JP2000260457A - Carbon monoxide eliminator of fuel cell - Google Patents

Carbon monoxide eliminator of fuel cell

Info

Publication number
JP2000260457A
JP2000260457A JP11061423A JP6142399A JP2000260457A JP 2000260457 A JP2000260457 A JP 2000260457A JP 11061423 A JP11061423 A JP 11061423A JP 6142399 A JP6142399 A JP 6142399A JP 2000260457 A JP2000260457 A JP 2000260457A
Authority
JP
Japan
Prior art keywords
carbon monoxide
inner container
gas
outer container
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11061423A
Other languages
Japanese (ja)
Inventor
Taketoshi Ouki
丈俊 黄木
Akio Kawakami
彰雄 河上
Osamu Tajima
収 田島
Akira Fujio
昭 藤生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP11061423A priority Critical patent/JP2000260457A/en
Publication of JP2000260457A publication Critical patent/JP2000260457A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Fuel Cell (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PROBLEM TO BE SOLVED: To keep the inside of a catalyst layer in a predetermined temperature range when a reaction for eliminating carbon monoxide in gas is carried out in a carbon monoxide eliminator of a fuel cell. SOLUTION: This carbon monoxide eliminator 1 for reducing carbon monoxide in gas by passing a mixed gas formed by mixing a carbon monoxide- containing gas rich in hydrogen with air through a catalyst layer 4 to oxidize it is so structured that the carbon monoxide eliminator 1 is formed into a double-cylindrical shape comprising an outer container 12 and an inner container 13, a gas introduction pipe 16 for introducing the mixed gas and a gas exhaust pipe 17 for exhausting the mixed gas are formed at the center of an outer container top plate 14a and in an outer container bottom plate 15a, respectively, the inner container 13 is filled with a catalyst for oxidizing the carbon monoxide, an exit for exhausting the mixed gas is formed at the center of an inner container bottom plate 15b, the exit is commonly used for the outer container 12, the inner container bottom plate 15b is installed tightly to the outer container bottom plate 15a, and multiple round holes 21 each serving as an entrance of the mixed air are formed in an inner container side face 18b.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は固体高分子型燃料電
池システムにおいて、原料ガスから改質器を経て得られ
た改質ガス中に含まれる一酸化炭素を除去して水素リッ
チなガスを燃料電池へ供給するようにするために供給ラ
インの途中に設けて用いられる一酸化炭素除去器に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer electrolyte fuel cell system, which removes carbon monoxide contained in a reformed gas obtained from a raw material gas through a reformer to produce a hydrogen-rich gas as a fuel. The present invention relates to a carbon monoxide remover provided in the middle of a supply line to supply a battery.

【0002】[0002]

【従来の技術】固体高分子型燃料電池システムは、水素
の有している化学エネルギーを電気エネルギーに変換す
るものである。実業的には比較的容易かつ安価に入手で
きる天然ガス、ナフサ等の炭化水素やメタノール等のア
ルコール類の原料ガス(以下原料ガスという)を、水蒸
気と混合して改質器及び一酸化炭素変成器で改質するこ
とにより生成した水素リッチな改質ガスを得て、その水
素リッチなガスを燃料電池本体の電極(燃料極)に供給
して発電する。
2. Description of the Related Art A polymer electrolyte fuel cell system converts chemical energy of hydrogen into electric energy. A raw material gas (hereinafter referred to as a raw material gas) of natural gas, hydrocarbons such as naphtha, and alcohols such as methanol, which can be obtained relatively easily and inexpensively, is mixed with steam to reformer and carbon monoxide conversion. A hydrogen-rich reformed gas generated by reforming in a reactor is obtained, and the hydrogen-rich gas is supplied to an electrode (fuel electrode) of the fuel cell body to generate power.

【0003】改質器においてはバーナで高温に加熱した
改質用触媒層に原料ガスを通過させて改質反応を行う
が、改質反応に伴って、燃料電池の触媒劣化の原因とな
る一酸化炭素も発生する。改質ガスに一酸化炭素が含ま
れていると、この一酸化炭素によって燃料電池の電極が
被毒して性能低下を来たすことから、水素リッチなガス
を燃料電池の燃料極へ供給する前に改質器で改質された
ガス中の一酸化炭素を除去する必要がある。一酸化炭素
の濃度は、一酸化炭素変成器で1%程度まで低減される
が、電極の劣化を避けるために更に濃度を下げる必要が
ある。
In a reformer, a raw material gas is passed through a reforming catalyst layer heated to a high temperature by a burner to perform a reforming reaction. However, the reforming reaction may cause deterioration of a fuel cell catalyst. Carbon oxides are also generated. If the reformed gas contains carbon monoxide, this carbon monoxide will poison the fuel cell electrodes and reduce the performance.Before supplying the hydrogen-rich gas to the fuel cell anode, It is necessary to remove carbon monoxide in the gas reformed by the reformer. Although the concentration of carbon monoxide is reduced to about 1% in the carbon monoxide converter, it is necessary to further reduce the concentration to avoid electrode deterioration.

【0004】特に、固体高分子型の燃料電池システムの
場合、一酸化炭素を10PPM程度のレベルに低下させ
ることが必要であって、改質器及び一酸化炭素変成器で
改質した改質ガスに空気を混合し、一酸化炭素を選択的
に酸化する選択酸化触媒層を通過させることによって一
酸化炭素を低レベルに落とした水素ガスを燃料電池に供
給する一酸化炭素除去器を設けている。
In particular, in the case of a polymer electrolyte fuel cell system, it is necessary to reduce carbon monoxide to a level of about 10 PPM, and the reformed gas reformed by a reformer and a carbon monoxide converter is required. Is provided with a carbon monoxide remover for supplying hydrogen gas to a fuel cell in which carbon monoxide has been reduced to a low level by mixing air with air and passing through a selective oxidation catalyst layer that selectively oxidizes carbon monoxide. .

【0005】従来の一酸化炭素除去器1は、図4に示す
ように、ルテニウム、ロジウム等の触媒2を粒状にして
細長い反応容器3(鋼管容器)に収納した構造である。
この反応容器3は長手方向に沿って改質ガスが空気と共
に導入される構成であり、この改質ガスが反応容器3を
通過する間に改質ガス中の一酸化炭素を触媒2の作用で
酸化させることによって改質ガスから一酸化炭素を除去
することが行われている。
As shown in FIG. 4, the conventional carbon monoxide remover 1 has a structure in which a catalyst 2 such as ruthenium or rhodium is granulated and stored in an elongated reaction vessel 3 (steel pipe vessel).
The reaction vessel 3 has a configuration in which the reformed gas is introduced along with the air along the longitudinal direction. During the passage of the reformed gas through the reaction vessel 3, carbon monoxide in the reformed gas is removed by the action of the catalyst 2. It has been practiced to remove carbon monoxide from reformed gas by oxidizing.

【0006】また、この一酸化炭素除去器1において、
良好な選択性を得る(一酸化炭素だけを選択的に酸化さ
せる)ために、選択酸化触媒層4を所定の運転温度に保
つ必要がある。この運転温度は通常摂氏150度〜20
0度程度であって、起動時においては選択酸化触媒層4
の周りにヒータを設置して加熱するか、バーナで高温の
ガスを生成してそれを一酸化炭素除去器1の周りに送り
込むことによって昇温する方法がとられている。通常運
転時においては触媒層4で生じる反応が発熱反応であ
り、この発熱反応の熱によつて触媒層4が昇温されるの
で外部から昇温することなく所定の温度を保つことがで
きる。
In this carbon monoxide remover 1,
In order to obtain good selectivity (selectively oxidize only carbon monoxide), it is necessary to keep the selective oxidation catalyst layer 4 at a predetermined operating temperature. This operating temperature is typically between 150 and 20 degrees Celsius.
It is about 0 degrees, and at the time of startup, the selective oxidation catalyst layer 4
And a heater is provided around the carbon monoxide remover 1 to generate a high-temperature gas and send it around the carbon monoxide remover 1 to raise the temperature. During normal operation, the reaction occurring in the catalyst layer 4 is an exothermic reaction, and the temperature of the catalyst layer 4 is raised by the heat of the exothermic reaction, so that a predetermined temperature can be maintained without externally raising the temperature.

【0007】[0007]

【発明が解決しようとする課題】ところが、触媒層4の
反応が均一でないと、触媒層4内に温度差が生じ、触媒
層4内の温度が部分的に摂氏200度以上になることが
ある。摂氏200度以上の温度になると、触媒2の劣化
が生じたり、また、反応がメタン化反応に移行し、改質
ガス中の水素を減少させたりすることがある。
However, if the reaction of the catalyst layer 4 is not uniform, a temperature difference occurs in the catalyst layer 4 and the temperature in the catalyst layer 4 may partially increase to 200 ° C. or more. . When the temperature reaches 200 degrees Celsius or more, the catalyst 2 may be degraded, or the reaction may shift to a methanation reaction to reduce the amount of hydrogen in the reformed gas.

【0008】図4に示す一酸化炭素除去器1の場合、反
応容器3の管の長さが長いため、改質ガスの流れ方向に
おいて触媒層4の温度差が大きくなると共に半径方向に
も温度差が生じ、特に、改質ガスの流れ方向に触媒層4
の温度差があると、反応容器3の入口から導入された空
気がガスの流れ方向で一酸化炭素と一様に反応しないた
め、均一な反応温度とすることができなかった。このよ
うな反応容器3では入口側のみ活発な反応が生じ温度が
摂氏200度以上に上がり、出口側では触媒層4の所定
の温度としては不足ぎみとなり良好な酸化反応ができな
いという問題があった。
In the case of the carbon monoxide remover 1 shown in FIG. 4, since the length of the tube of the reaction vessel 3 is long, the temperature difference of the catalyst layer 4 in the flow direction of the reformed gas increases, and the temperature also increases in the radial direction. A difference is generated, and in particular, the catalyst layer 4
When there is a temperature difference of, the air introduced from the inlet of the reaction vessel 3 does not uniformly react with carbon monoxide in the gas flow direction, so that a uniform reaction temperature could not be obtained. In such a reaction vessel 3, there was a problem that an active reaction occurred only on the inlet side and the temperature rose to 200 ° C. or more, and on the outlet side the predetermined temperature of the catalyst layer 4 was insufficient and a favorable oxidation reaction could not be performed. .

【0009】そこで、本発明は上述のような問題を解消
し、改質ガス中の一酸化炭素を除去する反応が行われる
ときに触媒層をできるだけ均一な反応温度とすることの
できる一酸化炭素除去器を提供することを目的とする。
Therefore, the present invention solves the above-mentioned problems and provides a carbon monoxide capable of keeping the catalyst layer at a reaction temperature as uniform as possible when the reaction for removing carbon monoxide in the reformed gas is performed. It is intended to provide a remover.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、請求項1記載の発明は、原料ガスを改質器によって
改質して得た一酸化炭素を含む水素リッチの改質ガスを
空気と混合して触媒層を通過させることによって改質ガ
ス中の一酸化炭素を低減する一酸化炭素除去器におい
て、一酸化炭素除去器は外容器と内容器とからなる二重
円筒形とし、外容器の一方の端面の中心に改質ガスと空
気との混合気を導入する入口、他方の端面の中心に混合
気を排出する出口を設け、内容器内に一酸化炭素を選択
的に酸化させて一酸化炭素を低減する触媒を充填し、内
容器の端面中心に混合気を排出する出口を設け、内容器
の出口は外容器の出口と共通の出口とし、内容器の出口
端面を外容器の出口端面に密着して設置し、内容器の円
筒面に混合気の入口となる多数の孔を設けたものであ
る。
In order to achieve the above-mentioned object, the invention according to claim 1 provides a hydrogen-rich reformed gas containing carbon monoxide obtained by reforming a raw material gas by a reformer. In a carbon monoxide remover that reduces carbon monoxide in the reformed gas by mixing with air and passing through a catalyst layer, the carbon monoxide remover has a double cylindrical shape consisting of an outer container and an inner container, An inlet for introducing a mixture of reformed gas and air is provided at the center of one end of the outer container, and an outlet for discharging the mixture is provided at the center of the other end, and carbon monoxide is selectively oxidized in the inner container. The inner container is filled with a catalyst to reduce carbon monoxide, and an outlet for discharging the air-fuel mixture is provided at the center of the inner surface of the inner container.The outlet of the inner container is made a common outlet with the outlet of the outer container, and the outlet end surface of the inner container is exposed. It is installed in close contact with the outlet end of the container, and the mixture Made is provided with a plurality of holes.

【0011】請求項2記載の発明は、請求項1記載の発
明において、前記内容器の高さと直径の比を約1:5と
するものである。
According to a second aspect of the present invention, in the first aspect of the present invention, the ratio between the height and the diameter of the inner container is about 1: 5.

【0012】請求項3記載の発明は、請求項1記載の発
明において、前記外容器と内容器とは正多角形の二重筒
形であり、内容器の高さと内容器の中心を通る対角線長
さとの比を約1:5とするものである。
According to a third aspect of the present invention, in the first aspect of the present invention, the outer container and the inner container have a regular polygonal double cylinder shape, and the height of the inner container and a diagonal line passing through the center of the inner container. The ratio with the length is about 1: 5.

【0013】[0013]

【発明の実施の形態】以下、本発明の一実施形態につい
て図面に基づいて説明する。なお、図4と同一の構成要
素には同一の符号を付してその詳細な説明は省略する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. Note that the same components as those in FIG. 4 are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0014】図1は原料ガスから水素リッチなガスを得
る工程の説明図である。この工程は脱硫器5、改質器
6、熱交換器7、一酸化炭素変成器8、一酸化炭素除去
器1とから構成される。
FIG. 1 is an explanatory diagram of a process for obtaining a hydrogen-rich gas from a source gas. This step includes a desulfurizer 5, a reformer 6, a heat exchanger 7, a carbon monoxide converter 8, and a carbon monoxide remover 1.

【0015】脱硫器5において原料ガスは、原料ガス中
に不純物として含まれる硫黄化合物が脱硫器5の内部に
充填された脱硫触媒と接触して除去される。改質器6に
おいて脱硫された原料ガスに水蒸気が加えられ、改質器
5の内部に充填され摂氏700度程度の高温に保持され
た改質触媒と接触して水素リッチな改質ガスが生成され
る。改質器6から出た改質ガスは、一酸化炭素変成器8
の動作温度まで冷却するため、熱交換器7へ送られる。
熱交換器7において、改質ガスと冷却水との間で熱交換
が行われ摂氏230度〜250度に冷却される。熱交換
器7で冷却された改質ガスは、一酸化炭素変成器8へ送
られる。一酸化炭素変成器8において改質ガスは、改質
ガス中に含まれる一酸化炭素成分が一酸化炭素変成器8
内部に充填された変成触媒と接触して変成される。変成
されることにより一酸化炭素濃度が1%以下に低減され
る。さらに一酸化炭素除去器1おいて改質ガスは、空気
と混合され摂氏150〜200度の温度で一酸化炭素除
去器1に充填されたルテニウム、ロジウム等の触媒2と
接触して一酸化炭素濃度を10PPM以下に低減され
る。一酸化炭素除去器1から排出されたガスは、燃料電
池9の燃料極に供給され、一部はリサイクルラインを通
ってバーナの燃料として使用される。
In the desulfurizer 5, the raw material gas is removed by contacting a sulfur compound contained as an impurity in the raw material gas with a desulfurization catalyst filled in the desulfurizer 5. Steam is added to the raw material gas desulfurized in the reformer 6, and the reformed gas is contacted with a reforming catalyst filled in the reformer 5 and maintained at a high temperature of about 700 degrees Celsius to generate a hydrogen-rich reformed gas. Is done. The reformed gas output from the reformer 6 is supplied to the carbon monoxide converter 8
Is sent to the heat exchanger 7 in order to cool it down to the operating temperature.
In the heat exchanger 7, heat exchange is performed between the reformed gas and the cooling water to be cooled to 230 to 250 degrees Celsius. The reformed gas cooled in the heat exchanger 7 is sent to the carbon monoxide converter 8. In the carbon monoxide converter 8, the reformed gas contains carbon monoxide components contained in the reformed gas.
It is converted when it comes into contact with the conversion catalyst filled therein. By the transformation, the carbon monoxide concentration is reduced to 1% or less. Further, in the carbon monoxide remover 1, the reformed gas is mixed with air and brought into contact with a catalyst 2, such as ruthenium or rhodium, filled in the carbon monoxide remover 1 at a temperature of 150 to 200 degrees C. The concentration is reduced to less than 10 PPM. The gas discharged from the carbon monoxide remover 1 is supplied to the fuel electrode of the fuel cell 9, and a part of the gas passes through a recycling line and is used as fuel for a burner.

【0016】図2は本発明の一酸化炭素除去器1の側断
面図である。図3は一酸化炭素除去器1の平面図であ
る。
FIG. 2 is a side sectional view of the carbon monoxide remover 1 of the present invention. FIG. 3 is a plan view of the carbon monoxide remover 1.

【0017】本発明の実施形態の一酸化炭素除去器1は
円筒形の外容器12と円筒形の内容器13とで構成され
ている。外容器12の高さLoは内容器13の高さLi
より高く、外容器12の直径Doは内容器13の直径D
iより大きい。外容器12は密閉された容器の天板14
aの中心および底板15aの中心に開口が設けられ、そ
れぞれガス導入管16、ガス排出管17が接続されてい
る。13は内容器であり、内容器13の高さLiと直径
Diの比を約1:5としており、内容器13の側面18
bには内容器のガス導入口となる多数の円孔21が設け
られている。内容器13の底板15bは外容器12の底
板15aと密着して設置されており、内容器13の底板
15bの中心に設けられた開口が外容器12の底板15
aに設けられた開口と接続されガス排出管17と連接さ
れている。内容器13には一酸化炭素を選択的に酸化し
て低減するルテニウム、ロジウム等の粒状の触媒2が充
填されて触媒層4を形成している。この触媒層4の触媒
2がこぼれないようにガス排出管17と接続される開口
にはメッシュが設けられている。また、内容器13の側
面18bの円孔21は粒状の触媒2の大きさよりも小さ
な孔になっている。内容器13の天板14bと外容器1
2の天板14aとの間及び内容器13の側面18bと外
容器12の側面18aとの間には空間がありガスの通路
22になっている。
The carbon monoxide remover 1 according to the embodiment of the present invention comprises a cylindrical outer container 12 and a cylindrical inner container 13. The height Lo of the outer container 12 is the height Li of the inner container 13.
Higher, the diameter Do of the outer container 12 is equal to the diameter D of the inner container 13.
Greater than i. The outer container 12 is a top plate 14 of a closed container.
Openings are provided at the center of the center a and the center of the bottom plate 15a, and the gas introduction pipe 16 and the gas discharge pipe 17 are connected to each other. Reference numeral 13 denotes an inner container, which has a ratio of the height Li to the diameter Di of the inner container 13 of about 1: 5.
b has a large number of circular holes 21 serving as gas inlets for the inner container. The bottom plate 15b of the inner container 13 is installed in close contact with the bottom plate 15a of the outer container 12, and an opening provided at the center of the bottom plate 15b of the inner container 13 is
a and is connected to the gas discharge pipe 17. The inner container 13 is filled with a granular catalyst 2 such as ruthenium or rhodium which selectively oxidizes and reduces carbon monoxide to form a catalyst layer 4. A mesh is provided at an opening of the catalyst layer 4 connected to the gas discharge pipe 17 so as not to spill the catalyst 2. The circular hole 21 on the side surface 18 b of the inner container 13 is a hole smaller than the size of the granular catalyst 2. Top plate 14b of inner container 13 and outer container 1
There is a space between the top plate 14a and the side surface 18b of the inner container 13 and the side surface 18a of the outer container 12 to form a gas passage 22.

【0018】一酸化炭素除去器1の良好な運転温度は通
常摂氏150度〜200度程度であって、起動時におい
ては触媒層4がこの運転温度まで昇温される。通常運転
時になると触媒層4で生じる反応が発熱反応であり、こ
の発熱反応の熱によって触媒層4の温度が所定温度に昇
温されるので外部からの昇温が停止される。
The good operating temperature of the carbon monoxide remover 1 is usually about 150 to 200 degrees Celsius, and the catalyst layer 4 is heated to this operating temperature at the time of starting. During normal operation, the reaction that occurs in the catalyst layer 4 is an exothermic reaction, and the heat of the exothermic reaction raises the temperature of the catalyst layer 4 to a predetermined temperature, so that the increase in temperature from the outside is stopped.

【0019】改質ガスと空気との混合気が一酸化炭素除
去器1に送られると、混合気はガス導入管16から進入
し、内容器13の天板14bに当たり周りに均等に分散
する。分散した混合気は、ガス通路を経て内容器13の
側面18bの円孔21から触媒層4に進入する。混合気
が粒状の触媒2の隙間を通りぬける際、混合気中の一酸
化炭素と酸素とが接触して反応し二酸化炭素になること
により一酸化炭素が減少されてガス排出管17から出て
行く。
When the mixture of the reformed gas and the air is sent to the carbon monoxide remover 1, the mixture enters from the gas introduction pipe 16, hits the top plate 14 b of the inner container 13, and is uniformly dispersed around the top plate 14 b. The dispersed gas mixture enters the catalyst layer 4 from the circular hole 21 on the side surface 18b of the inner container 13 via the gas passage. When the air-fuel mixture passes through the gap between the granular catalysts 2, carbon monoxide and oxygen in the air-fuel mixture come into contact and react with each other to form carbon dioxide, so that the carbon monoxide is reduced and exits from the gas discharge pipe 17. go.

【0020】このように、混合気は内容器13の天板1
4bの上部中心から進入し、均等に分散されて内容器1
3側面18bの円孔21から均等に触媒層4に進入する
ので、混合気と触媒2とが均一に接触して反応が行われ
る。反応が均一に行われるので、内容器13の側面18
bにおいて、温度分布が一様になり一部分だけ極端に上
昇するようなことはない。また、触媒層4の内部および
出口付近でも混合気が均一に通過するので反応が均一に
行われ温度不足ぎみとなることがない。触媒層4全体と
して摂氏150度〜200度の範囲内に保つことができ
る。
As described above, the air-fuel mixture is supplied to the top plate 1 of the inner container 13.
4b enters from the upper center and is evenly distributed to the inner container 1
Since the catalyst layer 4 uniformly enters the catalyst layer 4 from the circular holes 21 on the three side surfaces 18b, the mixture is uniformly contacted with the catalyst 2 and the reaction is performed. Since the reaction is performed uniformly, the side surface 18 of the inner container 13
In b, the temperature distribution becomes uniform and there is no extreme rise in a part. In addition, since the air-fuel mixture uniformly passes through the inside of the catalyst layer 4 and also near the outlet, the reaction is performed uniformly and the temperature does not become insufficient. The entire catalyst layer 4 can be kept in the range of 150 to 200 degrees Celsius.

【0021】以上、一実施形態に基づいて本発明を説明
したが、本発明はこれに限定されるものではない。本発
明は一酸化炭素除去器1を外容器12と内容器13とか
らなる二重円筒形の構造としているが多角形の筒状の外
容器12と内容器13とを組み合わせた二重構造であっ
ても良い。内容器13の天板14bと外容器12の天板
14aとの間及び内容器13の側面18bと外容器12
の側面18aとの間に空間が形成され、この空間を混合
気が均等に通過して内容器13の側面18bに均一に流
れ込むようになれば円筒形状でなくても良い。また、多
角形の筒状の容器と円筒状の容器とを組み合わせた二重
構造であっても良い。
As described above, the present invention has been described based on one embodiment, but the present invention is not limited to this. In the present invention, the carbon monoxide remover 1 has a double cylindrical structure including an outer container 12 and an inner container 13, but has a double structure in which a polygonal cylindrical outer container 12 and an inner container 13 are combined. There may be. The space between the top plate 14b of the inner container 13 and the top plate 14a of the outer container 12, and the side surface 18b of the inner container 13 and the outer container 12
A space may be formed between the inner container 13 and the side surface 18a of the inner container 13 as long as the air-fuel mixture uniformly passes through the space and flows uniformly into the side surface 18b of the inner container 13. Further, it may have a double structure in which a polygonal cylindrical container and a cylindrical container are combined.

【0022】[0022]

【発明の効果】請求項1記載の発明によれば、一酸化炭
素除去器は外容器と内容器とからなる二重円筒形とし、
ガス導入口を内容器の端面中心の上部に設け、触媒の充
填された内容器の円筒面にガスの入口となる多数の孔を
設けることによって、ガス導入口から進入した改質ガス
と空気との混合気が内容器の端面に当たって周辺に均等
に分散された後、内容器の円筒部の孔に均一に流れ込
み、触媒と接触するので、均一な酸化反応を行わせるこ
とができる。均一な酸化反応が行われることによって触
媒層での温度差が少なくなり良好な温度状態を保つこと
ができる。
According to the first aspect of the present invention, the carbon monoxide remover has a double cylindrical shape comprising an outer container and an inner container,
A gas inlet is provided above the center of the end face of the inner container, and a number of holes serving as gas inlets are provided on the cylindrical surface of the inner container filled with the catalyst, so that the reformed gas and air entering from the gas inlet are provided. After the air-fuel mixture strikes the end surface of the inner container and is uniformly dispersed around the inner surface, the mixture flows uniformly into the holes of the cylindrical portion of the inner container and comes into contact with the catalyst, so that a uniform oxidation reaction can be performed. By performing a uniform oxidation reaction, the temperature difference in the catalyst layer is reduced, and a favorable temperature state can be maintained.

【0023】請求項2記載の発明によれば、内容器の高
さと直径の比を約1:5とすることによって一酸化炭素
除去器をコンパクトで高率の良いものとすることができ
る。
According to the second aspect of the present invention, the carbon monoxide remover can be made compact and high in efficiency by setting the ratio of the height and the diameter of the inner container to about 1: 5.

【0024】請求項3記載の発明によれば、前記外容器
と前記内容器とは正多角形の筒形であり、内容器の高さ
と端面の中心を通る対角線の平均長さとの比を約1:5
とすることによって一酸化炭素除去器をコンパクトで高
率の良いものとすることができる。
According to the third aspect of the present invention, the outer container and the inner container have a regular polygonal cylindrical shape, and the ratio between the height of the inner container and the average length of a diagonal line passing through the center of the end surface is approximately equal to the outer container. 1: 5
By doing so, the carbon monoxide remover can be made compact and high in efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】原料ガスから水素リッチな改質ガスを得る工程
の説明図である。
FIG. 1 is an explanatory diagram of a process of obtaining a hydrogen-rich reformed gas from a raw material gas.

【図2】本発明の一酸化炭素除去器の側断面図である。FIG. 2 is a side sectional view of the carbon monoxide remover of the present invention.

【図3】本発明の一酸化炭素除去器の平面図である。FIG. 3 is a plan view of the carbon monoxide remover of the present invention.

【図4】従来の一酸化炭素除去器の側断面図である。FIG. 4 is a side sectional view of a conventional carbon monoxide remover.

【符号の説明】[Explanation of symbols]

1 一酸化炭素除去器 2 触媒 4 触媒層 6 改質器 12 外容器 13 内容器 14a 外容器の天板 14b 内容器の天板 15a 外容器の底板 15b 内容器の底板 16 ガス導入管(入口) 17 ガス排出管(出口) 21 円孔 REFERENCE SIGNS LIST 1 carbon monoxide remover 2 catalyst 4 catalyst layer 6 reformer 12 outer container 13 inner container 14a outer container top plate 14b inner container top plate 15a outer container bottom plate 15b inner container bottom plate 16 gas inlet pipe (inlet) 17 Gas exhaust pipe (outlet) 21 circular hole

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田島 収 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 藤生 昭 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 4D048 AA13 AB01 AC10 BA32Y BA33Y BA39Y BB01 CA01 CA07 CC29 CC38 4G069 AA03 BC70B BC71B CA07 CA14 CC32 5H027 AA06 BA01 BA16 BA17  ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Osamu Tajima 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Akira Fujio 2-5-5 Keihanhondori, Moriguchi-shi, Osaka No. 5 Sanyo Electric Co., Ltd. F term (reference) 4D048 AA13 AB01 AC10 BA32Y BA33Y BA39Y BB01 CA01 CA07 CC29 CC38 4G069 AA03 BC70B BC71B CA07 CA14 CC32 5H027 AA06 BA01 BA16 BA17

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 原料ガスを改質器によって改質して得た
一酸化炭素を含む水素リッチの改質ガスを空気と混合し
て触媒層を通過させることによって改質ガス中の一酸化
炭素を低減する一酸化炭素除去器において、 一酸化炭素除去器は外容器と内容器とからなる二重円筒
形とし、外容器の一方の端面の中心に改質ガスと空気と
の混合気を導入する入口、他方の端面の中心に混合気を
排出する出口を設け、内容器内に一酸化炭素を選択的に
酸化させて一酸化炭素を低減する触媒を充填し、内容器
の端面中心に混合気を排出する出口を設け、内容器の出
口は外容器の出口と共通の出口とし、内容器の出口端面
を外容器の出口端面に密着して設置し、内容器の円筒面
に混合気の入口となる多数の孔を設けたことを特徴とす
る燃料電池の一酸化炭素除去器。
1. A method for mixing carbon monoxide in a reformed gas by mixing a hydrogen-rich reformed gas containing carbon monoxide obtained by reforming a raw material gas with air and passing the mixed gas through a catalyst layer. The carbon monoxide remover has a double cylindrical shape consisting of an outer container and an inner container, and a mixture of reformed gas and air is introduced into the center of one end face of the outer container. And an outlet at the center of the other end to discharge the mixture, fill the inner container with a catalyst that selectively oxidizes carbon monoxide to reduce carbon monoxide, and mix it at the center of the end surface of the inner container. An outlet for discharging the air is provided, and the outlet of the inner container is made to be a common outlet with the outlet of the outer container.The outlet end surface of the inner container is installed in close contact with the outlet end surface of the outer container, and the mixture of Carbon monoxide removal for fuel cells characterized by having a large number of holes serving as inlets .
【請求項2】 前記内容器の高さと直径の比を約1:5
とすることを特徴とする請求項1記載の燃料電池の一酸
化炭素除去器。
2. The ratio of height and diameter of the inner container is about 1: 5.
The carbon monoxide remover according to claim 1, wherein:
【請求項3】 前記外容器と内容器とは正多角形の二重
筒形であり、内容器の高さと内容器の中心を通る対角線
長さとの比を約1:5とすることを特徴とする請求項1
記載の燃料電池の一酸化炭素除去器。
3. The container according to claim 1, wherein the outer container and the inner container have a regular polygonal double cylindrical shape, and a ratio of a height of the inner container to a diagonal length passing through the center of the inner container is about 1: 5. Claim 1
A carbon monoxide remover according to the above-described fuel cell.
JP11061423A 1999-03-09 1999-03-09 Carbon monoxide eliminator of fuel cell Pending JP2000260457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11061423A JP2000260457A (en) 1999-03-09 1999-03-09 Carbon monoxide eliminator of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11061423A JP2000260457A (en) 1999-03-09 1999-03-09 Carbon monoxide eliminator of fuel cell

Publications (1)

Publication Number Publication Date
JP2000260457A true JP2000260457A (en) 2000-09-22

Family

ID=13170673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11061423A Pending JP2000260457A (en) 1999-03-09 1999-03-09 Carbon monoxide eliminator of fuel cell

Country Status (1)

Country Link
JP (1) JP2000260457A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8178248B2 (en) 2005-01-10 2012-05-15 Samsung Sdi Co., Ltd. Carbon monoxide remover and fuel cell system with the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8178248B2 (en) 2005-01-10 2012-05-15 Samsung Sdi Co., Ltd. Carbon monoxide remover and fuel cell system with the same

Similar Documents

Publication Publication Date Title
KR100762685B1 (en) reformer and fuel cell system using the same
JP4989913B2 (en) Flat plate reformer and fuel cell system using the same
US7736774B2 (en) Solid oxide fuel cell system
JP2006012817A (en) Reformer for fuel cell and fuel cell system comprising the same
JP2003282114A (en) Stopping method of fuel cell power generating device
JP2000277139A (en) Fuel cell power generating system and its operating method
JP2008247727A (en) Reaction vessel and reaction device
JP3903710B2 (en) Fuel reformer and polymer electrolyte fuel cell power generator using the same
JP2000203802A (en) Reformer
JP2007112644A (en) Co(carbon monoxide)-removal device, fuel reforming apparatus, and fuel cell system
JP4013692B2 (en) Reformer steam generator for fuel cell generator
JPH11260387A (en) Co removing device and co removing device operating method therefor
JP2003086210A (en) Solid high-polymer type fuel cell power generator and its operation method
JP2000260457A (en) Carbon monoxide eliminator of fuel cell
JP3697955B2 (en) Catalytic combustor and method for raising temperature
JPH11149931A (en) Starting method of reforming equipment for fuel cell
KR100658289B1 (en) Separator having heating gas inlet portion and fuel cell system having the same
JP2000264604A (en) Carbon monoxide remover for fuel cell
JP3545254B2 (en) Fuel cell carbon monoxide remover
KR100422804B1 (en) Apparatus to remove carbon monoxide for fuel cell
JPH10106592A (en) Module of solid electrolyte fuel cell
JP3721946B2 (en) Carbon monoxide removal equipment
JP2000268841A (en) Carbon monoxide remover of fuel cell
JP2000254482A (en) Fixed bed catalytic reactor
KR100560442B1 (en) Fuel cell system

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040406