JP2000262507A - Radiation image processing method and apparatus - Google Patents

Radiation image processing method and apparatus

Info

Publication number
JP2000262507A
JP2000262507A JP11073591A JP7359199A JP2000262507A JP 2000262507 A JP2000262507 A JP 2000262507A JP 11073591 A JP11073591 A JP 11073591A JP 7359199 A JP7359199 A JP 7359199A JP 2000262507 A JP2000262507 A JP 2000262507A
Authority
JP
Japan
Prior art keywords
data
radiation
detector
projection image
spherical surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11073591A
Other languages
Japanese (ja)
Inventor
Eiji Ogawa
英二 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP11073591A priority Critical patent/JP2000262507A/en
Publication of JP2000262507A publication Critical patent/JP2000262507A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain correct projection image data by eliminating errors in the enlargement ratio of a projection image obtained at a different location of a detector in a radiation image processing method and apparatus using a cone beam or a fan beam. SOLUTION: A virtual spherical surface 20 is assumed between an object 2 and a detector 6 and data of projection images 12a and 12b on the detector 6 as obtained from a radiation source 4 are projected onto the virtual spherical surface 20 to be corrected to data on the spherical surface 20. As the data obtained gives the same enlargement ratio at any part on the detector 6, a volume data is reconstructed based on the data thereby obtaining a correct data indicating an actual object 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は放射線画像処理方法
及び装置に関し、特に相異なる投影方向から被写体に照
射された放射線を平面状の検出器で検出して得た複数の
投影画像データに基づいて被写体のボリュームデータを
再構成する放射線画像処理方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiographic image processing method and apparatus, and more particularly, to a radiographic image processing method and apparatus based on a plurality of projection image data obtained by detecting radiation applied to a subject from different projection directions with a flat detector. The present invention relates to a radiation image processing method and apparatus for reconstructing volume data of a subject.

【0002】[0002]

【従来の技術】例えば特開平9−253079号公報に
は、図3に示す如く、被写体102に対しコーンビーム
(コーン状のX線)108を照射するX線断層撮影装置
100が開示されている。この装置100は、被写体1
02を挟んで対向して配置されたX線源104と平面状
の二次元検出器106を有し、互いに対をなして被写体
102の周りを回転するように構成されている。被写体
102を透過したX線(透過線)108は、各投影方向
毎に二次元検出器106により検出されてX線投影画像
データが得られる。画像処理部110は上記各投影方向
におけるX線投影画像データに基づいて、ボリュームデ
ータ(3次元再構成画像データ)を作成し、このボリュ
ームデータに基づいて3次元再構成画像が再構成され
る。
2. Description of the Related Art For example, Japanese Patent Application Laid-Open No. 9-253079 discloses an X-ray tomography apparatus 100 for irradiating a subject 102 with a cone beam (cone-shaped X-ray) 108 as shown in FIG. . This device 100 is used for the subject 1
It has an X-ray source 104 and a planar two-dimensional detector 106 that are arranged to face each other with the O.D. 02 interposed therebetween, and are configured to rotate around the subject 102 in pairs. X-rays (transmitted rays) 108 transmitted through the subject 102 are detected by the two-dimensional detector 106 in each projection direction, and X-ray projection image data is obtained. The image processing unit 110 creates volume data (three-dimensional reconstructed image data) based on the X-ray projection image data in each projection direction, and reconstructs a three-dimensional reconstructed image based on the volume data.

【0003】[0003]

【発明が解決しようとする課題】上記の従来例において
は、X線は放射線源104からコーン状に広がり、被写
体102を通過した後も主透過線はコーン状に進む。そ
こで検出器106は、それらの放射線に対しては球面状
とすることが望ましいが、小型の固体センサを個々に寄
せ集めて疑似球面に形成することは技術的に困難であ
り、高価なものとなる。通常は、大型の検出器を比較的
容易に製造できるという理由で、フラットパネルタイプ
の放射線固体検出器や、I.I、(イメージインテンシフ
ァイア)等の平面状の検出器が使用される。しかし、こ
れらの検出器は放射線検出面が平面状であり、主透過線
と検出器106とのなす角度は、投影像の周辺部になる
に従い浅い角度となる。即ち、投影像は周辺部では実際
の被写体102よりも拡大して画像が形成される。中心
部においても僅かに拡大されるものの、中央部と周辺部
では場所により拡大率の差が生じる。従って、この投影
像から得られる信号をそのまま画像処理した場合、得ら
れる3次元再構成画像は実際とは異なり、拡大率に応じ
た誤差が生じ、歪んだものとなってしまう。その為、例
えば人体等の被写体を診断する際に支障を来すという問
題がある。
In the above conventional example, X-rays spread in a cone shape from the radiation source 104, and after passing through the subject 102, the main transmission line advances in a cone shape. Therefore, it is desirable that the detector 106 be spherical for such radiation, but it is technically difficult to collect small solid-state sensors individually to form a pseudo spherical surface, and it is expensive. Become. Usually, a flat panel type solid-state radiation detector or a planar detector such as II or (image intensifier) is used because a large detector can be manufactured relatively easily. However, these detectors have a flat radiation detection surface, and the angle between the main transmission line and the detector 106 becomes shallower toward the periphery of the projected image. In other words, the projected image is formed larger in the peripheral area than the actual subject 102 to form an image. Although the image is slightly enlarged at the center, there is a difference in magnification between the center and the periphery depending on the location. Therefore, if the signal obtained from the projected image is subjected to the image processing as it is, the obtained three-dimensional reconstructed image is different from the actual one, an error corresponding to the enlargement factor is generated, and the image is distorted. For this reason, there is a problem that a problem occurs when a subject such as a human body is diagnosed.

【0004】一方向のX線投影画像データを取るのに、
コーン状の放射線の代わりにファン状の放射線を用いて
被写体に対しステップ状に走査して各ステップ毎にデー
タを得て、それらのデータを集積することにより、全体
としてコーン状の放射線を照射した場合と同様に、この
ボリュームデータを得ることもできる。
[0004] To obtain X-ray projection image data in one direction,
Using a fan-shaped radiation instead of a cone-shaped radiation, the subject was scanned step-by-step, data was obtained for each step, and the data was integrated, thereby irradiating the cone-shaped radiation as a whole. As in the case, the volume data can be obtained.

【0005】しかし、これらの問題は、ファン状の放射
線を用いた場合でも同様に発生する。
[0005] However, these problems also occur when fan-shaped radiation is used.

【0006】本発明は以上の点に鑑みてなされたもので
あり、平面状の検出器を使用しても、被写体の歪みのな
い画像を得ることができる、放射線画像処理方法及び装
置を提供することを目的とする。
The present invention has been made in view of the above points, and provides a radiographic image processing method and apparatus capable of obtaining an image without distortion of a subject even when a flat detector is used. The purpose is to:

【0007】[0007]

【課題を解決するための手段】本発明の放射線画像処理
方法は、相異なる投影方向から被写体に照射された放射
線を平面状の検出器で検出して得た複数の投影画像デー
タに基づいて前記被写体のボリュームデータを再構成す
る放射線画像処理方法であって、前記各投影画像データ
を、前記放射線を発する放射線源もしくはその近傍に中
心を有する仮想球面に投射して該仮想球面上に位置する
球面上投影画像データに補正し、各球面上投影画像デー
タに基づいて前記ボリュームデータを再構成することを
特徴とするものである。
A radiation image processing method according to the present invention is based on a plurality of projection image data obtained by detecting radiation applied to a subject from different projection directions with a flat detector. A radiation image processing method for reconstructing volume data of a subject, wherein the projection image data is projected onto a radiation source emitting the radiation or a virtual spherical surface having a center near the radiation source, and a spherical surface located on the virtual spherical surface The volume data is corrected based on the upper projection image data, and the volume data is reconstructed based on each spherical projection image data.

【0008】また本発明の放射線画像処理装置は、相異
なる投影方向から被写体に照射された放射線を平面状の
検出器で検出して得た複数の投影画像データに基づいて
前記被写体のボリュームデータを再構成する放射線画像
処理方法であって、前記各投影画像データを、前記放射
線を発する放射線源もしくはその近傍に中心を有する仮
想球面に投射して該仮想球面上に位置する球面上投影画
像データに補正する補正手段を有し、該補正手段によっ
て補正された各球面上投影画像データに基づいて前記ボ
リュームデータを再構成することを特徴とするものであ
る。
Further, the radiation image processing apparatus according to the present invention converts the volume data of the subject based on a plurality of projection image data obtained by detecting radiation applied to the subject from different projection directions by a flat detector. A radiographic image processing method for reconstructing, wherein each of the projection image data is projected onto a virtual spherical surface having a center in the vicinity of a radiation source emitting the radiation or the vicinity thereof, and projected onto spherical spherical image data located on the virtual spherical surface. The volume data is reconstructed on the basis of each projection image data on a sphere corrected by the correction means.

【0009】仮想球面とは完全な球面に限定されるもの
ではなく、多少それた形状であってもデータを十分補正
できる形状であればそれらも含むものとする。
The imaginary spherical surface is not limited to a perfect spherical surface, but includes a slightly deviated shape as long as the shape can sufficiently correct data.

【0010】平面状の検出器とは、放射線を検出する検
出面が平面となった検出器をいう。
[0010] The flat detector is a detector having a flat detection surface for detecting radiation.

【0011】[0011]

【発明の効果】本発明の放射線画像処理方法および装置
は、被写体を透過した放射線を平面状の検出器により検
出して得られる投影画像データを、放射線を発する放射
線源もしくはその近傍に中心を有する仮想球面に投射し
てこの仮想球面上に位置する球面上投影画像データに補
正し、この球面上投影画像データに基づいてボリューム
データを再構成するので次の効果を奏する。
According to the radiation image processing method and apparatus of the present invention, projection image data obtained by detecting radiation transmitted through an object by a planar detector has a center at or near a radiation source that emits radiation. Since the projection data is projected onto the virtual spherical surface and corrected to the spherical projection image data located on the virtual spherical surface, and the volume data is reconstructed based on the spherical projection image data, the following effects are obtained.

【0012】即ち、得られた平面状検出器上の投影像の
データは、放射線源から等距離にある仮想球面上のデー
タに置き換えられるので、被写体の投影像は仮想球面に
対して投影された形状になる。即ち球面上ではあらゆる
方向からのデータは、同じ拡大率で投影されるので、実
際の被写体の形状に極めて近いものとなる。この後に行
われる再構成もこの補正されたデータに基づいて行われ
るので正確なボリュームデータが得られ、更にこのボリ
ュームデータから被写体の歪みの極めて少ない正確な3
次元再構成画像を得ることができる。
That is, the data of the projection image obtained on the planar detector is replaced with data on a virtual sphere equidistant from the radiation source, so that the projection image of the subject is projected on the virtual sphere. Shape. That is, on the spherical surface, data from all directions are projected at the same enlargement ratio, so that the shape becomes very close to the actual shape of the subject. Reconstruction performed thereafter is also performed based on the corrected data, so that accurate volume data can be obtained. Further, accurate volume data with very little distortion of the subject can be obtained from the volume data.
A dimensional reconstructed image can be obtained.

【0013】[0013]

【発明の実施の形態】以下、本発明の放射線画像処理方
法及び装置の好適な実施の形態について添付図を参照し
て詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of a radiation image processing method and apparatus according to the present invention will be described below in detail with reference to the accompanying drawings.

【0014】図1は、本発明の実施形態となる、被写体
2と平面状の放射線固体検出器(以下、単に検出器とい
う)6の間にある仮想球面(以下、単に球面という)2
0の一部を示す概略図である。被写体2の上方に放射線
源4が位置し、被写体2の下方に検出器6が配置されて
いる。
FIG. 1 shows a virtual spherical surface (hereinafter simply referred to as a spherical surface) 2 between an object 2 and a planar solid-state radiation detector (hereinafter simply referred to as a detector) 6 according to an embodiment of the present invention.
It is the schematic which shows some 0. The radiation source 4 is located above the subject 2, and the detector 6 is arranged below the subject 2.

【0015】通常、被写体2の撮影時には放射線源4か
らコーン状の放射線が被写体2に向けて照射される。こ
の放射線が被写体を透過した透過放射線が平面状の検出
器6により検出されて、被写体2の投影画像データ(放
射線透過像データ)が得られる。放射線源4と検出器6
を被写体2の周りに対をなして回転させ、回転の間、所
定の回転角度毎に、つまり所定の投影方向毎に被写体2
を撮影することにより、各投影方向毎の多数の投影画像
データが得られる。この各投影方向毎の投影画像データ
に基づいてボリュームデータが再構成される。
Usually, cone-shaped radiation is emitted from the radiation source 4 toward the subject 2 when the subject 2 is photographed. The transmitted radiation, which has been transmitted through the subject, is detected by the planar detector 6, and projection image data (radiation transmission image data) of the subject 2 is obtained. Radiation source 4 and detector 6
Are rotated around the subject 2 in pairs, and during the rotation, the subject 2 is rotated at predetermined rotation angles, that is, at predetermined projection directions.
, A large number of projection image data for each projection direction can be obtained. Volume data is reconstructed based on the projection image data for each projection direction.

【0016】撮影の際、放射線源4から照射される放射
線の内、所定の角度αで広がった放射線束(以下単に束
という)10aと、同じ角度αで広がった異なる方向を
向く束10bとを比較する。束10aは検出器6の略中央
に略直角に入射され、そのときに被写体2を通過して透
過線によって形成される投影像12aが矢印で示されて
いる。また周辺部に投射された束10bによって形成さ
れる投影像12bも矢印で示されている。
At the time of imaging, of the radiation emitted from the radiation source 4, a radiation flux (hereinafter simply referred to as a flux) 10a spread at a predetermined angle α and a flux 10b spread at the same angle α and directed in different directions. Compare. The bundle 10a is incident on the substantially center of the detector 6 at a substantially right angle. At that time, a projected image 12a formed by a transmission line passing through the subject 2 is indicated by an arrow. Further, a projected image 12b formed by the bundle 10b projected on the peripheral portion is also indicated by an arrow.

【0017】投影像12aと12bを比較すると、検出器
6の中心Cに近い投影像12aは、周辺部Aの位置にある
投影像12bよりも小さい。この寸法上の差は周辺部の
投影像12bの拡大率が、中心部の投影像12aの拡大率よ
り大きいために生じるものである。この投影像が誤差を
そのままにして、演算処理され再構成されると得られた
再構成画像は誤差を含んで実際の像とは異なったものと
なってしまう。即ち、被写体2の中央部と周辺部の拡大
率の相違がそのまま現れるので再構成画像は、実際の被
写体2とは異なる歪んだ画像となる。
Comparing the projected images 12a and 12b, the projected image 12a near the center C of the detector 6 is smaller than the projected image 12b at the position of the peripheral portion A. This dimensional difference occurs because the magnification of the projected image 12b at the peripheral portion is larger than the magnification of the projected image 12a at the center. When this projection image is subjected to arithmetic processing and reconstructed while keeping the error, the reconstructed image obtained differs from the actual image due to the error. That is, since the difference in the magnification between the central portion and the peripheral portion of the subject 2 appears as it is, the reconstructed image is a distorted image different from the actual subject 2.

【0018】今ここで被写体2と検出器6の間に放射線
源を中心とする球面、即ち仮想球面20を置き、放射線
源4から放射されたX線10がこの球面20に投影画像
データを形成するとすれば、これらの投影画像データは
放射線源4から等距離にある球面20上に像を形成する
こととなる。即ち、投影像12aのデータは、図示しな
い補正手段により球面上に投射されて球面上に位置する
投影像14aとしてのデータ、即ち球面上投影画像デー
タに補正され、投影像12bも同様に球面上に位置する
投影像14bとしてのデータに補正される。球面20の
上ではどの位置でも放射線源4から等距離にあるため、
投影像14aと投影像14bは同じ大きさとなり、実際の
被写体2と同じ比率で拡大された像となる。これらの投
影像14a、14bを画像処理する、即ち球面上投影画像
データに基づいてボリュームデータを再構成することに
より所望の正確な3次元再構成画像若しくは断層像を得
ることができる。
Here, a spherical surface around the radiation source, ie, a virtual spherical surface 20, is placed between the subject 2 and the detector 6, and the X-rays 10 emitted from the radiation source 4 form projection image data on the spherical surface 20. Then, these projection image data form an image on the spherical surface 20 equidistant from the radiation source 4. That is, the data of the projected image 12a is projected onto the spherical surface by a correction means (not shown), and is corrected to data as the projected image 14a located on the spherical surface, that is, the projected image data on the spherical surface. Is corrected to the data as the projection image 14b located at the position. Since any position on the spherical surface 20 is equidistant from the radiation source 4,
The projected image 14a and the projected image 14b have the same size, and are images enlarged at the same ratio as the actual subject 2. By performing image processing on these projection images 14a and 14b, that is, by reconstructing volume data based on the spherical projection image data, a desired accurate three-dimensional reconstructed image or tomographic image can be obtained.

【0019】次に図2を参照して、検出器6の表面上の
データを球面20上のデータに補正する場合について説
明する。図2は検出器6の表面と球面20の関係を示す
概略斜視図である。検出器6の表面上で直交するX軸、
Y軸、及びこれらと直交するZ軸の交点をOとし、半径
rの球面20の中心Bが、Z軸上にあるように球面20
と座標軸の関係を設定する。今、検出器6上の点P1の
平面データをd(l,ψ)とする。ここでlはOからP1
までの長さであり、ψはP1と0と結ぶ直線がX軸とな
す角度を表す。P1から球面20の中心Bを結ぶ直線と
球面20との交点をP0とし、そのときのZ軸とのなす
角度をθとすると、対応する球面20上のデータはD
(ψ,θ)で表される。従って、平面データd(l,ψ)
を球面データに置き換えると、D(ψ,θ)=d(l,
ψ)の計算式が成り立つ。lはrtanθで表されるので
P0を極座標表示で表すと、D(ψ,θ)=d(rtan
θ,ψ)となる。また、X、Y座標で示した場合は、D
(ψ,θ)=d(rtanθ・cosψ,rtanθ・sinψ)とし
て表せる。
Next, a case where data on the surface of the detector 6 is corrected to data on the spherical surface 20 will be described with reference to FIG. FIG. 2 is a schematic perspective view showing the relationship between the surface of the detector 6 and the spherical surface 20. An X axis orthogonal to the surface of the detector 6,
The point of intersection of the Y axis and the Z axis orthogonal to these axes is represented by O, and the center B of the spherical surface 20 having a radius r is located on the Z axis.
Set the relationship between and coordinate axes. Now, let the plane data of the point P1 on the detector 6 be d (l, (). Where l is O to P1
Represents the angle formed by a straight line connecting P1 and 0 with the X axis. Assuming that the intersection point between the straight line connecting P1 to the center B of the spherical surface 20 and the spherical surface 20 is P0 and the angle between the Z-axis at that time is θ, the corresponding data on the spherical surface 20 is D
(Ψ, θ). Therefore, the plane data d (l, ψ)
Is replaced by spherical data, D (ψ, θ) = d (l,
The calculation formula of ψ) holds. Since l is represented by rtan θ, if P0 is represented by polar coordinates, D (ψ, θ) = d (rtan
θ, ψ). In addition, when indicated by X and Y coordinates, D
(Ψ, θ) = d (rtanθ · cosψ, rtanθ · sinψ).

【0020】従って、この計算式により平面データ、即
ちX−Y座標で表されたデータは球面20上のデータに
補正される。前述の補正手段は、これらの演算処理を行
うコンピュータプログラムを含む。
Therefore, the plane data, that is, the data represented by the XY coordinates, is corrected to the data on the spherical surface 20 by this calculation formula. The above-described correction means includes a computer program for performing these arithmetic processes.

【0021】以上、本発明について好適な実施形態を用
いて詳細に説明したが、この実施形態に限定されるもの
ではなく、種々の変形、変更が考えられることは勿論で
ある。例えば、球面20の中心は放射線源4と一致する
ことが望ましいが、必ずしも完全に一致する必要はな
く、拡大率が略同様であれば多少ずれていてもよい。ま
た、仮想球面は、必ずしも被写体2と検出器6の間に設
定しなくともよい。例えば放射線源4と被写体2の間、
或いは検出器6の背後(下側)にあってもよい。
As described above, the present invention has been described in detail with reference to the preferred embodiment. However, the present invention is not limited to this embodiment, and various modifications and changes can be considered. For example, it is desirable that the center of the spherical surface 20 coincides with the radiation source 4, but it is not always necessary that the center coincide completely, and it may be slightly shifted as long as the magnifications are substantially the same. In addition, the virtual spherical surface does not necessarily need to be set between the subject 2 and the detector 6. For example, between the radiation source 4 and the subject 2,
Alternatively, it may be behind (below) the detector 6.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態による、被写体と検出器の間
にある仮想球面の一部を示す概略図
FIG. 1 is a schematic diagram illustrating a portion of a virtual sphere between an object and a detector, according to an embodiment of the invention.

【図2】検出器の表面と球面の関係を示す概略斜視図FIG. 2 is a schematic perspective view showing the relationship between the surface of the detector and a spherical surface.

【図3】従来のX線断層撮影装置の一例を示す斜視図FIG. 3 is a perspective view showing an example of a conventional X-ray tomography apparatus.

【符号の説明】[Explanation of symbols]

2 被写体 4 放射線源 6 検出器 10 放射線 12a、12b、14a、14b 放射線投影像 20 仮想球面 B 中心 2 Subject 4 Radiation source 6 Detector 10 Radiation 12a, 12b, 14a, 14b Radiation projection image 20 Virtual sphere B Center

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 相異なる投影方向から被写体に照射され
た放射線を平面状の検出器で検出して得た複数の投影画
像データに基づいて前記被写体のボリュームデータを再
構成する放射線画像処理方法であって、 前記各投影画
像データを、前記放射線を発する放射線源もしくはその
近傍に中心を有する仮想球面に投射して該仮想球面上に
位置する球面上投影画像データに補正し、各球面上投影
画像データに基づいて前記ボリュームデータを再構成す
ることを特徴とする放射線画像処理方法。
1. A radiation image processing method for reconstructing volume data of an object based on a plurality of projection image data obtained by detecting radiation applied to the object from different projection directions with a planar detector. Wherein each of the projection image data is projected onto a radiation source that emits the radiation or a virtual sphere having a center near the radiation source, and corrected to spherical projection image data located on the virtual sphere, and each spherical projection image is corrected. A radiation image processing method comprising reconstructing the volume data based on data.
【請求項2】 相異なる投影方向から被写体に照射され
た放射線を平面状の検出器で検出して得た複数の投影画
像データに基づいて前記被写体のボリュームデータを再
構成する放射線画像処理方法であって、 前記各投影画
像データを、前記放射線を発する放射線源もしくはその
近傍に中心を有する仮想球面に投射して該仮想球面上に
位置する球面上投影画像データに補正する補正手段を有
し、該補正手段によって補正された各球面上投影画像デ
ータに基づいて前記ボリュームデータを再構成すること
を特徴とする放射線画像処理装置。
2. A radiation image processing method for reconstructing volume data of a subject based on a plurality of projection image data obtained by detecting radiation applied to the subject from different projection directions with a planar detector. A correction means for projecting each of the projection image data onto a virtual sphere having a center in the vicinity of the radiation source emitting the radiation or the vicinity thereof and correcting the projection image data into spherical projection image data located on the virtual sphere. A radiation image processing apparatus, wherein the volume data is reconstructed based on each spherical projection image data corrected by the correction means.
JP11073591A 1999-03-18 1999-03-18 Radiation image processing method and apparatus Withdrawn JP2000262507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11073591A JP2000262507A (en) 1999-03-18 1999-03-18 Radiation image processing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11073591A JP2000262507A (en) 1999-03-18 1999-03-18 Radiation image processing method and apparatus

Publications (1)

Publication Number Publication Date
JP2000262507A true JP2000262507A (en) 2000-09-26

Family

ID=13522724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11073591A Withdrawn JP2000262507A (en) 1999-03-18 1999-03-18 Radiation image processing method and apparatus

Country Status (1)

Country Link
JP (1) JP2000262507A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008178686A (en) * 2007-01-10 2008-08-07 Mediguide Ltd System and method for superimposing representation of tip of catheter on image acquired by moving imager

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008178686A (en) * 2007-01-10 2008-08-07 Mediguide Ltd System and method for superimposing representation of tip of catheter on image acquired by moving imager

Similar Documents

Publication Publication Date Title
JP4415762B2 (en) Tomography equipment
JP4190194B2 (en) Calibration method for reconstructing a three-dimensional model from images obtained by tomography
JP5305611B2 (en) Method for creating medical image and medical imaging system
US20150216498A1 (en) Geometric Characterization and Calibration of a Cone-Beam Computer Tomography Apparatus
JP6636923B2 (en) X-ray imaging device
JP2012050848A (en) Radiographic imaging control apparatus using multi radiation generating apparatus
JP2006116310A (en) Detector for computed tomography apparatus and computed tomography apparatus
JP2005087592A (en) X-rays measuring instrument
JP2006239427A (en) Shadow mask of x-ray detector, computed tomography unit having shadow mask, and method for adjusting shadow mask
JP6310118B2 (en) Image processing apparatus, treatment system, and image processing method
US9622714B2 (en) System and method for photographic determination of multichannel collimator channel pointing directions
JP3694833B2 (en) Eucentric tilted 3D X-ray CT and 3D image imaging method using the same
KR20150126556A (en) Microchip x-ray computed tomography system and inspection method using the same
JP4537090B2 (en) Tomosynthesis equipment
JP2000262507A (en) Radiation image processing method and apparatus
JP2004037267A (en) Computed tomography
JPS62284250A (en) Industrial ct scanner
JP2009162596A (en) Method of supporting image confirmation work and substrate inspection apparatus utilizing x ray using the same
JP4016265B2 (en) X-ray CT system
JP2011227028A (en) Tomogram image reconstruction method and x-ray ct apparatus
JP4808296B2 (en) X-ray CT system
US20200015769A1 (en) X-ray computed tomography apparatus and correction method
JP6629158B2 (en) X-ray CT system
Wang et al. Accurate and efficient image intensifier distortion correction algorithm for volume tomographic angiography
JPH01313895A (en) Photographing method for x-ray tv

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060606