JP2000259966A - Fire monitoring method - Google Patents

Fire monitoring method

Info

Publication number
JP2000259966A
JP2000259966A JP11065051A JP6505199A JP2000259966A JP 2000259966 A JP2000259966 A JP 2000259966A JP 11065051 A JP11065051 A JP 11065051A JP 6505199 A JP6505199 A JP 6505199A JP 2000259966 A JP2000259966 A JP 2000259966A
Authority
JP
Japan
Prior art keywords
output
fire
infrared
ultraviolet
luminance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11065051A
Other languages
Japanese (ja)
Inventor
Takashi Akiyoshi
隆志 秋吉
Hiroshi Taniguchi
弘志 谷口
Masaki Motomura
雅記 元村
Tetsuya Hiwatari
哲也 樋渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Texeng Co Ltd
Original Assignee
Nippon Steel Corp
Nittetsu Elex Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nittetsu Elex Co Ltd filed Critical Nippon Steel Corp
Priority to JP11065051A priority Critical patent/JP2000259966A/en
Publication of JP2000259966A publication Critical patent/JP2000259966A/en
Pending legal-status Critical Current

Links

Landscapes

  • Closed-Circuit Television Systems (AREA)
  • Fire-Detection Mechanisms (AREA)
  • Alarm Systems (AREA)
  • Fire Alarms (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fire monitoring method for preventing erroneous judgment even when a heat source strong enough for detection by an infrared sensor and an ultraviolet sensor is present in a monitor area. SOLUTION: This is a fire monitoring method for monitoring the outbreak of a fire by the intensity of ultraviolet rays and infrared rays generated in a monitor area 10 by using a first photosensor for detecting ultraviolet rays and a second photosensor for detecting infrared rays radiated from a flame. In this case, an ultraviolet sensor 40 is used for the first photosensor, and an infrared sensor 30 is used for the second photosensor, and image processing for an area excluding a non-detected part 20 in the monitor area 10 is operated to an image signal R from the infrared camera 30, and when both the luminance output V1 of the ultraviolet sensor 40 and the luminance output R3 of the infrared camera 30 excluding the non-detected part 20 reach a prescribed level or above, a fire generation output F is generated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、火炎から発生する
赤外線と紫外線とを検知して火災の発生を監視する火災
監視方法に関する。
The present invention relates to a fire monitoring method for monitoring the occurrence of a fire by detecting infrared rays and ultraviolet rays generated from a flame.

【0002】[0002]

【従来の技術】従来、火炎から発生する赤外線と紫外線
を検知して火災の発生を監視する火災監視方法は、例え
ば特開平8−315272号公報に開示されているよう
に、火炎などの熱源を検知する赤外線センサー及び紫外
線センサーを使用し、赤外線センサーから所定期間に検
知される赤外線検知信号の平均ピークレベルと、紫外線
センサーから所定期間に検知される紫外線検知信号の放
電パルスの個数とに基づいて火災か否かを判断する火災
検知方法がある。この火災検知方法は、火災時に発生す
る火炎からの赤外線と紫外線の双方を赤外線センサー及
び紫外線センサーによって検知して、太陽光や照明など
の火災ではない熱源による誤った判断を防止している。
2. Description of the Related Art Conventionally, a fire monitoring method for monitoring the occurrence of a fire by detecting infrared rays and ultraviolet rays generated from a flame uses a heat source such as a flame as disclosed in, for example, Japanese Patent Application Laid-Open No. 8-315272. Using an infrared sensor and an ultraviolet sensor to detect, based on the average peak level of the infrared detection signal detected in the predetermined period from the infrared sensor and the number of discharge pulses of the ultraviolet detection signal detected in the predetermined period from the ultraviolet sensor There is a fire detection method for determining whether a fire has occurred. This fire detection method detects both infrared rays and ultraviolet rays from a flame generated at the time of a fire using an infrared sensor and an ultraviolet sensor, thereby preventing erroneous determination by a non-fire heat source such as sunlight or lighting.

【0003】[0003]

【発明が解決しようとする課題】ところで、上記従来例
では、監視領域内に通常、火炎や赤熱した物体が存在し
ないか、赤外線センサー及び紫外線センサーの検知レベ
ルが低い熱源しかない場所では問題はないが、例えば赤
熱した鋼板が加工されている工場などでは、赤外線セン
サー及び紫外線センサーが工場内の火災ではなく、通常
必要とする赤熱した鋼板等の熱源を同時に高い検知レベ
ルで検知した場合、火災が発生したものと誤って判断す
るという問題があった。本発明はかかる事情に鑑みてな
されたもので、監視領域内に赤外線センサー及び紫外線
センサーが検知する通常必要な熱源が同時にあっても、
誤った判断をしない火災監視方法を提供することを目的
とする。
By the way, in the above-mentioned prior art, there is no problem in a place where there is usually no flame or a red-hot object in the monitoring area or where there is only a heat source whose detection level of the infrared sensor and the ultraviolet sensor is low. However, for example, in a factory where glowing steel plates are processed, if the infrared sensor and the ultraviolet sensor do not detect a fire in the factory but simultaneously detect a heat source such as a normally required glowing steel plate at a high detection level, a fire may occur. There was a problem that it was erroneously determined to have occurred. The present invention has been made in view of the above circumstances, even if there is a generally necessary heat source simultaneously detected by the infrared sensor and the ultraviolet sensor in the monitoring area,
An object of the present invention is to provide a fire monitoring method that does not make a wrong judgment.

【0004】[0004]

【課題を解決するための手段】前記目的に沿う本発明に
係る火災監視方法は、火炎から発生する紫外線を検知す
る第1の光センサーと赤外線を検知する第2の光センサ
ーとを用い、監視領域から発生する紫外線及び赤外線の
発生状況から火災の発生を監視する火災監視方法におい
て、前記第1の光センサーに紫外線センサーを用いると
共に、前記第2の光センサーに赤外線カメラを用い、更
に、該赤外線カメラからの画像信号については前記監視
領域中の非検知部分を除く画像処理を行い、前記紫外線
センサーからの輝度出力及び前記非検知部分を除く前記
赤外線カメラからの輝度出力の双方がそれぞれ所定レベ
ル以上になった場合に火災発生出力を発する。このよう
な構成により、例えば、電気溶接をする作業場や赤熱し
た鋼板加工装置が設置された工場内を赤外線カメラで監
視して画像信号を出力する。一方、赤熱した鋼板加工装
置等の画像範囲を監視領域の撮像画面中に非検知部分と
して予め設定し、赤外線カメラから出力した画像信号の
内、非検知部分の中で発生した熱源や火炎を検知した画
像信号は輝度出力と共に画像処理により不要データとし
て赤外線カメラの画像信号から除かれので、通常の作業
として熱源や火炎を発生する赤熱鋼板の加工を行うだけ
では火災発生出力が発せられない。一方、監視領域中の
非検知部分を除く領域で火炎等の高熱が発生した場合
は、火炎等の熱源によって発生する赤外線を検知する赤
外線カメラ及び火炎から発生する特有の波長の紫外線を
検知する紫外線センサーからの双方の輝度出力がそれぞ
れ所定レベル以上、例えば700〜1000ナノメート
ルの波長領域の赤外線では太陽光線に対して相対輝度が
80%程度、200〜400ナノメートルの波長領域の
紫外線では太陽光線に対して相対輝度が25%程度にな
った場合に火災発生出力を発する。したがって、監視領
域内で通常必要とした熱源や火炎、電気溶接機の火花を
検知して、火災が発生したものと誤って判断することは
ない。
According to the present invention, there is provided a fire monitoring method, comprising: a first optical sensor for detecting ultraviolet light generated from a flame and a second optical sensor for detecting infrared light; In a fire monitoring method for monitoring the occurrence of a fire from the state of occurrence of ultraviolet rays and infrared rays generated from an area, an ultraviolet sensor is used for the first optical sensor, and an infrared camera is used for the second optical sensor. The image signal from the infrared camera is subjected to image processing excluding the non-detection part in the monitoring area, and both the luminance output from the ultraviolet sensor and the luminance output from the infrared camera excluding the non-detection part are at predetermined levels, respectively. When the above occurs, a fire occurrence output is issued. With such a configuration, for example, an infrared camera monitors the workplace where electric welding is performed or the factory where the glowing steel plate processing device is installed, and outputs an image signal. On the other hand, the image range of the glowing steel plate processing device etc. is set in advance as a non-detection part in the imaging screen of the monitoring area, and the heat source and flame generated in the non-detection part in the image signal output from the infrared camera are detected. The resulting image signal is removed from the image signal of the infrared camera as unnecessary data by image processing together with the luminance output. Therefore, a fire output is not generated only by processing a heat source or a glowing steel plate that generates a flame as a normal operation. On the other hand, when high heat such as flame is generated in an area other than the non-detection part in the monitoring area, an infrared camera that detects infrared rays generated by a heat source such as a flame and an ultraviolet ray that detects ultraviolet rays having a specific wavelength generated from the flame. Both luminance outputs from the sensor are equal to or higher than a predetermined level, for example, the relative luminance with respect to sunlight is about 80% for infrared rays in a wavelength region of 700 to 1000 nm, and the solar rays for ultraviolet rays in a wavelength region of 200 to 400 nm. When the relative luminance becomes about 25%, a fire occurrence output is issued. Therefore, the heat source, the flame, and the spark of the electric welding machine which are normally required in the monitoring area are detected, and it is not erroneously determined that a fire has occurred.

【0005】ここで、前記赤外線カメラの撮像画面を所
定範囲の複数画素からなるユニットブロックの集合で構
成し、前記非検知部分の画像範囲は1又は複数の前記ユ
ニットブロックを選択して形成してもよい。この場合、
非検知部分の画像範囲を設定するときに、ユニットブロ
ックの配置を実際の通常作業範囲の形状に近づけること
が容易であるので、非検知部分の範囲の設定精度を高く
することができる。また、ユニットブロック毎に検知感
度を変えることにより、カメラから非検知部分までの距
離の違いによって生じる感度の差を小さくすることがで
きる。
Here, the imaging screen of the infrared camera is constituted by a set of unit blocks each consisting of a plurality of pixels in a predetermined range, and the image range of the non-detection portion is formed by selecting one or a plurality of the unit blocks. Is also good. in this case,
When setting the image range of the non-detected portion, it is easy to make the arrangement of the unit blocks close to the shape of the actual normal work range, so that the setting accuracy of the range of the non-detected portion can be increased. Further, by changing the detection sensitivity for each unit block, the difference in sensitivity caused by the difference in the distance from the camera to the non-detection portion can be reduced.

【0006】[0006]

【発明の実施の形態】続いて、添付した図面を参照しつ
つ、本発明を具体化した実施の形態につき説明し、本発
明の理解に供する。ここに、図1は本発明の第1の実施
の形態に係る火災監視方法を説明するための構成図、図
2は同火災監視方法における撮像画面を示す説明図、図
3は同火災監視方法のフローチャート、図4は本発明の
第2の実施の形態に係る火災監視方法における撮像画面
を示す説明図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention. Here, FIG. 1 is a configuration diagram for explaining a fire monitoring method according to the first embodiment of the present invention, FIG. 2 is an explanatory diagram showing an imaging screen in the fire monitoring method, and FIG. FIG. 4 is an explanatory diagram showing an imaging screen in the fire monitoring method according to the second embodiment of the present invention.

【0007】図1に示すように、本発明の第1の実施の
形態に係る火災監視方法を行うための構成を、例えば、
赤熱する鋼板を加工する鋼板加工装置の近くに電気溶接
の作業場が配置されている鋼板加工工場について説明す
る。ここで、監視領域10を鋼板加工工場内とし、監視
領域10内で通常必要とする熱源や火炎を発生する鋼板
加工装置11の範囲を火災の非検知部分20とする。監
視領域10から発生する赤外線及び紫外線を検知できる
位置に、第2の光センサーである撮像視野αを有する赤
外線カメラ30及び第1の光センサーである検知範囲β
を有する紫外線センサー40を設置する。赤外線カメラ
30は、監視領域10の中を撮影して、図2に示すよう
な撮像画面31を表す画像信号Rを出力する。画像信号
Rは、監視領域10内で発生した赤熱した鋼板や火炎等
の熱源から放射される赤外線を検知して、その赤外線の
強度に応じた赤外線輝度出力Sを含んでおり、赤外線輝
度比較器50に入力される。赤外線輝度比較器50で
は、赤外線カメラ30が出力する赤外線輝度出力Sが、
予め赤外線輝度基準設定器51に設定した所定レベル、
例えば700〜1000ナノメートルの波長領域の赤外
線では太陽光線に対して相対輝度が80%程度、すなわ
ち火災時に高温になった物体から発生する赤外線の基準
輝度レベルS0と比較され、赤外線輝度出力Sが基準輝
度レベルS0に達するまではLOW(0レベル)、赤外
線輝度出力Sが基準輝度レベルS0に達したときに信号
レベルがHIGH(1レベル)の熱源検知輝度出力R1
を出力する。熱源検知輝度出力R1は画像処理器60に
入力される。
As shown in FIG. 1, a configuration for performing a fire monitoring method according to a first embodiment of the present invention is, for example, as follows.
A steel plate processing factory in which an electric welding work place is arranged near a steel plate processing device for processing a red hot steel plate will be described. Here, the monitoring area 10 is assumed to be inside the steel plate processing factory, and the range of the steel sheet processing apparatus 11 that generates a heat source or a flame that is normally required in the monitoring area 10 is assumed to be a non-fire detection portion 20. An infrared camera 30 having an imaging visual field α serving as a second optical sensor and a detection range β serving as a first optical sensor are provided at positions where infrared light and ultraviolet light generated from the monitoring area 10 can be detected.
Is installed. The infrared camera 30 captures an image of the inside of the monitoring area 10 and outputs an image signal R representing an imaging screen 31 as shown in FIG. The image signal R detects infrared rays emitted from a heat source such as a glowing steel plate or a flame generated in the monitoring area 10 and includes an infrared luminance output S corresponding to the intensity of the infrared rays. 50 is input. In the infrared brightness comparator 50, the infrared brightness output S output from the infrared camera 30 is
A predetermined level previously set in the infrared luminance reference setting device 51,
For example, in the case of infrared rays in the wavelength region of 700 to 1000 nanometers, the relative luminance with respect to sunlight is about 80%, that is, compared with the reference luminance level S0 of infrared rays generated from an object that has become hot in a fire, and the infrared luminance output S is The heat source detection luminance output R1 whose signal level is HIGH (1 level) when the infrared luminance output S reaches the reference luminance level S0 is LOW (0 level) until the reference luminance level S0 is reached.
Is output. The heat source detection luminance output R1 is input to the image processor 60.

【0008】画像処理器60には、図1に示すように、
非検知部分設定器61で予め設定した非検知部分20の
画像範囲を決める非検知範囲信号R0が入力される。非
検知範囲信号R0は、例えば図2に示すように、撮像画
面31を表す走査線上の画素の信号である画像信号Rを
座標変換して直角座標上に表示した撮像画面31の中
で、P1(X1,Y2)、P2(X2,Y2)、P3
(X2,Y1)、P4(X1,Y1)の4点で囲まれた
画像範囲とする。画像処理器60では、非検知範囲信号
R0により熱源検知輝度出力R1の内の非検知部分20
の中で発生した熱源検知輝度出力R2を不要データとし
てLOW(0レベル)にする処理が行われる。したがっ
て、画像処理器60からは、熱源検知輝度出力R1の内
から非検知部分20を除いた領域の熱源検知輝度出力R
3が出力される。画像処理器60から出力される熱源検
知輝度出力R3はAND回路70に入力される。
[0008] As shown in FIG.
A non-detection range signal R0 that determines an image range of the non-detection portion 20 preset by the non-detection portion setting device 61 is input. The non-detection range signal R0 is, for example, as shown in FIG. 2, the image signal R which is a signal of a pixel on a scanning line representing the imaging screen 31 is subjected to coordinate transformation and the imaging screen 31 displayed on right-angle coordinates is represented by P1 (X1, Y2), P2 (X2, Y2), P3
An image range is defined by four points (X2, Y1) and P4 (X1, Y1). In the image processor 60, the non-detection portion 20 of the heat source detection luminance output R1 is determined by the non-detection range signal R0.
Is performed to make the heat source detection luminance output R2 generated in the LOW (0 level) as unnecessary data. Therefore, from the image processor 60, the heat source detection luminance output R1 of the region excluding the non-detection portion 20 from the heat source detection luminance output R1 is obtained.
3 is output. The heat source detection luminance output R3 output from the image processor 60 is input to the AND circuit 70.

【0009】一方、紫外線センサー40は火炎から放射
される200〜400ナノメートルの範囲の波長の中で
ピーク状に輝度が現れる火炎特有の紫外線を検知する。
紫外線センサー40が監視領域10で発生する火炎から
放射される紫外線を検知したとき、紫外線の輝度に応じ
たパルス状の紫外線輝度出力Vを出力して紫外線輝度比
較器80に入力される。紫外線輝度比較器80では、紫
外線輝度出力Vが紫外線輝度基準設定器81によって設
定された輝度の所定レベル、例えば200〜400ナノ
メートルの波長領域の紫外線では太陽光線に対して相対
輝度が25%程度、すなわち基準輝度レベルV0と比較
されて、紫外線輝度出力Vが基準輝度レベルV0に達す
るまでは信号レベルがLOW、紫外線輝度出力Vが基準
輝度レベルV0に達したときは信号レベルがHIGHの
火炎検知輝度出力V1を出力し、AND回路70に入力
される。AND回路70では熱源検知輝度出力R3と火
炎検知輝度出力V1とがAND演算され、その出力は判
別器71に入力され、AND回路70の演算値MがHI
GHの場合、すなわち熱源検知輝度出力R3のHIGH
(1レベル)と火炎検知輝度出力V1のHIGH(1レ
ベル)のAND演算で演算値MがHIGH(1レベル)
となった場合に判別器71から火災発生出力信号(火災
発生出力)Fが出力される。
On the other hand, the ultraviolet ray sensor 40 detects ultraviolet rays peculiar to the flame, which have a peak luminance in the wavelength range of 200 to 400 nanometers emitted from the flame.
When the ultraviolet sensor 40 detects the ultraviolet rays emitted from the flame generated in the monitoring area 10, the ultraviolet sensor 40 outputs a pulse-like ultraviolet luminance output V corresponding to the luminance of the ultraviolet rays and inputs the output to the ultraviolet luminance comparator 80. In the ultraviolet brightness comparator 80, the ultraviolet brightness output V is a predetermined level of the brightness set by the ultraviolet brightness reference setting device 81, for example, in the case of ultraviolet rays in a wavelength region of 200 to 400 nanometers, the relative brightness with respect to sunlight is about 25%. That is, the flame level is compared with the reference luminance level V0, and the signal level is LOW until the ultraviolet luminance output V reaches the reference luminance level V0, and the signal level is HIGH when the ultraviolet luminance output V reaches the reference luminance level V0. The luminance output V1 is output and input to the AND circuit 70. The AND circuit 70 performs an AND operation on the heat source detection luminance output R3 and the flame detection luminance output V1. The output is input to the discriminator 71, and the operation value M of the AND circuit 70 is HI.
GH, that is, HIGH of the heat source detection luminance output R3
In the AND operation of (1 level) and HIGH (1 level) of the flame detection luminance output V1, the operation value M is HIGH (1 level).
In the case of, a fire occurrence output signal (fire occurrence output) F is output from the discriminator 71.

【0010】ここで、図3に示すフローチャートにした
がって火災監視方法を説明する。まず、赤外線カメラ3
0は監視領域10を撮影して各画素の赤外線輝度出力S
を含む画像信号Rを出力し、赤外線輝度比較器50に入
力される(ステップ1)。赤外線輝度比較器50では、
赤外線カメラ30が出力する赤外線輝度出力Sが、火災
時に赤外線によって発生する基準輝度レベルS0と比較
され、赤外線輝度出力Sが基準輝度レベルS0に達しな
いときは次の画像信号Rの処理に戻り、赤外線輝度出力
Sが基準輝度レベルS0に達したとき、信号レベルがH
IGH(1レベル)の熱源検知輝度出力R1を出力する
(ステップ2)。熱源検知輝度出力R1は画像処理器6
0に入力され、非検知部分20を決める非検知範囲信号
R0により熱源検知輝度出力R1の内の非検知部分20
の中で発生した熱源検知輝度出力R2を不要データとし
てLOWにする処理を行い、熱源検知輝度出力R2を除
いた熱源検知輝度出力R3をAND回路70に入力する
(ステップ3)。一方、紫外線センサー40が監視領域
10で発生する紫外線を検知したとき、紫外線の輝度に
応じたパルス状の紫外線輝度出力Vを出力する(ステッ
プ4)。紫外線輝度出力Vは紫外線輝度比較器80に入
力され、所定の強度の基準輝度レベルV0と比較され
て、基準輝度レベルV0に達したとき、信号レベルがH
IGH(1レベル)の火炎検知輝度出力V1を出力して
AND回路70に入力し、紫外線輝度出力Vが基準輝度
レベルV0に達しないときは次の紫外線輝度出力Vの処
理に戻る(ステップ5)。ステップ3で出力された熱源
検知輝度出力R3とステップ5で出力された火炎検知輝
度出力V1は、AND回路70でAND演算され、その
出力である演算値Mが判別器71に入力される(ステッ
プ6)。判別器71では演算値Mの信号レベルがHIG
Hのとき、高温でかつ火炎であると判別して火災発生出
力信号Fを出力し、演算値Mの信号レベルがLOWのと
き、次のAND回路70の出力である演算値Mの処理に
戻る(ステップ7)。
Here, the fire monitoring method will be described with reference to the flowchart shown in FIG. First, infrared camera 3
0 is an image of the monitoring area 10 and the infrared luminance output S of each pixel.
Is output and input to the infrared luminance comparator 50 (step 1). In the infrared luminance comparator 50,
The infrared luminance output S output from the infrared camera 30 is compared with a reference luminance level S0 generated by infrared rays in the event of a fire. If the infrared luminance output S does not reach the reference luminance level S0, the process returns to the next image signal R, When the infrared luminance output S reaches the reference luminance level S0, the signal level becomes H
A heat source detection luminance output R1 of IGH (1 level) is output (step 2). The heat source detection luminance output R1 is output from the image processor 6
0, and the non-detection portion 20 of the heat source detection luminance output R1 is determined by the non-detection range signal R0 that determines the non-detection portion 20.
Then, a process of setting the heat source detection luminance output R2 generated in the above to LOW as unnecessary data is performed, and the heat source detection luminance output R3 excluding the heat source detection luminance output R2 is input to the AND circuit 70 (step 3). On the other hand, when the ultraviolet ray sensor 40 detects the ultraviolet ray generated in the monitoring area 10, it outputs a pulse-shaped ultraviolet ray luminance output V according to the luminance of the ultraviolet ray (step 4). The ultraviolet luminance output V is input to the ultraviolet luminance comparator 80, is compared with a reference luminance level V0 of a predetermined intensity, and when the signal reaches the reference luminance level V0, the signal level becomes H.
The IGH (1 level) flame detection brightness output V1 is output and input to the AND circuit 70. If the ultraviolet brightness output V does not reach the reference brightness level V0, the process returns to the next ultraviolet brightness output V (step 5). . The heat source detection luminance output R3 output in step 3 and the flame detection luminance output V1 output in step 5 are AND-operated by the AND circuit 70, and the operation value M as an output is input to the discriminator 71 (step). 6). In the discriminator 71, the signal level of the operation value M is HIG
When H, it is determined that the temperature is high and a flame is present, and a fire occurrence output signal F is output. When the signal level of the operation value M is LOW, the process returns to the next operation of the operation value M of the AND circuit 70. (Step 7).

【0011】このように、監視領域10内を赤外線カメ
ラ30で観察し、赤外線カメラ30の画像信号Rに含ま
れる赤外線輝度出力Sが基準輝度レベルS0に達したと
きに出力する熱源検知輝度出力R1から、非検知部分2
0の中で発生した熱源検知輝度出力R2を不要データと
して除去し、熱源検知輝度出力R1から熱源検知輝度出
力R2を除いた熱源検知輝度出力R3だけがAND回路
70に入力されるので、この通常の作業として熱源や火
炎を発生する赤熱鋼板の加工を行うだけでは、火災発生
出力が発せられない。一方、監視領域10中の非検知部
分20を除く領域で火炎が発生した場合は、赤外線カメ
ラ30及び紫外線センサー40からの赤外線輝度出力S
及び紫外線輝度出力Vの双方がそれぞれ所定の基準輝度
レベルS0及び基準輝度レベルV0以上になってAND
回路70で処理され、判別器71から火災発生出力信号
Fを出力する。したがって、通常必要とした非検知部分
20の中で発生した熱源や火炎、例えば赤熱した鋼板等
の熱源や火炎を検知して、火災が発生したものと誤って
判断することはない。なお、監視領域10中の非検知部
分20を除く領域で、例えば赤熱した鋼板等の熱源や火
炎と電気溶接等の紫外線を同時に、あるいは個々に検知
した場合、電気溶接の火花は目視的には火花が飛ぶので
光線として赤外線カメラ30に入るが、電気溶接の火花
は極めて小さな点で、かつ高速移動をするので、赤外線
カメラ30の画像信号Rの赤外線輝度出力Sは平均レベ
ルが低く、基準輝度レベルS0以下になるので問題には
ならない。
As described above, the monitor area 10 is observed by the infrared camera 30, and the heat source detection brightness output R1 output when the infrared brightness output S included in the image signal R of the infrared camera 30 reaches the reference brightness level S0. From, non-detection part 2
Since the heat source detection luminance output R2 generated in the zero is removed as unnecessary data, and only the heat source detection luminance output R3 obtained by removing the heat source detection luminance output R2 from the heat source detection luminance output R1 is input to the AND circuit 70, this normal operation is performed. As a work, only the processing of a heat source or a glowing steel plate that generates a flame does not generate a fire output. On the other hand, when a flame is generated in a region other than the non-detection portion 20 in the monitoring region 10, the infrared luminance output S from the infrared camera 30 and the ultraviolet sensor 40 is output.
And both the UV luminance output V and the reference luminance level S0 and the reference luminance level V0, respectively, are AND
The signal is processed by the circuit 70 and the discriminator 71 outputs a fire occurrence output signal F. Therefore, a heat source or a flame generated in the normally required non-detection portion 20, for example, a heat source or a flame of a red-hot steel plate or the like is detected, and it is not erroneously determined that a fire has occurred. In a region other than the non-detection portion 20 in the monitoring region 10, for example, when a heat source such as a red-hot steel plate or a flame and ultraviolet light such as electric welding are simultaneously or individually detected, sparks of electric welding are visually observed. Since the spark flies, it enters the infrared camera 30 as a light beam. However, since the spark of electric welding moves at a very small point and moves at a high speed, the infrared luminance output S of the image signal R of the infrared camera 30 has a low average level, and the reference luminance is low. There is no problem because the level is lower than the level S0.

【0012】図4に示すように、本発明の第2の実施の
形態に係る火災監視方法は、例えば赤外線カメラ30の
撮像画面31を、所定範囲の複数画素からなるユニット
ブロック32の集合、すなわち、横をA〜Hまでの8
個、縦をa〜fまでの6個に分割して2点鎖線で示した
48個のユニットブロック32の集合で構成し、非検知
部分21の画像範囲は1又は複数のユニットブロック3
2を選択して形成している。なお、1個のユニットブロ
ック32の画像範囲は任意に設定できる。この場合、非
検知部分21の画像範囲を設定するときに、斜線で示し
た範囲(Cb+Db+Cc+Dc+Cd+Dd)の6個
のユニットブロック32を選択するので、実際に通常熱
源や火炎を生じる作業範囲の形状に近づけることが容易
であり、非検知部分21の画像範囲の設定精度を高く
し、更に火災発生出力の誤動作の発生を防止することが
できる。また、ユニットブロック32毎に検知感度を変
えることにより、カメラから非検知部分21までの距離
の違いによって生じる感度の差を小さくすることができ
る。
As shown in FIG. 4, in the fire monitoring method according to the second embodiment of the present invention, for example, an imaging screen 31 of an infrared camera 30 is formed by a set of unit blocks 32 composed of a plurality of pixels within a predetermined range. 8 next to A to H
And the vertical direction is divided into six from a to f, and is constituted by a set of 48 unit blocks 32 indicated by a two-dot chain line, and the image range of the non-detection portion 21 is one or more unit blocks 3
2 is formed. Note that the image range of one unit block 32 can be set arbitrarily. In this case, when setting the image range of the non-detection portion 21, six unit blocks 32 in the range (Cb + Db + Cc + Dc + Cd + Dd) indicated by oblique lines are selected. This makes it easy to set the image range of the non-detection portion 21 with high accuracy, and can also prevent the malfunction of the fire output. Further, by changing the detection sensitivity for each unit block 32, the difference in sensitivity caused by the difference in the distance from the camera to the non-detection portion 21 can be reduced.

【0013】[0013]

【発明の効果】請求項1記載の火災監視方法において
は、第1の光センサーに紫外線センサーを用いると共
に、第2の光センサーに赤外線カメラを用い、更に、該
赤外線カメラからの画像信号については監視領域中の非
検知部分を除く画像処理を行い、前記紫外線センサーか
らの輝度出力及び前記非検知部分を除く前記赤外線カメ
ラからの輝度出力の双方がそれぞれ所定レベル以上にな
った場合に火災発生出力を発する。従って、通常の作業
として熱源や火炎を発生する、例えば、赤熱した鋼板加
工装置等の画像部分を監視領域中の非検知部分として予
め設定して、画像処理により赤外線カメラの画像信号か
ら除くようにすれば、通常の作業として熱源を発生する
作業場で電気溶接等の紫外線が発生しても火災発生出力
が発せられず、監視領域中の非検知部分を除く領域で火
炎等の高熱が発生した場合は、赤外線カメラの画像処理
の輝度出力と紫外線センサーの輝度出力が同時に出力さ
れるので、AND条件が成立し、火災発生出力が発せら
れ、誤った判断を防ぐことができる。
According to the fire monitoring method of the first aspect, an ultraviolet sensor is used for the first optical sensor, an infrared camera is used for the second optical sensor, and an image signal from the infrared camera is used. Performs image processing excluding a non-detection part in the monitoring area, and outputs a fire occurrence signal when both the luminance output from the ultraviolet sensor and the luminance output from the infrared camera excluding the non-detection part are each equal to or higher than a predetermined level. Emits. Therefore, as a normal operation, a heat source or a flame is generated, for example, an image portion of a glowing steel plate processing device or the like is set in advance as a non-detection portion in the monitoring area, and is removed from the image signal of the infrared camera by image processing. If a fire is generated in a work place where a heat source is generated as a normal operation, even if ultraviolet rays such as electric welding are generated, no fire output is generated, and high heat such as a flame is generated in a region other than the non-detection part in the monitoring area. Since the luminance output of the image processing of the infrared camera and the luminance output of the ultraviolet sensor are simultaneously output, the AND condition is satisfied, a fire occurrence output is issued, and erroneous determination can be prevented.

【0014】請求項2記載の火災監視方法においては、
赤外線カメラの撮像画面を所定範囲の複数画素からなる
ユニットブロックの集合で構成し、非検知部分の画像範
囲は1又は複数の前記ユニットブロックを選択して形成
しているので、非検知部分の画像範囲を設定するとき
に、ユニットブロックの配置を実際の通常作業範囲の形
状に近づけることが容易となり、非検知部分の範囲の設
定精度を高くすることができる。また、ユニットブロッ
ク毎に検知感度を変えることにより、カメラから非検知
部分までの距離の違いによって生じる感度の差を小さく
することができる。
[0014] In the fire monitoring method according to the second aspect,
Since the imaging screen of the infrared camera is composed of a set of unit blocks composed of a plurality of pixels in a predetermined range, and the image range of the non-detection portion is formed by selecting one or a plurality of the unit blocks, the image of the non-detection portion is formed. When setting the range, the arrangement of the unit blocks can be easily approximated to the shape of the actual normal work range, and the setting accuracy of the range of the non-detected portion can be increased. Further, by changing the detection sensitivity for each unit block, the difference in sensitivity caused by the difference in the distance from the camera to the non-detection portion can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態に係る火災監視方法
を説明するための構成図である。
FIG. 1 is a configuration diagram for explaining a fire monitoring method according to a first embodiment of the present invention.

【図2】本発明の第1の実施の形態に係る火災監視方法
における撮像画面を示す説明図である。
FIG. 2 is an explanatory diagram showing an imaging screen in the fire monitoring method according to the first embodiment of the present invention.

【図3】本発明の第1の実施の形態に係る火災監視方法
のフローチャートである。
FIG. 3 is a flowchart of a fire monitoring method according to the first embodiment of the present invention.

【図4】本発明の第2の実施の形態に係る火災監視方法
における撮像画面を示す説明図である。
FIG. 4 is an explanatory diagram showing an imaging screen in a fire monitoring method according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10:監視領域、11:鋼板加工装置、20:非検知部
分、21:非検知部分、30:赤外線カメラ、31:撮
像画面、32:ユニットブロック、40:紫外線センサ
ー、50:赤外線輝度比較器、51:赤外線輝度基準設
定器、60:画像処理器、61:非検知部分設定器、7
0:AND回路、71:判別器、80:紫外線輝度比較
器、81:紫外線輝度基準設定器
10: monitoring area, 11: steel plate processing apparatus, 20: non-detection part, 21: non-detection part, 30: infrared camera, 31: imaging screen, 32: unit block, 40: ultraviolet sensor, 50: infrared luminance comparator, 51: infrared luminance reference setting device, 60: image processing device, 61: non-detection portion setting device, 7
0: AND circuit, 71: discriminator, 80: ultraviolet luminance comparator, 81: ultraviolet luminance reference setting device

フロントページの続き (72)発明者 谷口 弘志 福岡県北九州市戸畑区飛幡町1番1号 新 日本製鐵株式会社八幡製鐵所内 (72)発明者 元村 雅記 福岡県北九州市八幡東区大字前田1520−1 株式会社日鉄エレックス制御システム事 業部内 (72)発明者 樋渡 哲也 福岡県北九州市八幡東区大字前田1520−1 株式会社日鉄エレックス制御システム事 業部内 Fターム(参考) 5C054 AA01 AA05 CA05 CC05 EA01 EA05 ED17 FC05 FC12 FF06 HA20 5C085 AA13 AA14 AB09 AC03 AC07 BA35 BA36 CA04 CA07 CA08 DA08 EA27 EA41 EA54 5C087 DD04 DD27 EE08 FF01 FF04 GG02 GG09 GG31 5G405 AA01 AA06 AB05 AC07 CA05 CA08 CA09 DA08 EA27 EA41 EA54 Continuing on the front page (72) Inventor Hiroshi Taniguchi 1-1, Hibata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka Prefecture Inside Nippon Steel Corporation Yawata Works (72) Inventor Masayuki Motomura Yahata-Higashi-ku, Kitakyushu-shi, Fukuoka 1520-1 Maeda Inside the Nippon Steel ELEX Control System Business Division (72) Inventor Tetsuya Hiwatari 1520-1 Maeda Maeda, Yawatahigashi-ku, Kitakyushu-shi, Fukuoka F-term (reference) 5C054 AA01 AA05 CA05 CC05 EA01 EA05 ED17 FC05 FC12 FF06 HA20 5C085 AA13 AA14 AB09 AC03 AC07 BA35 BA36 CA04 CA07 CA08 DA08 EA27 EA41 EA54 5C087 DD04 DD27 EE08 FF01 FF04 GG02 GG09 GG31 5G405 AA01 CA08 EA04

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 火炎から発生する紫外線を検知する第1
の光センサーと赤外線を検知する第2の光センサーとを
用い、監視領域から発生する紫外線及び赤外線の発生状
況から火災の発生を監視する火災監視方法において、前
記第1の光センサーに紫外線センサーを用いると共に、
前記第2の光センサーに赤外線カメラを用い、更に、該
赤外線カメラからの画像信号については前記監視領域中
の非検知部分を除く画像処理を行い、前記紫外線センサ
ーからの輝度出力及び前記非検知部分を除く前記赤外線
カメラからの輝度出力の双方がそれぞれ所定レベル以上
になった場合に火災発生出力を発することを特徴とする
火災監視方法。
1. A first method for detecting ultraviolet rays generated from a flame.
A fire monitoring method for monitoring the occurrence of a fire based on the state of generation of ultraviolet rays and infrared rays generated from a monitoring area by using an optical sensor and a second optical sensor that detects infrared rays, wherein an ultraviolet ray sensor is provided as the first optical sensor. Use and
An infrared camera is used as the second optical sensor, and image processing is performed on the image signal from the infrared camera, excluding a non-detection portion in the monitoring area, and a luminance output from the ultraviolet sensor and the non-detection portion are used. A fire monitoring method characterized in that a fire occurrence output is issued when both of the luminance outputs from the infrared camera (except for (1)) exceed a predetermined level.
【請求項2】 請求項1記載の火災監視方法において、
前記赤外線カメラの撮像画面を所定範囲の複数画素から
なるユニットブロックの集合で構成し、前記非検知部分
の画像範囲は1又は複数の前記ユニットブロックを選択
して形成することを特徴とする火災監視方法。
2. The fire monitoring method according to claim 1, wherein
A fire monitoring system, wherein the imaging screen of the infrared camera is constituted by a set of unit blocks each including a plurality of pixels in a predetermined range, and the image range of the non-detection portion is formed by selecting one or a plurality of the unit blocks. Method.
JP11065051A 1999-03-11 1999-03-11 Fire monitoring method Pending JP2000259966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11065051A JP2000259966A (en) 1999-03-11 1999-03-11 Fire monitoring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11065051A JP2000259966A (en) 1999-03-11 1999-03-11 Fire monitoring method

Publications (1)

Publication Number Publication Date
JP2000259966A true JP2000259966A (en) 2000-09-22

Family

ID=13275782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11065051A Pending JP2000259966A (en) 1999-03-11 1999-03-11 Fire monitoring method

Country Status (1)

Country Link
JP (1) JP2000259966A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002197555A (en) * 2000-12-25 2002-07-12 Hochiki Corp Disaster-preventive monitor facility
JP2010049395A (en) * 2008-08-20 2010-03-04 Hochiki Corp Fire detection device
JP2011248646A (en) * 2010-05-27 2011-12-08 Toho Titanium Co Ltd Fire detection system, fire detection device using the same system, and fire extinguishing method for granular metal using the same device
JP2014093002A (en) * 2012-11-05 2014-05-19 Hochiki Corp Flame detection apparatus and flame detection method
JP6259886B1 (en) * 2016-10-20 2018-01-10 株式会社アマダホールディングス Laser processing equipment
JP6311039B1 (en) * 2017-02-01 2018-04-11 株式会社アマダホールディングス Fire detecting method for laser beam machine and laser beam machine
JP2018065177A (en) * 2016-10-20 2018-04-26 株式会社アマダホールディングス Laser beam machining apparatus
WO2018074366A1 (en) * 2016-10-20 2018-04-26 株式会社アマダホールディングス Laser processing device provided with infrared camera for detecting outbreak of fire, and fire occurrence detecting camera for laser processing device
CN113409535A (en) * 2021-04-29 2021-09-17 辛米尔视觉科技(上海)有限公司 Tunnel flame detection system based on computer vision and artificial intelligence algorithm

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002197555A (en) * 2000-12-25 2002-07-12 Hochiki Corp Disaster-preventive monitor facility
JP4624546B2 (en) * 2000-12-25 2011-02-02 ホーチキ株式会社 Disaster prevention monitoring equipment
JP2010049395A (en) * 2008-08-20 2010-03-04 Hochiki Corp Fire detection device
JP2011248646A (en) * 2010-05-27 2011-12-08 Toho Titanium Co Ltd Fire detection system, fire detection device using the same system, and fire extinguishing method for granular metal using the same device
JP2014093002A (en) * 2012-11-05 2014-05-19 Hochiki Corp Flame detection apparatus and flame detection method
JP2018065178A (en) * 2016-10-20 2018-04-26 株式会社アマダホールディングス Laser beam machining apparatus
JP2018065177A (en) * 2016-10-20 2018-04-26 株式会社アマダホールディングス Laser beam machining apparatus
WO2018074366A1 (en) * 2016-10-20 2018-04-26 株式会社アマダホールディングス Laser processing device provided with infrared camera for detecting outbreak of fire, and fire occurrence detecting camera for laser processing device
JP6259886B1 (en) * 2016-10-20 2018-01-10 株式会社アマダホールディングス Laser processing equipment
JP6311039B1 (en) * 2017-02-01 2018-04-11 株式会社アマダホールディングス Fire detecting method for laser beam machine and laser beam machine
JP2018122331A (en) * 2017-02-01 2018-08-09 株式会社アマダホールディングス Fire detection method for laser processing apparatus and laser processing apparatus
WO2018142966A1 (en) * 2017-02-01 2018-08-09 株式会社アマダホールディングス Method for detecting fire in laser processing machine, and laser processing machine
CN113409535A (en) * 2021-04-29 2021-09-17 辛米尔视觉科技(上海)有限公司 Tunnel flame detection system based on computer vision and artificial intelligence algorithm

Similar Documents

Publication Publication Date Title
US6480187B1 (en) Optical scanning-type touch panel
EP3407034B1 (en) Intelligent flame detection device and method using infrared thermography
US4814868A (en) Apparatus and method for imaging and counting moving particles
JP2000259966A (en) Fire monitoring method
EP0878788A3 (en) Display state detection for a light emitting information display apparatus
JPWO2007111329A1 (en) Information code reader and method
JP2008232837A (en) Method and system of defective enhancement, and detection of defect, and program
KR20170011791A (en) An apparatus for detecting optical defects of tempered glass and ito pattern defects in touch screen panel and the method thereof
JPH06308256A (en) Cloudy fog detecting method
US6115120A (en) System and method for detecting particles produced in a process chamber by scattering light
US4259662A (en) Threshold setting circuit
JP2003121556A (en) Apparatus and method for detection of object
JPH02144714A (en) Optical touch panel apparatus
CN112883810A (en) Laser interception countercheck method, algorithm and countercheck device
JP3123275B2 (en) Inspection data creation method for electronic parts shortage inspection
JP2001266271A (en) Method for automatically detecting generation of dust and smoke
JP2002257749A (en) Inspection device, inspection method, and method of manufacturing color filter using thereof
JPH02116918A (en) Compensation of aberration of reflecting surface for optical apparatus
JPH08247962A (en) Defect detection method and apparatus for color filter and defect detection method and apparatus for panel display
JP2003087773A (en) Monitoring device
JPH06332612A (en) Pointing position detecting method
JPH09282578A (en) Fire detector for tunnel
JP2544807B2 (en) Flame detection device for combustion furnace
JPH0868617A (en) Pattern inspection apparatus
JPH05233148A (en) Projector device with coordinate input function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080408