JP2000268838A - Power generation system and operating method - Google Patents

Power generation system and operating method

Info

Publication number
JP2000268838A
JP2000268838A JP11069810A JP6981099A JP2000268838A JP 2000268838 A JP2000268838 A JP 2000268838A JP 11069810 A JP11069810 A JP 11069810A JP 6981099 A JP6981099 A JP 6981099A JP 2000268838 A JP2000268838 A JP 2000268838A
Authority
JP
Japan
Prior art keywords
hydrogen
reducing gas
hydrogen storage
compressor
oxidizing gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11069810A
Other languages
Japanese (ja)
Inventor
Taichi Saito
太一 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11069810A priority Critical patent/JP2000268838A/en
Publication of JP2000268838A publication Critical patent/JP2000268838A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/45Hydrogen technologies in production processes

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To further improve energy availability by introducing cold heat generated from a hydrogen-storing device to a heat exchanger installed at a previous stage of a compressor, and to an intermediate cooling portion of a reducing gas compressor and an oxidizing gas compressor. SOLUTION: A hydrogen storage alloy charged into a hydrogen-storing device 7 generates cold heat due to occurrence of endothermic reaction when hydrogen is released. This generated cold heat is circulated through heat exchangers 2, 3, a reducing gas compressor 4, and an oxidizing gas compressor 5. Reducing gas is introduced to the reducing gas compressor 4 after being cooled by the heat exchanger 2, and power of a turbine at a first stage is reduced. In addition, by lowering temperature of reducing gas by guiding cold water to the heat exchanger for intermediate cooling, compression power of a turbine at a second stage is reduced. Similarly to third and after stages, power can be reduced. Similar effect is provided for oxidizing gas. When oxidizing gas is air, it can be used for cooling.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、発電システムの省
エネルギー技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an energy saving technology for a power generation system.

【0002】[0002]

【従来の技術】本発明は、固体高分子型燃料電池(PE
MFC)と、水素吸蔵合金を用いた熱駆動型の冷凍機を
中心とするシステム化に関するもので、PEMFCと、
熱駆動型の冷凍機についてそれぞれの特徴と、システム
の従来技術について説明する。PEMFCの特徴は以下
があげられる。すなわち、固体だけからなるため、電
解質の散逸・保持の問題がなく電池構造が簡単で保守が
容易。常温で作動し、起動時問が極めて早い。また高
温型でないのでシステムの材料選択も容易で長寿命が期
待できる。固体高分子膜が差圧に耐えるため電池の加
圧制御が容易。高出力密度が得られるため、小型軽量
化が可能。また、広い電流密度で作動できるため負荷
変動の大きな用途にも使用可能。同じ常温作動型のア
ルカリ型燃料電池と比較しCO2 を含む燃料ガス(改質
ガス)が使用できる。
BACKGROUND OF THE INVENTION The present invention relates to a polymer electrolyte fuel cell (PE).
MFC) and systemization centered on a heat driven refrigerator using a hydrogen storage alloy.
The features of the heat-driven refrigerator and the prior art of the system will be described. The features of PEMFC are as follows. That is, since the battery is made of only a solid, there is no problem of electrolyte dissipation and retention, the battery structure is simple, and maintenance is easy. It operates at room temperature and the start-up time is very fast. In addition, since it is not a high-temperature type, it is easy to select the material of the system and a long life can be expected. The pressure control of the battery is easy because the solid polymer membrane withstands the pressure difference. High power density can be obtained, so compact and lightweight. In addition, since it can operate with a wide current density, it can be used for applications with large load fluctuations. A fuel gas (reformed gas) containing CO 2 can be used as compared with the same room temperature operation type alkaline fuel cell.

【0003】一方で問題点は、常温作動型であるため
排熱温度が低く、排熱利用が制限される。改質ガスを
使用する場合は、含まれる微量のCOに電極が被毒され
やすくCO除去が必要。固体高分子膜や白金電極が高
価。膜の水分管理が必要。問題点のは、低温作動
の長所が欠点になっている。に関しては、大量生産技
術、また白金使用量を大幅に低減できる方法も提案さ
れ、高出力密度化が進んでいる。問題点のについて
は、フッ素樹脂系イオン交換膜は含水状態で良好なプロ
トン伝導性を示すことから、膜の含水量は水蒸気の分圧
(相対湿度)に大きく依存し、乾燥すると水を失い高抵
抗体となる。したがって、PEFCに適用する場合に
は、膜を飽和水蒸気圧近傍の雰囲気に保持する水分管理
が必要となる。
[0003] On the other hand, the problem is that since it is a normal-temperature operation type, the exhaust heat temperature is low, and the use of exhaust heat is limited. When a reformed gas is used, the electrode is easily poisoned by a small amount of contained CO, and it is necessary to remove CO. Solid polymer membranes and platinum electrodes are expensive. Requires moisture control of the membrane. The disadvantage is that the advantage of low temperature operation is a disadvantage. With regard to, mass production technology and a method capable of greatly reducing the amount of platinum used have been proposed, and higher output densities are being promoted. Regarding the problem, since the fluororesin-based ion exchange membrane shows good proton conductivity in a water-containing state, the water content of the membrane greatly depends on the partial pressure of water vapor (relative humidity). Becomes a resistor. Therefore, when applied to PEFC, it is necessary to control moisture to keep the film in an atmosphere near saturated vapor pressure.

【0004】通常、水分管理は反応ガスをあらかじめ加
湿しセルに供給する手段が用いられる。作動温度が比較
的高くなると、反応ガス中の水蒸気分圧が高くなって、
逆に反応ガスの分圧が低下し、電池特性が極端に低下す
る。したがって、高温側で良好な電池特性を得ようとす
れば、加圧下で作動することが望ましい。PEMFCの
場合、差圧に耐える特徴を有するので加圧下の作動につ
いては技術的障害か少ない特徴がある。水素貯蔵装置の
項で説明するが、水素吸蔵合金(以下MH)は比較的高
い解離圧のMHを選択することで、ある程度高い水素圧
を保ったまま水素を放出することが可能であり燃料電池
の高効率化のうえでも望ましい。
[0004] Normally, for moisture control, means for humidifying the reaction gas in advance and supplying it to the cell is used. When the operating temperature becomes relatively high, the partial pressure of water vapor in the reaction gas increases,
Conversely, the partial pressure of the reaction gas decreases, and the battery characteristics extremely decrease. Therefore, in order to obtain good battery characteristics on the high temperature side, it is desirable to operate under pressure. In the case of PEMFC, since it has a feature that can withstand a differential pressure, there is a feature that the operation under pressurization is a technical obstacle or less. As described in the section of the hydrogen storage device, the hydrogen storage alloy (hereinafter, MH) can release hydrogen while maintaining a relatively high hydrogen pressure by selecting MH having a relatively high dissociation pressure. It is also desirable in terms of improving efficiency.

【0005】次にMHについて説明する。MHはガス状
水素の1000倍の高い貯蔵密度を持ち、下記の反応式
で示されるような特徴がある。 水素吸蔵:M + H2 → MH2 + Q(発熱反応) 水素放出:MH2 → M + H2 − Q(吸熱反応) M:水素吸蔵合金、H2:水素、MH2:金属水素化物、
Q:反応熱 この反応は、温度を下げるか圧カを上げると水素が吸蔵
され、温度を上げるか圧力を下げると水素が放出され
る。また、水素吸蔵時には発熱し、水素放出時には吸熱
し温度が下がる。−20℃〜300℃において水素を吸
蔵放出できる合金としては、LaNi5 、CaNi5
Mg2 Ni,FeTiなどが代表的なものである。これ
らの合金は特に水素吸蔵合金と呼ぱれる。
Next, the MH will be described. MH has a storage density 1000 times higher than that of gaseous hydrogen, and is characterized by the following reaction formula. Hydrogen storage: M + H 2 → MH 2 + Q ( exothermic reaction) the hydrogen release: MH 2 → M + H 2 - Q ( endothermic reaction) M: hydrogen storage alloy, H 2: hydrogen, MH 2: metal hydrides,
Q: Heat of reaction In this reaction, hydrogen is absorbed when the temperature is reduced or the pressure is increased, and hydrogen is released when the temperature is increased or the pressure is decreased. In addition, heat is generated when hydrogen is absorbed, and heat is absorbed when hydrogen is released, and the temperature decreases. Alloys that can store and release hydrogen at −20 ° C. to 300 ° C. include LaNi 5 , CaNi 5 ,
Mg 2 Ni, FeTi and the like are typical. These alloys are particularly called hydrogen storage alloys.

【0006】この水素吸蔵合金は、水素の吸蔵放出を迅
速に行わせるため、表面積が大きい方が望ましく通常粉
末状で用いられる。粉末状態では伝熱が悪く、熱が迅速
に水素吸蔵合金に伝わらずに水素吸蔵速度が遅いため、
水素吸蔵合金粉末充墳層に、フィンを設置した伝熱管を
挿入し、伝熱面積を増大させることにより、伝熱の促進
を行い水素吸蔵放出速度の迅速化を行う方法が一般的に
とられている。
The hydrogen storage alloy desirably has a large surface area in order to quickly store and release hydrogen, and is usually used in powder form. In the powder state, the heat transfer is poor, and the heat is not quickly transferred to the hydrogen storage alloy, so the hydrogen storage speed is low,
Generally, a heat transfer tube with fins is inserted into the hydrogen storage alloy powder filling layer to increase the heat transfer area, thereby promoting heat transfer and speeding up the hydrogen storage and release speed. ing.

【0007】特開平8−222252号公報では、水素
燃料供給装置を有する独立型の固体高分子燃料電池シス
テムに関するものであるが、水素燃料供給装置に2種類
以上の水素吸蔵合金を選択して、それぞれに充填した水
素吸蔵合金容器を用いている。低温での起動時には、低
温で燃料電池の発電に必要な水素圧力を発生できる水素
吸蔵合金を貯蔵した容器から燃料電池に水素を供給し、
また80℃前後の定格運転時には、この温度付近で燃料
電池の発電に必要な水素圧力を発生できる水素吸蔵合金
を貯蔵した容器から、燃料電池水素を供給するようにし
て、広範囲の温度域にわたり安定した電力供給ができる
としている。
Japanese Patent Application Laid-Open No. Hei 8-222252 relates to a stand-alone polymer electrolyte fuel cell system having a hydrogen fuel supply device, and selects two or more types of hydrogen storage alloys for the hydrogen fuel supply device. A hydrogen storage alloy container filled with each is used. During startup at low temperatures, hydrogen is supplied to the fuel cell from a container that stores a hydrogen storage alloy that can generate the hydrogen pressure required for fuel cell power generation at low temperatures,
In addition, during rated operation at around 80 ° C, fuel cell hydrogen is supplied from a container storing a hydrogen storage alloy that can generate the hydrogen pressure necessary for fuel cell power generation around this temperature, and stable over a wide temperature range. It is said that it is possible to supply power.

【0008】[0008]

【発明が解決しようとする課題】ところで本発電システ
ムでは、酸化ガスは通常圧縮機により加圧され発電部に
供給されている。また還元ガスも水素との混合ガスを分
離する際に、PSA法などにより原料ガスは圧縮され、
分離精製された後、燃料電池に供給されている。その際
の圧縮機の圧縮のエネルギーは絶対温度に比例するする
ため、圧縮機は中間冷却として内部熱交換器に冷却水が
導入されている。通常冷却水はクーリングタワーが用い
られており、大気との熱交換であるため冷却水温度はそ
れほど低くならないので圧縮動力の削減には限界があっ
た。従って本発明は、上記問題点を解決し、エネルギー
利用効率の一層の改善を可能とする発電システムとその
運転方法を提供するものである。
In this power generation system, the oxidizing gas is usually pressurized by a compressor and supplied to a power generation unit. Also, when separating the mixed gas with hydrogen as the reducing gas, the raw material gas is compressed by the PSA method or the like,
After being separated and purified, it is supplied to the fuel cell. Since the compression energy of the compressor at that time is proportional to the absolute temperature, cooling water is introduced into the internal heat exchanger of the compressor as intermediate cooling. Usually, a cooling tower is used as the cooling water, and since the temperature of the cooling water does not become so low because of heat exchange with the atmosphere, there is a limit in reducing the compression power. Therefore, the present invention is to solve the above-mentioned problems and to provide a power generation system and a method of operating the power generation system capable of further improving the energy use efficiency.

【0009】[0009]

【課題を解決するための手段】本発明者らは、前記課題
を解決する手段を鋭意検討した結果、水素貯蔵装置から
の水素の放出時の吸熱反応を利用して冷熱を発生させ、
その冷熱を利用して燃料ガス、酸化ガスの圧縮機の吸気
冷却と中間冷却を行うことによって目的を達成できるこ
とを知見し、本発明をなすに至った、すなわち、その発
明の要旨とするところは、水素、メタンを含む還元ガス
を圧縮する還元ガス圧縮機と、酸素を含む酸化ガスを圧
縮する酸化ガス圧縮機と、前記圧縮された還元ガスから
水素を分離する水素精製装置と、水素貯蔵装置と、水素
と酸素との電気化学反応によって発電する燃料電池とを
備える燃料電池システムにおいて、圧縮機の前段階に設
置された熱交換器と、還元ガス圧縮機及び酸化ガス圧縮
機の中間冷却部とに、水素貯蔵装置から発生する冷熱を
導入するプロセスを有することを特徴とする発電システ
ムにある。
Means for Solving the Problems As a result of diligent studies of means for solving the above-mentioned problems, the present inventors have produced cold heat by utilizing an endothermic reaction at the time of releasing hydrogen from a hydrogen storage device,
The inventor has found that the object can be achieved by performing intake cooling and intermediate cooling of the fuel gas and oxidizing gas compressors using the cold heat, and has accomplished the present invention, that is, the gist of the invention is as follows. A reducing gas compressor that compresses a reducing gas containing hydrogen, methane, an oxidizing gas compressor that compresses an oxidizing gas containing oxygen, a hydrogen purifier that separates hydrogen from the compressed reducing gas, and a hydrogen storage device And a fuel cell system comprising: a fuel cell that generates electricity by an electrochemical reaction between hydrogen and oxygen; a heat exchanger installed before the compressor; and an intermediate cooling unit for the reducing gas compressor and the oxidizing gas compressor. And a process for introducing cold generated from the hydrogen storage device.

【0010】本発明の発電システムにおいては、水素貯
蔵装置に水素を貯蔵する媒体が、水素吸蔵合金であるこ
とを特徴とする。本発明の発電システムの運転方法にお
いては、夜間に水素貯蔵装置に水素を貯蔵し、昼間に水
素を放出して、昼間の電力増への対応と還元ガス及び酸
化ガスの圧縮動力の削減を行うことを特徴とする。この
ようにして、圧縮機への導入ガスの温度を下げることに
より、省エネルギー性の高い発電システムを構築するこ
とができる。
[0010] The power generation system of the present invention is characterized in that the medium for storing hydrogen in the hydrogen storage device is a hydrogen storage alloy. In the operation method of the power generation system according to the present invention, hydrogen is stored in the hydrogen storage device at night, and hydrogen is released during the day to cope with an increase in power during the day and reduce the compression power of the reducing gas and the oxidizing gas. It is characterized by the following. In this way, by lowering the temperature of the gas introduced into the compressor, a power generation system with high energy saving can be constructed.

【0011】[0011]

【発明の実施の形態】次に、本発明の実施の形態につい
て、図面に基づいて詳細に説明する。図1は、本発明の
排熱を用いた発電システムの構成図であり、この図を用
いて圧縮動力の削減方法について説明する。本システム
では、夜間電力の有効利用の観点から、安価な夜間電力
を利用して精製装置6により高純度水素を製造し、水素
貯蔵装置7に水素を貯蔵し、昼間に放出・発電するシス
テムである。夜間では昼間の倍程度の還元ガスを圧縮し
精製した後、約半分を水素貯蔵装置7に貯蔵する。残り
の水素は燃料電池1に導入され、圧縮された酸化ガスと
ともに発電される。水素貯蔵装置7では水素吸蔵合金が
使用されているため、発熱反応が起きることから冷却水
10により反応熱が除去され、水素吸蔵を促進させる。
Next, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a configuration diagram of a power generation system using waste heat according to the present invention, and a method for reducing compression power will be described with reference to FIG. In this system, from the viewpoint of effective use of nighttime electric power, a high-purity hydrogen is produced by the refining device 6 using inexpensive nighttime electric power, the hydrogen is stored in the hydrogen storage device 7, and the hydrogen is released and generated in the daytime. is there. In the nighttime, after reducing and purifying about twice the amount of the reducing gas in the daytime, about half is stored in the hydrogen storage device 7. The remaining hydrogen is introduced into the fuel cell 1 and generates power together with the compressed oxidizing gas. Since a hydrogen storage alloy is used in the hydrogen storage device 7, an exothermic reaction occurs, so that heat of reaction is removed by the cooling water 10 to promote hydrogen storage.

【0012】一方、昼間では夜間に比較して約半分の還
元ガスが圧縮され精製装置に導入され、精製後の水素は
圧縮された酸化ガスとともに燃料電池1に導入される。
この際に水素貯蔵装置7からも燃料電池1に向かって水
素が導入され、発電に供される。酸化ガスも同様に水素
貯蔵装置7から放出される分に見合う分だけ増大され
る。水素貯蔵装置7に充填されている水素吸蔵合金は、
水素を放出する際に吸熱反応が起こり冷熱を発生させ
る。
On the other hand, in the daytime, about half of the reducing gas is compressed and introduced into the purifier as compared with the nighttime, and the purified hydrogen is introduced into the fuel cell 1 together with the compressed oxidizing gas.
At this time, hydrogen is also introduced from the hydrogen storage device 7 toward the fuel cell 1 and used for power generation. The oxidizing gas is also increased by an amount corresponding to the amount released from the hydrogen storage device 7. The hydrogen storage alloy filled in the hydrogen storage device 7 is as follows:
An endothermic reaction occurs when hydrogen is released, generating cold heat.

【0013】本システムは、この発生した冷熱を熱交換
器2及び3、圧縮機4及び5に循環するプロセスであ
る。還元ガスは熱交換器2で冷却された後圧縮機4に導
入され、圧縮機4の1段目のタービンの圧縮動力を削減
する。圧縮機4には数段の中間冷却用の熱交換器を有し
ており、次に中間冷却用の熱交換器に冷水が導入され還
元ガスの温度を冷却することにより、2段目のタービン
の圧縮動力を削減する。3段以降も同様に動力を削減す
ることができる。酸化ガスについても、同様の効果が得
られる。酸化ガスが空気の場合には、冷房用に使用する
こともできる。以上のプロセスにより還元ガス及び酸化
ガスの圧縮動力の削減を行い、省エネルギーを可能とす
る。なお、図1の符号8は排熱、9は冷水である。
The present system is a process of circulating the generated cold heat to the heat exchangers 2 and 3 and the compressors 4 and 5. The reducing gas is introduced into the compressor 4 after being cooled by the heat exchanger 2, and reduces the compression power of the first-stage turbine of the compressor 4. The compressor 4 has several stages of heat exchangers for intermediate cooling. Next, cold water is introduced into the heat exchanger for intermediate cooling to cool the temperature of the reducing gas, whereby the second stage turbine is cooled. Reduce the compression power of The power can be similarly reduced in the third and subsequent stages. The same effect can be obtained for the oxidizing gas. When the oxidizing gas is air, it can be used for cooling. By the above process, the power for compressing the reducing gas and the oxidizing gas is reduced, and energy can be saved. In addition, the code | symbol 8 of FIG. 1 is waste heat, and 9 is cold water.

【0014】[0014]

【実施例】電力の需要は、夜間に比較して昼間の需要が
大きく、夜間12hに対して昼間が12hとして効果を
検討した。還元ガスは純度75%の還元ガス、酸化ガス
は空気を使用した。夜間は精製水素を20000Nm3
/h製造し、半分の10000Nm3 /hを水素貯蔵装
置7に導入貯蔵した。貯蔵量は120000Nm3で、
水素吸蔵合金は75T必要とした。水素吸蔵合金は、水
素吸蔵平衡圧が室温で0.8MPa程度、ヒステリシス
ファクターは0.3以下の水素吸蔵合金を用いた。ま
た、残りの10000Nm3 /hは燃料電池1に導入さ
れ15000kWの発電を行った。昼間は精製水素を1
0000Nm3 /h製造するとともに、水素貯蔵装置7
から10000Nm3 /hとあわせて20000Nm3
/hの水素を燃料電池1に導入し、約30000kWの
発電を行った。水素貯蔵装置から発生する冷熱量は3G
cal/hであり、熱交換器2及び3では還元ガス及び
酸化ガスの温度を20℃低下、圧縮機4及び5では4段
圧縮として中間冷却用の熱交換器3箇所をそれぞれ35
℃低下した。これにより圧縮動力は7%削減され、全体
としては2%の省電力となることがわかった。また夜間
の電力利用により負荷平準化の効果もあり、全体として
省エネルギー効果はさらに大きくなる。
EXAMPLE The demand for electric power was larger in the daytime than in the nighttime, and the effect was examined with the daytime 12h compared to the nighttime 12h. The reducing gas used was a 75% pure reducing gas, and the oxidizing gas used was air. 20,000 Nm 3 of purified hydrogen at night
/ H, and a half of 10,000 Nm 3 / h was introduced into the hydrogen storage device 7 and stored. The storage amount is 120,000 Nm 3 ,
The hydrogen storage alloy required 75T. As the hydrogen storage alloy, a hydrogen storage alloy having a hydrogen storage equilibrium pressure of about 0.8 MPa at room temperature and a hysteresis factor of 0.3 or less was used. The remaining 10,000 Nm 3 / h was introduced into the fuel cell 1 to generate 15,000 kW. 1 day of purified hydrogen during the day
0000 Nm 3 / h and hydrogen storage device 7
To 10,000 Nm 3 / h and 20,000 Nm 3
/ H of hydrogen was introduced into the fuel cell 1 to generate power of about 30,000 kW. The amount of cold generated from the hydrogen storage device is 3G
cal / h, the heat exchangers 2 and 3 lower the temperature of the reducing gas and the oxidizing gas by 20 ° C.
° C. As a result, it was found that the compression power was reduced by 7%, and the power consumption was reduced by 2% as a whole. The use of electric power at night also has an effect of load leveling, and the energy saving effect as a whole is further increased.

【0015】[0015]

【発明の効果】以上述べたように、水素貯蔵装置からの
水素放出時の冷熱を圧縮機の吸気の冷却に用いることに
より、圧縮動力の削減が可能になり、これより省エネル
ギーを行うことができる。
As described above, by using the cold heat at the time of releasing hydrogen from the hydrogen storage device for cooling the intake air of the compressor, it is possible to reduce the compression power and thereby to save energy. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の発電システムのフローである。FIG. 1 is a flowchart of a power generation system of the present invention.

【符号の説明】[Explanation of symbols]

1 燃料電池 2、3 熱交換器 4 還元ガス圧縮機 5 酸化ガス圧縮機 6 水素精製装置 7 水素貯蔵装置 8 排熱 9 冷水 10 冷却水 DESCRIPTION OF SYMBOLS 1 Fuel cell 2, 3 Heat exchanger 4 Reducing gas compressor 5 Oxidizing gas compressor 6 Hydrogen purification device 7 Hydrogen storage device 8 Exhaust heat 9 Cold water 10 Cooling water

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 水素、メタンを含む還元ガスを圧縮する
還元ガス圧縮機と、酸素を含む酸化ガスを圧縮する酸化
ガス圧縮機と、前記圧縮された還元ガスから水素を分離
する水素精製装置と、水素貯蔵装置と、水素と酸素との
電気化学反応によって発電する燃料電池とを備える燃料
電池システムにおいて、圧縮機の前段階に設置される熱
交換器と、還元ガス圧縮機及び酸化ガス圧縮機の中間冷
却部とに、水素貯蔵装置から発生する冷熱を導入するプ
ロセスを有することを特徴とする発電システム。
1. A reducing gas compressor for compressing a reducing gas containing hydrogen and methane, an oxidizing gas compressor for compressing an oxidizing gas containing oxygen, and a hydrogen purifier for separating hydrogen from the compressed reducing gas. , A heat exchanger installed before a compressor, a reducing gas compressor and an oxidizing gas compressor in a fuel cell system including a hydrogen storage device, and a fuel cell that generates electricity by an electrochemical reaction between hydrogen and oxygen. And a process for introducing cold heat generated from the hydrogen storage device to the intermediate cooling unit.
【請求項2】 水素貯蔵装置に水素を貯蔵する媒体が、
水素吸蔵合金であることを特徴とする請求項1記載の発
電システム。
2. A medium for storing hydrogen in a hydrogen storage device,
The power generation system according to claim 1, wherein the power generation system is a hydrogen storage alloy.
【請求項3】 夜間に水素貯蔵装置に水素を貯蔵し、昼
間に水素を放出して、昼間の電力増への対応と還元ガス
及び酸化ガスの圧縮動力の削減を行うことを特徴とする
請求項1記載の発電システムの運転方法。
3. The method according to claim 1, wherein hydrogen is stored in the hydrogen storage device at night and hydrogen is released during the day to cope with an increase in power during the day and to reduce the power for compressing the reducing gas and the oxidizing gas. Item 4. An operation method of the power generation system according to Item 1.
JP11069810A 1999-03-16 1999-03-16 Power generation system and operating method Withdrawn JP2000268838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11069810A JP2000268838A (en) 1999-03-16 1999-03-16 Power generation system and operating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11069810A JP2000268838A (en) 1999-03-16 1999-03-16 Power generation system and operating method

Publications (1)

Publication Number Publication Date
JP2000268838A true JP2000268838A (en) 2000-09-29

Family

ID=13413498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11069810A Withdrawn JP2000268838A (en) 1999-03-16 1999-03-16 Power generation system and operating method

Country Status (1)

Country Link
JP (1) JP2000268838A (en)

Similar Documents

Publication Publication Date Title
US20050074657A1 (en) Hydrogen production and water recovery system for a fuel cell
US3982962A (en) Pressurized fuel cell power plant with steam powered compressor
EP2800186B1 (en) Fuel cell hybrid system
JP6723292B2 (en) Energy storage using REP with engine
CN105244519A (en) Metal hydride hydrogen storage and fuel cell combination system
JPWO2005071781A1 (en) Fuel cell system
JP2002319428A (en) Molten carbonate fuel cell power generating device
US11710841B2 (en) Reaction device and fuel cell power generation system
JPS58121566A (en) Hydrogen fuel cell
JP2020077567A (en) Reactor and fuel cell power generation system
JPH11176462A (en) Peak cut type fuel cell system
CN115679346A (en) Solid oxide electrolytic cell system and temperature self-adaptive adjusting method thereof
JP2000268838A (en) Power generation system and operating method
JP2003272677A (en) Solid oxide type fuel cell and cogeneration system using the same
JP2000340242A (en) Heat pump type hydrogen purification device using waste heat of fuel cell
JPH11339820A (en) Hybrid fuel cell system
JP3377523B2 (en) Fuel cell system
JP4011203B2 (en) Fuel cell power generation system
US20070298292A1 (en) Regenerating an adsorption bed in a fuel cell-based system
JPH11350972A (en) Gas turbine combined cycle power generation system
TWI645608B (en) Device and method of thermoelectric hydrogen pressurization
JP2002171697A (en) Compressed oxygen energy storage system
JP2001006710A (en) Fuel cell system
JPH0158626B2 (en)
JP2000268833A (en) Fuel cell system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060606