JP2000273154A - Epoxy resin composition and semiconductor device - Google Patents

Epoxy resin composition and semiconductor device

Info

Publication number
JP2000273154A
JP2000273154A JP11080265A JP8026599A JP2000273154A JP 2000273154 A JP2000273154 A JP 2000273154A JP 11080265 A JP11080265 A JP 11080265A JP 8026599 A JP8026599 A JP 8026599A JP 2000273154 A JP2000273154 A JP 2000273154A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
semiconductor device
molding
inorganic filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11080265A
Other languages
Japanese (ja)
Inventor
Naoko Toyosawa
尚子 豊沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP11080265A priority Critical patent/JP2000273154A/en
Publication of JP2000273154A publication Critical patent/JP2000273154A/en
Pending legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the subject composition which is excellent in flowability and scarcely forms voids in molding and which gives a semiconductor device excellent in reliability in respect of, e.g. soldering resistance by blending an epoxy resin, a phenolic resin, a cure accelerator an inorganic filler and a specified amount of a hydroxylated organic compound having a specified boiling point. SOLUTION: An organic compound having at least one hydroxyl group and a boiling point of 80-300 deg.C is blended in an amount of 0.01-2 wt.% based on the total composition. The epoxy resin used comprises a monomer oligomer or polymer having at least two epoxy groups. The phenolic resin used comprises a monomer, oligomer or polymer having at least two phenolic hydroxyl groups. The cure accelerator used comprises the capable of serving as a catalyst for the crosslinking reaction of the epoxy resin with the phenolic resin. Examples of the inorganic filler used include fused silica, crystalline silica, alumina, silicon nitride and aluminum nitride.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、成形性、吸湿後の
耐半田特性や耐温度サイクル性等の信頼性に優れた半導
体封止用エポキシ樹脂組成物及びこれを用いた半導体装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an epoxy resin composition for semiconductor encapsulation having excellent reliability such as moldability, soldering resistance after moisture absorption and temperature cycling resistance, and a semiconductor device using the same. is there.

【0002】[0002]

【従来の技術】近年の電子機器の小型化、軽量化、高性
能化の市場動向において、半導体の高集積化が年々進
み、又、半導体装置の表面実装化が促進される中で、半
導体封止材料への要求は益々厳しいものとなってきてい
る。特に半導体装置の表面実装化が一般的になってきて
いる現状では、吸湿した半導体装置が半田処理時に高温
にさらされ、気化した水蒸気の爆発的応力により半導体
装置にクラックが発生したり、或いは半導体素子やリー
ドフレームと半導体封止材料との界面に剥離が発生する
ことにより、電気的信頼性を大きく損なう不良が生じ、
これらの不良の防止、即ち耐半田特性の向上が大きな課
題となっている。この耐半田特性の向上のために、半導
体封止材料は無機質充填材を多量に配合することによ
り、半導体装置の低吸湿化、低熱膨張化、高強度化を図
ってきている。このため、エポキシ樹脂としては低粘度
型のものや、常温では結晶性であるが融点を越えると極
めて低粘性を示す結晶性エポキシ樹脂を使用して、無機
質充填材の配合量の増加に伴うエポキシ樹脂組成物の成
形時の流動性の低下を防止する手法が一般的にとられて
いる。
2. Description of the Related Art In recent years, in the market trend of miniaturization, weight reduction, and high performance of electronic equipment, semiconductor integration has been progressing year by year, and surface mounting of semiconductor devices has been promoted. Demands on anti-stop materials are becoming more stringent. In particular, in the current situation where surface mounting of semiconductor devices is becoming common, a semiconductor device that has absorbed moisture is exposed to a high temperature during soldering, and cracks occur in the semiconductor device due to the explosive stress of vaporized water vapor. Delamination occurs at the interface between the element or lead frame and the semiconductor encapsulation material, resulting in a failure that greatly impairs electrical reliability.
Prevention of these defects, that is, improvement of the solder resistance is a major issue. In order to improve the solder resistance, the semiconductor encapsulant has been reduced in moisture absorption, thermal expansion and strength by incorporating a large amount of an inorganic filler. For this reason, low-viscosity epoxy resins and crystalline epoxy resins that are crystalline at room temperature but exhibit extremely low viscosity above the melting point are used. A method for preventing a decrease in fluidity during molding of a resin composition is generally adopted.

【0003】ところが、各配合物を加熱混練して製造さ
れるエポキシ樹脂組成物において無機質充填材を多量に
配合するエポキシ樹脂組成物では、加熱混練時に無機質
充填材の樹脂成分への分散不良により、樹脂組成物の製
造工程で均一な樹脂組成物が得られにくく、均一性が不
十分なエポキシ樹脂組成物は無機質充填材とエポキシ樹
脂やフェノール樹脂との親和性が乏しいため、樹脂組成
物の各成分が成形時に均一な流れを形成しないため空気
の巻き込みが多くなるため、成形品中に多量の気泡(以
後、ボイドと称する)が残ってしまったり、又成形時の
流動性が低下してしまうなどの問題点が発生する。成形
品中にボイドが存在すると、半導体装置内に外部からの
水分が侵入しやすく、且つ水分が溜まり易いために半導
体素子が腐食し易くなり信頼性が低下する。ボイドは上
記の様に、成形時のエポキシ樹脂組成物の均一流動不良
によっても発生するが、一方、成形温度でエポキシ樹脂
組成物から発生する揮発分が気化膨張して硬化後に気泡
として残存することも知られている。このボイドの原因
となる揮発分としては、エポキシ樹脂やフェノール樹脂
等の樹脂成分との相溶性が低いものが最終硬化物に残存
し易い傾向にある。従って、エポキシ樹脂組成物の配合
物に含有される水分や、エポキシ樹脂組成物の製造工程
に吸湿された水分が最も影響が大きい。
However, in an epoxy resin composition produced by heating and kneading each compound, an epoxy resin composition containing a large amount of an inorganic filler is poorly dispersed in the resin component during the heating and kneading. It is difficult to obtain a uniform resin composition in the production process of the resin composition, and the epoxy resin composition having insufficient uniformity has a poor affinity between the inorganic filler and the epoxy resin or the phenol resin. Since the components do not form a uniform flow at the time of molding, the entrainment of air increases, so that a large amount of air bubbles (hereinafter, referred to as voids) remain in the molded product, and the fluidity at the time of molding decreases. And other problems. If voids are present in the molded product, moisture from the outside easily enters the semiconductor device and the moisture easily accumulates, so that the semiconductor element is easily corroded and the reliability is reduced. As described above, voids are also generated due to poor uniform flow of the epoxy resin composition at the time of molding.On the other hand, volatile components generated from the epoxy resin composition at the molding temperature are vaporized and expanded and remain as bubbles after curing. Is also known. As the volatile components causing the voids, those having low compatibility with resin components such as epoxy resin and phenol resin tend to easily remain in the final cured product. Accordingly, the moisture contained in the composition of the epoxy resin composition and the moisture absorbed in the production process of the epoxy resin composition have the greatest influence.

【0004】そこで、エポキシ樹脂組成物から水分を除
去する目的で、エポキシ樹脂組成物は製造後から成形時
までの間にシリカゲル等の乾燥剤と一緒に梱包されて保
管される。ところが、乾燥剤の影響で含有水分が低減し
たエポキシ樹脂組成物は、成形時の溶融粘度が上昇し、
流動性が低下するために、成形品である半導体装置の内
部に存在する半導体素子やリードフレーム等の基材とエ
ポキシ樹脂組成物の硬化物との界面の濡れ性が低下し、
硬化後の界面の接着強度が低下する。このため吸湿後の
半田リフロー時に基材とエポキシ樹脂組成物界面の間に
剥離が発生したり、更にこの剥離に起因するパッケージ
クラックが起こりやすい。又、エポキシ樹脂組成物の成
形時の流動性が低下すると、半導体素子が押し上げられ
てパッケージ表面に露出する、いわゆるチップシフトが
発生したり、半導体素子の回路とリードフレームとを結
線している金線が変形、又は切断されるいわゆる金線変
形が発生したり、更には成形材料が金型内に充分充填さ
れない、いわゆる未充填等の成形不良を起こす。以上の
ような理由で、成形時のボイド、流動性等の成形性と耐
半田特性との両立に優れる樹脂組成物の開発が望まれて
いた。
[0004] Therefore, in order to remove water from the epoxy resin composition, the epoxy resin composition is packed and stored together with a desiccant such as silica gel between the time of manufacture and the time of molding. However, the epoxy resin composition whose moisture content has been reduced due to the effect of the desiccant has an increased melt viscosity during molding,
Due to the decrease in fluidity, the wettability of the interface between the cured product of the epoxy resin composition and the base material such as a semiconductor element or a lead frame existing inside the molded semiconductor device is reduced,
The adhesive strength at the interface after curing decreases. For this reason, at the time of solder reflow after moisture absorption, peeling occurs between the interface of the base material and the epoxy resin composition, and further, package cracks due to the peeling are likely to occur. Further, when the fluidity during molding of the epoxy resin composition is reduced, the semiconductor element is pushed up and exposed on the package surface, so-called chip shift occurs, or the metal that connects the circuit of the semiconductor element and the lead frame is connected. A so-called gold wire deformation in which the wire is deformed or cut occurs, and further, a molding material is not sufficiently filled in the mold, that is, molding failure such as unfilling occurs. For the reasons described above, development of a resin composition excellent in compatibility between moldability such as voids and fluidity during molding and solder resistance has been desired.

【0005】[0005]

【発明が解決しようとする課題】本発明は、成形時の流
動性に優れ、ボイドが少なく、且つ成形品である半導体
装置の耐半田特性等の信頼性に優れた半導体封止用エポ
キシ樹脂組成物及びこれを用いた半導体装置を提供する
ものである。
SUMMARY OF THE INVENTION The present invention relates to an epoxy resin composition for semiconductor encapsulation which is excellent in fluidity during molding, has few voids, and is excellent in reliability such as soldering resistance of a molded semiconductor device. And a semiconductor device using the same.

【0006】[0006]

【課題を解決するための手段】本発明は、 (A)エポ
キシ樹脂、(B)フェノール樹脂硬化剤、(C)硬化促
進剤、(D)無機質充填材、(E)1分子に水酸基を1
個以上有し、沸点が80〜300℃の有機化合物を総エ
ポキシ樹脂組成物中に0.01〜2重量%含むことを特
徴とする半導体封止用エポキシ樹脂組成物、及びこのエ
ポキシ樹脂組成物により封止されてなることを特徴とす
る半導体装置である。
The present invention comprises (A) an epoxy resin, (B) a phenolic resin curing agent, (C) a curing accelerator, (D) an inorganic filler, and (E) one hydroxyl group per molecule.
Epoxy resin composition for semiconductor encapsulation, comprising at least one organic compound having a boiling point of 80 to 300 ° C. in the total epoxy resin composition, and the epoxy resin composition The semiconductor device is characterized by being sealed by the following.

【0007】[0007]

【発明の実施の形態】本発明に用いられるエポキシ樹脂
は、1分子中に2個以上のエポキシ基を有するモノマ
ー、オリゴマー、ポリマー全般を指し、例えば、ビスフ
ェノールA型エポキシ樹脂、フェノールノボラック型エ
ポキシ樹脂、オルソクレゾールノボラック型エポキシ樹
脂、ナフトールノボラック型エポキシ樹脂、トリフェノ
ールメタン型エポキシ樹脂、ジシクロペンタジエン変性
フェノール型エポキシ樹脂、フェノールアラルキル型エ
ポキシ樹脂、テルペン変性フェノール型エポキシ樹脂、
ビフェニル型エポキシ樹脂、ハイドロキノン型エポキシ
樹脂、スチルベン型エポキシ樹脂、ビスフェノールF型
エポキシ樹脂等が挙げられるが、これらに限定されるも
のではない。又、これらのエポキシ樹脂は単独でも混合
して用いてもよい。半導体装置の耐半田特性を向上する
ことを目的に樹脂組成物中の無機質充填材の配合量を増
大させ、得られた樹脂組成物の硬化物の低吸湿化、低熱
膨張化、高強度化を達成させる場合には、エポキシ樹脂
として、常温で結晶性を示し、融点を越えると極めて低
粘度の液状となる結晶性エポキシ樹脂を用いることが特
に好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The epoxy resin used in the present invention refers to all monomers, oligomers and polymers having two or more epoxy groups in one molecule, such as bisphenol A type epoxy resin and phenol novolak type epoxy resin. , Ortho-cresol novolak type epoxy resin, naphthol novolak type epoxy resin, triphenol methane type epoxy resin, dicyclopentadiene modified phenol type epoxy resin, phenol aralkyl type epoxy resin, terpene modified phenol type epoxy resin,
Examples include, but are not limited to, biphenyl-type epoxy resins, hydroquinone-type epoxy resins, stilbene-type epoxy resins, and bisphenol-F-type epoxy resins. These epoxy resins may be used alone or as a mixture. In order to improve the solder resistance of the semiconductor device, the amount of the inorganic filler in the resin composition is increased to reduce the moisture absorption, lower the thermal expansion, and increase the strength of the cured product of the obtained resin composition. In order to achieve this, it is particularly preferable to use, as the epoxy resin, a crystalline epoxy resin which exhibits crystallinity at normal temperature and becomes a liquid having an extremely low viscosity when the melting point is exceeded.

【0008】本発明で用いられるフェノール樹脂として
は、1分子中に2個以上のフェノール性水酸基を有する
モノマー、オリゴマー、ポリマー全般を指し、例えば、
フェノールノボラック樹脂、クレゾールノボラック樹
脂、フェノールアラルキル樹脂、テルペン変性フェノー
ル樹脂、ジシクロペンタジエン変性フェノール樹脂、ナ
フトールアラルキル樹脂、トリフェノールメタン型樹
脂、ビスフェノール化合物等が挙げられるが、これらに
限定されるものではない。又、これらのフェノール樹脂
は単独でも混合して用いてもよい。
The phenolic resin used in the present invention refers to all monomers, oligomers and polymers having two or more phenolic hydroxyl groups in one molecule.
Phenol novolak resin, cresol novolak resin, phenol aralkyl resin, terpene-modified phenol resin, dicyclopentadiene-modified phenol resin, naphthol aralkyl resin, triphenolmethane-type resin, bisphenol compound, and the like, but are not limited thereto. . Further, these phenol resins may be used alone or in combination.

【0009】本発明で用いられる硬化促進剤としては、
前記エポキシ樹脂とフェノール樹脂との架橋反応の触媒
となり得るものを指し、具体例としては、トリブチルア
ミン、1,8−ジアザビシクロ(5,4,0)ウンデセ
ン−7等のアミン系化合物、トリフェニルホスフィン、
テトラフェニルホスホニウム・テトラフェニルボレート
塩等の有機リン系化合物、2−メチルイミダゾール等の
イミダゾール化合物等が挙げられるが、これらに限定さ
れるものではない。又、これらの硬化促進剤は単独でも
混合して用いてもよい。
[0009] The curing accelerator used in the present invention includes:
A substance that can serve as a catalyst for a crosslinking reaction between the epoxy resin and the phenol resin. Specific examples include amine compounds such as tributylamine and 1,8-diazabicyclo (5,4,0) undecene-7, and triphenylphosphine. ,
Examples include organic phosphorus compounds such as tetraphenylphosphonium / tetraphenylborate salts, and imidazole compounds such as 2-methylimidazole, but are not limited thereto. These curing accelerators may be used alone or as a mixture.

【0010】本発明で用いられる無機質充填材として
は、例えば、溶融シリカ、結晶シリカ、アルミナ、窒化
珪素、窒化アルミ等が挙げられる。無機質充填材の配合
量を特に大きくする場合は、溶融シリカを用いるのが一
般的である。溶融シリカは、破砕状、球状のいずれでも
使用可能であるが、溶融シリカの配合量を高め、且つ成
形材料の溶融粘度の上昇を抑えるためには、球状のもの
を主に用いる方が好ましい。更に球状シリカの配合量を
高めるためには、球状シリカの粒度分布がより広くなる
ように調整することが望ましい。
The inorganic filler used in the present invention includes, for example, fused silica, crystalline silica, alumina, silicon nitride, aluminum nitride and the like. When the amount of the inorganic filler is particularly large, it is common to use fused silica. Fused silica can be used in either crushed or spherical form. However, in order to increase the blending amount of the fused silica and suppress an increase in the melt viscosity of the molding material, it is preferable to mainly use a spherical form. In order to further increase the blending amount of the spherical silica, it is desirable to adjust the particle size distribution of the spherical silica to be wider.

【0011】本発明で用いられる1分子に水酸基を1個
以上有し、沸点が80〜300℃の有機化合物として
は、イソプロパノール、n−ブタノール、n−ペンタノ
ール、n−ヘキサノール、n−ヘプタノール、n−オク
タノール、エチレングリコール、ジエチレングリコー
ル、エチレングリコールモノブチルエーテル、ジエチレ
ングリコールモノブチルエーテル、シクロヘキサノー
ル、グリセリン等が挙げられるが、これらに限定される
ものではない。これらの有機化合物の効果は、エポキシ
樹脂組成物の混練工程における無機質充填材と樹脂成分
との親和性向上による低粘度化と各配合成分の均一化、
又エポキシ樹脂組成物の成形時の高流動化と半導体装置
中の基材界面へのエポキシ樹脂組成物の濡れ性の向上に
よる界面接着強度の向上が挙げられる。これらの効果
は、本発明に用いる有機化合物に含まれる水酸基と無機
質充填材、或いは基材界面との相互作用によるものと考
えられる。
The organic compounds having one or more hydroxyl groups in one molecule and having a boiling point of 80 to 300 ° C. used in the present invention include isopropanol, n-butanol, n-pentanol, n-hexanol, n-heptanol, and the like. Examples include, but are not limited to, n-octanol, ethylene glycol, diethylene glycol, ethylene glycol monobutyl ether, diethylene glycol monobutyl ether, cyclohexanol, glycerin, and the like. The effect of these organic compounds is to lower the viscosity and improve the uniformity of each component by improving the affinity between the inorganic filler and the resin component in the kneading step of the epoxy resin composition.
In addition, improvement of interfacial adhesion strength by increasing fluidity during molding of the epoxy resin composition and improving wettability of the epoxy resin composition to a substrate interface in a semiconductor device can be cited. These effects are thought to be due to the interaction between the hydroxyl group contained in the organic compound used in the present invention and the inorganic filler or the interface with the base material.

【0012】エポキシ樹脂組成物中に含まれる、或いは
製造工程中に吸湿する水分は同様の効果を有すものの、
エポキシ樹脂組成物の樹脂成分との相溶性が低いため
に、成形時揮発したガス成分は樹脂中に溶け込むことな
く、成形品内にボイドの形で残存し易いものと考えられ
る。更に、エポキシ樹脂組成物の保管中に、吸湿を防止
する目的でシリカゲル等の乾燥剤が一緒に梱包される場
合、経時的に水分が減少する。このため、水分含有量が
減少するに伴いボイドは減少するものの、各基材界面で
の接着強度は低下する。これに対して、1分子に水酸基
を1個以上有する有機化合物はエポキシ樹脂組成物との
親和性が高いため、ボイドの発生がなく、又シリカゲル
等の乾燥剤に吸着されることがないことから、効果の経
時変化が起こらない。1分子に水酸基を1個以上有する
有機化合物の沸点は、80℃〜300℃の範囲内にある
ことが必要である。80℃未満では、エポキシ樹脂組成
物の加熱混練中に揮発して、最終製品に残存する有機化
合物量が一定とならない問題点を有し、一方沸点が30
0℃を越えると成形品内に有機化合物が残存し、半導体
装置の吸湿後の半田処理中に気化して界面剥離やクラッ
クの発生の原因になる。1分子に水酸基を1個以上有す
る有機化合物の添加量は、総エポキシ樹脂組成物中に
0.01〜2重量%、好ましくは0.05〜0.5重量
%の範囲である。0.01重量%未満ではエポキシ樹脂
組成物の加熱混練時の低粘度化、均一化、或いは成形時
の基材界面の濡れ性の効果が発現しない。一方、添加量
が2重量%を越えると、硬化後の有機化合物の残存が硬
化物特性、特に曲げ強度等の機械特性、耐吸湿後の半田
特性等の信頼性を低下させる傾向がある。
The moisture contained in the epoxy resin composition or absorbed during the manufacturing process has the same effect,
It is considered that since the compatibility with the resin component of the epoxy resin composition is low, the gas component volatilized during molding does not dissolve into the resin and easily remains in the form of voids in the molded product. Further, when a desiccant such as silica gel is packed together for the purpose of preventing moisture absorption during storage of the epoxy resin composition, the water content decreases over time. For this reason, although the voids decrease as the water content decreases, the adhesive strength at the interface between the base materials decreases. On the other hand, since an organic compound having one or more hydroxyl groups in one molecule has a high affinity with the epoxy resin composition, it does not generate voids and does not adsorb to a desiccant such as silica gel. The effect does not change with time. The boiling point of the organic compound having one or more hydroxyl groups in one molecule needs to be in the range of 80C to 300C. If the temperature is less than 80 ° C., the epoxy resin composition volatilizes during heating and kneading, and the amount of the organic compound remaining in the final product is not constant.
When the temperature exceeds 0 ° C., the organic compound remains in the molded product, and is vaporized during the soldering process after the semiconductor device absorbs moisture, and causes interface peeling and cracks. The amount of the organic compound having one or more hydroxyl groups per molecule is in the range of 0.01 to 2% by weight, preferably 0.05 to 0.5% by weight, based on the total epoxy resin composition. If it is less than 0.01% by weight, the effect of lowering the viscosity and homogenizing the epoxy resin composition at the time of heating and kneading, or the effect of wettability at the interface of the base material at the time of molding is not exhibited. On the other hand, if the addition amount exceeds 2% by weight, the residual organic compound after curing tends to reduce the reliability of cured product characteristics, particularly mechanical characteristics such as bending strength, and solder characteristics after moisture absorption resistance.

【0013】本発明のエポキシ樹脂組成物は、(A)〜
(E)成分を必須成分とするが、これ以外にも必要に応
じて臭素化エポキシ樹脂、三酸化アンチモン等の難燃
剤、シランカップリング剤、カーボンブラック等の着色
剤、天然ワックス及び合成ワックス等の離型剤、ポリオ
ルガノシロキサン、シリコーンゴム、合成ゴム等の低応
力添加剤等を適宜配合してもよい。本発明のエポキシ樹
脂組成物は、(A)〜(E)成分、及びその他の添加剤
等を混合後、加熱ニーダや熱ロールを用いて加熱混練
し、続いて冷却、粉砕して得られる。本発明の樹脂組成
物を用いて、半導体素子等の電子部品を封止し、半導体
装置を製造するには、トランスファーモールド、コンプ
レッションモールド、インジェクションモールド等の成
型方法で硬化成形すればよい。
The epoxy resin composition of the present invention comprises (A)
The component (E) is an essential component, but if necessary, a brominated epoxy resin, a flame retardant such as antimony trioxide, a silane coupling agent, a coloring agent such as carbon black, a natural wax and a synthetic wax, etc. , A low-stress additive such as polyorganosiloxane, silicone rubber, and synthetic rubber. The epoxy resin composition of the present invention is obtained by mixing components (A) to (E), other additives, and the like, kneading with heat using a heating kneader or a hot roll, and then cooling and pulverizing. In order to manufacture a semiconductor device by encapsulating an electronic component such as a semiconductor element using the resin composition of the present invention, it is sufficient to cure and mold by a molding method such as transfer molding, compression molding and injection molding.

【0014】[0014]

【実施例】以下、本発明を実施例で具体的に説明する。
配合量の単位は重量部とする。 実施例1 3,3’,5,5’−テトラメチルビフェノールジグリシジルエーテルを主成 分とするエポキシ樹脂(油化シェルエポキシ(株)・製、YX4000H、融点 105℃、エポキシ当量195)(以下、ビフェニルエポキシ樹脂と略す) 7.9重量部 フェノールアラルキル樹脂(三井化学(株)・製 XL225−LL、軟化点 75℃、水酸基当量175) 7.1重量部 1,8−ジアザビシクロ(5,4,0)ウンデセン−7(以下、DBUという ) 0.2重量部 球状溶融シリカ 84.0重量部 エチレングリコール 0.2重量部 カルナバワックス 0.3重量部 カーボンブラック 0.3重量部 をミキサーを用いて混合した後、表面温度が90℃と2
5℃の2軸ロールを用いて20回混練し、得られた混練
物シートを冷却後粉砕して、エポキシ樹脂組成物とし
た。得られたエポキシ樹脂組成物の特性を以下の方法で
評価した。結果を表1に示す。
The present invention will be specifically described below with reference to examples.
The unit of the compounding amount is part by weight. Example 1 Epoxy resin containing 3,3 ′, 5,5′-tetramethylbiphenol diglycidyl ether as a main component (YX4000H, manufactured by Yuka Shell Epoxy Co., Ltd., melting point: 105 ° C., epoxy equivalent: 195) 7.9 parts by weight Phenol aralkyl resin (XL225-LL manufactured by Mitsui Chemicals, Inc., softening point 75 ° C., hydroxyl equivalent 175) 7.1 parts by weight 1,8-diazabicyclo (5,4) , 0) Undecene-7 (hereinafter referred to as DBU) 0.2 parts by weight Spherical fused silica 84.0 parts by weight Ethylene glycol 0.2 parts by weight Carnauba wax 0.3 parts by weight Carbon black 0.3 parts by weight using a mixer After mixing, the surface temperature was 90 ° C and 2 ° C.
The mixture was kneaded 20 times using a biaxial roll at 5 ° C., and the obtained kneaded material sheet was cooled and pulverized to obtain an epoxy resin composition. The properties of the obtained epoxy resin composition were evaluated by the following methods. Table 1 shows the results.

【0015】評価方法 スパイラルフロー:EMMI−I−66に準じたスパイ
ラルフロー測定用の金型を用いて、金型温度175℃、
注入圧力70kg/cm2、硬化時間2分で測定した。 金線変形量:144pQFPパッケージ(パッケージサ
イズ20×20×1.4mm、チップサイズ9×9m
m、金線:25μm径、リードフレーム:銅)を金型温
度175℃、成形圧力75kgf/cm2、硬化時間2
分間で成形した。得られたパッケージを軟X線透視装置
で観察し、金線の変形率を(流れ量)/(金線長)で表
した(単位%)。 耐半田性:金線変形量を測定した144pQFPパッケ
ージを、175℃、8時間で後硬化させた。得られた半
導体パッケージを85℃、相対湿度85%の環境下で1
68時間放置した後、この半導体パッケージを240℃
の半田槽に10秒間浸漬した。顕微鏡で外部クラックを
観察し、クラック数((クラック発生パッケージ数)/
(全パッケージ数)×100)を%で表示した。又、こ
のパッケージを超音波探傷装置を用いて観察し、チップ
(SiNコート品)とエポキシ樹脂組成物の硬化物との
界面に剥離が発生した剥離数((剥離発生パッケージ
数)/(全パッケージ数)×100)を%で表示した。 ボイド:耐半田性で剥離数を評価した144pQFPの
超音波探傷装置観察において、パッケージ中に観察され
た直径0.1mm以上のボイド個数を1パッケージあた
りの平均で表示した。なお、スパイラルフロー、金線変
形量、耐半田性、ボイドの評価については、エポキシ樹
脂組成物の製造直後での評価(製造直後と表示)と、エ
ポキシ樹脂組成物1kgに対しシリカゲル100gを同
一のポリエチレン製の袋に梱包し、2週間経過してから
の評価(乾燥後と表示)との両者の結果を示す。 熱時強度:240℃での曲げ強さをJIS−K6911
に準じて測定した。単位はkgf/mm2。 離型性:金線変形量を測定した144pQFPのパッケ
ージを10回連続で成形した。この10回の成形で、離
型時に金型に付着したり、成形品に割れ・欠けが発生し
た回数が5回以上を×、1〜4回を△、発生なしを○で
表した。
Evaluation method Spiral flow: Using a mold for spiral flow measurement in accordance with EMMI-I-66, a mold temperature of 175 ° C.
The measurement was performed at an injection pressure of 70 kg / cm 2 and a curing time of 2 minutes. Gold wire deformation: 144pQFP package (package size 20 × 20 × 1.4mm, chip size 9 × 9m
m, gold wire: 25 μm diameter, lead frame: copper) at a mold temperature of 175 ° C., a molding pressure of 75 kgf / cm 2 , and a curing time of 2
Molded in minutes. The obtained package was observed with a soft X-ray fluoroscope, and the deformation rate of the gold wire was represented by (flow amount) / (gold wire length) (unit%). Solder resistance: The 144pQFP package whose gold wire deformation was measured was post-cured at 175 ° C. for 8 hours. The obtained semiconductor package is placed in an environment at 85 ° C. and a relative humidity of 85% for 1 hour.
After standing for 68 hours, the semiconductor package is heated to 240 ° C.
For 10 seconds. Observe the external cracks with a microscope and check the number of cracks ((number of packages with cracks) /
(The total number of packages) × 100) was indicated by%. Also, this package was observed using an ultrasonic flaw detector, and the number of peelings at the interface between the chip (SiN-coated product) and the cured product of the epoxy resin composition ((number of packages where peeling occurred) / (total packages) (Number) × 100) was expressed in%. Void: The number of voids having a diameter of 0.1 mm or more observed in a package was averaged per package in an ultrasonic flaw detector of 144 pQFP evaluated for the number of peelings by soldering resistance. The evaluation of the spiral flow, the amount of deformation of the gold wire, the soldering resistance, and the void was the same as the evaluation immediately after the production of the epoxy resin composition (indicated as immediately after the production), and 100 g of silica gel per 1 kg of the epoxy resin composition was the same. The results of both the evaluation after 2 weeks after packing in a polyethylene bag (indicated as “after drying”) are shown. Heat strength: Flexural strength at 240 ° C. is determined according to JIS-K6911.
It measured according to. The unit is kgf / mm 2 . Releasability: A package of 144 pQFP whose gold wire deformation was measured was molded 10 times in a row. In these 10 moldings, the number of times of adhesion to the mold at the time of release from the mold and the occurrence of cracks / chips in the molded product was 5 or more times, Δ was 1 to 4 times, and 発 生 was not generated.

【0016】実施例2〜5、比較例1〜6 実施例1を基本配合とし、実施例1のエチレングリコー
ル0.2重量部に代えて有機化合物の種類と添加量を変
更し、実施例1と同様にしてエポキシ樹脂組成物を得、
実施例1と同様にして評価した。有機化合物の種類、配
合量及び結果を表1、表2に示す。
Examples 2 to 5, Comparative Examples 1 to 6 Example 1 was used as a basic formulation, and the type and amount of the organic compound were changed in place of 0.2 parts by weight of ethylene glycol in Example 1. An epoxy resin composition is obtained in the same manner as
Evaluation was performed in the same manner as in Example 1. Tables 1 and 2 show the types, amounts and results of the organic compounds.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】[0019]

【発明の効果】本発明のエポキシ樹脂組成物は、均一性
かつ流動性に優れるため、ボイド、金線変形等の極めて
少ない成形性に優れたものであり、又、耐半田特性に優
れるものである。
The epoxy resin composition of the present invention is excellent in uniformity and fluidity, so that it has excellent moldability such as voids and gold wire deformation, and also has excellent solder resistance. is there.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4J002 CC032 CC042 CC052 CC072 CD041 CD051 CD061 CD071 CD201 DJ017 EC038 EC058 ED028 ED038 EU136 EW146 EY016 FD017 FD028 FD142 FD156 GQ05 4J036 AB02 AC05 AD01 AD07 AD08 AE07 AF01 AF06 DA01 DA02 DC05 DC38 DC40 DC46 DD07 FB07 GA06 JA07 4M109 AA01 BA01 CA21 EA02 EB03 EB04 EB06 EB07 EB08 EB09 EB12 EB18 EB19 EC01 EC03 EC20  ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference) 4J002 CC032 CC042 CC052 CC072 CD041 CD051 CD061 CD071 CD201 DJ017 EC038 EC058 ED028 ED038 EU136 EW146 EY016 FD017 FD028 FD142 FD156 GQ05 4J036 AB02 AC05 AD07 DC02 DC01 DD07 FB07 GA06 JA07 4M109 AA01 BA01 CA21 EA02 EB03 EB04 EB06 EB07 EB08 EB09 EB12 EB18 EB19 EC01 EC03 EC20

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 (A)エポキシ樹脂、(B)フェノール
樹脂、(C)硬化促進剤、(D)無機質充填材、(E)
1分子に水酸基を1個以上有し、沸点が80〜300℃
の有機化合物を総エポキシ樹脂組成物中に0.01〜2
重量%含むことを特徴とする半導体封止用エポキシ樹脂
組成物。
(A) an epoxy resin, (B) a phenolic resin, (C) a curing accelerator, (D) an inorganic filler, (E)
One molecule has one or more hydroxyl groups, and the boiling point is 80 to 300 ° C.
0.01 to 2 in the total epoxy resin composition
An epoxy resin composition for encapsulating a semiconductor, comprising:
【請求項2】 請求項1記載の半導体封止用エポキシ樹
脂組成物を用いて封止してなることを特徴とする半導体
装置。
2. A semiconductor device which is encapsulated with the epoxy resin composition for semiconductor encapsulation according to claim 1.
JP11080265A 1999-03-24 1999-03-24 Epoxy resin composition and semiconductor device Pending JP2000273154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11080265A JP2000273154A (en) 1999-03-24 1999-03-24 Epoxy resin composition and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11080265A JP2000273154A (en) 1999-03-24 1999-03-24 Epoxy resin composition and semiconductor device

Publications (1)

Publication Number Publication Date
JP2000273154A true JP2000273154A (en) 2000-10-03

Family

ID=13713488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11080265A Pending JP2000273154A (en) 1999-03-24 1999-03-24 Epoxy resin composition and semiconductor device

Country Status (1)

Country Link
JP (1) JP2000273154A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005041928A (en) * 2003-07-23 2005-02-17 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2006028259A (en) * 2004-07-13 2006-02-02 Nitto Denko Corp Epoxy resin composition for semiconductor sealing and semiconductor apparatus using the same
US20130062790A1 (en) * 2011-09-12 2013-03-14 Nitto Denko Corporation Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
WO2018179438A1 (en) * 2017-03-31 2018-10-04 日立化成株式会社 Epoxy resin composition, epoxy resin cured product, and electronic component device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005041928A (en) * 2003-07-23 2005-02-17 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2006028259A (en) * 2004-07-13 2006-02-02 Nitto Denko Corp Epoxy resin composition for semiconductor sealing and semiconductor apparatus using the same
US20130062790A1 (en) * 2011-09-12 2013-03-14 Nitto Denko Corporation Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
KR20130028883A (en) * 2011-09-12 2013-03-20 닛토덴코 가부시키가이샤 Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
CN102993638A (en) * 2011-09-12 2013-03-27 日东电工株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
JP2013060483A (en) * 2011-09-12 2013-04-04 Nitto Denko Corp Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
US9340700B2 (en) * 2011-09-12 2016-05-17 Nitto Denko Corporation Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
KR101865417B1 (en) * 2011-09-12 2018-06-07 닛토덴코 가부시키가이샤 Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
WO2018179438A1 (en) * 2017-03-31 2018-10-04 日立化成株式会社 Epoxy resin composition, epoxy resin cured product, and electronic component device
JPWO2018179438A1 (en) * 2017-03-31 2020-02-27 日立化成株式会社 Epoxy resin composition, cured epoxy resin, and electronic component device
JP2021167422A (en) * 2017-03-31 2021-10-21 昭和電工マテリアルズ株式会社 Epoxy resin composition, epoxy resin cured product, and electronic component device
JP7338661B2 (en) 2017-03-31 2023-09-05 株式会社レゾナック Epoxy resin composition, cured epoxy resin and electronic component device

Similar Documents

Publication Publication Date Title
JPH11147936A (en) Epoxy resin composition for semiconductor sealing and semiconductor device
JPH08157561A (en) Semiconductor-sealing epoxy resin composition and semiconductor device
JP3365725B2 (en) Epoxy resin composition and semiconductor device
JPH1167982A (en) Epoxy resin composition and semiconductor device
JP4496740B2 (en) Epoxy resin composition and semiconductor device
JP2000273154A (en) Epoxy resin composition and semiconductor device
JP2000273280A (en) Epoxy resin composition and semiconductor device
JP4332972B2 (en) Epoxy resin composition and semiconductor device
JP2000273277A (en) Epoxy resin composition and semiconductor device
JPH1045872A (en) Epoxy resin composition
JP5098125B2 (en) Epoxy resin composition and semiconductor device
JP3585615B2 (en) Epoxy resin composition for semiconductor encapsulation
JPH07242731A (en) Epoxy resin composition for semiconductor sealing
JPH11172075A (en) Epoxy resin composition and semiconductor device
JP4724947B2 (en) Epoxy resin molding material manufacturing method and semiconductor device
JP4608736B2 (en) Method for producing epoxy resin composition for semiconductor encapsulation
JPH1192631A (en) Epoxy resin composition and semiconductor device
JPH1160901A (en) Epoxy resin composition and semiconductor device
JP5142427B2 (en) Epoxy resin composition and semiconductor device
JPH1192629A (en) Epoxy resin composition and semiconductor device
JP2001151994A (en) Epoxy resin compositions and semiconductor device
JPH11106612A (en) Epoxy resin composition and semiconductor device
JP2000273285A (en) Epoxy resin composition and semiconductor device
JPH10130469A (en) Epoxy resin composition
JP4379972B2 (en) Epoxy resin composition and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081104