JP2000258487A - Slave station, surge detection time evaluation, failure point locating system, and failure point locating method - Google Patents

Slave station, surge detection time evaluation, failure point locating system, and failure point locating method

Info

Publication number
JP2000258487A
JP2000258487A JP11058878A JP5887899A JP2000258487A JP 2000258487 A JP2000258487 A JP 2000258487A JP 11058878 A JP11058878 A JP 11058878A JP 5887899 A JP5887899 A JP 5887899A JP 2000258487 A JP2000258487 A JP 2000258487A
Authority
JP
Japan
Prior art keywords
surge
time
level
transmission
waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11058878A
Other languages
Japanese (ja)
Other versions
JP3527432B2 (en
Inventor
Motokuni Takaoka
本州 高岡
Masanori Sugiura
正則 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kouatsu Electric Co
Original Assignee
Nippon Kouatsu Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kouatsu Electric Co filed Critical Nippon Kouatsu Electric Co
Priority to JP05887899A priority Critical patent/JP3527432B2/en
Priority to TW088119508A priority patent/TW475991B/en
Priority to US09/438,289 priority patent/US6597180B1/en
Priority to DE69939809T priority patent/DE69939809D1/en
Priority to EP99309205A priority patent/EP1016869B1/en
Priority to CNB991265068A priority patent/CN1140811C/en
Priority to AU65528/99A priority patent/AU769346B2/en
Publication of JP2000258487A publication Critical patent/JP2000258487A/en
Application granted granted Critical
Publication of JP3527432B2 publication Critical patent/JP3527432B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/126Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wireless data transmission

Landscapes

  • Locating Faults (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

PROBLEM TO BE SOLVED: To accomplish a slave station and a surge detection time evaluating method providing an accurate surge detection time without any increase of an erroneous detection frequency and a failure point locating system and a failure point locating method evaluating a failure point precisely. SOLUTION: In a slave station arranged in a electrical transmission and distribution wire path, a detection time of a surge voltage due to a failure caused in any point in an electrical transmission and distribution wire path is evaluated by a surge detection time evaluating method. A surge recognition level set above a noise level for serving as a reference level for recognizing a surge and a surge waveform starting level set below the surge recognition level for serving as a reference level for deciding a surge waveform starting point are decided previously. A past voltage waveform preceded for a fixed time from the present time is stored and always renewed. When a voltage exceeds the surge recognition level, the stored waveform is checked back to the past, and the time when the surge waveform starting level is exceeded at the first time is determined as a surge detection time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、子局、サージ検出
時刻標定方法、故障点標定システム及び故障点標定方法
に関する。更に詳しくは、誤検出の頻度を増大させるこ
となく正確なサージ検出時刻を得ることができる子局及
びサージ検出時刻標定方法、並びに正確に故障箇所を標
定することができる故障点標定システム及び故障点標定
方法に関する。
The present invention relates to a slave station, a surge detection time locating method, a fault locating system, and a fault locating method. More specifically, a slave station and a surge detection time locating method capable of obtaining an accurate surge detection time without increasing the frequency of erroneous detection, a failure point locating system and a failure point capable of accurately locating a failure location Related to orientation method.

【0002】[0002]

【従来の技術】従来より、枝分かれのない直線状の送電
線路、配電線路(以下、あわせて「送配電線路」と記載
する。)において送配電線路の途中に故障が発生した場
合に、その故障箇所を挟む二つの子局におけるサージ検
出時刻の差から送配電線路上の故障位置を求める方法
が、存在する(特公昭63−51274号公報など)。
かかる方法においては、両端の子局においてそれぞれサ
ージを検出した時刻(以下「サージ検出時刻」とい
う。)の標定精度が故障位置の標定精度を左右する。
2. Description of the Related Art Conventionally, when a failure occurs in a straight transmission line and distribution line without branching (hereinafter collectively referred to as "transmission line"), the failure occurs. There is a method of obtaining a fault position on a transmission / distribution line from the difference between surge detection times at two slave stations sandwiching a location (Japanese Patent Publication No. 63-51274).
In this method, the localization accuracy at the time when the surge is detected at each of the slave stations at both ends (hereinafter referred to as “surge detection time”) affects the localization accuracy at the fault position.

【0003】一方、そのサージの検出については、サー
ジ電圧、サージ電流があるしきい値を超えた場合に、
「サージを検出した」とされる。この電圧、電流のしき
い値を低くするほど、サージ波形の立ち上がりの時刻を
正確に(初期に)捕らえることができるが、通常、送配
電線路の電圧、電流にはノイズが発生しているため、し
きい値をあまり低くすると、ノイズによるサージの誤検
出が頻発する。このため、サージの発生を認識するため
のしきい値は、ノイズを誤検出しないようにある程度高
いレベルに設定されている。従って、「サージの検出」
は、サージ波形が立ち上がった後、一定時間経過後にさ
れることとなる。
[0003] On the other hand, the detection of the surge, when the surge voltage and surge current exceed a certain threshold,
It is said that "surge was detected". The lower the thresholds of the voltage and current are, the more accurate (initial) the time of the rise of the surge waveform can be detected. However, noise is usually generated in the voltage and current of the transmission and distribution line. If the threshold is too low, erroneous detection of surge due to noise frequently occurs. For this reason, the threshold value for recognizing the occurrence of surge is set to a somewhat high level so that noise is not erroneously detected. Therefore, "Surge detection"
Is performed after a certain period of time has elapsed after the rise of the surge waveform.

【0004】また、故障点を挟む二つの子局が受信する
サージについては、送配電線路における伝搬損失などに
より波形が違っている場合がある。かかる場合には、図
6に示すように、サージ波形がよりつぶれている方の子
局においては、サージの立ち上がり時間が長くなり、
「サージの検出」がより遅れることとなる。このため、
故障点を挟む子局のサージ検出時刻の差に基づいて、正
確な故障位置の標定を行うことができない。
[0004] Further, surges received by two slave stations sandwiching a fault point may have different waveforms due to propagation loss in a transmission and distribution line. In such a case, as shown in FIG. 6, in the slave station where the surge waveform is more collapsed, the rise time of the surge becomes longer,
"Surge detection" will be further delayed. For this reason,
It is not possible to accurately locate the fault location based on the difference between the surge detection times of the slave stations sandwiching the fault point.

【0005】このような、しきい値が高レベルに設定さ
れることに起因する時間経過分を補正し、より正確な
「サージ検出時刻」を得るための方法に二電位法があ
る。これは、図7に示すように、横軸に時間、縦軸に電
圧をとった場合のサージ波形のグラフ中の2点(それぞ
れある設定された基準レベルL1,L2を超えた点)を
直線で結び、その直線が電圧の0レベル、即ち横軸と交
差する点(時刻)を「サージ検出時刻T」とするもので
ある。
There is a two-potential method as a method for correcting the elapsed time due to the threshold value being set to a high level and obtaining a more accurate "surge detection time". As shown in FIG. 7, two points (points exceeding predetermined reference levels L1 and L2, respectively) in the graph of a surge waveform when time is plotted on the horizontal axis and voltage is plotted on the vertical axis are plotted as straight lines. The point (time) at which the straight line intersects the zero level of the voltage, that is, the horizontal axis, is defined as “surge detection time T”.

【0006】即ち、二電位法は、送配電線路の電圧又は
電流がある基準レベルを超えた後、そのまま上昇し、そ
の次の基準レベルを超えた場合に、それらの二つのレベ
ルと電圧曲線との交点を結んで電圧曲線の近似直線を引
き、その近似直線が電圧の0レベルと交差する点をサー
ジ検出時刻Tとするものである。この二電位法について
は、様々な改良発明、改良考案が出願されている(実開
昭58−28219号公報、特開平8−015362号
公報など)。
That is, in the two-potential method, after the voltage or current of the transmission and distribution line exceeds a certain reference level, it rises as it is, and when it exceeds the next reference level, those two levels and the voltage curve are compared. , An approximate straight line of the voltage curve is drawn, and a point at which the approximate straight line intersects the zero level of the voltage is set as the surge detection time T. Regarding the two-potential method, various improved inventions and improved devices have been filed (Japanese Utility Model Application Laid-Open No. 58-21819, Japanese Patent Application Laid-Open No. 8-015362, etc.).

【0007】[0007]

【発明が解決しようとする課題】しかし、前述のように
送配電線路の電圧、電流にはノイズがあり、比較的大き
なノイズが発生した場合やサージ波形の上にノイズが乗
った場合には、送配電線路の電圧又は電流が上記の最初
の基準レベルL1を超えた後、いったん下がる場合もあ
る。かかる場合には、図8に示すように、「その次の基
準レベルL2と電圧曲線との交点」と、「最初の基準レ
ベルL1と電圧曲線との交点」とを直線で結んだので
は、電圧曲線の正確な近似直線とはならず、かえって算
定したサージ検出時刻Tが望ましい現実的な時刻Trか
ら離れてしまう。
However, as described above, there is noise in the voltage and current of the transmission and distribution line, and when relatively large noise is generated or when noise is superimposed on the surge waveform, After the voltage or current of the transmission and distribution line exceeds the above-mentioned first reference level L1, the voltage or current may drop once. In such a case, as shown in FIG. 8, if the “intersection of the next reference level L2 and the voltage curve” and the “intersection of the first reference level L1 and the voltage curve” are connected by a straight line, The voltage does not become an accurate approximation straight line, and the calculated surge detection time T deviates from a desirable realistic time Tr.

【0008】本発明は、このような問題点を解決するも
のであり、誤検出の頻度を増大させることなく正確なサ
ージ検出時刻を得ることができる子局及びサージ検出時
刻標定方法、並びに正確に故障箇所を標定することがで
きる故障点標定システム及び故障点標定方法を提供する
ことを目的とする。
The present invention solves such a problem, and a slave station and a surge detection time locating method capable of obtaining an accurate surge detection time without increasing the frequency of erroneous detection. An object of the present invention is to provide a failure point location system and a failure point location method capable of locating a failure point.

【0009】[0009]

【課題を解決するための手段】請求項1記載の発明は、
送配電線路に設置され、該送配電線路のいずれかの箇所
で発生した故障によるサージ電圧又はサージ電流の検出
時刻を標定する子局であって、少なくとも現在時刻から
一定時間さかのぼった時刻までの上記送配電線路の過去
の電圧又は電流の波形を記憶し、更新しており、サージ
を認定するための基準レベルであってノイズレベルより
も高く設定されるサージ認定レベルと、サージ波形の開
始点を定めるための基準レベルであって該サージ認定レ
ベルよりも低く設定されるサージ波形開始レベルと、を
記憶しており、上記送配電線路の電圧又は電流が上記サ
ージ認定レベルを超えた場合に、上記記憶している波形
を該サージ認定レベルを超えた時刻からさかのぼって該
電圧又は電流が最初に上記サージ波形開始レベルを超え
た時刻をサージ検出時刻とすることを特徴とする子局で
ある。
According to the first aspect of the present invention,
A slave station installed on the transmission and distribution line, and for locating the detection time of the surge voltage or surge current due to a failure that has occurred in any part of the transmission and distribution line. Stores and updates the past voltage or current waveform of the transmission and distribution line, and updates the surge qualification level, which is the reference level for qualifying surge and is set higher than the noise level, and the starting point of the surge waveform. And a surge waveform start level that is set to be lower than the surge certification level, which is a reference level for determining, and when the voltage or current of the transmission and distribution line exceeds the surge certification level, The stored waveform is traced from the time when the surge level exceeds the surge certification level, and the time when the voltage or current first exceeds the surge waveform start level is subjected to surge detection. A slave station, characterized by the time.

【0010】ここで、「さかのぼって該電圧又は電流が
最初に上記サージ波形開始レベルを超えた時刻」とは、
時間軸方向に沿っていえば、電圧又は電流が最後に、即
ち、サージ認定レベルを超えた時刻にもっとも近い時刻
にサージ波形開始レベルを超えた、その時刻のことであ
る。また、「サージ検出時刻」とは、その子局が、該送
配電線路のいずれかの箇所で発生した故障によるサージ
電圧又はサージ電流を受信し、検出した時刻である。
Here, "the time when the voltage or current first exceeds the surge waveform start level retroactively" is defined as:
In the time axis direction, it is the time when the voltage or current last exceeded the surge waveform start level at the time closest to the time when the voltage or current exceeded the surge certification level. The “surge detection time” is the time at which the slave station receives and detects a surge voltage or surge current due to a failure that has occurred in any part of the transmission and distribution line.

【0011】請求項2記載の発明は、送配電線路に配さ
れた子局において、該送配電線路のいずれかの箇所で発
生した故障によるサージ電圧又はサージ電流の検出時刻
を標定するためのサージ検出時刻標定方法であって、サ
ージを認定するための基準レベルであってノイズレベル
よりも高く設定されるサージ認定レベルと、サージ波形
の開始点を定めるための基準レベルであって該サージ認
定レベルよりも低く設定されるサージ波形開始レベル
と、を定めておき、少なくとも現在時刻から一定時間さ
かのぼった時刻までの上記送配電線路の過去の電圧又は
電流の波形を記憶し、更新し、上記送配電線路の電圧又
は電流が上記サージ認定レベルを超えた場合に、上記記
憶している波形を該サージ認定レベルを超えた時刻から
さかのぼって該電圧又は電流が最初に上記サージ波形開
始レベルを超えた時刻をサージ検出時刻とするサージ検
出時刻標定方法である。
According to a second aspect of the present invention, in a slave station disposed on a transmission / distribution line, a surge for locating a detection time of a surge voltage or a surge current due to a failure occurring in any part of the transmission / distribution line is provided. A detection time locating method, which is a reference level for certifying a surge and is set to be higher than a noise level, and a reference level for determining a start point of a surge waveform and is a reference level for determining the surge. And a surge waveform start level that is set lower than the predetermined value, and stores and updates the waveform of the past voltage or current of the transmission and distribution line at least from a current time to a time that is a predetermined time earlier, and updates the power transmission and distribution. When the voltage or current of the line exceeds the surge certification level, the stored waveform is traced from the time when the surge certification level is exceeded. Is a surge detection time locating method of the SD time the first time beyond the surge waveform starting level current.

【0012】請求項3記載の発明は、請求項2記載のサ
ージ検出時刻標定方法であって、上記過去の電圧又は電
流の波形は、一定時間ごとにサンプリングされる離散値
として記憶し、上記サージ認定レベルを超えた時刻から
さかのぼってサンプル値が最初に上記サージ波形開始レ
ベルを下回ったサンプリング時刻の次のサンプリング時
刻を、上記サージ検出時刻とするものである。
According to a third aspect of the present invention, there is provided the method for locating a surge detection time according to the second aspect, wherein the waveform of the past voltage or current is stored as a discrete value sampled at predetermined time intervals, and The sampling time following the sampling time at which the sample value first falls below the surge waveform start level from the time exceeding the certified level is set as the surge detection time.

【0013】ここで、「次の」とは、「時間軸の向きに
沿って後にあるもので最初の」の意味である。即ち、サ
ージ波形開始レベル下にあったサンプル値がサージ波形
開始レベルを上回った時、が、「サージ検出時刻」とさ
れることとなる。また、例えば、「サンプル値が最初に
上記サージ波形開始レベルを下回ったサンプリング時
刻」を「サージ検出時刻」とするサージ検出時刻標定方
法も考えられる。サンプリング間隔が時刻の要求精度に
対して十分小さい場合は、かかる方法でも不都合はな
い。
Here, "next" means "first after in the direction of the time axis". That is, when the sample value that is below the surge waveform start level exceeds the surge waveform start level, the time is set as the “surge detection time”. Further, for example, a surge detection time locating method in which “sampling time when the sample value first falls below the surge waveform start level” is set as “surge detection time” is also conceivable. If the sampling interval is sufficiently small with respect to the required accuracy of the time, there is no inconvenience in such a method.

【0014】請求項4記載の発明は、送配電線路に設置
されサージ検出時刻の情報を親局2に送信する子局1
と、該サージ検出時刻の情報をもとに故障点を標定する
親局2と、を有する故障点標定システムであって、上記
子局1は、少なくとも現在時刻から一定時間さかのぼっ
た時刻までの上記送配電線路の過去の電圧又は電流の波
形を記憶し、更新しており、サージを認定するための基
準レベルであってノイズレベルよりも高く設定されるサ
ージ認定レベルと、サージ波形の開始点を定めるための
基準レベルであって該サージ認定レベルよりも低く設定
されるサージ波形開始レベルと、を記憶しており、上記
送配電線路の電圧又は電流が上記サージ認定レベルを超
えた場合に、上記記憶している波形を該サージ認定レベ
ルを超えた時刻からさかのぼって該電圧又は電流が最初
に上記サージ波形開始レベルを超えた時刻をサージ検出
時刻とし、該サージ検出時刻を通信網を通じて上記親局
2に送信することを特徴とする故障点標定システムであ
る。
According to a fourth aspect of the present invention, there is provided a slave station which is installed in a transmission and distribution line and transmits information of a surge detection time to a master station.
And a master station 2 for locating a failure point based on the information of the surge detection time, wherein the slave station 1 has at least a time interval from a current time to a time that is a predetermined time earlier. Stores and updates the past voltage or current waveform of the transmission and distribution line, and updates the surge qualification level, which is the reference level for qualifying surge and is set higher than the noise level, and the starting point of the surge waveform. And a surge waveform start level that is set to be lower than the surge certification level, which is a reference level for determining, and when the voltage or current of the transmission and distribution line exceeds the surge certification level, The time when the voltage or current first exceeds the surge waveform start level by referring to the stored waveform that has been traced back from the time when the surge has exceeded the surge certification level is defined as the surge detection time. A fault point location system, characterized by transmitting to the master station 2 via a communication network detection time.

【0015】この故障点標定システムは、以下のような
態様とすることもできる。即ち、送配電線路に設置され
サージ検出時刻の情報を親局2に送信する子局1と、該
サージ検出時刻の情報をもとに故障点を標定する親局2
と、を有する故障点標定システムであって、上記子局1
は、サージ検出手段13と、サージ情報送信手段14b
と、を備え、上記サージ検出手段13は、サージ波形記
憶手段136と、サージ認定手段と、を備えるものであ
る。
[0015] The fault locating system may be configured as follows. That is, a slave station 1 installed on a transmission and distribution line and transmitting information on a surge detection time to a master station 2, and a master station 2 locating a fault point based on the information on the surge detection time.
And a failure point location system comprising:
Are surge detector 13 and surge information transmitter 14b
The surge detection means 13 includes a surge waveform storage means 136 and a surge recognition means.

【0016】そして、上記サージ波形記憶手段136
は、少なくとも現在時刻から一定時間さかのぼった時刻
までの上記送配電線路の過去の電圧又は電流の波形を記
憶し、更新しており、上記サージ認定手段の要求に応じ
て該サージ認定手段に該過去の電圧又は電流の波形の情
報を伝える。
The surge waveform storage means 136
Stores and updates the waveform of the past voltage or current of the transmission and distribution line at least from a current time to a time that has been retroactive for a certain period of time, and updates the surge qualifying means in response to the request of the surge qualifying means. Of voltage or current waveforms.

【0017】上記サージ認定手段は、サージを認定する
ための基準レベルであってノイズレベルよりも高く設定
されるサージ認定レベルと、サージ波形の開始点を定め
るための基準レベルであって該サージ認定レベルよりも
低く設定されるサージ波形開始レベルと、を記憶してお
り、上記送配電線路の電圧又は電流が上記サージ認定レ
ベルを超えた場合に、サージ波形記憶手段136から過
去の電圧又は電流の波形の情報を受け取り、上記記憶し
ている波形を該サージ認定レベルを超えた時刻からさか
のぼって該電圧又は電流が最初に上記サージ波形開始レ
ベルを超えた時刻をサージ検出時刻とし、該サージ検出
時刻を上記サージ情報送信手段14bに伝える。
The surge certifying means includes a surge qualifying level which is a reference level for qualifying a surge and is set higher than a noise level, and a reference level for defining a starting point of a surge waveform. And a surge waveform start level that is set lower than the level. When the voltage or current of the transmission / distribution line exceeds the surge certification level, the surge waveform storage unit 136 stores the past voltage or current. The waveform information is received, and the time at which the voltage or current first exceeds the surge waveform start level, assuming that the stored waveform exceeds the surge certification level, is set as the surge detection time, and the surge detection time is set. Is transmitted to the surge information transmitting means 14b.

【0018】そして、上記サージ情報送信手段14b
は、上記サージ検出時刻を通信網を通じて上記親局2に
送信する。請求項4記載の故障点標定システムは、以上
に説明したような態様とすることもできる。
The surge information transmitting means 14b
Transmits the surge detection time to the master station 2 via a communication network. The failure point locating system according to claim 4 may be configured as described above.

【0019】請求項5記載の発明は、請求項4記載の故
障点標定システムであって、上記親局2は、上記送配電
線路網の故障点を挟む一対の子局のうちの一の子局の上
記サージ検出時刻t1と、他の子局の上記サージ検出時
刻t2と、サージの伝播速度vと、該子局間の送配電線
路の長さLと、をもとに、該一の子局から上記故障点ま
での送配電線路上の距離L1を、式L1=(L+(t1
−t2)×v)/2から求めるものである。
According to a fifth aspect of the present invention, in the fault locating system according to the fourth aspect, the master station 2 is one of a pair of slave stations sandwiching a fault point of the transmission and distribution line network. Based on the surge detection time t1 of the station, the surge detection time t2 of the other slave stations, the propagation speed v of the surge, and the length L of the transmission and distribution line between the slave stations, The distance L1 on the transmission and distribution line from the slave station to the above-mentioned failure point is expressed by the following equation: L1 = (L + (t1)
−t2) × v) / 2.

【0020】請求項6記載の発明は、請求項4記載の故
障点標定システムであって、上記親局2は、上記送配電
線路網の電源端に最も近い子局の上記サージ検出時刻t
1と、送配電線路網の末端の子局の上記サージ検出時刻
t2と、サージの伝播速度vと、該子局間の送配電線路
の長さLと、をもとに、該電源端側の子局から上記故障
点までの送配電線路上の距離L1を、式L1=(L+
(t1−t2)×v)/2から求め、更に、上記計算で
得られた故障点を挟む一対の子局のうちの一の子局の上
記サージ検出時刻t3と、他の子局の上記サージ検出時
刻t4と、サージの伝播速度vと、該一対の子局間の送
配電線路の長さL’と、をもとに、該一の子局から上記
故障点までの送配電線路上の距離L3を、式L3=
(L’+(t3−t4)×v)/2から求めるものであ
る。
According to a sixth aspect of the present invention, in the fault locating system according to the fourth aspect, the master station 2 detects the surge detection time t of a slave station closest to a power supply end of the transmission and distribution network.
1, the surge detection time t2 of the slave station at the end of the transmission and distribution line network, the propagation speed v of the surge, and the length L of the transmission and distribution line between the slave stations, based on the power supply end side. The distance L1 on the transmission and distribution line from the slave station to the fault point is expressed by the following equation: L1 = (L +
(T1−t2) × v) / 2, and further, the surge detection time t3 of one slave station of the pair of slave stations sandwiching the fault point obtained by the above calculation and the surge detection time t3 of another slave station. Based on the surge detection time t4, the propagation speed v of the surge, and the length L 'of the transmission and distribution line between the pair of slave stations, the transmission and distribution line from the one slave station to the failure point is determined. The distance L3 of the equation
(L ′ + (t3−t4) × v) / 2.

【0021】請求項7記載の発明は、請求項4乃至6の
いずれかに記載の故障点標定システムであって、上記過
去の電圧又は電流の波形は、一定時間ごとにサンプリン
グされる離散値として記憶されており、該サージ認定レ
ベルを超えた時刻からさかのぼってサンプル値が最初に
上記サージ波形開始レベルを下回ったサンプリング時刻
の次のサンプリング時刻を、上記サージ検出時刻とする
ものである。
According to a seventh aspect of the present invention, there is provided the fault locating system according to any one of the fourth to sixth aspects, wherein the past voltage or current waveform is a discrete value sampled at regular time intervals. The sampling time that is stored and that is the next sampling time after the sampling value has fallen below the surge waveform start level for the first time from the time exceeding the surge certification level is the surge detection time.

【0022】請求項8記載の発明は、送配電線路に配さ
れた2以上の子局におけるサージ検出時刻の情報をもと
に故障点を標定する故障点標定方法であって、以下のよ
うな手続を行うものである。
The invention according to claim 8 is a fault point locating method for locating a fault point based on information of a surge detection time in two or more slave stations arranged on a transmission and distribution line, and includes the following. Perform the procedure.

【0023】(1)送配電線路に配された子局について
それぞれ、サージを認定するための基準レベルであって
ノイズレベルよりも高く設定されるサージ認定レベル
と、サージ波形の開始点を定めるための基準レベルであ
って該サージ認定レベルよりも低く設定されるサージ波
形開始レベルと、を定めておき、少なくとも現在時刻か
ら一定時間さかのぼった時刻までの上記送配電線路の過
去の電圧又は電流の波形を記憶し、更新し、上記送配電
線路の電圧又は電流が上記サージ認定レベルを超えた場
合に、上記記憶している波形を該サージ認定レベルを超
えた時刻からさかのぼって該電圧又は電流が最初に上記
サージ波形開始レベルを超えた時刻をサージ検出時刻と
する。
(1) To determine a surge certification level, which is a reference level for certifying a surge and is set higher than a noise level, and a start point of a surge waveform for each of the slave stations arranged on the transmission and distribution line. And a surge waveform start level that is set lower than the surge certification level, and a waveform of a past voltage or current of the transmission and distribution line at least from a current time to a time that is a predetermined time earlier. Is stored and updated, and when the voltage or current of the transmission / distribution line exceeds the surge certification level, the stored waveform is traced from the time when the surge certification level is exceeded, and the voltage or current is initially The time when the surge waveform start level is exceeded is defined as the surge detection time.

【0024】(2)上記送配電線路網の一の子局の上記
サージ検出時刻t1と、他の一の子局の上記サージ検出
時刻t2と、サージの伝播速度vと、該子局間の送配電
線路の長さLと、をもとに、該一の子局から上記故障点
までの送配電線路上の距離L1を、式L1=(L+(t
1−t2)×v)/2から求める。
(2) The surge detection time t1 of one slave station of the transmission and distribution line network, the surge detection time t2 of another slave station, the propagation speed v of surge, and the Based on the length L of the transmission / distribution line, the distance L1 on the transmission / distribution line from the one slave station to the failure point is expressed by the following equation: L1 = (L + (t
1−t2) × v) / 2.

【0025】[0025]

【発明の実施の形態】以下、図を用いて本発明の実施の
形態を説明する。 [実施例] (1)故障点標定システムの構成 本故障点標定システムは、図1に示すように、送配電線
路の各鉄塔や電柱に設置される子局1と、電力会社の営
業所や支店などに設置され、子局1からの情報をもとに
故障点を標定する親局2と、からなる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings. [Examples] (1) Configuration of a fault point locating system As shown in FIG. 1, the fault locating system includes a slave station 1 installed on each of the towers and poles of a power transmission and distribution line, a sales office of a power company, A master station 2 is installed in a branch or the like and locates a failure point based on information from the slave station 1.

【0026】(a)子局 子局1は、図2に示すように、GPSアンテナ111
と、GPS受信機112と、発振回路121と、基準時
計122と、時刻同期補正回路123と、ZCT131
(零相変流器)と、フィルタ回路132と、サージ信号
検出回路133と、サージ検出時刻保持回路134と、
サージ波形記録回路136と、中央処理ユニット141
と、通信インターフェイス142と、を備える。
(A) Slave station Slave station 1 has a GPS antenna 111 as shown in FIG.
, GPS receiver 112, oscillation circuit 121, reference clock 122, time synchronization correction circuit 123, ZCT 131
(Zero-phase current transformer), a filter circuit 132, a surge signal detection circuit 133, a surge detection time holding circuit 134,
Surge waveform recording circuit 136 and central processing unit 141
And a communication interface 142.

【0027】そして、ZCT131、フィルタ回路13
2、サージ信号検出回路133、サージ検出時刻保持回
路134及びサージ波形記録回路136、並びに中央処
理ユニット141の一部は、特許請求の範囲にいう「サ
ージ検出手段13」に相当する。また、中央処理ユニッ
ト141と通信インターフェイス142は、特許請求の
範囲にいう「サージ情報送信手段14b」に相当する。
The ZCT 131 and the filter circuit 13
2. A part of the surge signal detection circuit 133, the surge detection time holding circuit 134, the surge waveform recording circuit 136, and the central processing unit 141 corresponds to the "surge detection means 13" in the claims. The central processing unit 141 and the communication interface 142 correspond to "surge information transmitting means 14b" in the claims.

【0028】そして、同程度の概念としては、 GPS
アンテナ111とGPS受信機112をまとめて「GP
S受信手段」としてとらえることができ、発振回路12
1と基準時計122と時刻同期補正回路123とをまと
めて「計時手段12」としてとらえることができる。以
下で各構成要素について説明する。
As a similar concept, GPS
The antenna 111 and the GPS receiver 112 are collectively referred to as “GP
S receiving means ", and the oscillation circuit 12
1, the reference clock 122, and the time synchronization correction circuit 123 can be collectively regarded as the "time measuring means 12." Hereinafter, each component will be described.

【0029】(i)ZCT131(零相変流器) 送配電線路の鉄塔に取付けられ、故障時に発生するサー
ジ信号(サージ電流)を検出し、フィルタ回路132に
送る。なお、サージ信号としてサージ電圧を検出する場
合には、PT又はPD等の電圧検出器を使用する。 (ii)フィルタ回路132 ZCT131が検出した信号から、サージ信号以外の不
要な商用周波信号成分等を除去し、サージ信号のみを通
過させ、サージ信号検出回路133及びサージ波形記録
回路136に送る。 (iii)サージ信号検出回路133 サージ信号のレベルを検出し、信号レベルがサージ認定
レベルを超えたら、サージの発生と判断して時刻保持信
号をサージ検出時刻保持回路134へ出力する。また同
時に、サージ波形記録停止信号をサージ波形記録回路1
36に出力する。
(I) ZCT 131 (Zero-phase Current Transformer) The ZCT 131 detects a surge signal (surge current) generated at the time of failure and is sent to the filter circuit 132. When a surge voltage is detected as a surge signal, a voltage detector such as a PT or a PD is used. (Ii) Filter circuit 132 Unnecessary commercial frequency signal components other than the surge signal are removed from the signal detected by the ZCT 131, and only the surge signal is allowed to pass therethrough and sent to the surge signal detection circuit 133 and the surge waveform recording circuit 136. (Iii) The surge signal detection circuit 133 detects the level of the surge signal, and when the signal level exceeds the authorized surge level, determines that a surge has occurred and outputs a time holding signal to the surge detection time holding circuit 134. At the same time, the surge waveform recording stop signal is sent to the surge waveform recording circuit 1.
36.

【0030】(iv)サージ検出時刻保持回路134 サージ信号検出回路133から時刻保持信号が出力され
ると、その時の基準時計122の時刻を保持し、それを
サージ検出時刻初期値として中央処理ユニット141へ
出力する。 (v)サージ波形記録回路136 発振回路121から受け取ったサンプリング信号を基準
にフィルタ回路132から受け取ったサージ信号波形を
A/D変換器によってディジタルデータに変換し、その
データをエンドレス構造の波形記録メモリ(例えばリン
グメモリなど)に常時記録し更新する。サージ信号検出
回路133からサージ波形記録停止信号を受け取った時
点で波形の記録を止め、その時点まで記録していたサー
ジ信号波形を波形記録メモリ上に保持するとともに中央
処理ユニット141に出力する。
(Iv) Surge detection time holding circuit 134 When a time holding signal is output from the surge signal detection circuit 133, the time of the reference clock 122 at that time is held, and this is set as the surge detection time initial value and the central processing unit 141 Output to (V) Surge waveform recording circuit 136 The surge signal waveform received from the filter circuit 132 is converted into digital data by an A / D converter based on the sampling signal received from the oscillation circuit 121, and the data is stored in an endless waveform recording memory. (For example, in a ring memory) and constantly updated. When the surge waveform recording stop signal is received from the surge signal detection circuit 133, the recording of the waveform is stopped. The surge signal waveform recorded up to that point is retained in the waveform recording memory and output to the central processing unit 141.

【0031】(vi)GPSアンテナ111とGPS受
信機112 GPSアンテナ111がGPS衛星からの電波を受信
し、それをGPS受信機112に送る。そしてGPS受
信機112が、その電波からGPS衛星が保有する標準
時刻の情報を同期信号として取り出し、時刻同期補正回
路123へ出力する。 (vii)時刻同期補正回路123 GPS受信機112から出力される同期信号に従って、
基準時計122の時刻をGPS衛星が保有する標準時刻
へ同期させる。
(Vi) GPS Antenna 111 and GPS Receiver 112 The GPS antenna 111 receives a radio wave from a GPS satellite and sends it to the GPS receiver 112. Then, the GPS receiver 112 extracts standard time information held by the GPS satellite from the radio wave as a synchronization signal, and outputs it to the time synchronization correction circuit 123. (Vii) Time synchronization correction circuit 123 According to the synchronization signal output from GPS receiver 112,
The time of the reference clock 122 is synchronized with the standard time held by the GPS satellite.

【0032】(viii)基準時計122 基準時刻をサージ検出時刻保持回路134へ出力する。 (ix)発振回路121 時刻を計時するための基準時間信号を基準時計122へ
出力する。また、基準時間信号と同期した波形サンプリ
ング信号をサージ波形記録回路136に出力する。
(Viii) Reference clock 122 The reference clock is output to the surge detection time holding circuit 134. (Ix) Oscillation Circuit 121 A reference time signal for measuring the time is output to the reference clock 122. Further, a waveform sampling signal synchronized with the reference time signal is output to the surge waveform recording circuit 136.

【0033】(x)中央処理ユニット141 サージ検出時刻保持回路134から出力されるサージ検
出時刻初期値と、サージ波形記録回路136から出力さ
れるサージ信号波形と、から、サージ検出時刻初期値の
直前に電圧がサージ波形開始レベルを超えた時刻、を特
定し、その時刻をサージ検出時刻として、通信インター
フェイス142を介して親局2に送信する。 (xi)通信インターフェイス142 中央処理ユニット141が公衆回線網を使って親局2と
通信できるように、中央処理ユニット141と公衆回線
網との間で通信信号を中継する。
(X) From the surge detection time initial value output from the surge detection time holding circuit 134 and the surge signal waveform output from the surge waveform recording circuit 136, the central processing unit 141 immediately before the surge detection time initial value The time when the voltage exceeds the surge waveform start level is specified, and the time is transmitted to the master station 2 via the communication interface 142 as the surge detection time. (Xi) Communication Interface 142 The communication interface 142 relays communication signals between the central processing unit 141 and the public network so that the central processing unit 141 can communicate with the master station 2 using the public network.

【0034】なお、子局1は、上記構成要素により、G
PS電波に基づいて自己の位置を特定し、その情報を親
局に送ることもできるものである。
Note that the slave station 1 has G
It can also specify its own position based on the PS radio wave and send the information to the master station.

【0035】(b)親局 また、親局2は、図3に示すように、通信インターフェ
イス21と、 補助記憶装置222と、中央処理装置2
3と、CRT241と、プリンタ242と、キーボード
25と、を有する。
(B) Master Station As shown in FIG. 3, the master station 2 includes a communication interface 21, an auxiliary storage device 222, and a central processing unit 2.
3, a CRT 241, a printer 242, and a keyboard 25.

【0036】ここで、通信インターフェイス21は、各
子局からの位置情報を受信する子局位置情報受信手段2
1aとして、また、各子局からのサージ検出時刻の情報
を受信する子局サージ情報受信手段21bとして位置づ
けることができる。そして、中央処理装置23は、子局
の位置情報をもとに送配電線路図情報を作成する送配電
線路図情報作成手段23aとして、また、サージ検出時
刻をもとに故障位置を標定する故障位置特定手段23c
として位置づけることができる。
Here, the communication interface 21 is a slave station position information receiving means 2 for receiving position information from each slave station.
1a, and can be positioned as a slave station surge information receiving means 21b for receiving information on a surge detection time from each slave station. The central processing unit 23 serves as transmission and distribution line diagram information creating means 23a for creating transmission and distribution line diagram information based on the location information of the slave station, and also as a fault locating fault location based on the surge detection time. Position specifying means 23c
Can be positioned as

【0037】更に、 補助記憶装置222は、地図情報
記憶手段としても位置づけることができ、CRT241
とプリンタ242は、標定結果を出力する送配電線路図
情報出力手段として位置づけることができる。そして、
キーボード25は、入力手段として位置づけることがで
きる。以下で各構成要素について説明する。
Further, the auxiliary storage device 222 can be positioned as a map information storage means.
And the printer 242 can be positioned as transmission and distribution line diagram information output means for outputting the orientation result. And
The keyboard 25 can be positioned as input means. Hereinafter, each component will be described.

【0038】(i)通信インターフェイス21 子局1との間の通信信号を中継する。即ち、公衆通信回
線を介して子局1から送られてくる信号を変換して、中
央処理装置23に渡す。
(I) Communication interface 21 Relays a communication signal with the slave station 1. That is, the signal transmitted from the slave station 1 via the public communication line is converted and passed to the central processing unit 23.

【0039】(ii)中央処理装置23(パーソナルコ
ンピュータなど) 各子局1,1,1,...から送られてくる位置情報と
サージ検出時刻とを、通信インターフェイス21を介し
て受け取り、後述する故障点標定処理を行う。故障点標
定処理によって得た故障点は、補助記憶装置222に記
憶されていた送配電線路図データと共に、CRT241
もしくはプリンタ242へ出力される。
(Ii) Central Processing Unit 23 (Personal Computer, etc.) Each of the slave stations 1, 1, 1,. . . It receives the position information and the surge detection time sent from the communication interface 21 via the communication interface 21 and performs a fault point locating process described later. The fault point obtained by the fault point locating process is transmitted to the CRT 241 together with the transmission and distribution line diagram data stored in the auxiliary storage device 222.
Alternatively, it is output to the printer 242.

【0040】(iii)補助記憶装置222(ハードデ
ィスクなど) 各子局1,1,1,...から送られてくるサージ検出
時刻や位置情報、並びに中央処理装置23が計算した故
障点及び中央処理装置23での処理に必要な送配電線路
図データを記録し保存する。ここで、送配電線路図デー
タには、電柱や鉄塔の位置データ、各電柱(鉄塔)間の
距離データなどがある。 (iv)プリンタ242 中央処理装置23の指示により、中央処理装置23から
送られた送配電線路図データや故障点の標定結果などを
印刷する。
(Iii) Auxiliary storage device 222 (such as a hard disk) . . And records the surge detection time and position information, the fault point calculated by the central processing unit 23, and the transmission / distribution line diagram data required for processing in the central processing unit 23. Here, the transmission and distribution line diagram data includes position data of poles and towers, distance data between poles (towers), and the like. (Iv) Printer 242 In accordance with an instruction from the central processing unit 23, the transmission / distribution line diagram data transmitted from the central processing unit 23, a fault point locating result, and the like are printed.

【0041】(v)CRT241 中央処理装置23の指示により、中央処理装置23から
送られた送配電線路図や故障点の標定結果などを表示す
る。 (vi)キーボード25(入力手段) 送配電線路図を作成するために必要な作図データ等を入
力する。ここで、作図データには、電柱や鉄塔の位置デ
ータ、各電柱(鉄塔)間の距離データなどがある。
(V) CRT 241 In response to an instruction from the central processing unit 23, a transmission / distribution line diagram and a fault point locating result sent from the central processing unit 23 are displayed. (Vi) Keyboard 25 (input means) Inputs drawing data and the like necessary for creating a transmission and distribution line diagram. Here, the drawing data includes position data of electric poles and towers, distance data between electric poles (towers), and the like.

【0042】(2)故障点標定システムにおける処理 以下では、送配電線路に故障が生じた場合に故障箇所を
特定するための手続きについて説明する。まず(a)に
おいて、子局におけるサージ検出時刻の標定について説
明をし、次に(b)において、親局における故障点の標
定について説明する。
(2) Processing in the Fault Location System In the following, a procedure for specifying a fault location when a fault occurs in the transmission and distribution line will be described. First, in (a), the localization of the surge detection time in the slave station will be described. Next, in (b), the localization of the fault point in the master station will be described.

【0043】(a)子局におけるサージ検出時刻の標定 子局1の中央処理ユニット141では、サージ信号の立
ち上がり時間の違いによるサージ検出時刻の差を少なく
するため、サージ信号がサージ認定レベルを超えた時刻
として定められるサージ検出時刻初期値を補正して、サ
ージ検出時刻を得る。以下では、子局1の中央処理ユニ
ット141におけるサージ検出時刻の標定手続を示す。
(A) Determination of surge detection time in slave station In the central processing unit 141 of the slave station 1, in order to reduce the difference in surge detection time due to the difference in the rise time of the surge signal, the surge signal exceeds the surge certification level. The initial value of the surge detection time, which is determined as the detected time, is corrected to obtain the surge detection time. Hereinafter, a procedure for locating the surge detection time in the central processing unit 141 of the slave station 1 will be described.

【0044】(手続1)サージ検出時刻保持回路134
よりサージ検出時刻初期値を受け取り、サージ波形記録
回路136より離散値の形でサージ波形データを受け取
る(図2及び図4参照)。 (手続2)波形データ(離散値)をサージ検出時刻初期
値から時間順に順次さかのぼって、信号レベルがサージ
波形開始レベル以下となるまで、波形データの信号レベ
ルを比較する(図4参照)。 (手続3)波形データの信号レベルがサージ波形開始レ
ベルとなったら、サンプリング間隔に(「その信号に到
達するまでさかのぼった回数」−1)を掛けたものを、
サージ検出時刻初期値から減算し、それをサージ検出時
刻とする(図4参照)。
(Procedure 1) Surge detection time holding circuit 134
Further, the initial value of the surge detection time is received, and the surge waveform data is received in the form of discrete values from the surge waveform recording circuit 136 (see FIGS. 2 and 4). (Procedure 2) The waveform data (discrete values) are sequentially traced back from the initial value of the surge detection time in order of time, and the signal levels of the waveform data are compared until the signal level falls below the surge waveform start level (see FIG. 4). (Procedure 3) When the signal level of the waveform data becomes the surge waveform start level, the sampling interval is multiplied by (“the number of times that the signal reaches the signal” -1).
The surge detection time is subtracted from the initial value, and the result is set as the surge detection time (see FIG. 4).

【0045】(b)親局における故障点の標定 以下に、親局2の中央処理装置23における故障点の標
定の原理及び手続を示す。まず(i)において、その故
障点標定の原理について説明し、次に(ii)でその手
続きについて説明する。
(B) Locating a fault point in the master station The principle and procedure of locating a fault point in the central processing unit 23 of the master station 2 will be described below. First, in (i), the principle of the fault location is described, and then (ii), the procedure is described.

【0046】(i)故障点標定の原理 図5に故障点の標定原理図を示す。子局と子局の間
で地絡故障が発生すると、図5に示すように進行波(サ
ージ)が発生する。この進行波が子局及び子局で検
出される時間は、送配電線路を伝播する進行波の伝播速
度vが一定であると仮定すれば、故障発生地点からの各
子局までの距離L1,L2に比例することになる。
(I) Principle of locating a fault FIG. 5 shows a principle of locating a fault. When a ground fault occurs between slave stations, a traveling wave (surge) is generated as shown in FIG. The time at which the traveling wave is detected at the slave station and the slave station is, assuming that the propagation speed v of the traveling wave propagating through the transmission and distribution line is constant, the distance L1, from the failure occurrence point to each slave station. It will be proportional to L2.

【0047】つまり、子局と子局の間の送配電線路
の長さLが分かっており、子局及び子局で検出した
時間差を正確に検出することができれば、図5に示すよ
うに、計算式「L1=(L+(t1−t2)×v)/
2」により子局から故障点までの距離L1を求めるこ
とができることになる。
In other words, if the length L of the transmission and distribution line between slave stations is known, and if the time difference detected between the slave stations and the slave station can be accurately detected, as shown in FIG. The calculation formula “L1 = (L + (t1−t2) × v) /
By "2", the distance L1 from the slave station to the failure point can be obtained.

【0048】本実施例の故障点標定システムにおいて
は、サージ時刻の差を検討する子局(電源端と末端の子
局)の間の送配電線路の長さLは、予め計算し記憶して
いるものである。即ち、隣り合う子局については、送配
電線路がほぼ直線であるという仮定のもとに、子局の位
置情報(緯度、経度、高度)をもとに両者の間の送配電
線路の距離を計算することができる。
In the fault locating system of this embodiment, the length L of the transmission / distribution line between the slave stations (the power supply terminal and the terminal slave station) whose surge time is to be examined is calculated and stored in advance. Is what it is. That is, for adjacent slave stations, based on the assumption that the transmission and distribution lines are almost straight, the distance between the transmission and distribution lines between them is determined based on the position information (latitude, longitude, and altitude) of the slave stations. Can be calculated.

【0049】また、隣り合わない子局間の距離について
は、その間に存在する隣り合う子局同士の間の送配電線
路の長さを足し合わせることで、子局間の送配電線路の
長さLを得ることができる。
The distance between the non-adjacent slave stations is calculated by adding the lengths of the transmission and distribution lines between the adjacent slave stations existing therebetween, thereby obtaining the length of the transmission and distribution line between the slave stations. L can be obtained.

【0050】(ii)故障点標定の手続 親局2の中央処理装置23は、あらかじめ電源端に最も
近い子局と、送配電線路網の各末端の子局との間の送配
電線路の長さLを計算し記憶している。そして、中央処
理装置23は、送配電線路上の電源端に最も近い子局1
と、幹線及び支線の末端に最も近い子局1との組み合わ
せを選択し、両子局のサージ検出時刻の差から故障点を
標定する。
(Ii) Procedure for locating faults The central processing unit 23 of the master station 2 determines the length of the transmission / distribution line between the slave station closest to the power supply end and the slave stations at each end of the transmission and distribution line network in advance. Is calculated and stored. Then, the central processing unit 23 transmits the slave station 1 closest to the power supply end on the transmission and distribution line.
And the slave station 1 closest to the end of the trunk line and the branch line are selected, and the fault point is located from the difference between the surge detection times of both slave stations.

【0051】即ち、中央処理装置23は、電源端側の子
局のサージ検出時刻t1と、末端側の子局の上記サージ
検出時刻t2と、サージの伝播速度vと、両子局間の送
配電線路の長さLと、をもとに、電源端側の子局から送
配電線路の故障の生じた位置(故障点)までの送配電線
路上の距離L1を、式L1=(L+(t1−t2)×
v)/2から求める。ただし、vは架空線路の場合とケ
ーブル配電線路の場合とを考えて150〜300m/μ
sとしている。このvは250〜300m/μsとする
とより好ましい。
That is, the central processing unit 23 detects the surge detection time t1 of the slave station on the power supply end side, the surge detection time t2 of the slave station on the terminal side, the propagation speed v of the surge, and the power transmission and distribution between the slave stations. Based on the length L of the line, the distance L1 on the transmission and distribution line from the slave station on the power supply end side to the position where the transmission and distribution line has failed (failure point) is expressed by the equation L1 = (L + (t1) −t2) ×
v) / 2. Here, v is 150 to 300 m / μ considering the case of an overhead line and the case of a cable distribution line.
s. This v is more preferably 250 to 300 m / μs.

【0052】そして、標定した故障点の近くにその故障
点を挟む子局1,1がある場合は、再度、それらの子局
のサージ検出時刻の差から故障点の標定をし直すことに
より、標定の信頼性を上げることができる。この故障点
の標定手続については、オペレータがその都度手動操作
により中央処理装置23に必要な指示を与えて、故障点
の標定処理をさせるものとしてもよいし、中央処理装置
23が自動的に処理できるようにプログラムを組んでも
よい。
When there are slave stations 1 and 1 sandwiching the failure point near the located failure point, the failure point is again located from the difference between the surge detection times of the slave stations. The reliability of orientation can be improved. In this fault point locating procedure, the operator may manually give a necessary instruction to the central processing unit 23 each time to perform the fault point locating process, or the central processing unit 23 automatically performs the processing. A program may be set up so that it can be performed.

【0053】なおこの場合、両端の子局の基準時計の時
刻を同期させていなければ正確な時間差は検出できない
が、ここでは、上述したように、GPS衛星から送られ
てくる標準時刻と、各子局の基準時計の時刻を合わせる
ことにより、各子局の時刻同期を取っている。
In this case, an accurate time difference cannot be detected unless the times of the reference clocks of the slave stations at both ends are synchronized, but here, as described above, the standard time transmitted from the GPS satellite and the The time of each slave station is synchronized by adjusting the time of the reference clock of the slave station.

【0054】(III)故障発生個所の表示 親局2の中央処理装置23は、故障点の標定が完了する
と、故障発生個所をオペレータに知らせるため、補助記
憶装置222に格納している送配電線路図情報と、標定
した故障点と、をCRT241の画面に表示する。ま
た、オペレータの要求に応じてそれらをプリンタ242
から印刷させる。
(III) Display of Failure Location The central processing unit 23 of the master station 2 transmits the transmission and distribution line stored in the auxiliary storage device 222 to notify the operator of the failure location when the fault location is completed. The diagram information and the located fault points are displayed on the screen of the CRT 241. In addition, the printer 242 transmits them according to an operator request.
To print.

【0055】(3)故障点標定システムの運用 子局1は、送配電線路を支持する電柱(鉄塔)に取り付
け、いつ故障が発生しても検出できるように24時間連
続で運転する。親局2は、例えば、電力会社の支店又は
営業所に設置し、オペレータがいる間だけ運転するよう
にしてもよいし、いつ故障が発生してもすぐに故障点が
確認できるように、24時間運転としてもよい。
(3) Operation of the fault point locating system The slave station 1 is attached to a utility pole (pylon) supporting a transmission and distribution line, and is operated continuously for 24 hours so that any failure can be detected. The master station 2 may be installed, for example, at a branch or sales office of a power company and operated only while an operator is present. Time operation may be used.

【0056】(4)故障点標定システムの効果 本実施例の故障点標定システムは、故障箇所の両側(電
源端と末端)に位置する子局のサージ信号の到達時刻の
差から、故障点の位置(子局から故障点の位置までの距
離)を特定する。従って、故障点の標定を迅速かつ正確
に行うことができる。
(4) Effects of the fault point locating system The fault point locating system of the present embodiment uses the difference between the arrival times of the surge signals of the slave stations located on both sides (the power supply end and the terminal) of the fault location to determine the fault point. Specify the position (the distance from the slave station to the position of the failure point). Therefore, it is possible to quickly and accurately locate the failure point.

【0057】[その他]なお、本発明においては、前記
実施例に示すものに限られず、目的、用途に応じて本発
明の範囲内で種々変更した態様とすることができる。例
えば、子局から親局への情報の送信は、携帯電話、PH
S、公衆通信回線を利用するもの、送配電線路に設けら
れた専用回線(メタルケーブル、光ファイバ、無線な
ど)によって行うものとしてもよい。
[Others] The present invention is not limited to the embodiments described above, but may be variously modified within the scope of the present invention in accordance with the purpose and application. For example, transmission of information from the slave station to the master station is performed by a mobile phone, a PH,
S, a method using a public communication line, or a method using a dedicated line (metal cable, optical fiber, wireless, etc.) provided in a transmission and distribution line.

【0058】そして、送配電線路図情報中の地図データ
についても、補助記憶装置に記録される態様に限られる
ものではなく、 CD−ROM、DVD等他の記録メデ
ィアに記録されるものであってもよい。また、インター
ネット上の地図情報システムを運用しているWWWサイ
トのサーバから地図データをダウンロードし、又はオン
ラインで取り出すものとしてもよい。インターネットを
介してサーバからデータをダウンロードし、又はオンラ
インで取り出す態様とすれば、地図情報を独自に保持す
る必要がなく常に最新の地図情報を入手することができ
る。
The map data in the transmission and distribution line map information is not limited to the mode recorded in the auxiliary storage device, but may be recorded in other recording media such as a CD-ROM and a DVD. Is also good. Alternatively, map data may be downloaded from a server of a WWW site that operates a map information system on the Internet, or may be retrieved online. If the data is downloaded from the server via the Internet or retrieved online, the latest map information can always be obtained without the necessity of holding the map information independently.

【0059】[0059]

【発明の効果】請求項1記載の子局、請求項2記載のサ
ージ検出時刻標定方法、請求項4記載の故障点標定シス
テム及び請求項9記載の故障点標定方法においては、送
配電線路の電圧又は電流がノイズレベルよりも高く設定
されるサージ認定レベルを超えたか否かでサージの認定
をし、それよりも低く設定されるサージ波形開始レベル
でサージ波形の開始点、即ちサージ検出時刻を標定す
る。即ち、サージの認定とサージ波形の開始点の認定に
ついてそれぞれ別の基準レベルを設けている。
In the slave station according to the first aspect, the surge detection time locating method according to the second aspect, the fault location system according to the fourth aspect, and the fault location method according to the ninth aspect, the transmission and distribution lines are Surge is recognized based on whether the voltage or current exceeds the surge certification level set higher than the noise level, and the start point of the surge waveform at the surge waveform start level set lower than that, that is, the surge detection time is set. Orient. That is, different reference levels are provided for the qualification of the surge and the qualification of the start point of the surge waveform.

【0060】このため、サージ波形開始レベルは、サー
ジの検出の時間遅れを十分少なくすることができように
低く設定することができる。よって、ノイズによる誤検
出の防止とサージの検出の時間遅れの減少とを両立させ
ることができる。また、サージ波形開始レベルを低く設
定することができるため、送配電線路における伝播損失
などによって各子局が受信するサージ波形が変形してい
る場合にも、各子局におけるサージ検出時刻を同程度に
正確に標定することができる。即ち、各子局で受信する
サージの立ち上がり時間の違いにより生じる、サージ検
出時刻のばらつきが少ない。
For this reason, the surge waveform start level can be set low so that the time delay of the detection of the surge can be sufficiently reduced. Therefore, it is possible to achieve both the prevention of erroneous detection due to noise and the reduction of the time delay of the detection of surge. Also, since the surge waveform start level can be set low, even when the surge waveform received by each slave station is deformed due to propagation loss in the transmission and distribution line, the surge detection time at each slave station is almost the same. Can be accurately located. That is, there is little variation in the surge detection time caused by the difference in the rise time of the surge received by each slave station.

【0061】そして、電流又は電圧がサージ認定レベル
を超えてから、記憶しているサージ波形を後ろからさか
のぼるものであるため、図8のような先行サージがある
場合にも正確にサージ検出時刻を標定することができ
る。
Since the stored surge waveform is traced back after the current or voltage exceeds the surge certification level, the surge detection time can be accurately determined even when there is a preceding surge as shown in FIG. Can be oriented.

【0062】請求項3記載のサージ検出時刻標定方法及
び請求項7記載の故障点標定システムにおいては、過去
の波形が離散値として記憶されているため、記憶装置に
必要とされる記憶容量が小さくて済み、かつ、サージ検
出時刻の標定及び故障点の標定が正確となる。
In the surge detection time locating method according to the third aspect and the fault point locating system according to the seventh aspect, since the past waveform is stored as a discrete value, the storage capacity required for the storage device is small. And the location of the surge detection time and the location of the failure point are accurate.

【0063】請求項4及び請求項5記載の故障点標定シ
ステムにおいては、親局を備えるため、その親局によっ
て、各子局からのサージ検出時刻の情報をもとに故障点
を評定することができる。しかも、送配電線路網に設け
られる子局とは別に親局を備えるため、故障点の標定機
能を親局の設備に任せることで、各子局の設備を簡易か
つコンパクトなものとすることができる。そして、請求
項4及び請求項5記載の故障点標定システムにおいて
は、子局が正確にサージ検出時刻を標定することができ
るため、親局は正確に故障点を標定することができる。
Since the fault point locating system according to the fourth and fifth aspects has a master station, the fault point is evaluated by the master station based on the information on the surge detection time from each slave station. Can be. Moreover, since a master station is provided separately from the slave stations provided in the transmission and distribution line network, the function of locating a fault point is left to the equipment of the master station, so that the equipment of each slave station can be made simple and compact. it can. In the fault point locating system according to the fourth and fifth aspects, since the slave station can accurately determine the surge detection time, the master station can accurately locate the fault point.

【0064】請求項5記載の故障点標定システムにおい
ては、二つの子局のサージ検出時刻をもとに、簡易に送
配電線路網の故障位置を推定することができる。
In the fault locating system according to the fifth aspect, it is possible to easily estimate the fault location of the transmission and distribution network based on the surge detection times of the two slave stations.

【0065】請求項6記載の故障点標定システムにおい
ては、まず、電源端と末端の間で故障点の位置をおおま
かに計算し、更に、その計算によって求めた故障点位置
を挟む一対の子局の間で故障点の位置を再計算するもの
である。よって、距離の短い子局の間で故障点の位置を
再計算することにより、故障点の標定に際して送配電線
路中での伝播損失等による誤差の影響を少なくすること
ができる。即ち、故障点の位置を正確に標定することが
できる。
In the fault locating system according to the sixth aspect, first, the position of the fault point is roughly calculated between the power supply terminal and the terminal, and further a pair of slave stations sandwiching the fault point position obtained by the calculation. Is to recalculate the position of the fault point. Therefore, by recalculating the position of the fault point between the slave stations having a short distance, the influence of an error due to propagation loss in the transmission and distribution line at the time of locating the fault point can be reduced. That is, the position of the failure point can be accurately located.

【0066】請求項8記載の故障点標定方法によれば、
子局のサージ検出時刻を正確に標定することができ、し
かも、そのサージ検出時刻に基づいて簡易かつ正確に送
配電線路網の故障位置を標定することができる。即ち、
現実のサージの受信開始からのサージ検出時刻の遅れ分
を少なくすることができるため、各子局におけるサージ
信号の立ち上がり時間の差による故障点標定の誤差を小
さくすることができる。
According to the fault locating method of claim 8,
The surge detection time of the slave station can be accurately located, and the fault location of the transmission and distribution network can be easily and accurately located based on the surge detection time. That is,
Since the delay of the surge detection time from the actual start of the reception of the surge can be reduced, the error in the fault location due to the difference in the rise time of the surge signal in each slave station can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】故障点標定システムの親局と子局の関係を示す
説明図である。
FIG. 1 is an explanatory diagram showing a relationship between a master station and slave stations in a fault point location system.

【図2】子局の各構成要素の説明図である。FIG. 2 is an explanatory diagram of each component of a slave station.

【図3】親局の各構成要素の説明図である。FIG. 3 is an explanatory diagram of each component of a master station.

【図4】サージ検出時刻の標定方法の説明図である。FIG. 4 is an explanatory diagram of a method of locating a surge detection time.

【図5】枝分かれのない区間について故障箇所を特定す
る原理を示す説明図である。
FIG. 5 is an explanatory diagram illustrating a principle of specifying a failure point in a section without branching;

【図6】サージ波形の違いによるサージ検出時刻のずれ
を示す説明図である。
FIG. 6 is an explanatory diagram showing a shift in surge detection time due to a difference in surge waveform.

【図7】二電位法の説明図である。FIG. 7 is an explanatory diagram of a two-potential method.

【図8】先行サージがある場合の二電位法の説明図であ
る。
FIG. 8 is an explanatory diagram of the two-potential method when there is a preceding surge.

【符号の説明】[Explanation of symbols]

1;子局、11;GPS受信手段、111;GPSアン
テナ、112;GPS受信機、12;計時手段、12
1;発振回路、122;基準時計、123;時刻同期補
正回路、13;サージ検出手段、131;ZCT(零相
変流器)、132;フィルタ回路、133;サージ信号
検出回路、134;サージ検出時刻保持回路、136;
サージ波形記録回路、14b;サージ情報送信手段、1
41;中央処理ユニット、142;通信インターフェイ
ス、2;親局、21;通信インターフェイス、21a;
子局位置情報受信手段、21b;子局サージ情報受信手
段、22;地図情報記憶手段、221;CD−ROMド
ライブ、222;補助記憶装置、23;中央処理装置、
23a;送配電線路図情報作成手段、23b;故障区間
特定手段、23c;故障位置特定手段、24;送配電線
路図情報出力手段、241;CRT、242;プリン
タ、25;キーボード(入力手段)。
1; slave station; 11; GPS receiving means; 111; GPS antenna; 112; GPS receiver;
1; Oscillation circuit; 122; Reference clock; 123; Time synchronization correction circuit; 13; Surge detection means; 131; ZCT (zero-phase current transformer); 132; Filter circuit; 133; Surge signal detection circuit; Time holding circuit, 136;
Surge waveform recording circuit, 14b; surge information transmitting means, 1
41; central processing unit, 142; communication interface, 2; master station, 21; communication interface, 21a;
Slave station position information receiving means, 21b; slave station surge information receiving means, 22; map information storage means, 221; CD-ROM drive, 222; auxiliary storage device, 23;
23a: Transmission and distribution line map information creating means, 23b; Failure section identification means, 23c; Failure position identification means, 24; Transmission and distribution line map information output means, 241; CRT, 242; Printer, 25; Keyboard (input means).

フロントページの続き Fターム(参考) 2G033 AA01 AB01 AC02 AD04 AD14 AD18 AE01 AF02 AG13 AG14 5G064 AA01 AB03 AC01 AC03 BA02 BA12 CB19 DA03 Continued on front page F-term (reference) 2G033 AA01 AB01 AC02 AD04 AD14 AD18 AE01 AF02 AG13 AG14 5G064 AA01 AB03 AC01 AC03 BA02 BA12 CB19 DA03

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 送配電線路に設置され、該送配電線路の
いずれかの箇所で発生した故障によるサージ電圧又はサ
ージ電流の検出時刻を標定する子局であって、 少なくとも現在時刻から一定時間さかのぼった時刻まで
の上記送配電線路の過去の電圧又は電流の波形を記憶
し、更新しており、 サージを認定するための基準レベルであってノイズレベ
ルよりも高く設定されるサージ認定レベルと、サージ波
形の開始点を定めるための基準レベルであって該サージ
認定レベルよりも低く設定されるサージ波形開始レベル
と、を記憶しており、 上記送配電線路の電圧又は電流が上記サージ認定レベル
を超えた場合に、上記記憶している波形を該サージ認定
レベルを超えた時刻からさかのぼって該電圧又は電流が
最初に上記サージ波形開始レベルを超えた時刻をサージ
検出時刻とすることを特徴とする子局。
Claims 1. A slave station installed in a transmission and distribution line and for detecting a detection time of a surge voltage or a surge current due to a failure occurring in any part of the transmission and distribution line, wherein the slave station is located at least a predetermined time from the current time. It stores and updates the past voltage or current waveforms of the above transmission and distribution lines up to the specified time, and is a reference level for qualifying surges and a surge certification level set higher than the noise level. A surge waveform start level, which is a reference level for determining a starting point of a waveform and is set lower than the surge certification level, and the voltage or current of the transmission / distribution line exceeds the surge certification level. In this case, the voltage or current first exceeds the surge waveform start level by going back from the time when the stored waveform exceeds the surge certification level. A slave station wherein the time is a surge detection time.
【請求項2】 送配電線路に配された子局において、該
送配電線路のいずれかの箇所で発生した故障によるサー
ジ電圧又はサージ電流の検出時刻を標定するためのサー
ジ検出時刻標定方法であって、 サージを認定するための基準レベルであってノイズレベ
ルよりも高く設定されるサージ認定レベルと、サージ波
形の開始点を定めるための基準レベルであって該サージ
認定レベルよりも低く設定されるサージ波形開始レベル
と、を定めておき、 少なくとも現在時刻から一定時間さかのぼった時刻まで
の上記送配電線路の過去の電圧又は電流の波形を記憶
し、更新し、 上記送配電線路の電圧又は電流が上記サージ認定レベル
を超えた場合に、上記記憶している波形を該サージ認定
レベルを超えた時刻からさかのぼって該電圧又は電流が
最初に上記サージ波形開始レベルを超えた時刻をサージ
検出時刻とするサージ検出時刻標定方法。
2. A surge detection time locating method for locating a surge voltage or a surge current detection time due to a fault occurring in any part of the transmission and distribution line in a slave station disposed on the transmission and distribution line. The surge qualification level, which is a reference level for qualifying surge and is set higher than the noise level, and the reference level for determining the start point of the surge waveform, which is set lower than the surge qualification level The surge waveform start level is defined, and the waveform of the past voltage or current of the transmission and distribution line at least from a current time to a time that is a predetermined time earlier is stored and updated, and the voltage or current of the transmission and distribution line is When the surge certification level is exceeded, the stored waveform is traced back from the time when the surge certification level is exceeded, and the voltage or current is first set to the above-mentioned level. A surge detection time locating method in which the time when the surge waveform start level is exceeded is set as the surge detection time.
【請求項3】 上記過去の電圧又は電流の波形は、一定
時間ごとにサンプリングされる離散値として記憶し、上
記サージ認定レベルを超えた時刻からさかのぼってサン
プル値が最初に上記サージ波形開始レベルを下回ったサ
ンプリング時刻の次のサンプリング時刻を、上記サージ
検出時刻とする請求項2記載のサージ検出時刻標定方
法。
3. The waveform of the past voltage or current is stored as a discrete value sampled at regular time intervals, and the sampled value firstly exceeds the surge waveform start level from the time when the surge certification level is exceeded. 3. The surge detection time locating method according to claim 2, wherein a sampling time subsequent to the sampling time lower than the sampling time is set as the surge detection time.
【請求項4】 送配電線路に設置されサージ検出時刻の
情報を親局(2)に送信する子局(1)と、該サージ検
出時刻の情報をもとに故障点を標定する親局(2)と、
を有する故障点標定システムであって、 上記子局(1)は、少なくとも現在時刻から一定時間さ
かのぼった時刻までの上記送配電線路の過去の電圧又は
電流の波形を記憶し、更新しており、 サージを認定するための基準レベルであってノイズレベ
ルよりも高く設定されるサージ認定レベルと、サージ波
形の開始点を定めるための基準レベルであって該サージ
認定レベルよりも低く設定されるサージ波形開始レベル
と、を記憶しており、 上記送配電線路の電圧又は電流が上記サージ認定レベル
を超えた場合に、上記記憶している波形を該サージ認定
レベルを超えた時刻からさかのぼって該電圧又は電流が
最初に上記サージ波形開始レベルを超えた時刻をサージ
検出時刻とし、該サージ検出時刻を通信網を通じて上記
親局(2)に送信することを特徴とする故障点標定シス
テム。
4. A slave station (1) installed on a transmission / distribution line to transmit information of a surge detection time to a master station (2), and a master station (1) for locating a failure point based on the information of the surge detection time. 2)
Wherein the slave station (1) stores and updates a past voltage or current waveform of the power transmission and distribution line at least from a current time to a time that is a predetermined time earlier, A surge qualification level that is set to be higher than the noise level, which is a reference level for qualifying a surge, and a surge waveform that is set to be lower than the surge qualification level, which is a reference level for determining the start point of the surge waveform When the voltage or current of the transmission / distribution line exceeds the surge certification level, the stored waveform is traced back from the time when the surge certification level is exceeded. A time at which the current first exceeds the surge waveform start level is set as a surge detection time, and the surge detection time is transmitted to the master station (2) through a communication network. Fault point location system according to claim.
【請求項5】 上記親局(2)は、上記送配電線路網の
故障点を挟む一対の子局のうちの一の子局の上記サージ
検出時刻t1と、他の子局の上記サージ検出時刻t2
と、サージの伝播速度vと、該子局間の送配電線路の長
さLと、をもとに、該一の子局から上記故障点までの送
配電線路上の距離L1を、式L1=(L+(t1−t
2)×v)/2から求めるものである請求項4記載の故
障点標定システム。
5. The master station (2) is configured to detect the surge detection time t1 of one of a pair of slave stations sandwiching a fault point of the transmission and distribution line network and the surge detection time of another slave station. Time t2
And the transmission speed v of the surge and the length L of the transmission / distribution line between the slave stations, the distance L1 on the transmission / distribution line from the one slave station to the failure point is calculated by the equation L1. = (L + (t1-t)
5. The fault point locating system according to claim 4, wherein the value is obtained from 2) × v) / 2.
【請求項6】 上記親局(2)は、上記送配電線路網の
電源端に最も近い子局の上記サージ検出時刻t1と、送
配電線路網の末端の子局の上記サージ検出時刻t2と、
サージの伝播速度vと、該子局間の送配電線路の長さL
と、をもとに、該電源端側の子局から上記故障点までの
送配電線路上の距離L1を、式L1=(L+(t1−t
2)×v)/2から求め、 更に、上記計算で得られた故障点位置を挟む一対の子局
のうちの一の子局の上記サージ検出時刻t3と、他の子
局の上記サージ検出時刻t4と、サージの伝播速度v
と、該一対の子局間の送配電線路の長さL’と、をもと
に、該一の子局から上記故障点までの送配電線路上の距
離L3を、式L3=(L’+(t3−t4)×v)/2
から求めるものである請求項4記載の故障点標定システ
ム。
6. The master station (2) receives the surge detection time t1 of the slave station closest to the power supply end of the transmission and distribution network and the surge detection time t2 of the slave station at the end of the transmission and distribution network. ,
Surge propagation speed v and length L of transmission and distribution line between the slave stations
And the distance L1 on the transmission and distribution line from the slave station on the power supply end side to the above-mentioned fault point is expressed by the equation L1 = (L + (t1-t)
2) × v) / 2, and furthermore, the surge detection time t3 of one of the pair of slave stations sandwiching the fault point position obtained by the above calculation, and the surge detection time of the other slave station. At time t4, the surge propagation speed v
And the length L ′ of the transmission / distribution line between the pair of slave stations, the distance L3 on the transmission / distribution line from the one slave station to the failure point is calculated by the equation L3 = (L ′). + (T3−t4) × v) / 2
The fault locating system according to claim 4, which is obtained from the following.
【請求項7】 上記過去の電圧又は電流の波形は、一定
時間ごとにサンプリングされる離散値として記憶されて
おり、該サージ認定レベルを超えた時刻からさかのぼっ
てサンプル値が最初に上記サージ波形開始レベルを下回
ったサンプリング時刻の次のサンプリング時刻を、上記
サージ検出時刻とする請求項4乃至6のいずれかに記載
の故障点標定システム。
7. The waveform of the past voltage or current is stored as a discrete value sampled at regular time intervals, and the sampled value is firstly measured from a time exceeding the surge certification level. 7. The fault point locating system according to claim 4, wherein a sampling time subsequent to the sampling time lower than the level is set as the surge detection time.
【請求項8】 送配電線路に配された2以上の子局にお
けるサージ検出時刻の情報をもとに故障点を標定する故
障点標定方法であって、(1)送配電線路に配された子
局についてそれぞれ、サージを認定するための基準レベ
ルであってノイズレベルよりも高く設定されるサージ認
定レベルと、サージ波形の開始点を定めるための基準レ
ベルであって該サージ認定レベルよりも低く設定される
サージ波形開始レベルと、を定めておき、 少なくとも現在時刻から一定時間さかのぼった時刻まで
の上記送配電線路の過去の電圧又は電流の波形を記憶
し、更新し、 上記送配電線路の電圧又は電流が上記サージ認定レベル
を超えた場合に、上記記憶している波形を該サージ認定
レベルを超えた時刻からさかのぼって該電圧又は電流が
最初に上記サージ波形開始レベルを超えた時刻をサージ
検出時刻とし、(2)上記送配電線路網の一の子局の上
記サージ検出時刻t1と、他の一の子局の上記サージ検
出時刻t2と、サージの伝播速度vと、該子局間の送配
電線路の長さLと、をもとに、該一の子局から上記故障
点までの送配電線路上の距離L1を、式L1=(L+
(t1−t2)×v)/2から求めることを特長とする
故障点標定方法。
8. A fault point locating method for locating a fault point based on information on a time of surge detection in two or more slave stations arranged on a transmission and distribution line, comprising: Each of the slave stations is a reference level for certifying a surge and a surge qualification level set higher than the noise level, and a reference level for determining a starting point of the surge waveform and lower than the surge qualification level. The surge waveform start level to be set is determined, and the waveform of the past voltage or current of the transmission and distribution line at least from the current time to a time that is a predetermined time earlier is stored and updated, and the voltage of the transmission and distribution line is updated. Or, when the current exceeds the surge qualification level, the stored waveform is traced back from the time when the surge qualification level is exceeded, and the voltage or current is first set to the surge qualification level. The time exceeding the start level is defined as a surge detection time. (2) The surge detection time t1 of one slave station of the transmission and distribution line network, the surge detection time t2 of another slave station, and propagation of surge Based on the speed v and the length L of the transmission / distribution line between the slave stations, a distance L1 on the transmission / distribution line from the one slave station to the failure point is calculated by the equation L1 = (L +
A fault point locating method characterized by being obtained from (t1−t2) × v) / 2.
JP05887899A 1998-12-28 1999-03-05 Slave station, surge detection time locating method, failure location system, and failure location method Expired - Fee Related JP3527432B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP05887899A JP3527432B2 (en) 1999-03-05 1999-03-05 Slave station, surge detection time locating method, failure location system, and failure location method
TW088119508A TW475991B (en) 1998-12-28 1999-11-08 Fault point location system
US09/438,289 US6597180B1 (en) 1998-12-28 1999-11-12 Fault point location system
EP99309205A EP1016869B1 (en) 1998-12-28 1999-11-18 Fault point location system
DE69939809T DE69939809D1 (en) 1998-12-28 1999-11-18 Fault location determination system
CNB991265068A CN1140811C (en) 1998-12-28 1999-12-22 Fault locating system
AU65528/99A AU769346B2 (en) 1998-12-28 1999-12-24 Fault point location system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05887899A JP3527432B2 (en) 1999-03-05 1999-03-05 Slave station, surge detection time locating method, failure location system, and failure location method

Publications (2)

Publication Number Publication Date
JP2000258487A true JP2000258487A (en) 2000-09-22
JP3527432B2 JP3527432B2 (en) 2004-05-17

Family

ID=13097027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05887899A Expired - Fee Related JP3527432B2 (en) 1998-12-28 1999-03-05 Slave station, surge detection time locating method, failure location system, and failure location method

Country Status (1)

Country Link
JP (1) JP3527432B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7696981B2 (en) 2003-08-26 2010-04-13 Behavior Tech Computer Corp. Wireless human input device
CN102707190A (en) * 2012-01-10 2012-10-03 成都唐源电气有限责任公司 Direct-current-side short-circuit fault distance measuring device and method of metro tractive power supply system
JP2015038445A (en) * 2013-08-19 2015-02-26 ニシム電子工業株式会社 Power transmission line fall point orientation system
JP2020522938A (en) * 2017-06-02 2020-07-30 オミクロン・エナジー・ソリューションズ・ゲーエムベーハーOmicron Energy Solutions Gmbh Testing the energy transmission network and identifying faults in the energy transmission cable

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5414586B2 (en) * 2010-03-19 2014-02-12 公益財団法人鉄道総合技術研究所 Failure location system, failure location system, failure location method, and failure location program

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7696981B2 (en) 2003-08-26 2010-04-13 Behavior Tech Computer Corp. Wireless human input device
CN102707190A (en) * 2012-01-10 2012-10-03 成都唐源电气有限责任公司 Direct-current-side short-circuit fault distance measuring device and method of metro tractive power supply system
JP2015038445A (en) * 2013-08-19 2015-02-26 ニシム電子工業株式会社 Power transmission line fall point orientation system
JP2020522938A (en) * 2017-06-02 2020-07-30 オミクロン・エナジー・ソリューションズ・ゲーエムベーハーOmicron Energy Solutions Gmbh Testing the energy transmission network and identifying faults in the energy transmission cable
US11287461B2 (en) 2017-06-02 2022-03-29 Omicron Energy Solutions Gmbh Testing an energy transmission network and localizing a fault location in an energy transmission cable
JP7061629B2 (en) 2017-06-02 2022-04-28 オミクロン・エナジー・ソリューションズ・ゲーエムベーハー Testing the energy transmission network and identifying faulty points in the energy transmission cable

Also Published As

Publication number Publication date
JP3527432B2 (en) 2004-05-17

Similar Documents

Publication Publication Date Title
AU769346B2 (en) Fault point location system
TW526335B (en) Fault point location system
JP2008070177A (en) Test system for protection relay device
CN113064024B (en) Cable fault distance measurement method and device
CN111433616B (en) Parametric traveling wave based fault location for power transmission lines
CN109564256B (en) Travelling wave based method for locating a fault in a transmission line and device for the method
JP2000258487A (en) Slave station, surge detection time evaluation, failure point locating system, and failure point locating method
JP4564615B2 (en) Fault location system
JP6449663B2 (en) Fault location method and fault location system
CN213336716U (en) Multifunctional optical cable detection device
JP4373518B2 (en) Reference time correction method and fault location system
CN111175609B (en) Power distribution network line fault positioning method and system
JPH10319082A (en) Failure point locating method and failure point locating system of dc railway feeder circuit
JP2002181877A (en) Waveform recording device and accident point deciding system
CN110646689A (en) Traveling wave distance measurement method and device adopting same-source double-sampling mode
CN108369254B (en) Method of locating a fault in a power transmission medium
JP3377862B2 (en) Hot-line / dead-line determination method and apparatus for communication cable
JP4448570B2 (en) Disconnection detection system and disconnection point location system
JP2580738B2 (en) Fault location device
JPH0862277A (en) Apparatus for locating fault point of transmission line
US11867742B2 (en) Method and measuring assembly for detecting faults on electrical lines
JP4448568B2 (en) Fault location system
US20210109050A1 (en) Crack Detection System and Crack Detection Method
JP2516422B2 (en) Communication line fault location search device
US20020053914A1 (en) Arc location

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040219

R150 Certificate of patent or registration of utility model

Ref document number: 3527432

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees