JP2000277353A - Transformer winding - Google Patents

Transformer winding

Info

Publication number
JP2000277353A
JP2000277353A JP11083383A JP8338399A JP2000277353A JP 2000277353 A JP2000277353 A JP 2000277353A JP 11083383 A JP11083383 A JP 11083383A JP 8338399 A JP8338399 A JP 8338399A JP 2000277353 A JP2000277353 A JP 2000277353A
Authority
JP
Japan
Prior art keywords
electric wire
sections
winding
spacer
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11083383A
Other languages
Japanese (ja)
Inventor
Sadao Obuchi
禎夫 大渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takaoka Toko Co Ltd
Original Assignee
Takaoka Electric Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takaoka Electric Mfg Co Ltd filed Critical Takaoka Electric Mfg Co Ltd
Priority to JP11083383A priority Critical patent/JP2000277353A/en
Publication of JP2000277353A publication Critical patent/JP2000277353A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulating Of Coils (AREA)
  • Coils Of Transformers For General Uses (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance cooling by a method, wherein a spacer passes a cooling medium arranged radially at a plurality of equal distances over the entire periphery of a winding, and an L-shaped cap in which one or more interval pieces are adhered to the surface is interposed between the spacers to set as a pair to form a spacer with an L-shaped cap, which is disposed between sections. SOLUTION: Windings are formed so that a spacer 2 is fixed by a duct rail 5 existing inside and outside, and an electric wire 3 coated with an electric wire coating 4 is wound concentrically to form a disk-like section 6 or a section 7, which is alternately laminated in a multilayer with the spacer 2. Furthermore, the electric wire 3 crosses over from the section 7 to the section 6 in an electric wire cross part 14. In the electric wire 3 constituting the winding, the sections 6, 7 wound in a disk-like manner are laminated axially in the multilayer, and the spacer 2 is inserted into a clearance between the sections 6 and 7, to hold the sections 6, 7. In addition, the electric wire 3 at a part where the L-shaped cap 1 is inserted is brought into contact with an interval piece 8 and held.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、変圧器の巻線構造
に関する。
[0001] The present invention relates to a winding structure of a transformer.

【0002】[0002]

【従来の技術】図2(a)は、変圧器巻線の断面図を示
したものである。鉄心9に低圧側巻線10と高圧側巻線
11が同心配置されている。図2(b)は、セクション
6、7間における等電位線12の分布を示す。図3は、
図2(a)の高圧側巻線11のA部の構造をより詳細に
示したものである。巻線は、内側と外側にあるダクト用
レール5でスペーサ2を固定し、電線被覆4により覆わ
れた電線3を同心状に巻回して、円盤状のセクション6
又はセクション7を形成し、スペーサ2と交互に多層に
積み重ねて構成している。また、電線3は、電線渡り部
14でセクション7からセクション6に渡っている。
2. Description of the Related Art FIG. 2A is a sectional view of a transformer winding. A low-voltage side winding 10 and a high-voltage side winding 11 are concentrically arranged on an iron core 9. FIG. 2B shows a distribution of the equipotential lines 12 between the sections 6 and 7. FIG.
FIG. 3 shows the structure of the portion A of the high-voltage side winding 11 in FIG. 2A in more detail. For the winding, the spacer 2 is fixed by the inner and outer duct rails 5, and the electric wire 3 covered with the electric wire coating 4 is concentrically wound to form a disc-shaped section 6.
Alternatively, a section 7 is formed, and the section 7 is alternately stacked with the spacers 2 to form a multilayer. Further, the electric wire 3 extends from the section 7 to the section 6 at the electric wire crossing portion 14.

【0003】従来、セクション6、7間における絶縁
は、図3スペーサ2により、ある間隔をおいて絶縁され
ている。そのセクション6、7間には、電界が発生し、
その電界の様子を図2(b)に示す。セクション6、7
間には等電位線12が発生し、低圧側巻線10と高圧側
巻線11の間の電位差及び高圧側巻線11のセクション
6,7間の電位差により電界を生じる。この等電位線1
2の間隔が密になるほど電界が集中していることを示
し、高圧側巻線11を構成する電線3のうち電線角部1
3においては、電線3の角部曲率が大きいためこの部分
に局部的な電解集中が生じる。セクション6,7間の絶
縁破壊のほとんどは、この電界集中箇所から部分放電が
生じて、絶縁破壊に至る。それは、高圧側巻線11のセ
クション6、7間の構造や距離によって、電線角部13
への電界集中が変わり部分放電発生電圧及び部分放電の
進展が変わってくる。このため、電線角部13の電界集
中緩和のためにセクション6,7間の絶縁距離を大きく
する必要があるが、巻線が大きくなることは経済的でな
いため、絶縁距離は縮小した構造とすることが望まし
い。そのため、セクション6,7間の絶縁性能を電線被
覆4で確保するために電線角部13四すみの電線被覆4
のみを部分的に厚くしたいが、そのためには電線被覆4
の厚さが違う電線3同士を溶接でつなぎ合わせる必要が
あり、作業性の悪化につながるため、巻線を構成する電
線3の電線被覆4を全長にわたって厚くすることでセク
ション6、7間の絶縁性能を確保している。
Conventionally, the insulation between the sections 6 and 7 is insulated at a certain interval by the spacer 2 in FIG. An electric field is generated between the sections 6 and 7,
The state of the electric field is shown in FIG. Sections 6, 7
An equipotential line 12 is generated therebetween, and an electric field is generated by a potential difference between the low-voltage side winding 10 and the high-voltage side winding 11 and a potential difference between the sections 6 and 7 of the high-voltage side winding 11. This equipotential line 1
2 indicates that the electric field is more concentrated as the distance between the electric wires 3 becomes smaller.
In No. 3, since the curvature of the corner of the electric wire 3 is large, local electrolytic concentration occurs in this portion. Almost all of the dielectric breakdown between the sections 6 and 7 is caused by partial discharge from the electric field concentrated portion, which leads to dielectric breakdown. It depends on the structure and the distance between the sections 6 and 7 of the high-voltage side winding 11, depending on the wire corner 13.
The concentration of the electric field on the electrode changes, and the partial discharge generation voltage and the progress of the partial discharge change. For this reason, it is necessary to increase the insulation distance between the sections 6 and 7 in order to alleviate the electric field concentration at the wire corner 13, but since it is not economical to increase the winding, the insulation distance is reduced. It is desirable. Therefore, in order to secure the insulation performance between the sections 6 and 7 with the electric wire coating 4, the electric wire coating 4 of the four corners of the electric wire 13 is provided.
Only to partially increase the thickness of the wire,
It is necessary to join the wires 3 having different thicknesses by welding, which leads to deterioration of workability. Therefore, the insulation between the sections 6 and 7 is increased by increasing the thickness of the wire coating 4 of the wires 3 constituting the winding over the entire length. Performance is assured.

【0004】電線被覆4が厚くなると、巻線を構成する
電線3から発生する熱が電線3内部に蓄積され、絶縁物
が高温にさらされてしまうので、絶縁物の劣化を防ぐた
めに電線3を冷却媒体で冷却する必要がある。電線3の
発熱量をQ(W)、電線3表面の発熱面積をS
(m)、電線被覆4の厚さをi(m)、電線被覆4の
熱伝導率をp(W/m・K)とすると、電線3と電線被
覆4の温度差Δθ(K)は次式で表せる。 Δθ=(Q/S)・(i/p) 電線3から発生する熱量Qを小さな温度差Δθで巻線外
に放出する場合、上式より電線被覆4の厚さiを小さく
する必要がある。つまり、冷却性能を考えた場合、電線
被覆4はできるだけ薄い方がよい。しかし、電線3のう
ち最も電界集中の激しい箇所である電線角部13の絶縁
強度を確保するために、電線3の全長にわたって電線被
覆4を厚くしているため、電線3の冷却効率低下の原因
をつくっている。
[0004] When the electric wire coating 4 becomes thicker, heat generated from the electric wire 3 constituting the winding is accumulated in the electric wire 3 and the insulator is exposed to a high temperature. It is necessary to cool with a cooling medium. The heat value of the wire 3 is Q (W), and the heat generation area of the surface of the wire 3 is S
(M 2 ), assuming that the thickness of the wire coating 4 is i (m) and the thermal conductivity of the wire coating 4 is p (W / m · K), the temperature difference Δθ (K) between the wire 3 and the wire coating 4 is It can be expressed by the following equation. Δθ = (Q / S) · (i / p) When releasing the heat quantity Q generated from the electric wire 3 out of the winding with a small temperature difference Δθ, it is necessary to reduce the thickness i of the electric wire coating 4 from the above equation. . That is, in consideration of the cooling performance, it is better that the electric wire coating 4 is as thin as possible. However, in order to secure the insulation strength of the wire corner portion 13 where the electric field concentration is most intense in the wire 3, the wire coating 4 is thickened over the entire length of the wire 3, which causes a reduction in the cooling efficiency of the wire 3. Is making.

【0005】[0005]

【発明が解決しようとする課題】本発明は、絶縁性能を
低下させることなく、冷却性能の向上を図った変圧器巻
線を提供することを課題としている。
SUMMARY OF THE INVENTION An object of the present invention is to provide a transformer winding having improved cooling performance without lowering insulation performance.

【0006】[0006]

【課題を解決するための手段】鉄心と円盤状巻線を同心
配置した変圧器巻線において、巻線の全周を数十等配で
放射状に配置した冷却媒体を通すためのスペーサに間隔
片が1個以上表面に接着されたL形キャップを挟み込み
一組としたL形キャップ付きスペーサをセクション間に
配置した構造とする。
Means for Solving the Problems In a transformer winding in which an iron core and a disk-shaped winding are arranged concentrically, a spacing piece is provided on a spacer for passing a cooling medium which is radially arranged in a dozens of equal intervals around the winding. Has a structure in which an L-shaped cap with one or more L-type caps is sandwiched between the sections and a set of spacers with an L-shaped cap is arranged between the sections.

【0007】[0007]

【発明の実施の形態】図1は、本発明の実施の一例の形
態を示す巻線構造図であり、(a)は巻線構造の断面
図、(b)はスペーサ2に挟み込むL形キャップ1の構
造を示し、(c)はスペーサ2の構造を示す。巻線は、
内側と外側にあるダクト用レール5でスペーサ2を固定
し、電線被覆4により覆われた電線3を同心状に巻回し
て、円盤状のセクション6又はセクション7を形成し、
スペーサ2と交互に多層に積み重ねて構成している。ま
た、電線3は、電線渡り部14でセクション7からセク
ション6に渡っている。巻線を構成する電線3は、円盤
状に巻回されたセクション6,7を軸方向に多層に積み
重ね、セクション6,7間の間隙にはスペーサ2が挿入
されてセクション6、7を保持している。図1(a)に
示すように、L形キャップ1の挿入してある部位の電線
3は、間隔片8と接しておりこれにより保持される。
FIG. 1 is a winding structure diagram showing an embodiment of the present invention. FIG. 1 (a) is a sectional view of the winding structure, and FIG. 1 (b) is an L-shaped cap sandwiched between spacers 2. 1 shows the structure, and (c) shows the structure of the spacer 2. The winding is
The spacer 2 is fixed by the inner and outer duct rails 5, and the electric wire 3 covered with the electric wire coating 4 is concentrically wound to form a disk-shaped section 6 or section 7.
The spacers 2 are alternately stacked in multiple layers. Further, the electric wire 3 extends from the section 7 to the section 6 at the electric wire crossing portion 14. The electric wire 3 constituting the winding is formed by stacking sections 6 and 7 wound in a disk shape in a multilayer structure in the axial direction, and a spacer 2 is inserted into a gap between the sections 6 and 7 to hold the sections 6 and 7. ing. As shown in FIG. 1A, the electric wire 3 at the portion where the L-shaped cap 1 is inserted is in contact with the spacing piece 8 and is held by this.

【0008】セクション6,7間におけるL形キャップ
1の絶縁効果について説明する。平等電界中の油ギャッ
プの破壊電EBD(kV/mm)とギャップ長d(mm)との関係は一
般に次式で表される。 EBD=k・d-1/3(k:定数) 上式は油のギャップ長dが小さくなれば油の破壊電界E
BDが大きくなる、つまり油の耐圧が向上することを表し
ている。このような、ギャップ長特性を利用すれば、セ
クション6,7間をL形キャップ1で分割すればギャッ
プ長が等しくても破壊電圧を向上させることができる。
また、L形キャップ1は、発生した部分放電の進展を防
ぐバリアの効果としても働く。電線3のうちの電界集中
の厳しい電線角部13を部分的に絶縁することで電線3
の電線被覆4を全長にわたって薄くすることが可能とな
り、冷却性能の向上を図ることがでる。また、L形キャ
ップ1を用いた箇所では、電線3は間隔片8により保持
されるので、電線3が冷却媒体に接する面積が増えるた
め、冷却油道が確保されるので冷却効率向上が図れる。
The insulating effect of the L-shaped cap 1 between the sections 6 and 7 will be described. The relationship between the breakdown voltage E BD (kV / mm) of the oil gap and the gap length d (mm) in a uniform electric field is generally expressed by the following equation. E BD = k · d -1/3 (k: constant)
This indicates that the BD is increased, that is, the pressure resistance of the oil is improved. If such gap length characteristics are used, the breakdown voltage can be improved even if the gap lengths are equal by dividing the sections 6 and 7 with the L-shaped cap 1.
Further, the L-shaped cap 1 also functions as a barrier effect for preventing the progress of the generated partial discharge. By partially insulating the wire corner 13 of the wire 3 where electric field concentration is severe, the wire 3
Can be made thinner over the entire length, and the cooling performance can be improved. Further, since the electric wire 3 is held by the spacing piece 8 at the position where the L-shaped cap 1 is used, the area where the electric wire 3 is in contact with the cooling medium increases, and a cooling oil passage is secured, so that the cooling efficiency can be improved.

【0009】[0009]

【発明の効果】以上のことから、セクション間の絶縁性
能を維持しつつ、電線被覆厚の減少により電線の冷却性
能の向上を図ることができる。
As described above, the cooling performance of the electric wire can be improved by reducing the thickness of the electric wire coating while maintaining the insulation performance between the sections.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の一例を示す巻線構成図で
あり、(a)は巻線断面図、(b)はL形キャップの構
造図、(c)はスペーサの構造図を示す。
1A and 1B are winding configuration diagrams illustrating an example of an embodiment of the present invention, in which FIG. 1A is a winding cross-sectional view, FIG. 1B is a structural diagram of an L-shaped cap, and FIG. Show.

【図2】(a)は、巻線の側断面図を示し、(b)は
(a)のA部分を拡大し、等電位線の分布を示した図で
ある。
2A is a side sectional view of a winding, and FIG. 2B is an enlarged view of a portion A in FIG. 2A and shows a distribution of equipotential lines.

【図3】従来からなる巻線断面図を示す。FIG. 3 shows a sectional view of a conventional winding.

【符号の説明】[Explanation of symbols]

1 L形キャップ 2 スペーサ 3 電線 4 電線被覆 5 ダクト用レール 6 セクション 7 セクション 8 間隔片 9 鉄心 10 低圧側巻線 11 高圧側巻線 12 等電位線 13 電線角部 14 電線渡り部 DESCRIPTION OF SYMBOLS 1 L-shaped cap 2 Spacer 3 Electric wire 4 Electric wire covering 5 Duct rail 6 Section 7 Section 8 Spacing piece 9 Iron core 10 Low voltage side winding 11 High voltage side winding 12 Equipotential line 13 Wire corner 14 Wire crossover

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 鉄心と円盤状巻線を同心配置した変圧器
巻線において、巻線の全周を数十等配で放射状に配置し
た冷却媒体を通すためのスペーサに間隔片が1個以上表
面に接着されたL形キャップを挟み込み一組としたL形
キャップ付きスペーサをセクション間に配置したことを
特徴とする変圧器巻線。
In a transformer winding in which an iron core and a disk-shaped winding are concentrically arranged, at least one spacer piece is provided on a spacer for passing a cooling medium radially arranged in a dozens of equal intervals around the winding. A transformer winding characterized in that a set of spacers with an L-shaped cap sandwiching an L-shaped cap bonded to a surface is arranged between sections.
JP11083383A 1999-03-26 1999-03-26 Transformer winding Pending JP2000277353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11083383A JP2000277353A (en) 1999-03-26 1999-03-26 Transformer winding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11083383A JP2000277353A (en) 1999-03-26 1999-03-26 Transformer winding

Publications (1)

Publication Number Publication Date
JP2000277353A true JP2000277353A (en) 2000-10-06

Family

ID=13800911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11083383A Pending JP2000277353A (en) 1999-03-26 1999-03-26 Transformer winding

Country Status (1)

Country Link
JP (1) JP2000277353A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003077737A (en) * 2001-09-06 2003-03-14 Mitsubishi Electric Corp Winding of electric equipment
JP2008041763A (en) * 2006-08-02 2008-02-21 Mitsubishi Electric Corp Oil-filled electric device
JP2011228675A (en) * 2010-03-30 2011-11-10 Tdk Corp Spacer, coil, coil component, and switching power supply unit
JP5885898B1 (en) * 2015-08-10 2016-03-16 三菱電機株式会社 Stationary induction equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003077737A (en) * 2001-09-06 2003-03-14 Mitsubishi Electric Corp Winding of electric equipment
JP2008041763A (en) * 2006-08-02 2008-02-21 Mitsubishi Electric Corp Oil-filled electric device
JP2011228675A (en) * 2010-03-30 2011-11-10 Tdk Corp Spacer, coil, coil component, and switching power supply unit
JP5885898B1 (en) * 2015-08-10 2016-03-16 三菱電機株式会社 Stationary induction equipment

Similar Documents

Publication Publication Date Title
US3086184A (en) Coil structure for electromagnetic induction apparatus
JP2000277353A (en) Transformer winding
CN1842435B (en) Magnetic pole for magnetic levitation train
US2116404A (en) Electrical induction apparatus
TW201810312A (en) Stationary induction electrical apparatus
JP3933347B2 (en) Winding for static induction equipment
JP2000004552A (en) Insulated coil for electric apparatus
JP2728162B2 (en) Transformer for DC transmission
JPS62180Y2 (en)
JP2001143937A (en) Transformer coil
JP2001196237A (en) Disc winding for stationary induction electric appliance
TWI753577B (en) Motor device and motor stator
JPS645848Y2 (en)
JP2000216029A (en) Structure of winding wire of transformer
JPS59211207A (en) Oil-immersed induction apparatus winding
JPS6039362A (en) Stator of high voltage electric machine
JPH0625939Y2 (en) Transformer
JPH04123411A (en) Transformer windings
JPH04257209A (en) Resin-molded current transformer
JPS62152114A (en) Winding for oil-immersed induction electric apparatus
JPH071784Y2 (en) Gas insulated induction
JPH054265Y2 (en)
JPS641924B2 (en)
JPH0695489B2 (en) Gas insulated transformer
JPS60241207A (en) Foil-wound transformer