JP2000271417A - Filter medium sheet and pleat filter using the same - Google Patents

Filter medium sheet and pleat filter using the same

Info

Publication number
JP2000271417A
JP2000271417A JP11079775A JP7977599A JP2000271417A JP 2000271417 A JP2000271417 A JP 2000271417A JP 11079775 A JP11079775 A JP 11079775A JP 7977599 A JP7977599 A JP 7977599A JP 2000271417 A JP2000271417 A JP 2000271417A
Authority
JP
Japan
Prior art keywords
filter
nonwoven fabric
mesh
pleated
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11079775A
Other languages
Japanese (ja)
Inventor
Kazuyuki Nagara
和幸 永柄
Hideo Nobuhara
秀雄 信原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP11079775A priority Critical patent/JP2000271417A/en
Publication of JP2000271417A publication Critical patent/JP2000271417A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a filter which is free of dislodgment of filter media and is excellent in filtration performance, such as filtration accuracy and filtration life. SOLUTION: A nonwoven fabric is formed by intermingling and dispersing thermally adhesive fibers into a net-like material consisting of thermally adhesive monofilaments subjected to pleating through the mesh of the net-like material. The thickness of the nonwoven fabric in the valley parts of the pleats is larger than that of the peak parts of the pleats. In addition, the contacts of the fibers with each other and the contacts of the fibers and the net-like material are thermally adhered, by which the net-like material and the nonwoven fabric are joined and integrated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、プリ−ツ加工され
た網状物と不織布が接合一体化された濾材シ−ト及びそ
れを加工成形してなるプリ−ツフィルタ−に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a filter medium sheet in which a pleated mesh and a nonwoven fabric are joined and integrated, and a pleated filter obtained by processing and forming the same.

【0002】[0002]

【従来の技術】近年、産業は高性能、高純度、超微細方
面への発展がめざましく、それらの分野で用いられる気
体、液体、粉体は精密濾過を必要とする。従来、この様
な精密フィルタ−として、極細のガラス繊維不織布や合
成繊維不織布が使用されていた。しかしながら、前記ガ
ラス繊維不織布は、アルカリに弱く、また成形加工性に
劣る等の課題がある。一方、合成繊維不織布は、ガラス
繊維不織布に比べ軽量でかつ容易に成形できる等の利点
を持っている。この様なものとしてポリエステルスパン
ボンド不織布やポリプロピレンメルトブロ−不織布等が
使用されている。
2. Description of the Related Art In recent years, the industry has remarkably developed to high performance, high purity, and ultra-fine directions, and gases, liquids, and powders used in those fields require fine filtration. Conventionally, an ultrafine glass fiber nonwoven fabric or a synthetic fiber nonwoven fabric has been used as such a precision filter. However, the glass fiber nonwoven fabric has problems such as being weak to alkali and inferior in moldability. On the other hand, synthetic fiber nonwoven fabrics have advantages such as being lighter and easier to mold than glass fiber nonwoven fabrics. As such materials, polyester spunbond nonwoven fabric, polypropylene melt blown nonwoven fabric and the like are used.

【0003】しかし、これらの不織布は成形保持性を上
げるために補強材と貼り合わせする手段がとられている
(特開平1−194912号公報、特開平4−3468
05号公報)。貼り合わせする方法として加熱圧着がと
られているが、成形保持性を十分維持し、通気抵抗を損
なわず、孔径安定性を維持する事は困難である。例え
ば、成形保持性を維持するために、十分な熱を加え貼り
合わせると、濾材である極細不織布も溶融し、通気抵抗
が著しく高くなる。また、エンボスロ−ル法により熱圧
着されたものは、熱圧着部以外は接着していないため補
強材への十分な貼り合わせができない。また、極細不織
布の繊維も自由に動く事ができるため、孔径安定性に劣
るという欠点がある。また、加熱圧着法以外として高圧
水流による貼り合わせが考えられるが、メルトブロ−不
織布では極細繊維からなるためその強度が弱く、高圧水
流にて繊維が切断されたり、交絡した場合でも剥離する
等の問題がある。さらに熱可塑性分割極細繊維を高圧水
流で交絡させる方法も提案されている(特開平8−15
8228号公報)。しかし高圧水流処理後に予熱による
融着工程が必要であり高コストである。
[0003] However, these nonwoven fabrics are bonded to a reinforcing material in order to improve the formability (JP-A-1-194912, JP-A-4-3468).
No. 05). Although thermocompression bonding is used as a method of bonding, it is difficult to maintain sufficient mold retention, maintain airflow resistance, and maintain pore diameter stability. For example, if sufficient heat is applied and bonded to maintain the mold retention, the ultrafine nonwoven fabric as a filter medium is also melted, and the airflow resistance is significantly increased. In addition, those bonded by thermocompression bonding by the embossing roll method are not bonded except for the thermocompression-bonded portions, so that they cannot be sufficiently bonded to the reinforcing material. Further, since the fibers of the ultrafine nonwoven fabric can move freely, there is a drawback that the pore diameter stability is poor. In addition, bonding by high-pressure water flow is conceivable other than the heat-compression bonding method. However, melt-blown nonwoven fabrics are made of ultrafine fibers and have low strength. There is. Further, a method has been proposed in which the thermoplastic fine fibers are entangled with a high-pressure water stream (Japanese Patent Laid-Open No. 8-15).
No. 8228). However, a fusion step by preheating is required after high-pressure water flow treatment, which is expensive.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、上記
従来技術の課題である成形保持性を維持し、濾材の脱落
がないプリ−ツ加工性に優れた濾材シ−ト及びそれを用
いたプリ−ツフィルタ−を低コストで提供することにあ
る。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a filter sheet having excellent pleating workability, which maintains the molding holdability, which is a problem of the prior art, and does not cause the filter medium to fall off. An object of the present invention is to provide a pleated filter at low cost.

【0005】[0005]

【課題を解決するための手段】本発明者は、上記課題を
解決すべく鋭意検討を重ねた結果、波形にプリ−ツ加工
された熱接着性複合モノフィラメントからなる網状物と
熱接着性繊維が該網状物の網目を通して絡合分散して不
織布を形成し、その際谷部の不織布の厚みが山部より大
であり、かつ繊維同士の接点及び繊維と網状物の接点が
熱接着され、該網状物と不織布が接合一体化されている
濾材シ−ト及びそれを用いたプリ−ツフィルタ−によ
り、前記課題を解決することが可能であることを見い出
し、本発明を完成するに至った。
Means for Solving the Problems As a result of intensive studies to solve the above-mentioned problems, the present inventor has found that a net made of a thermo-adhesive composite monofilament pleated in a corrugated form and a thermo-adhesive fiber. The woven fabric is entangled and dispersed through the mesh of the mesh to form a nonwoven fabric, in which case the thickness of the nonwoven fabric at the valley portion is larger than the peak portion, and the contacts between the fibers and the contacts between the fibers and the mesh material are thermally bonded, The present inventor has found that it is possible to solve the above problem by using a filter material sheet in which a mesh and a nonwoven fabric are joined and integrated and a pleated filter using the same, and have completed the present invention.

【0006】本発明は以下の構成を有する。 (1) プリ−ツ加工された熱接着性モノフィラメント
からなる網状物に、熱接着性繊維が該網状物の網目を通
して絡合分散して不織布を形成し、かつプリーツの谷部
の不織布の厚みがプリーツの山部のそれに比して大であ
り、かつ繊維同士の接点及び繊維と網状物の接点が熱接
着され、該網状物と不織布が接合一体化されてなる濾材
シ−ト。 (2) 不織布に用いられる熱接着性繊維が、メルトブ
ロ−法により得られた繊維である(1)項に記載の濾材
シ−ト。 (3) 不織布に用いられる熱接着性繊維が、融点差が
10℃以上である少なくとも2成分の熱可塑性樹脂から
なる熱接着性複合繊維である(1)または(2)項に記
載の濾材シ−ト。 (4) プリ−ツの谷部の不織布の厚みとプリ−ツ山部
のそれの比が1.2〜3.0である(1)〜(3)項の
いずれかに記載の濾材シ−ト。 (5) プリ−ツ加工された網状物と一体化した不織布
の繊維積層間で繊度差または密度勾配を有している
(1)〜(4)項のいずれかに記載の濾材シ−ト。 (6) (1)〜(5)項のいずれかに記載の濾材シ−
トを加工成形してなるプリ−ツフィルタ−。
The present invention has the following configuration. (1) The thermoadhesive fibers are entangled and dispersed through a mesh of the pleated heat-adhesive monofilament through the mesh of the net to form a nonwoven fabric, and the thickness of the nonwoven fabric at the valleys of the pleats is reduced. A filter material sheet which is larger than that of the pleated portion and in which the contact points between the fibers and the contact points between the fiber and the mesh are thermally bonded, and the mesh and the nonwoven fabric are joined and integrated. (2) The filter sheet according to item (1), wherein the heat-adhesive fibers used in the nonwoven fabric are fibers obtained by a melt blow method. (3) The filter medium according to (1) or (2), wherein the heat-adhesive fiber used for the nonwoven fabric is a heat-adhesive conjugate fiber made of at least two-component thermoplastic resin having a melting point difference of 10 ° C. or more. -G. (4) The filter material sheet according to any one of (1) to (3), wherein the ratio of the thickness of the nonwoven fabric at the valley portion of the pleat to that at the pleated peak portion is 1.2 to 3.0. G. (5) The filter medium sheet according to any one of (1) to (4), which has a fineness difference or a density gradient between the fiber laminates of the nonwoven fabric integrated with the pleated net. (6) The filter medium sheet according to any one of (1) to (5).
Pleated filter made by processing and molding.

【0007】[0007]

【発明の実施の形態】以下、本発明の実施の態様を具体
的に説明する。本発明で用いられるプリ−ツ加工された
熱接着性モノフィラメントからなる網状物とは、熱接着
性モノフィラメントを織編み等の加工を行うことで網状
物または織布状物(これらを総称して網状物という)を
形成し、それを熱処理することによってモノフィラメン
ト同士の接する交点を融着したものをプリ−ツ加工した
ものである。モノフィラメントの繊度は易成形性、成形
保持性の点で100〜1500デニ−ルの物が好まし
い。ここで熱接着性モノフィラメントとは、熱可塑性樹
脂の単一成分でも使用できるが、繊維同士の接点を接着
して固定することを考慮したとき、低融点樹脂と高融点
樹脂の2成分からなり、かつ、繊維表面の少なくとも一
部を低融点樹脂が連続に占めるような複合モノフィラメ
ントが好ましく用いられる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention will be specifically described below. The mesh formed of the pleated heat-adhesive monofilament used in the present invention is a net or a woven fabric obtained by subjecting the heat-adhesive monofilament to processing such as weaving. ) And heat-treated to fuse the intersections where the monofilaments are in contact with each other and pleated. The fineness of the monofilament is preferably 100 to 1500 denier from the viewpoints of easy moldability and mold retention. Here, the heat-adhesive monofilament can be used as a single component of a thermoplastic resin, but when considering the bonding and fixing of the contact points between fibers, it is composed of two components, a low-melting resin and a high-melting resin, In addition, a composite monofilament in which a low melting point resin occupies at least a part of the fiber surface continuously is preferably used.

【0008】熱可塑性樹脂としては、各種のポリエチレ
ン、ポリプロピレンなどのポリオレフィン、ポリエチレ
ンテレフタレ−トなどの熱可塑性ポリエステル、ナイロ
ン6、ナイロン66等のポリアミドが例示でき、耐薬品
性の面からとりわけ好ましいのは、ポリオレフィンであ
る。熱接着性複合モノフィラメントの場合、これら樹脂
の中から少なくとも10℃の融点差を有する低融点樹脂
と高融点樹脂を適宜組み合わせて用いられる。
Examples of the thermoplastic resin include various polyolefins such as polyethylene and polypropylene, thermoplastic polyesters such as polyethylene terephthalate, and polyamides such as nylon 6 and nylon 66, and particularly preferred from the viewpoint of chemical resistance. Is a polyolefin. In the case of a heat-adhesive composite monofilament, a low-melting resin having a melting point difference of at least 10 ° C. and a high-melting resin are used in an appropriate combination.

【0009】本発明で用いられる熱接着性繊維について
は、ポリオレフィン系、ポリアミド系、ポリエステル系
樹脂等を用いることができる。ポリオレフィン系樹脂と
しては、エチレン、プロピレン、ブテン−1、若しくは
4−メチルペンテン−1等の単独重合体、及びこれらと
他のα−オレフィン、即ち、エチレン、プロピレン、ブ
テン−1、ペンテン−1、ヘキセン−1あるいは4−メ
チルペンテン−1などのうちの1種以上とのランダム若
しくはブロック共重合体あるいはこれらを組み合わせた
共重合体のことであり、またはこれらの混合物などを挙
げることができる。
As the heat-adhesive fibers used in the present invention, polyolefin-based, polyamide-based, polyester-based resins and the like can be used. As the polyolefin-based resin, homopolymers such as ethylene, propylene, butene-1, or 4-methylpentene-1, and these and other α-olefins, ie, ethylene, propylene, butene-1, pentene-1, It is a random or block copolymer with one or more of hexene-1, 4-methylpentene-1, and the like, or a copolymer obtained by combining them, or a mixture thereof.

【0010】ポリアミド系樹脂としてはナイロン4、ナ
イロン6、ナイロン7、ナイロン11、ナイロン12、
ナイロン66、ナイロン610、ポリメタキシリデンア
ジパミド、ポリパラキシリデンデカンアミド、ポリビス
シクロヘキシルメタンデカンアミド若しくはこれらのコ
ポリアミド等を挙げることができる。ポリエステル系樹
脂としてはポリエチレンテレフタレ−ト、ポリテトラメ
チレンテレフタレ−ト、ポリブチルテレフタレ−ト、ポ
リエチレンオキシベンゾエ−ト、ポリ(1,4−ジメチ
ルシクロヘキサンテレフタレ−ト)若しくはこれらの共
重合体を挙げることができる。
As the polyamide resin, nylon 4, nylon 6, nylon 7, nylon 11, nylon 12,
Examples thereof include nylon 66, nylon 610, polymethaxylidene adipamide, polyparaxylidenedecaneamide, polybiscyclohexylmethanedecaneamide, and copolyamides thereof. Examples of the polyester resin include polyethylene terephthalate, polytetramethylene terephthalate, polybutyl terephthalate, polyethylene oxybenzoate, poly (1,4-dimethylcyclohexane terephthalate), or a combination thereof. Polymers may be mentioned.

【0011】これらの樹脂は1成分系で使用することも
できるが、熱接着性繊維同士の接点及び繊維と網状物の
接点などの熱接着による網状物と不織布の接合一体化の
効果を考慮したとき、低融点樹脂と高融点樹脂の複合成
分系が好ましい。複合成分系の場合、2成分の融点差が
10℃以上であることが熱接着加工時の管理が容易であ
り、好ましい。複合成分系の場合、繊維表面の少なくと
も一部を低融点樹脂が連続して占めるような複合繊維
が、熱接着による成形が容易であり好ましい。
Although these resins can be used in a one-component system, the effect of bonding and integrating the mesh and the nonwoven fabric by thermal bonding such as the contact between the heat-bondable fibers and the contact between the fiber and the mesh is considered. At this time, a composite component system of a low melting point resin and a high melting point resin is preferable. In the case of a composite component system, it is preferable that the difference between the melting points of the two components is 10 ° C. or more, because the management during the thermal bonding is easy. In the case of a composite component system, a composite fiber in which a low melting point resin continuously occupies at least a part of the fiber surface is preferable because molding by thermal bonding is easy.

【0012】高融点樹脂と低融点樹脂の複合比(重量
比)は、接着強度と接着性から70:30から30:7
0が好ましい。複合成分樹脂の組み合わせ例としては、
高密度ポリエチレン/ポリプロピレン、直鎖状低密度ポ
リエチレン/ポリプロピレン、プロピレンと他のα−オ
レフィンとの二元共重合体または三元共重合体/ポリプ
ロピレン、直鎖状低密度ポリエチレン/高密度ポリエチ
レン、低密度ポリエチレン/高密度ポリエチレン、各種
のポリエチレン/熱可塑性ポリエステル、ポリプロピレ
ン/熱可塑性ポリエステル、プロピレンと他のα−オレ
フィンとの二元共重合体または三元共重合体/熱可塑性
ポリエステル、各種のポリエチレン/ナイロン6、ポリ
プロピレン/ナイロン6、プロピレンと他のα−オレフ
ィンとの二元共重合体、または三元共重合体/ナイロン
6、ナイロン6/ナイロン66、ナイロン6/熱可塑性
ポリエステルなどを挙げることができる。複合形態は例
えば鞘芯型、偏芯鞘芯型、並列型を挙げることができ
る。
The composite ratio (weight ratio) of the high melting point resin and the low melting point resin is from 70:30 to 30: 7 from the viewpoint of adhesive strength and adhesiveness.
0 is preferred. Examples of combinations of composite component resins include:
High density polyethylene / polypropylene, linear low density polyethylene / polypropylene, binary or terpolymer of propylene and other α-olefin / polypropylene, linear low density polyethylene / high density polyethylene, low High density polyethylene / high density polyethylene, various polyethylene / thermoplastic polyester, polypropylene / thermoplastic polyester, binary copolymer or terpolymer of propylene and other α-olefin / thermoplastic polyester, various polyethylene / Nylon 6, polypropylene / nylon 6, a binary copolymer of propylene and another α-olefin, or a terpolymer / nylon 6, nylon 6 / nylon 66, nylon 6 / thermoplastic polyester, etc. it can. Examples of the composite form include a sheath-core type, an eccentric sheath-core type, and a side-by-side type.

【0013】本発明の熱接着性繊維は、発明の効果を妨
げない範囲で繊維内に機能性を付与する他の添加剤を配
合することが可能であり、用途に合わせて適宜選択する
ことができる。
The heat-adhesive fiber of the present invention can contain other additives for imparting functionality to the fiber as long as the effects of the present invention are not impaired, and can be appropriately selected according to the application. it can.

【0014】本発明の濾材シ−トは、波形にプリ−ツ加
工された前記熱接着性モノフィラメントからなる網状物
に、前記熱接着性繊維が該網状物の網目を通して絡合分
散して不織布を形成し、かつ繊維同士の接点及び繊維と
網状物の接点が熱接着され、該網状物と不織布が接合一
体化された構造で構成される。つまり、本発明の濾材シ
−トは立体的にして通気性のある波形に加工された熱接
着性モノフィラメントからなる網状物に、例えばメルト
ブロ−法やフラッシュ紡糸法で熱接着性繊維を吹き付け
ることにより熱接着性繊維が該網状物の網目を通して絡
合分散して不織布を形成し、かつ繊維同士の接点及び繊
維と網状物の接点が熱接着され、該網状物と不織布が接
合一体化される。不織布を形成する繊維としては、特に
メルトブロ−法により得られた繊維が好ましい。メルト
ブロー法により得られた繊維は微細な繊維であり、それ
から得られた不織布は精密濾過が可能であり、その不織
布の欠点である機械的強度の弱さを網状物によりカバー
することが出来るからである。
[0014] The filter sheet of the present invention is characterized in that the heat-adhesive fibers are entangled and dispersed through a mesh of the heat-adhesive monofilament which has been pleated into a corrugated form. It is formed, and the contact point between the fibers and the contact point between the fiber and the mesh are thermally bonded, and the mesh and the nonwoven fabric are joined and integrated. That is, the filter medium sheet of the present invention is obtained by spraying a heat-adhesive fiber onto a net made of a heat-adhesive monofilament processed into a three-dimensional and air-permeable corrugated material, for example, by a melt blow method or a flash spinning method. The heat-adhesive fibers are entangled and dispersed through the mesh of the mesh to form a nonwoven fabric, and the contacts between the fibers and the contacts between the fibers and the mesh are thermally bonded, and the mesh and the nonwoven fabric are joined and integrated. As the fiber forming the nonwoven fabric, a fiber obtained by a melt blow method is particularly preferable. The fibers obtained by the meltblowing method are fine fibers, and the nonwoven fabric obtained therefrom can be subjected to microfiltration, and the weakness of mechanical strength, which is a drawback of the nonwoven fabric, can be covered by the mesh. is there.

【0015】本発明の濾材シートは、プリーツ谷部の不
織布の厚みが山部のそれよりも厚いものである。また繊
維密度も谷部の方が大である方が好ましい。この様な濾
材シートは波形にプリ−ツ加工された網状物に熱接着性
繊維をメルトブロ−法で堆積時間を調整しながら吹き付
けることにより得ることが出来る。本発明で使用される
プリーツ加工は不織布のプリ−ツ谷部/山部の厚み比で
1.2〜3.0が好ましい。不織布のプリ−ツ谷部/山
部の厚み比が1.2未満では不織布の絶対量が少なくな
り、濾過機能性を考慮したとき濾材シ−トとしては用途
によっては不十分となる場合が有り、3.0を大きく越
えると谷部の不織布量が多くなり、プリ−ツ加工された
網状物との絡み合い接着が不十分となり易い。
In the filter medium sheet of the present invention, the thickness of the nonwoven fabric at the pleated valleys is greater than that at the ridges. Also, the fiber density is preferably higher in the valley. Such a filter medium sheet can be obtained by spraying a thermo-adhesive fiber onto a net material pleated in a corrugated form while adjusting the deposition time by a melt blow method. The pleating process used in the present invention preferably has a pleated valley / peak portion thickness ratio of 1.2 to 3.0 in the nonwoven fabric. If the thickness ratio of the valleys / peaks of the nonwoven fabric is less than 1.2, the absolute amount of the nonwoven fabric will be small, and the filtration material sheet may be insufficient depending on the application in consideration of the filtering function. If it exceeds 3.0, the amount of the nonwoven fabric in the valley increases, and the entangled adhesion with the pleated net tends to be insufficient.

【0016】また、濾材シ−ト製造に際し、不織布が繊
維積層間で繊度差または密度勾配を有するように製造し
たものは、繊度差または密度勾配によってミクロポ−ラ
ス構造が形成され、高精度な濾過性能を有する濾材シ−
トが得られる。この様にして接合一体化された濾材シ−
トは、プリーツ加工により通水抵抗を上げることなく濾
過面積を拡大することができるのである。
Further, in the production of a filter medium sheet, a non-woven fabric produced so that the non-woven fabric has a fineness difference or a density gradient between the fiber laminations has a microporous structure formed by the fineness difference or the density gradient, and a high-precision filtration is performed. Filter media with high performance
Is obtained. The filter material sheet integrated and integrated in this way
The filter area can be increased without increasing the water flow resistance by pleating.

【0017】更に、プリーツフィルターの欠点である長
時間使用によるプリーツの変形に基づく濾過ライフの低
下を、谷部に多く積層した不織布により、低減したもの
である。また、別の本発明の特徴は、プリーツ加工しな
い濾材シートからなるプリーツフィルターに比較して濾
過面の表面積が大であるため、濾過ライフが大である点
である。
Further, the disadvantage of the pleated filter, that is, the reduction of the filtration life due to the deformation of the pleat due to long-term use, is reduced by the nonwoven fabric laminated many in the valley. Another feature of the present invention is that the filtration life is large because the surface area of the filtration surface is large as compared with a pleated filter made of a filter material sheet that is not pleated.

【0018】不織布に使用される繊維の繊維径について
は、0.1〜20μmが望ましく、不織布の繊維積層間
での繊度差は1.5〜10μmになるように組み合わさ
れることが好ましい。また、密度差は0.002〜0.
025g/cm3である。しかも前述の如くプリ−ツ加
工された網状物と一体化した不織布のプリ−ツ谷部/山
部の厚み比を1.2〜3.0とし、かつ、不織布の層間
で繊度差または密度勾配を形成させることで、より一層
濾材シ−トの濾過機能が向上するのである。
The fiber diameter of the fibers used in the nonwoven fabric is preferably 0.1 to 20 μm, and the fibers are preferably combined so that the difference in fineness between the fiber layers of the nonwoven fabric is 1.5 to 10 μm. Further, the density difference is 0.002 to 0.5.
025 g / cm 3 . In addition, the thickness ratio of the valley / peak portion of the non-woven fabric integrated with the pleated net is set to 1.2 to 3.0, and the difference in fineness or density gradient between the layers of the non-woven fabric. Thus, the filtering function of the filter medium sheet is further improved.

【0019】すなわち、不織布のみを波形にプリ−ツ加
工した従来のプリ−ツフィルタ−のように濾過表面積を
拡大させて粒子を単に濾材表面、またその表面層近傍の
みで捕捉するのではなく、本発明の密度勾配をつけた不
織布を有する濾材シ−トを用いたプリ−ツフィルタ−は
前記ミクロポ−ラス構造により濾材表面層及び濾材間の
空隙部で捕捉させ、特に濾材内層部深くまで捕捉が行わ
れるいわゆる深層濾過構造を形成しているのである。
That is, instead of simply entrapping the particles only on the surface of the filter medium or in the vicinity of the surface layer thereof, instead of enlarging the filtration surface area as in a conventional pleated filter in which only the nonwoven fabric is pleated into a waveform, the present invention is not limited to this. The pleated filter using a filter medium sheet having a non-woven fabric with a density gradient according to the present invention is trapped in the gap between the filter medium surface layer and the filter medium by the above-mentioned microporous structure, and is particularly deeply trapped in the inner layer of the filter medium. The so-called deep filtration structure is formed.

【0020】本発明の濾材シ−トは、次のようにして作
成される。熱接着性モノフィラメントを織成などして編
状物とした後、熱板等で編状物相互の接点を熱接合させ
る。この網状物を公知の方法でひだ折り加工して、波形
にプリ−ツ成形された網状物を形成する。プリーツ加工
の方法としては、上刃と下刃が交互に上下作動し2枚の
刃で挟み込みながら加工するいわゆるレシプロ型の装置
や、筋付きプリーツロールを回転しシートを挟み込みな
がら加工する筋付きロールロータリー型等の何れも使用
可能である。
The filter medium sheet of the present invention is prepared as follows. After knitting the heat-bonding monofilament by weaving or the like, the contacts of the knitted materials are thermally joined with a hot plate or the like. The net is pleated by a known method to form a net which is pleated in a corrugated form. As a method of pleat processing, the so-called reciprocating type device in which the upper blade and the lower blade alternately move up and down to process while sandwiching between two blades, or a roll with a slit that rotates a pleated roll with a slit and processes while sandwiching a sheet Any of a rotary type and the like can be used.

【0021】この様にして形成された網状物にメルトブ
ロ−法、またはスパンボンド法などで前記熱接着性繊維
を吹き付けて網状物の網目を通して絡合分散させる。こ
の結果、熱接着性繊維が繊維同士の接点、及び繊維と網
状物の接点を熱接着させ、網状物と不織布が接合一体化
した濾材シ−トが得られるのである。熱接着性繊維を吹
き付けるときの編状物は、静止状態でも良く、また、コ
ンベア上での移動状態でも良い。このときの繊維堆積時
間の調整によりプリ−ツ山部と谷部の堆積量に差が生
じ、厚みに違いが生じる。また、熱接着性繊維の吐出速
度や吐出量を調整したり、あるいは極細繊度、または細
繊度繊維を網状物に吹き付けて堆積した後、その上から
中繊度繊維、または太繊度繊維を吹き付けて堆積するこ
とで不織布の繊維積層間で繊度差、または密度勾配を適
宜付与することができる。
The above-mentioned heat-bonding fiber is sprayed onto the net formed in this manner by a melt blow method or a spun bond method, and is entangled and dispersed through the mesh of the net. As a result, the heat-adhesive fibers thermally bond the contacts between the fibers and the contacts between the fibers and the mesh, and a filter material sheet in which the mesh and the nonwoven fabric are joined and integrated is obtained. The knitted material when spraying the heat-adhesive fibers may be in a stationary state, or may be in a moving state on a conveyor. The adjustment of the fiber deposition time at this time causes a difference in the amount of deposition between the pleated portion and the valley portion, resulting in a difference in thickness. In addition, after adjusting the discharge speed and discharge amount of the heat-adhesive fiber, or spraying ultrafineness or fineness fibers onto the mesh, depositing medium-size fibers or large-size fibers from above. By doing so, a fineness difference or a density gradient between the fiber laminates of the nonwoven fabric can be appropriately imparted.

【0022】このようにして得られた濾材シ−トを用い
て、次のような方法でプリ−ツフィルタ−を形成する。
両端部を揃えるためにカッターナイフ等で両端部の不揃
い部分を切り落とし、円筒状に丸めてその合わせ目のひ
だ部をヒ−トシ−ル、あるいは接着剤を用いる方法等で
液密にシ−ルする。
Using the thus obtained filter medium sheet, a pleated filter is formed by the following method.
In order to align the both ends, cut off the irregular parts at both ends with a cutter knife or the like, round it into a cylindrical shape, and seal the seam at the joint with a heat-sealing or adhesive method, etc. in a liquid-tight manner. I do.

【0023】エンドシ−ル工程はエンドプレ−ト材質に
よって方法がいくつかあるが、いずれも従来知られた公
知技術によって行われる。エンドプレ−ト材質がポリプ
ロピレンやポリエステルの如き熱可塑性樹脂の時は、熱
溶融した樹脂を型に流し込んだ直後に円筒状濾材の片端
面を樹脂の中に挿入する方法が行われる。一方、既に成
型されたエンドプレ−トのシ−ル表面のみを赤外線ヒ−
タ−で溶融し、円筒状濾材の片端面を溶着する方法も行
われる。以下、実施例及び比較例により本発明を詳細に
説明するが、本発明はこれら実施例に限定されるもので
はない。なお、各例において用いた測定方法を以下に示
す。
There are several methods for the end-sealing process depending on the material of the end plate, and all of them are performed by a conventionally known technique. When the end plate material is a thermoplastic resin such as polypropylene or polyester, a method is employed in which one end surface of the cylindrical filter medium is inserted into the resin immediately after the molten resin is poured into a mold. On the other hand, only the sealing surface of the already molded end plate is infrared
A method of fusing with a tar and welding one end surface of a cylindrical filter medium is also performed. Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. The measurement method used in each example is shown below.

【0024】[0024]

【実施例】繊維若しくは不織布の物性は以下の方法によ
って行なった。 (平均繊維径)不織布集合体を構成する繊維の電子顕微
鏡画像を画像処理装置に取り込み、繊維直径を100本
測定し、その平均値を平均繊維径とした。 (谷部/山部の厚み比)濾材シ−トをひろげた状態で谷
部と山部の厚みを50g/cm2荷重下で厚み測定機を
用いて測定し、その値から網状物の厚みを差し引いて求
めた。
EXAMPLES The physical properties of fibers or nonwoven fabrics were determined by the following methods. (Average fiber diameter) An electron microscope image of the fibers constituting the nonwoven fabric aggregate was taken into an image processing apparatus, 100 fiber diameters were measured, and the average value was defined as the average fiber diameter. (Thickness ratio of valley / peak) The thickness of the valley and peak is measured with a thickness measuring machine under a load of 50 g / cm2 with the filter medium sheet spread, and the thickness of the mesh is determined from the value. Deducted and determined.

【0025】(不織布密度)濾材シ−トをひろげた状態
で、50g/cm2荷重下で測定した谷部と山部の平均
厚みより次式により計算した。 密度(g/cm3)=目付(g/cm2)/厚み(c
m) (シ−ト安定性)濾材シ−トを指で強く擦ってもシワが
なく、毛羽立ちが起きないものを安定性良(○)、シ
ワ、または毛羽立ちのいずれかがあるものを安定性不良
(×)として表した。
(Density of nonwoven fabric) The average thickness of the valleys and peaks measured under a load of 50 g / cm2 in a state where the filter sheet was spread was calculated by the following equation. Density (g / cm3) = weight (g / cm2) / thickness (c
m) (Sheet stability) Stability is good if there is no wrinkle even when the filter medium sheet is strongly rubbed with a finger and fuzz does not occur. Stability is good if there is any of wrinkles or fuzz. Expressed as defective (x).

【0026】(濾過精度)循環式濾過試験機のハウジン
グにフィルタ−を取付け、毎分30リットルの流量で通
水循環しながら、JIS7種試験用ダスト(中位径27
〜31μm)を3g/minで添加し、3分後の原液と
フィルタ−通過後の液をサンプリングする。それぞれの
液の粒度分布を光遮断式粒度分布測定機で濾過精度を測
定し、粒子がフィルタ−に捕集された割合を示す捕集効
率を求め、80%捕集する粒子径を濾過精度とした。
(Filtration accuracy) A filter was attached to the housing of the circulating filtration tester, and JIS type 7 test dust (medium diameter 27) was circulated at a flow rate of 30 liters per minute.
3131 μm) at 3 g / min, and sample the undiluted solution after 3 minutes and the solution after passing through the filter. The particle size distribution of each liquid was measured for filtration accuracy with a light-blocking particle size distribution analyzer, and the collection efficiency indicating the ratio of particles collected by the filter was determined. did.

【0027】(濾過ライフ)前記、循環式濾過試験機の
ハウジングにフィルタ−を取付け、毎分30リットルの
流量で通水循環しながら、JIS7種試験用ダスト(中
位径27〜31μm)を2g/minで添加して、ハウ
ジング入口側と出口側の差圧を測定する。差圧が0.2
MPaを示すまでの時間を濾過ライフとした。
(Filtration life) A filter was attached to the housing of the circulating filtration tester, and JIS type 7 test dust (medium diameter: 27 to 31 μm) was weighed at 2 g / water while circulating water at a flow rate of 30 liters per minute. The pressure difference between the inlet side and the outlet side of the housing is measured. Differential pressure is 0.2
The time required to show the MPa was defined as the filtration life.

【0028】波形にプリ−ツ加工された網状物には次の
網状物を使用した。 (網状物)JISK7210の方法によるメルトフロ−
レ−ト(以下MFRと略記する)MFR8(g/10
分、230℃)のポロプロピレンを芯成分とし、MFR
15(g/10分、190℃)の高密度ポリエチレンを
鞘成分とし、鞘芯型複合繊維紡糸用口金を用いて、鞘芯
比が5対5(重量比)であり繊度250デニ−ルの複合
モノフィラメント糸を得た。この複合モノフィラメント
糸を用い、経緯共17×17本/25mmの織り密度で
織製し、織布を得た。この織布をテンタ−型加熱機で温
度145℃で加熱し、鞘芯型複合繊維の交点が熱融着し
たネット(網状物)を実施例に用いた。
The following nets were used for the nets pleated in a waveform. (Mesh) Melt flow by JIS K7210 method
Rate (hereinafter abbreviated as MFR) MFR8 (g / 10
Min, 230 ° C) as the core component, and MFR
A high-density polyethylene of 15 (g / 10 minutes, 190 ° C.) is used as a sheath component, and a sheath-core ratio is 5: 5 (weight ratio) and a fineness of 250 denier using a sheath-core type composite fiber spinneret. A composite monofilament yarn was obtained. Using this composite monofilament yarn, weaving was performed at a weaving density of 17 × 17 yarns / 25 mm in both cases to obtain a woven fabric. This woven fabric was heated at a temperature of 145 ° C. with a tenter-type heater, and a net (net-like material) in which the intersections of the sheath-core type composite fibers were heat-sealed was used in Examples.

【0029】実施例1 波形にプリ−ツ加工された網状物には次の網状物を使用
した。JISK7210の方法によるメルトフロ−レ−
ト(以下MFRと略記する)MFR8(g/10分、2
30℃)のポリプロピレンを芯成分とし、MFR15
(g/10分、190℃)の高密度ポリエチレンを鞘成
分とし、鞘芯型複合繊維紡糸用口金を用い複合紡糸、延
伸をし、鞘芯比が50対50重量%、繊度250デニ−
ルの複合モノフィラメントを得た。この複合モノフィラ
メントを用い、経緯共12×12本/25mmの織り密
度で織製し、織布を得た。この織布をテンタ−型加熱機
で温度145℃に加熱し、鞘芯型複合繊維の交点が熱融
着したネット(網状物)を得た。この網状物を上下に一
枚ずつの刃を有するレシプロ形のプリ−ツ加工機を用
い、プリ−ツ加工し、山の高さ12mmのプリ−ツ加工
された網状物を得た。
Example 1 The following nets were used as nets pleated in a waveform. Melt flow by the method of JIS K7210
G (hereinafter abbreviated as MFR) MFR8 (g / 10 min, 2
30 ° C.) as a core component, and MFR15
(G / 10 minutes, 190 ° C.) as a sheath component, composite spinning and drawing using a spinneret for spinning a sheath-core type composite fiber, a sheath-core ratio of 50 to 50% by weight, and a fineness of 250 denier.
To obtain a composite monofilament. Using this composite monofilament, weaving was performed at a weave density of 12 × 12 filaments / 25 mm in both cases to obtain a woven fabric. This woven fabric was heated to a temperature of 145 ° C. with a tenter-type heater to obtain a net (net-like material) in which the intersections of the sheath-core type composite fibers were heat-sealed. This net was pleated using a reciprocating pleating machine having one blade on each side to obtain a pleated net with a peak height of 12 mm.

【0030】一方、MFR94(g/10分、230
℃)、融点163℃のポリプロピレンを芯成分とし、M
FR120(g/10分、190℃)、融点122℃の
線状低密度ポリエチレンを鞘成分とし、孔径0.3mm
の鞘芯型メルトブロ−用口金を用い、複合比50/50
重量%、紡糸温度を芯成分260℃、鞘成分250℃の
条件で紡糸し、温度360℃の空気を圧力0.12MP
aで導入し、口金と網状物との距離48cmで上記プリ
−ツ加工された網状物に吹き付け、メルトブロ−不織布
と網状物が接合一体化した濾材シ−トを得た。なお網状
物は、金網コンベア上に載置し、吹き付けた気流はコン
ベア下部の吸引装置より吸引除去した。この不織布の平
均繊維径は、3.0μm、目付54g/m2であった。
又不織布の厚みは表1に示したようにプリ−ツの谷部が
プリ−ツの山部より大であつた。得られた濾材シ−トを
SEM写真および光学顕微鏡でシ−ト断面を観察したと
ころ、網状物に熱接着性繊維が該網状物の網目を通して
絡合分散して不織布を形成し、かつ繊維同士の接点及び
繊維と網状物の接点が熱接着され、該網状物と不織布が
接合一体化されていた。
On the other hand, MFR94 (g / 10 minutes, 230
C), polypropylene having a melting point of 163 ° C. as a core component, and M
FR120 (g / 10 minutes, 190 ° C), linear low-density polyethylene having a melting point of 122 ° C as a sheath component, and a pore diameter of 0.3 mm
Composite ratio 50/50
% By weight, spinning temperature is 260 ° C for the core component and 250 ° C for the sheath component.
a) and sprayed onto the pleated net at a distance of 48 cm between the base and the net to obtain a filter material sheet in which the melt-blown non-woven fabric and the net were joined and integrated. The mesh was placed on a wire mesh conveyor, and the blown airflow was removed by suction from a suction device below the conveyor. The average fiber diameter of this nonwoven fabric was 3.0 μm, and the basis weight was 54 g / m 2.
Further, as shown in Table 1, the thickness of the nonwoven fabric was such that the valleys of the pleats were larger than the peaks of the pleats. When the cross section of the obtained filter medium sheet was observed with a SEM photograph and an optical microscope, the heat-adhesive fibers were entangled and dispersed in the mesh through the mesh of the mesh to form a nonwoven fabric. And the contact between the fiber and the mesh was thermally bonded, and the mesh and the nonwoven fabric were joined and integrated.

【0031】次に、内径36mm、外径44mmのポリ
プロピレン製多孔性中芯に、前記ブリ−ツ加工された網
状物とメルトブロ−不織布が一体化した濾材シ−トを巻
き付け、更に濾材シ−トの合わせ目をヒ−トシ−ルし、
上下の端面に円盤状のポリプロピレンシ−ル材を、ホツ
トメルト剤を付着固定し、プリ−ツの山数105、内径
36mm、外径69mm、長さ250mmの筒状のプリ
−ツフイルタ−を得た。濾材シ−トやフイルタ−の濾過
性能等の試験結果を表1に示す。
Next, a filter material sheet in which the pleated mesh and the melt-blown non-woven fabric are integrated is wound around a porous polypropylene core having an inner diameter of 36 mm and an outer diameter of 44 mm. Heat seal the joint of
A disc-shaped polypropylene sealant was attached and fixed to the upper and lower end faces with a hot melt agent to obtain a cylindrical pleat filter having 105 pleats, an inner diameter of 36 mm, an outer diameter of 69 mm, and a length of 250 mm. . Table 1 shows the test results such as the filtering performance of the filter sheet and the filter.

【0032】[0032]

【表1】 [Table 1]

【0033】実施例2 実施例1と同様の方法で濾材シ−ト及び筒状のプリ−ツ
フイルタ−を製造した。メルトブロ−紡糸口金やプリ−
ツ加工した網状物は実施例1に開示した物と同じものを
使用した。但しメルトブロ−不織布として以下のものを
使用した。この不織布は、芯成分が融点162℃、MF
R82(g/10分、230℃)のポリプロピレンで、
鞘成分がMFR88(g/10分、230℃)、融点1
57℃のエチレン/プロピレン共重合体で、複合比60
(芯)/40(鞘)重量%を用い、メルトブロ−条件
は、紡糸温度が芯成分280℃、鞘成分260℃、メル
トブロ−の空気温度が350℃、圧力が0.12Mp、
口金と網状物の距離が48cmであつた。この不織布の
平均繊維径は3.4μmであつた。又不織布の厚みはプ
リ−ツの谷部がプリ−ツの山部より大であつた。得られ
た濾材シ−トをSEM写真および光学顕微鏡でシ−ト断
面を観察したところ、網状物に熱接着性繊維が該網状物
の網目を通して絡合分散して不織布を形成し、かつ繊維
同士の接点及び繊維と網状物の接点が熱接着され、該網
状物と不織布が接合一体化されていた。この濾材シ−ト
を用い実施例1と同様に加工し、長さ250mmの筒状
のプリ−ツフイルタ−を製造した。濾材シ−トやフイル
タ−の濾過性能等の試験結果を表1に示す。
Example 2 A filter medium sheet and a tubular pleat filter were produced in the same manner as in Example 1. Melt blow-spinneret and pre-
The same mesh as the one disclosed in Example 1 was used as the net-processed mesh. However, the following materials were used as the melt blown nonwoven fabric. This nonwoven fabric has a core component having a melting point of 162 ° C. and an MF
R82 (g / 10 minutes, 230 ° C) polypropylene,
Sheath component is MFR88 (g / 10 minutes, 230 ° C), melting point 1
An ethylene / propylene copolymer at 57 ° C with a composite ratio of 60
(Core) / 40 (sheath) weight%, melt blow conditions were as follows: spinning temperature was 280 ° C. for the core component, 260 ° C. for the sheath component, 350 ° C. for the air temperature of the melt blower, 0.12 Mp for the pressure,
The distance between the base and the mesh was 48 cm. The average fiber diameter of this nonwoven fabric was 3.4 μm. The thickness of the nonwoven fabric was larger at the valleys of the pleats than at the peaks of the pleats. When the cross section of the obtained filter medium sheet was observed with a SEM photograph and an optical microscope, the heat-adhesive fibers were entangled and dispersed in the mesh through the mesh of the mesh to form a nonwoven fabric. And the contact between the fiber and the mesh was thermally bonded, and the mesh and the nonwoven fabric were joined and integrated. Using this filter material sheet, processing was performed in the same manner as in Example 1 to produce a cylindrical pleat filter having a length of 250 mm. Table 1 shows the test results such as the filtering performance of the filter sheet and the filter.

【0034】実施例3 実施例1と同様の方法で濾材シ−ト及びプリ−ツフイル
タ−を製造した。メルトブロ−紡糸口金やプリ−ツ加工
した網状物は実施例1に開示したものと同じ物を使用し
た。但しメルトブロ−不織布として以下のものを使用し
た。この不織布は、MFR80(g/10分、230
℃)、融点162℃のポリプロピレンを芯成分とし、M
FR120(g/10分、190℃)、融点122℃の
線状低密度ポリエチレンを鞘成分とし、複合比50/5
0重量%、紡糸温度を芯成分280℃、鞘成分260
℃、の条件で紡糸し、メルトブロ−の空気温度が340
℃、圧力が0.12MPa、口金と網状物との距離が5
0cmであつた。この不織布の平均繊維径は3.1μ
m、目付69g/m2であった。又不織布の厚みはプリ
−ツの谷部がプリ−ツの山部より大であつた。得られた
濾材シ−トは、SEM写真および光学顕微鏡でシ−ト断
面を観察したところ、網状物に熱接着性繊維が該網状物
の網目を通して絡合分散して不織布を形成し、かつ繊維
同士の接点及び繊維と網状物の接点が熱接着され、該網
状物と不織布が接合一体化されていた。この濾材シ−ト
を用い、実施例1と同様に加工し長さ250mmの筒状
のプリ−ツフイルタ−を製造した。濾材シ−トやフイル
タ−の濾過性能の試験結果を表1に示す。
Example 3 A filter sheet and a pleated filter were produced in the same manner as in Example 1. The same melt-blowing spinneret and pleated mesh as those disclosed in Example 1 were used. However, the following materials were used as the melt blown nonwoven fabric. This nonwoven fabric has an MFR of 80 (g / 10 minutes, 230
° C), polypropylene having a melting point of 162 ° C as a core component, and M
FR120 (g / 10 min, 190 ° C), linear low-density polyethylene having a melting point of 122 ° C as a sheath component, and a composite ratio of 50/5
0% by weight, the spinning temperature was 280 ° C. for the core component, and 260 for the sheath component.
And the air temperature of the melt blow is 340.
° C, pressure is 0.12MPa, distance between base and mesh is 5
It was 0 cm. The average fiber diameter of this nonwoven fabric is 3.1μ.
m, the basis weight was 69 g / m2. The thickness of the nonwoven fabric was larger at the valleys of the pleats than at the peaks of the pleats. Observation of the cross section of the obtained filter medium sheet with an SEM photograph and an optical microscope revealed that the heat-adhesive fibers were entangled and dispersed in the mesh through the mesh of the mesh to form a nonwoven fabric. The contact between the two and the contact between the fiber and the mesh were thermally bonded, and the mesh and the nonwoven fabric were joined and integrated. Using this filter medium sheet, a cylindrical pleat filter having a length of 250 mm was manufactured in the same manner as in Example 1. Table 1 shows the test results of the filtering performance of the filter sheet and the filter.

【0035】実施例4 実施例1と同様の方法で濾材シ−ト及びプリ−ツフイル
タ−を製造した。メルトブロ−紡糸口金やプリ−ツ加工
した網状物は実施例1に開示したものと同じものを用い
た。但しメルトブロ−不織布として以下のものを用い
た。この不織布は、MFR88(g/10分、230
℃)、融点161℃のポリプロピレンを芯成分とし、M
FR124(g/10分、190℃)、融点122℃の
線状低密度ポリエチレンを鞘成分とし、複合比50/5
0重量%、紡糸温度を芯成分290℃、鞘成分290
℃、メルトブロ−の空気温度が360℃の空気を圧力
0.18MPaで導入し、口金と網状物との距離45c
mであつた。この不織布の平均繊維径は2.1μm、目
付26g/m2、密度3.47g/cm3であった。又
不織布の厚みはプリ−ツの谷部がプリ−ツの山部より大
であつた。得られた濾材シ−トをSEM写真および光学
顕微鏡でシ−ト断面を観察したところ、網状物に熱接着
性繊維が該網状物の網目を通して絡合分散して不織布を
形成し、かつ繊維同士の接点及び繊維と網状物の接点が
熱接着され、該網状物と不織布が接合一体化されてい
た。この濾材シ−トを用い実施例1と同様に加工し、長
さ250mmの筒状のプリ−ツフイルタ−を製造した。
濾材シ−トやフイルタ−の濾過性能等の試験結果を表1
に示す。
Example 4 A filter sheet and a pleated filter were manufactured in the same manner as in Example 1. The same melt-blowing spinneret and pleated mesh as those disclosed in Example 1 were used. However, the following materials were used as the melt blown nonwoven fabric. This non-woven fabric has an MFR of 88 (g / 10 minutes, 230
℃), polypropylene having a melting point of 161 ℃ as a core component,
FR124 (g / 10 minutes, 190 ° C), linear low-density polyethylene having a melting point of 122 ° C as a sheath component, and a composite ratio of 50/5
0% by weight, the spinning temperature was 290 ° C. for the core component, and 290 for the sheath component.
℃, the air temperature of the melt blown at 360 ℃ is introduced at a pressure of 0.18MPa, the distance between the base and the mesh 45c
m. The average fiber diameter of this nonwoven fabric was 2.1 μm, the basis weight was 26 g / m 2, and the density was 3.47 g / cm 3. The thickness of the nonwoven fabric was larger at the valleys of the pleats than at the peaks of the pleats. When the cross section of the obtained filter medium sheet was observed with a SEM photograph and an optical microscope, the heat-adhesive fibers were entangled and dispersed in the mesh through the mesh of the mesh to form a nonwoven fabric. And the contact between the fiber and the mesh was thermally bonded, and the mesh and the nonwoven fabric were joined and integrated. Using this filter material sheet, processing was performed in the same manner as in Example 1 to produce a cylindrical pleat filter having a length of 250 mm.
Table 1 shows the test results such as the filtering performance of the filter material sheet and the filter.
Shown in

【0036】実施例5 実施例1と同様の方法で濾材シ−ト及びプリ−ツフイル
タ−を製造した。メルトブロ−紡糸口金やプリ−ツ加工
した網状物は実施例1に開示したものと同じものを用い
た。又実施例4で得たメルトブロ−不織布を積層した濾
材の上に更にメルトブロ−不織布を積層し、二層構造の
不織布とした。但し上層のメルトブロ−不織布として以
下のものを用いた。この不織布は、MFR92(g/1
0分、230℃)、融点161℃のポリプロピレンを芯
成分とし、MFR120(g/10分、190℃)、融
点122℃の線状低密度ポリエチレンを鞘成分とし、複
合比50/50重量%、紡糸温度を芯成分250℃、鞘
成分270℃、メルトブロ−の空気温度が350℃の空
気を圧力0.17MPaで導入し、口金と実施例4で製
造したメルトブロ−不織布が積層された濾材シ−トとの
距離57cmで濾材シ−ト上に吹き付け融着し、二層の
不織布間で密度差を有した濾材シ−トを得た。又この濾
材シ−トを熱風循環型乾燥機を用い、温度135℃で加
熱処理し、不織布の繊維同士の熱接着を補強した。なお
二層の不織布間で繊維径が少し異なつていた。上層の不
織布の密度は1.16g/cm3であり、実施例4で製
造した下層の不織布の密度は3.47g/cm3であつ
た。この濾材シ−トは上層の不織布と下層の不織布で密
度勾配をもった濾材シ−トであることが確認された。又
不織布の厚みはプリ−ツの谷部がプリ−ツの山部より大
であつた。得られた濾材シ−トをSEM写真および光学
顕微鏡でシ−ト断面を観察したところ、網状物に熱接着
性繊維が該網状物の網目を通して絡合分散して不織布を
形成し、かつ繊維同士の接点及び繊維と網状物の接点が
熱接着され、該網状物と不織布が接合一体化されてい
た。この濾材シ−トを用い、実施例1と同様に加工し、
長さ250mmのプリ−ツフイルタ−を製造した。濾材
シ−トやフイルタ−の濾過性能の試験結果を表1に示
す。
Example 5 In the same manner as in Example 1, a filter sheet and a pleated filter were produced. The same melt-blowing spinneret and pleated mesh as those disclosed in Example 1 were used. Further, a melt blown nonwoven fabric was further laminated on the filter medium obtained by laminating the meltblown nonwoven fabric obtained in Example 4, to obtain a two-layer nonwoven fabric. However, the following was used as the upper melt blown nonwoven fabric. This non-woven fabric has an MFR of 92 (g / 1
0 min, 230 ° C.), polypropylene having a melting point of 161 ° C. as a core component, MFR120 (g / 10 minutes, 190 ° C.), a linear low-density polyethylene having a melting point of 122 ° C. as a sheath component, a composite ratio of 50/50% by weight, The spinning temperature is 250 ° C. for the core component, 270 ° C. for the sheath component, and the air temperature of the melt blown at 350 ° C. is introduced at a pressure of 0.17 MPa, and the filter medium is laminated with the die and the melt blown nonwoven fabric produced in Example 4. At a distance of 57 cm from the sheet, the sheet was sprayed onto the filter sheet and fused to obtain a filter sheet having a density difference between the two nonwoven fabrics. The filter sheet was heated at 135 ° C. using a hot air circulating dryer to reinforce the thermal bonding between the fibers of the nonwoven fabric. The fiber diameter was slightly different between the two nonwoven fabric layers. The density of the upper nonwoven fabric was 1.16 g / cm3, and the density of the lower nonwoven fabric produced in Example 4 was 3.47 g / cm3. This filter material sheet was confirmed to be a filter material sheet having a density gradient between the upper nonwoven fabric and the lower nonwoven fabric. The thickness of the nonwoven fabric was larger at the valleys of the pleats than at the peaks of the pleats. When the cross section of the obtained filter medium sheet was observed with a SEM photograph and an optical microscope, the heat-adhesive fibers were entangled and dispersed in the mesh through the mesh of the mesh to form a nonwoven fabric. And the contact between the fiber and the mesh was thermally bonded, and the mesh and the nonwoven fabric were joined and integrated. Using this filter medium sheet, processing was performed in the same manner as in Example 1,
A 250 mm long pleated filter was manufactured. Table 1 shows the test results of the filtering performance of the filter sheet and the filter.

【0037】実施例6 実施例1と同様の方法で濾材シ−ト及びプリ−ツフイル
タ−を製造した。メルトブロ−紡糸口金やプリ−ツ加工
した網状物は実施例1に開示したものと同じものを用い
た。 又実施例4で得たメルトブロ−不織布を積層した
濾材の上に更にメルトブロ−不織布を積層し、二層構造
の不織布とした。但し上層のメルトブロ−不織布として
以下のものであつた。上層の不織布は、MFR62(g
/10分、230℃)、融点161℃のポリプロピレン
を芯成分とし、MFR120(g/10分、190
℃)、融点122℃の線状低密度ポリエチレンを鞘成分
とし、複合比50/50重量%、紡糸温度を芯成分24
0℃、鞘成分230℃の条件で紡糸し、温度340℃の
空気を圧力0.12MPaで導入し、口金と実施例4で
製造した濾材シ−トとの距離48cmで濾材シ−ト上に
吹き付け、下層の不織布上に融着した。得られた濾材シ
−トは二層の不織布間で繊度差を有したものであり、上
層の不織布の平均繊維径が3.6μm、下層の不織布の
平均繊維径が2.1μmであつた。又不織布の厚みはプ
リ−ツの谷部がプリ−ツの山部より大であつた。不織布
と網状物が接合一体化した濾材シ−トに重ねて紡糸する
ことで繊度差をもった濾材シ−トであることが確認され
た。得られた濾材シ−トをSEM写真および光学顕微鏡
でシ−ト断面を観察したところ、網状物に熱接着性繊維
が該網状物の網目を通して絡合分散して不織布を形成
し、かつ繊維同士の接点及び繊維と網状物の接点が熱接
着され、該網状物と不織布が接合一体化されていた。こ
の濾材シ−トを用い前記実施例1と同様に加工し、長さ
250mmのプリ−ツフイルタ−を製造した。濾材シ−
トやフイルタ−の濾過性能等の試験結果を表1に示す。
Example 6 A filter sheet and a pleated filter were produced in the same manner as in Example 1. The same melt-blowing spinneret and pleated mesh as those disclosed in Example 1 were used. Further, a melt blown nonwoven fabric was further laminated on the filter medium obtained by laminating the meltblown nonwoven fabric obtained in Example 4, to obtain a two-layer nonwoven fabric. However, the following melt blown nonwoven fabric was used as the upper layer. The upper nonwoven fabric is MFR62 (g
/ 10 min, 230 ° C.), polypropylene having a melting point of 161 ° C. was used as a core component, and MFR120 (g / 10 min, 190
C), a linear low-density polyethylene having a melting point of 122 ° C. as a sheath component, a composite ratio of 50/50% by weight, and a spinning temperature of 24 core components.
The fiber is spun under the conditions of 0 ° C. and a sheath component of 230 ° C., air at a temperature of 340 ° C. is introduced at a pressure of 0.12 MPa, and a distance of 48 cm between the base and the filter material sheet produced in Example 4 is applied onto the filter material sheet. It was sprayed and fused on the lower nonwoven fabric. The resulting filter medium sheet had a difference in fineness between the two layers of nonwoven fabric. The average fiber diameter of the upper nonwoven fabric was 3.6 μm, and the average fiber diameter of the lower nonwoven fabric was 2.1 μm. The thickness of the nonwoven fabric was larger at the valleys of the pleats than at the peaks of the pleats. It was confirmed that a filter material sheet having a difference in fineness was obtained by overlapping and spinning on a filter material sheet in which a nonwoven fabric and a net were joined and integrated. When the cross section of the obtained filter medium sheet was observed with a SEM photograph and an optical microscope, the heat-adhesive fibers were entangled and dispersed in the mesh through the mesh of the mesh to form a nonwoven fabric. And the contact between the fiber and the mesh was thermally bonded, and the mesh and the nonwoven fabric were joined and integrated. Using this filter material sheet, processing was performed in the same manner as in Example 1 to produce a pleated filter having a length of 250 mm. Filter media sheath
Table 1 shows the test results such as the filtration performance of the filters and filters.

【0038】比較例1 プリーツ加工をしていない網状物を用いた以外は実施例
1と同様の方法で、メルトブロ−不織布単体と網状物を
積層し、両者を熱接着し、平坦な濾材シ−ト及びプリー
ツ加工のされていない筒状のフイルタ−を製造した。こ
の筒状フィルターは表1に示したようにプリーツ加工さ
れていないため、濾過面積がプリーツフィルターに比較
して小さいため、濾過ライフの劣るものであった。
Comparative Example 1 A melt blown nonwoven fabric alone and a net were laminated in the same manner as in Example 1 except that a net without pleating was used. A cylindrical filter which was not subjected to pleating and pleating was manufactured. Since the cylindrical filter was not pleated as shown in Table 1, the filtration area was smaller than that of the pleated filter, so that the filtration life was inferior.

【0039】比較例2 メルトブロ−不織布単体とプリ−ツ加工前の網状物を積
層した以外は実施例1と同様の方法で濾材シ−トを作成
し、その濾材シ−トを実施例1と同様の方法でプリ−ツ
加工し、筒状のプリ−ツフイルタ−を製造した。このプ
リーツフィルターは山部、谷部の不織布の厚みが同一の
ため、表1に示したように長時間運転によるプリーツの
変形に基づく濾過ライフの低下を十分緩和することが出
来なかった。
Comparative Example 2 A filter medium sheet was prepared in the same manner as in Example 1 except that a melt-blown nonwoven fabric alone and a net before pleating were laminated. Pleating was performed in the same manner to produce a cylindrical pleated filter. Since the pleated filter has the same thickness of the nonwoven fabric at the peaks and valleys, as shown in Table 1, it was not possible to sufficiently reduce the reduction in filtration life due to deformation of the pleats due to long-time operation.

【0040】[0040]

【発明の効果】(1)本発明の濾材シ−トは、波形にプ
リ−ツ加工された編状物に熱接着性繊維が網目を通して
絡合分散し、繊維同士の接点及び繊維と網状物の接点が
熱接着され、編状物と不織布が強固に接合一体化されて
いるので、成形保持性に富み、使用中に濾材が脱落する
ことがない。 (2)本発明の濾材シ−トを用いて形成したプリ−ツフ
ィルタ−は、通水抵抗を上げることなく濾過面積が増大
し、濾過性能が向上する。 (3)本発明の濾材シ−トのプリーツの谷部の不織布の
厚みがプリーツの山部のそれに比して大に調整し、かつ
不織布の層間で繊度差や密度勾配を形成させることで従
来のプリ−ツフィルタ−では得られないミクロポ−ラス
深層濾過構造が形成され、極めて濾過精度の高く、濾過
ライフの長いプリ−ツフィルタ−を低コストで供給でき
る。
(1) In the filter medium sheet of the present invention, the heat-adhesive fibers are entangled and dispersed through a mesh in a knitted article pleated in a corrugated form, and the points of contact between the fibers and the fibers and the mesh. Are thermally bonded, and the knitted material and the nonwoven fabric are firmly joined and integrated, so that the molding material is rich in retention and the filter material does not fall off during use. (2) The pleated filter formed by using the filter material sheet of the present invention has an increased filtration area without increasing the water flow resistance, thereby improving the filtration performance. (3) Conventionally, the thickness of the nonwoven fabric at the valleys of the pleats of the filter medium sheet of the present invention is adjusted to be larger than that at the valleys of the pleats, and a difference in fineness or density gradient is formed between layers of the nonwoven fabric. A microporous deep-layer filtration structure, which cannot be obtained with the pleated filter described above, is formed, and a pleated filter having extremely high filtration accuracy and a long filtration life can be supplied at low cost.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 プリ−ツ加工された熱接着性モノフィラ
メントからなる網状物に、熱接着性繊維が該網状物の網
目を通して絡合分散して不織布を形成し、かつプリーツ
の谷部の不織布の厚みがプリーツの山部のそれに比して
大であり、かつ繊維同士の接点及び繊維と網状物の接点
が熱接着され、該網状物と不織布が接合一体化されてな
る濾材シ−ト。
1. A non-woven fabric formed by entangled dispersion of thermo-adhesive fibers through a mesh of the pleated heat-bonding monofilament through a mesh of the net to form a non-woven fabric. A filter material sheet having a thickness greater than that of a pleated peak portion, wherein a contact between fibers and a contact between a fiber and a mesh are thermally bonded, and the mesh and the nonwoven fabric are joined and integrated.
【請求項2】 不織布に用いられる熱接着性繊維が、メ
ルトブロ−法により得られた繊維である請求項1に記載
の濾材シ−ト。
2. The filter sheet according to claim 1, wherein the heat-adhesive fibers used in the nonwoven fabric are fibers obtained by a melt blow method.
【請求項3】 不織布に用いられる熱接着性繊維が、融
点差が10℃以上である少なくとも2成分の熱可塑性樹
脂からなる熱接着性複合繊維である請求項1または2に
記載の濾材シ−ト。
3. The filter sheet according to claim 1, wherein the heat-adhesive fiber used for the nonwoven fabric is a heat-adhesive conjugate fiber composed of at least two-component thermoplastic resin having a melting point difference of 10 ° C. or more. G.
【請求項4】 プリ−ツの谷部の不織布の厚みとプリ−
ツ山部のそれの比が1.2〜3.0である請求項1〜3
のいずれかに記載の濾材シ−ト。
4. The thickness of the non-woven fabric at the valley of the pleat
The ratio of that of the ridges is 1.2 to 3.0.
The filter medium sheet according to any one of the above.
【請求項5】 プリ−ツ加工された網状物と一体化した
不織布の繊維積層間で繊度差または密度勾配を有してい
る請求項1〜4のいずれかに記載の濾材シ−ト。
5. The filter medium sheet according to claim 1, which has a fineness difference or a density gradient between the fiber laminates of the nonwoven fabric integrated with the pleated network.
【請求項6】 請求項1〜5のいずれかに記載の濾材シ
−トを加工成形してなるプリ−ツフィルタ−。
6. A pleated filter obtained by processing and forming the filter medium sheet according to claim 1.
JP11079775A 1999-03-24 1999-03-24 Filter medium sheet and pleat filter using the same Pending JP2000271417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11079775A JP2000271417A (en) 1999-03-24 1999-03-24 Filter medium sheet and pleat filter using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11079775A JP2000271417A (en) 1999-03-24 1999-03-24 Filter medium sheet and pleat filter using the same

Publications (1)

Publication Number Publication Date
JP2000271417A true JP2000271417A (en) 2000-10-03

Family

ID=13699590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11079775A Pending JP2000271417A (en) 1999-03-24 1999-03-24 Filter medium sheet and pleat filter using the same

Country Status (1)

Country Link
JP (1) JP2000271417A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004243314A (en) * 2003-01-22 2004-09-02 Toyo Roki Mfg Co Ltd Filter medium for automatic gearbox or air cleaner and method for manufacturing the same
JP2013522002A (en) * 2010-03-12 2013-06-13 マン ウント フンメル ゲゼルシャフト ミット ベシュレンクテル ハフツング Filter medium of filter element, filter element, and method of manufacturing filter medium
JP2014500780A (en) * 2010-09-10 2014-01-16 ゼネラル・エレクトリック・カンパニイ Cartridge filter including combination of depth filter and submicron filter and RO pretreatment method
US10179426B2 (en) 2013-11-06 2019-01-15 Bl Technologies, Inc. Large format melt-blown depth filter cartridge
US11266936B2 (en) 2015-04-28 2022-03-08 Bl Technologies, Inc. Melt-blown depth filter element, method and machine of making it
US11845019B2 (en) 2013-11-06 2023-12-19 Bl Technologies, Inc. Large format melt-blown depth filter cartridge

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004243314A (en) * 2003-01-22 2004-09-02 Toyo Roki Mfg Co Ltd Filter medium for automatic gearbox or air cleaner and method for manufacturing the same
JP2013522002A (en) * 2010-03-12 2013-06-13 マン ウント フンメル ゲゼルシャフト ミット ベシュレンクテル ハフツング Filter medium of filter element, filter element, and method of manufacturing filter medium
JP2014500780A (en) * 2010-09-10 2014-01-16 ゼネラル・エレクトリック・カンパニイ Cartridge filter including combination of depth filter and submicron filter and RO pretreatment method
US10179426B2 (en) 2013-11-06 2019-01-15 Bl Technologies, Inc. Large format melt-blown depth filter cartridge
US11845019B2 (en) 2013-11-06 2023-12-19 Bl Technologies, Inc. Large format melt-blown depth filter cartridge
US11266936B2 (en) 2015-04-28 2022-03-08 Bl Technologies, Inc. Melt-blown depth filter element, method and machine of making it

Similar Documents

Publication Publication Date Title
KR100323320B1 (en) Filter media and preparation method thereof
JP5583008B2 (en) Molded respirator comprising a meltblown fiber web with short fibers
EP2167714B1 (en) Meltblown fiber web with staple fibers
JP4236284B2 (en) Cylindrical filter
KR20160050059A (en) Melt-spinning process, melt-spun nonwoven fibrous webs and related filtration media
WO2009002614A1 (en) Method of making meltblown fiber web with staple fibers
JP2009545390A (en) Foldable mask with single component filtration / reinforcement single layer
JPH1190135A (en) Pleated filter
KR100367542B1 (en) Cylindrical molded article and its manufacturing method
JP3326808B2 (en) filter
JP2001149720A (en) Filter
JP2000271417A (en) Filter medium sheet and pleat filter using the same
JP7248401B2 (en) depth filter
JP3233988B2 (en) Filter cloth and method for producing the same
JP3567480B2 (en) Filter medium and method for producing the same
JP3677385B2 (en) Filter material and filter using the same
JPH08226064A (en) Tubular formed article and its production
JP4139141B2 (en) Cylindrical filter and manufacturing method thereof
JP3131217B2 (en) Cylindrical filter for microfiltration
JP6560101B2 (en) Pleated filter
JP3404796B2 (en) Filter media
JP3713924B2 (en) Pleated filter
JPH1119435A (en) Cylindrical filter composed of extra fine conjugate fiber nonwoven fabric and its production
JP3596150B2 (en) Filter and manufacturing method thereof
JP3435867B2 (en) Nonwoven fabric molding and method for producing the same