sinker trench
US7732876B2 (en) 2004-08-03 2010-06-08 Fairchild Semiconductor Corporation Power transistor with trench sinker for contacting the backside
US8148233B2 (en) 2004-08-03 2012-04-03 Fairchild Semiconductor Corporation Semiconductor power device having a top-side drain using a sinker trench
US8680611B2 (en) 2005-04-06 2014-03-25 Fairchild Semiconductor Corporation Field effect transistor and schottky diode structures
US8084327B2 (en) 2005-04-06 2011-12-27 Fairchild Semiconductor Corporation Method for forming trench gate field effect transistor with recessed mesas using spacers
US7713822B2 (en) 2006-03-24 2010-05-11 Fairchild Semiconductor Corporation Method of forming high density trench FET with integrated Schottky diode
US7859047B2 (en) 2006-06-19 2010-12-28 Fairchild Semiconductor Corporation Shielded gate trench FET with the shield and gate electrodes connected together in non-active region
JP2012119711A (en) * 2007-04-30 2012-06-21 Infineon Technologies Ag Anchoring structure and fitting structure
US9076821B2 (en) 2007-04-30 2015-07-07 Infineon Technologies Ag Anchoring structure and intermeshing structure
US9595596B2 (en) 2007-09-21 2017-03-14 Fairchild Semiconductor Corporation Superjunction structures for power devices
US8928077B2 (en) 2007-09-21 2015-01-06 Fairchild Semiconductor Corporation Superjunction structures for power devices
US9224853B2 (en) 2007-12-26 2015-12-29 Fairchild Semiconductor Corporation Shielded gate trench FET with multiple channels
US7772668B2 (en) 2007-12-26 2010-08-10 Fairchild Semiconductor Corporation Shielded gate trench FET with multiple channels
US9431481B2 (en) 2008-09-19 2016-08-30 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8432000B2 (en) 2010-06-18 2013-04-30 Fairchild Semiconductor Corporation Trench MOS barrier schottky rectifier with a planar surface using CMP techniques
US8319290B2 (en) 2010-06-18 2012-11-27 Fairchild Semiconductor Corporation Trench MOS barrier schottky rectifier with a planar surface using CMP techniques
US8836028B2 (en) 2011-04-27 2014-09-16 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8673700B2 (en) 2011-04-27 2014-03-18 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8786010B2 (en) 2011-04-27 2014-07-22 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8772868B2 (en) 2011-04-27 2014-07-08 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
CN108878514A (en) * 2018-06-29 2018-11-23 上海华虹宏力半导体制造有限公司 Groove grid super node device and its manufacturing method

Also Published As

Publication number Publication date
JP3417336B2 (en) 2003-06-16

Similar Documents

Publication Publication Date Title
JP3417336B2 (en) Insulated gate semiconductor device and method of manufacturing the same
US9082845B1 (en) Super junction field effect transistor
JP2002246596A (en) Insulated gate semiconductor device and its manufacturing method
US11145511B1 (en) Power semiconductor device and method of fabricating the same
US6194760B1 (en) Double-diffused MOS transistor and method of fabricating the same
JP4463888B2 (en) Insulated gate semiconductor device and manufacturing method thereof
JP2010010408A (en) Semiconductor device and method of manufacturing the same
JP2002158355A (en) Semiconductor device and its manufacturing method
US8188482B2 (en) SiC semiconductor device with self-aligned contacts, integrated circuit and manufacturing method
JP2002043571A (en) Semiconductor device
US6127709A (en) Guard ring structure for semiconductor devices and process for manufacture thereof
EP1081768A2 (en) Insulated gate field-effect transistor and method of making the same
US20050082608A1 (en) Semiconductor device and method for fabricating the same
JP2919757B2 (en) Insulated gate semiconductor device
JP2000277531A (en) Semiconductor device and its manufacture
JP2001119023A (en) Semiconductor device and manufacturing method therefor
JP5239254B2 (en) Method for manufacturing insulated gate type semiconductor device
JPH11330469A (en) Insulated gate type of semiconductor
JP2000299457A (en) Semiconductor device and its manufacture
JP3440987B2 (en) Method for manufacturing insulated gate semiconductor device
JP4290378B2 (en) Horizontal power MOS transistor and manufacturing method thereof
JP2003163351A (en) Insulated-gate semiconductor device and method of manufacturing the same
US12002892B2 (en) Semiconductor device with embedded Schottky diode and manufacturing method thereof
TWI708364B (en) Semiconductor device and manufacturing method thereof
JP2021153155A (en) Semiconductor device and method for manufacturing semiconductor device

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100411

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees