JP2000258214A - Ultrasonic flowmeter - Google Patents

Ultrasonic flowmeter

Info

Publication number
JP2000258214A
JP2000258214A JP11065805A JP6580599A JP2000258214A JP 2000258214 A JP2000258214 A JP 2000258214A JP 11065805 A JP11065805 A JP 11065805A JP 6580599 A JP6580599 A JP 6580599A JP 2000258214 A JP2000258214 A JP 2000258214A
Authority
JP
Japan
Prior art keywords
time
wave
transmission
arrival
reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11065805A
Other languages
Japanese (ja)
Other versions
JP2000258214A5 (en
JP3958886B2 (en
Inventor
Yukio Kimura
幸雄 木村
Toru Hiroyama
徹 廣山
Noriyuki Nabeshima
徳行 鍋島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Tokei Denki Co Ltd
Toho Gas Co Ltd
Original Assignee
Aichi Tokei Denki Co Ltd
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Tokei Denki Co Ltd, Toho Gas Co Ltd filed Critical Aichi Tokei Denki Co Ltd
Priority to JP06580599A priority Critical patent/JP3958886B2/en
Publication of JP2000258214A publication Critical patent/JP2000258214A/en
Publication of JP2000258214A5 publication Critical patent/JP2000258214A5/ja
Application granted granted Critical
Publication of JP3958886B2 publication Critical patent/JP3958886B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the measuring accuracy by eliminating the error of a flowmeter due to mistake of the detection point of a received wave with keeping a high resolution of the propagation time. SOLUTION: Transducers usable for transmission and receiving are disposed with a remove L at the upstream and the downstream in a fluid. Transmitting and receiving are repeated n times respectively in the forward and reverse directions and the arrival times from the first transmission to the n-th reception are measured together. In the first step, the arrival time t11 is measured at a detection point where a third wave exceeding VTH crosses the zero. In the second step, a zero cross point just after t11 minus a constant α is detected and t12 is measured. Similarly t13,... are measured to obtain the propagation time, without using those values each greatly changed from the previous measured value, and the flow velocity and the flow rate are calculated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は流体中の超音波の伝
播方向を、上流から下流(順方向)と下流から上流(逆
方向)の両方について測定して流速を算出し、さらに流
量を求める超音波流量計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention measures the propagation direction of ultrasonic waves in a fluid from both upstream to downstream (forward direction) and downstream to upstream (reverse direction), calculates the flow velocity, and further calculates the flow rate. It relates to an ultrasonic flowmeter.

【0002】[0002]

【従来の技術】測定原理の一例として、図5に示すよう
に、流体中に距離Lを離して流管3の上流と下流に配置
した1組の超音波送受波器の一方の送受波器1から他方
の送受波器2への順方向伝播時間t1 は、静止流体中の
超音波の音速をC、流体の流れの速さをVとすると、 t1 =L/(C+V) ・・・(1) となる。
2. Description of the Related Art As an example of a measuring principle, as shown in FIG. 5, one of a pair of ultrasonic transducers disposed upstream and downstream of a flow tube 3 at a distance L in a fluid is used. forward propagation time t 1 from 1 to the other transducer 2, the ultrasonic speed of sound in static fluid C, and the rate of fluid flow and V, t 1 = L / ( C + V) ··・ (1)

【0003】また、送受波器2から送受波器1への逆方
向伝播時間t2 は、 t2 =L/(C−V) ・・・(2) となる。
[0003] backward propagation time t 2 from the transducer 2 to transducer 1 becomes t 2 = L / (C- V) ··· (2).

【0004】伝播時間t1 とt2 とから流速Vを、 V=(L/2){(1/t1 )−(1/t2 )} として求めていた。The flow velocity V is determined from the propagation times t 1 and t 2 as V = (L / 2) {(1 / t 1 ) − (1 / t 2 )}.

【0005】上述の測定原理において、送信側の送受波
器からの超音波が受信側の送受波器に到達する時期、つ
まり到達ポイントを特定する受信検知の方法として、特
定波のゼロクロスポイントを検知するようにしたものが
ある。
In the above-described measurement principle, a zero-cross point of a specific wave is detected as a method of detecting when ultrasonic waves from the transmitter / receiver on the transmitting side reach the transmitter / receiver on the receiving side, that is, as a method of detecting reception. There are things that I try to do.

【0006】図6は発信のタイミングを示す発信駆動信
号と受信波を示している。実際の受信波は非常に小さ
く、先ず増幅される。同図の受信波は増幅後の波形を示
している。
FIG. 6 shows a transmission drive signal indicating a transmission timing and a reception wave. The actual received wave is very small and is first amplified. The received wave in the figure shows the waveform after amplification.

【0007】aが到達点で、徐々に振幅が大きくなる。
その後最大振幅となり徐々に小さくなる。ところが到達
点aはノイズに隠れて検知できない。そこで、次のよう
な方法が行われている。
The amplitude is gradually increased when a is reached.
Thereafter, the amplitude reaches the maximum and gradually decreases. However, the arrival point a is hidden by noise and cannot be detected. Therefore, the following method is performed.

【0008】ノイズより十分大きな基準電圧レベルとし
てのしきい値VTHを決め、このレベルに最初に達した
波、例えば同図の第3波がb点でしきい値に達した後ゼ
ロレベルを通るゼロクロスポイントcを検知して受信検
知とする方法である。
A threshold V TH as a reference voltage level sufficiently larger than noise is determined, and a wave which first reaches this level, for example, a zero level after the third wave in FIG. This is a method of detecting a passing zero cross point c and performing reception detection.

【0009】しきい値VTHは常に何番目かのある特定の
波(例えば第3波)のゼロクロスポイントを検知するよ
うに定めてあり、実際の伝播時間tは、a点からc点ま
での時間τを予め求めて記憶しておき、測定した到達時
間t+τから時間τを減算することにより求めている。
The threshold value V TH is set so as to always detect the zero cross point of some specific wave (for example, the third wave), and the actual propagation time t is calculated from the point a to the point c. The time τ is obtained and stored in advance, and is obtained by subtracting the time τ from the measured arrival time t + τ.

【0010】送信から受信までの順方向伝播時間や逆方
向伝播時間を求めるのに、単純に測定した到達時間をt
+τから時間τを減するのではなく、伝播時間計測の分
解能を上げるために、受信と同時に次の送信を行うこと
を複数回(n−1回)繰り返すことにより、一方向例え
ば順方向の送受信をn回連続して繰り返して、最初(第
1回目)の順方向送信から最後(第n回目)の受信まで
の時間nt1 (厳密には到達時間のn倍のnt1 +n
τ)を測定し、次に他方向例えば逆方向への送受信を同
様にしてn回連続して繰り返して、最初の逆方向送信か
ら最後(第n回目)の受信までの時間nt2 (厳密には
到達時間のn倍のnt2 +nτ)を測定し、これらの各
方向の複数回の送受信で得た測定値から各方向の伝播時
間を計算して流速さらに流量を求める超音波流量計も特
開平10−332452号公報で公知である。
In order to calculate the forward propagation time and the backward propagation time from transmission to reception, the simply measured arrival time is calculated as t
In order to increase the resolution of the propagation time measurement, instead of subtracting the time τ from + τ, the next transmission is performed simultaneously with the reception a plurality of times (n−1 times), so that transmission and reception in one direction, for example, in the forward direction Is repeated n times in succession, and a time nt 1 from the first (first) forward transmission to the last (n-th) reception (strictly, nt 1 + n times n times the arrival time)
τ) is measured, and then transmission and reception in the other direction, for example, in the reverse direction, are repeated n times in the same manner, and the time nt 2 (strictly speaking) from the first reverse transmission to the last (n-th) reception Ultrasonic flowmeters measure n times the arrival time (nt 2 + nτ), calculate the propagation time in each direction from the measurement values obtained by multiple transmissions and receptions in each direction, and obtain the flow velocity and flow rate. It is known from Japanese Unexamined Patent Publication No. Hei 10-332452.

【0011】[0011]

【発明が解決しようとする課題】ところが、受信波は必
ずしも図6のようなきれいな波形とはならない。常にノ
イズが混入したり、また流体の流れによって波形が変動
することもある。そのために、狙った特定波(例えば第
3波)ではなく、その前或いはその後ろの波のゼロクロ
スポイントを間違って検出してしまうと、測定した到達
時間は送受波器を構成している超音波振動子の共振周波
数の1周期分の時間だけ違う値となり、この測定値をそ
のまま使用すると誤った流速さらに流量を導くことにな
る。
However, the received wave does not always have a clean waveform as shown in FIG. Noise may always be mixed in, or the waveform may fluctuate due to the flow of the fluid. Therefore, if the zero cross point of the wave before or after the target specific wave (for example, the third wave) is incorrectly detected, the measured arrival time is determined by the ultrasonic wave constituting the transducer. The value differs by one period of the resonance frequency of the vibrator, and if this measured value is used as it is, an erroneous flow rate and flow rate will be derived.

【0012】そこで、狙った特定波を正確に捉えたかど
うかを検知するエラー検知が求められている。各方向に
つき、それぞれ1回の送受信で測定する従来技術の前者
では、波を間違って検出すると、正確に検出した場合に
比較して、大きな割合の誤差が生じるため、その前回の
測定値と比較する等の方法でエラー検知を容易に実現で
きる可能性がある。
[0012] Therefore, there is a need for error detection for detecting whether or not an intended specific wave has been accurately captured. In the former case, in which measurement is performed once per transmission and reception in each direction, if a wave is detected erroneously, a large percentage of errors will occur as compared to the case where the wave is detected accurately, and therefore, comparison with the previous measurement value is performed. There is a possibility that error detection can be easily realized by such a method.

【0013】ところが、前記従来技術の後者では、例え
ばn回のうち狙った波を1回外した場合の測定値は、n
回のすべてを正確に検知した場合の測定値と比較してそ
の差が比率的にみて少ないため、エラー検知が容易でな
く、流量計の測定精度を損なう大きな要因となってい
た。
However, in the latter case of the prior art, for example, when the target wave is excluded once out of n times, the measured value is n
Since the difference is relatively small in comparison with the measured value when all the times are accurately detected, error detection is not easy, which has been a major factor impairing the measurement accuracy of the flowmeter.

【0014】そこで、本発明は、前記従来技術の後者に
おいて、狙った特定波を正しく捉えられなかったことを
検出し、そのときの測定値を不採用とすることで、流量
計の測定精度の低下を防止できる超音波流量計を提供す
ることを目的とする。
The present invention, in the latter case of the prior art, detects that the specified specific wave cannot be correctly caught, and rejects the measured value at that time, thereby reducing the measurement accuracy of the flow meter. It is an object of the present invention to provide an ultrasonic flowmeter capable of preventing a drop.

【0015】[0015]

【課題を解決するための手段】前記目的を達成するため
に、本発明は、送信側にも受信側にもはたらく超音波送
受波器を少なくとも一対設け、流体の流れの中を上流か
ら下流の順方向及び下流から上流の逆方向に超音波の送
受信を行い、その各方向の到達時間より流速さらに流量
を求める超音波流量計で、かつ、各方向毎に、先ず一方
の送受波器を送信側として送信し、他方の受信側送受波
器の信号を入力とする受信波検知部が受信波を検知する
と再び送信側送受波器を発信させて送信し、これを複数
回繰り返すように構成し、各方向毎に最初の送信から複
数回目の受信までの時間、つまり到達時間の複数倍をま
とめて測定し、その測定結果から順方向と逆方向の伝播
時間を求める超音波流量計において、受信波検知部は、
各方向毎に、第1回目の受信は1つの発信による一群の
受信波のうち特定番目と判断した波のゼロクロスポイン
トを到達ポイントとして受信波を検知し、第2回目以後
前記複数回目までは、前回の送信から到達ポイントまで
の時間から一定時間を減じた時間だけその回の送信時か
ら経過した時以後の最初のゼロクロスポイントを到達ポ
イントとして受信波を検知する機能を有し、順方向につ
いて得た伝播時間と逆方向について得た伝播時間の和あ
るいは逆数和を演算する演算機能と、この演算結果を記
憶する記憶機能と、最新の和あるいは逆数和の値をそれ
以前の記憶していた和あるいは逆数和の値と比較する比
較機能とを具備し、前記両値の差がほとんど変動しない
ときは、測定成功として到達時間の測定値を用いて流速
さらに流量を求めることを特徴とする超音波流量計であ
る。
In order to achieve the above object, the present invention provides at least a pair of ultrasonic transducers that work on both a transmitting side and a receiving side, and that is provided in a fluid flow from upstream to downstream. An ultrasonic flowmeter that transmits and receives ultrasonic waves in the forward and reverse directions from the downstream to the upstream, determines the flow velocity and the flow rate from the arrival time in each direction, and transmits one transducer first for each direction. When the received wave detector which receives the signal of the other receiving side transducer detects a received wave, the transmitting side transducer is transmitted again and transmitted, and this is repeated a plurality of times. In an ultrasonic flowmeter that collectively measures the time from the first transmission to a plurality of receptions in each direction, that is, a multiple of the arrival time for each direction, and calculates the forward and reverse propagation times from the measurement results, The wave detector is
For each direction, the first reception detects a received wave as a point of arrival at a zero cross point of a wave determined to be a specific one of a group of received waves from one transmission, and from the second time to the plurality of times, It has a function to detect the received wave with the first zero cross point after the time when the transmission time has elapsed from the time of the previous transmission to the arrival point minus a certain time as the arrival point, and obtains in the forward direction. Calculation function for calculating the sum or reciprocal sum of propagation times obtained in the opposite direction to the propagation time obtained, a storage function for storing this calculation result, and a sum for storing the latest sum or reciprocal sum value before that Alternatively, a comparison function for comparing with the value of the reciprocal sum is provided, and when the difference between the two values hardly fluctuates, the flow rate and the flow rate are obtained using the measured value of the arrival time as measurement success. It is an ultrasonic flowmeter according to claim.

【0016】第1回目の送信からその受信までの時間が
t11であった場合、2回目の受信波が到達するのは2
回目の送信(第1の受信とともに行われる)後、およそ
t11たったところである。したがって、その点に最も
近いゼロクロスポイントを受信検知点として良い。3回
目の送受信に関しても同様で、2回目の送受信の到達時
間t12を用いて3回目の受信点を予想すればよい。以
下同じである。
If the time from the first transmission to the reception is t11, the second reception wave arrives at 2
It is about t11 after the second transmission (which is performed together with the first reception). Therefore, the zero cross point closest to that point may be set as the reception detection point. The same applies to the third transmission / reception, and the third reception point may be predicted using the arrival time t12 of the second transmission / reception. The same applies hereinafter.

【0017】本発明によれば第2回目以降の受信は前回
の送信から到達ポイントまでの時間から一定時間を減じ
た時間がその回の送信から経過した時以降の最初のゼロ
クロスポイントを到達ポイントとしていて、以後の受信
も直前の到達時間から一定時間を引いた時間が送信より
経過後の最初のゼロクロスポイントを到達ポイントとす
るようにしている。
According to the present invention, for the second and subsequent receptions, the first zero-cross point after the time when a certain time has been subtracted from the time from the previous transmission to the arrival point has elapsed since the current transmission is set as the arrival point. In the subsequent reception, the first zero-cross point after the transmission has elapsed since the time obtained by subtracting a predetermined time from the immediately preceding arrival time is set as the arrival point.

【0018】こうすることで、1回目の受信で狙った波
を捉えることができれば、その後のn−1回の受信でも
正しく狙った波を捉えることができる。本発明では、狙
った波を正しく捉えた測定と正しく捉えられなかった測
定で1到達時間に対し1周期の差が生じることから、簡
単に間違った測定を判断して、間違った測定結果を不採
用とすることにより誤差要因としないようにする。
In this way, if the target wave can be captured in the first reception, the target wave can be correctly captured in the subsequent (n-1) receptions. According to the present invention, a difference of one period with respect to one arrival time occurs between the measurement in which the target wave is correctly captured and the measurement in which the target wave is not correctly captured, so that a wrong measurement can be easily determined and a wrong measurement result can be determined. By adopting it, it will not be an error factor.

【0019】順方向と逆方向のそれぞれの場合について
複数回分の到達時間をまとめて測定した測定値から順方
向と逆方向の各伝播時間t1 ,t2 を算出する。これら
の伝播時間t1 ,t2 は、距離L、音速C及び流速Vと
前記(1)(2)式の関係があるので、両伝播時間t1
とt2 の和は、 t1 +t2 =2LC/(C2 −V2 ) となる。そして、C≫Vであるから、上式は、 t1 +t2 ≒2L/C ・・・(3) となる。
The propagation times t 1 and t 2 in the forward and reverse directions are calculated from the measured values obtained by measuring the arrival times for the forward and backward directions a plurality of times. These propagation times t 1, t 2 is a distance L, there is a relationship between the sound velocity C and the flow velocity V (1) (2) wherein both the propagation time t 1
The sum of t 2 becomes t 1 + t 2 = 2LC / (C 2 -V 2). Then, since C≫V, the above equation becomes t 1 + t 2 ≒ 2L / C (3).

【0020】また、両伝播時間の逆数和は、 1/t1 +1/t2 =(C+V)/L+(C−V)/L =2C/L ・・・(4) となる。The reciprocal sum of the two propagation times is 1 / t 1 + 1 / t 2 = (C + V) / L + (C−V) / L = 2C / L (4)

【0021】(3)(4)式で示すように、両伝播時間
の和と、逆数和は流速Vの影響を受けない。温度変化が
小さくて静止流体中の音速Cが殆ど変化しない短時間の
間では一定となる。
As shown by equations (3) and (4), the sum of the two propagation times and the reciprocal sum are not affected by the flow velocity V. It is constant during a short time when the temperature change is small and the sound speed C in the stationary fluid hardly changes.

【0022】したがって、流速が変わらない比較的短時
間の間に行った順・逆方向の測定から得た順方向と逆方
向の伝播時間t1 ,t2 の和あるいは逆数の和を監視す
ることで受信波の特定波のエラー検知を行う。
Therefore, it is necessary to monitor the sum of the forward and reverse propagation times t 1 and t 2 or the sum of the reciprocals obtained from the forward and backward measurements performed during a relatively short time period in which the flow velocity does not change. Performs error detection of a specific wave of the received wave.

【0023】[0023]

【発明の実施の形態】次に本発明の好ましい実施の形態
を図面の実施例に基いて説明する。図1は実施例の全体
構成である。受信波検知部について図2に詳しく示して
説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will now be described with reference to the drawings. FIG. 1 shows the overall configuration of the embodiment. The reception wave detection unit will be described with reference to FIG.

【0024】送受波器1,2は超音波振動子で、送信に
も受信にも使用できる。両送受波器は流体中を上流から
下流及び下流から上流への超音波の送受を行う。受信波
検知部4は受信側の送受波器、例えば2が接続され受信
波を検知すると受信波検知信号を出力する。送波器駆動
部5はコントロール部6より第1送信指令信号を受ける
と送信側の送受波器、例えば1をまず駆動し、その後は
受信波検知部4より受信波検知信号を受ける度に駆動す
る。但し、第1のカウンタ7より第n受信波検知信号を
受けると、それ以後は新たに第1送信指令信号を受ける
までは駆動を停止する。
The transducers 1 and 2 are ultrasonic transducers and can be used for both transmission and reception. The two transducers transmit and receive ultrasonic waves in the fluid from upstream to downstream and from downstream to upstream. The reception wave detection unit 4 outputs a reception wave detection signal when a reception side transducer, for example, 2 is connected and detects a reception wave. Upon receiving the first transmission command signal from the control unit 6, the transmitter driving unit 5 first drives the transmitter / receiver, for example, 1 on the transmission side, and thereafter drives every time a received wave detection signal is received from the received wave detection unit 4. I do. However, when the n-th received wave detection signal is received from the first counter 7, the driving is stopped thereafter until a new first transmission command signal is received.

【0025】第1のカウンタ7は受信波検知部4からの
受信波検知信号をカウントし、n番目の受信波検知信号
を出力する。このカウンタ7はコントロール部6よりの
第1送信指令信号でリセットされるようになっている。
第2のカウンタ8は第1送信指令信号から第n受信波検
知信号までの時間を測定する。その時間(カウント値)
はコントロール部6が読み取る。実施例では第1送信指
令信号でカウント値がゼロクリアされ、カウントを開始
するように構成されている。
The first counter 7 counts the reception wave detection signal from the reception wave detector 4 and outputs the nth reception wave detection signal. The counter 7 is reset by a first transmission command signal from the control unit 6.
The second counter 8 measures the time from the first transmission command signal to the nth received wave detection signal. The time (count value)
Is read by the control unit 6. In the embodiment, the count value is cleared to zero by the first transmission command signal, and the counting is started.

【0026】コントロール部6は一定間隔で送受切替え
信号を反転させて切替スイッチ9,10を切り替えるこ
とにより2つの送受波器1,2の役割の切り替えを行
う。各切り替え後、毎回切り替えによるノイズ等がおさ
まる時間をおいて、第1送信指令信号を出力する。そし
て、第n受信波検知信号を入力すると、カウンタ8の測
定値(カウント値)を読み取り、直前に行った反対向き
での測定値とを用いて、その間の流速さらに流量を演算
する。
The control section 6 switches the roles of the two transducers 1 and 2 by inverting the transmission / reception switching signal at regular intervals and switching the changeover switches 9 and 10. After each switching, a first transmission command signal is output at a time when noise or the like due to the switching is reduced. Then, when the n-th received wave detection signal is input, the measured value (count value) of the counter 8 is read, and the flow rate and the flow rate in the meantime are calculated using the immediately preceding measured value in the opposite direction.

【0027】図2は、前記受信波検知部4の、接続され
た送信側送受波器からの信号を増幅後の構成である。第
1送信指令信号が受信波検知部に入力されている。実施
例の場合、最初に基準電圧VTHを越えた波のゼロクロス
ポイントを到達ポイントとするよう構成されていて、な
おかつ第3波が最初にVTHを越えるように設定されてい
る。
FIG. 2 shows the configuration of the received wave detector 4 after amplifying the signal from the connected transmitting / receiving transducer. The first transmission command signal has been input to the received wave detector. In the case of the embodiment, the zero-cross point of the wave that first exceeds the reference voltage VTH is set as the arrival point, and the third wave is first set to exceed VTH .

【0028】比較部11が第3波を捉え、その出力がH
igh となると、この出力信号はスイッチ12を介してR
Sフリップフロップ(RSFF)13のRに入力され、その
出力QはLowになる。
The comparison unit 11 catches the third wave, and the output is H
igh, this output signal is passed through switch 12 to R
The signal is input to the R of the S flip-flop (RSFF) 13 and the output Q thereof becomes Low.

【0029】更に受信波がゼロクロスしたところでゼロ
クロス検知用比較器14より出力される信号がS入力に
入力され出力QはHigh となり、立ち上がりがエッジ検
知部15で検知され、受信波検知信号として出力され
る。この信号はRSFF16のS入力となっていてRSFF16
の出力QはHigh となり、スイッチ12はH側に切り替
わり、RSFF13のR入力へはデジタル比較記17のA=
B出力が入力されるようになる。
Further, when the received wave crosses zero, the signal output from the zero-cross detection comparator 14 is input to the S input, the output Q becomes High, the rising edge is detected by the edge detection unit 15, and the signal is output as a received wave detection signal. You. This signal is the S input of RSFF16
Becomes high, the switch 12 switches to the H side, and the R input of the RSFF 13 receives A =
The B output is input.

【0030】また、前記受信波検知信号は記憶器18の
ラッチ入力となっていて、この瞬間のカウント値t11
を記憶する(図3参照)。更に、受信波検知信号はOR
ゲート19を介してカウンタ20をリセットするよう構
成されていて(ラッチ後リセットする)、到達時間を記
憶器18が記憶するとリセットされ、次の到達時間の測
定に移るようになっている。
The received wave detection signal is a latch input of the storage unit 18, and the count value t11 at this instant is read.
Is stored (see FIG. 3). Further, the reception wave detection signal is OR
The counter 20 is configured to be reset via the gate 19 (reset after latching). When the arrival time is stored in the storage unit 18, the counter 20 is reset and the next arrival time is measured.

【0031】減算器21は記憶器18で記憶された値
(カウント値)がC入力として入力されていて、もう一
方に一定値αが入力されている。そして、C−α、即ち
t11−αがデジタル比較器17のB入力に出力されて
いる。
The value (count value) stored in the memory 18 is input to the subtractor 21 as a C input, and a constant value α is input to the other input. Then, C-α, that is, t11-α, is output to the B input of the digital comparator 17.

【0032】また、カウンタ20の出力がA入力として
デジタル比較器に入力されていて、そのABの入力が等
しくなると、A=B出力がHigh となる。カウンタ20
のカウントが進み、t11−αと等しくなると、A=B
出力がHigh となり、RSFF13の出力QはLowとなり次
のゼロクロスを待つ状態になる。
When the output of the counter 20 is input to the digital comparator as the A input, and when the inputs of the AB are equal, the A = B output becomes High. Counter 20
Is counted and becomes equal to t11−α, A = B
The output becomes High, the output Q of the RSFF 13 becomes Low, and waits for the next zero cross.

【0033】そして、実際にゼロクロスするとき、ゼロ
クロス検知用比較器14の出力によりRSFF13の出力Q
がHigh となり再び受信波検知信号が出力される。ここ
で、再びカウンタ20のカウント値t12が記憶器18
に記憶される。以下は同じである。
When the zero crossing actually occurs, the output Q of the RSFF 13 is determined by the output of the comparator 14 for zero cross detection.
Becomes High and the received wave detection signal is output again. Here, the count value t12 of the counter 20 is stored in the storage unit 18 again.
Is stored. The following is the same.

【0034】一定値αは超音波振動の約半周期弱の時間
とした。クロック発振器22はこの約半周期分を検知で
きる周波数でよく、精度もそれほど要求されない。ま
た、前記第2のカウンタ8用の基準クロック或いはその
分周したものも使用可能である。
The constant value α is set to a time period of less than about a half cycle of the ultrasonic vibration. The clock oscillator 22 may have a frequency capable of detecting about this half cycle, and does not require much accuracy. Further, a reference clock for the second counter 8 or a divided clock thereof can be used.

【0035】実施例は順・逆方向の伝播時間の逆数和を
監視するもので、コントロール部6の構成要素であるマ
イクロコンピュータがそれを行っている。その作用を図
4のフロー図で説明する。
In the embodiment, the reciprocal sum of the forward and backward propagation times is monitored, and the microcomputer which is a component of the control unit 6 performs this operation. The operation will be described with reference to the flowchart of FIG.

【0036】コントロール部6は第1のカウンタ7より
第n受信波検知信号が入力されるとカウンタ8のカウン
ト値より順逆の到達時間を得て、その逆数和Xを計算す
る(ステップ100)。
When the n-th received wave detection signal is input from the first counter 7, the control unit 6 obtains a forward / reverse arrival time from the count value of the counter 8, and calculates the reciprocal sum X (step 100).

【0037】この値は、正しい逆数和として記憶されて
いるXpと比較され(ステップ102)、その差が一定
値FTHより小さければ今回の順逆の測定は正しかったと
判定され、Xpは新たなXとして記憶される(ステップ
104)。こうすることにより温度変化による音速のゆ
っくりした変化に追従できる。
This value is compared with Xp stored as a correct reciprocal sum (step 102). If the difference is smaller than a fixed value F TH, it is determined that the current forward / reverse measurement was correct, and Xp is replaced by a new Xp. (Step 104). By doing so, it is possible to follow a slow change in sound speed due to a temperature change.

【0038】測定が正しかったと判定された場合、この
後、流速の演算が行われる。また、差が大きかった場合
は測定は失敗とする。この場合、測定をやり直しても良
いし、何回も測定するのが消費電流的に問題があれば再
測定は行わず前回値を採用することもできる。
If it is determined that the measurement was correct, the flow velocity is calculated thereafter. If the difference is large, the measurement fails. In this case, the measurement may be performed again, and if there is a problem with the current consumption that the measurement is performed many times, the previous value can be adopted without performing the re-measurement.

【0039】本実施例(図4)では本ルーチンで測定が
成功だったかエラー(失敗)だったかをセットし(ステ
ップ106,108)、続くルーチンでその判定結果に
基づき処理を実行するようにしている。
In this embodiment (FIG. 4), it is set whether the measurement was successful or an error (failure) in this routine (steps 106 and 108), and the subsequent routine executes the processing based on the result of the determination. I have.

【0040】実施例よりL=0.15m、C=400m
/sec を想定すると伝播時間はt=L/C=375usec
となり、また送受波器1,2の固有周波数(共振周波
数)を250kHzとしたので1周期間違えると4usec
到達時間に差が出ることになり、よって伝播時間の逆数
和は1周期間違えることにより、 1/(0.000375−0.000004)−1/
0.000375=28,75Hz の差が生じることになる。
From the example, L = 0.15 m, C = 400 m
/ Sec, the propagation time is t = L / C = 375 usec
In addition, since the natural frequency (resonance frequency) of the transducers 1 and 2 is set to 250 kHz, if one cycle is incorrect, 4 usec is obtained.
There is a difference in the arrival time, and thus the reciprocal sum of the propagation time is changed by one cycle, so that 1 / (0.000375-0.000004) -1 /
0.000375 = 28,75 Hz.

【0041】これらより実施例では一定値Fthは10H
zに設定した。順方向と逆方向の測定の各場合につい
て、第2回目以後の送受信時の到達時間に間違いがある
かないかを、上述のようにしてコントロール部6のマイ
クロコンピュータで判断し、測定エラーのときは到達時
間の測定値を捨て、測定成功のときは到達時間の測定値
を用いて流速さらに流量を算出する。
Thus, in this embodiment, the constant value Fth is 10H
z. For each case of measurement in the forward and reverse directions, the microcomputer of the control unit 6 determines whether there is an error in the arrival time at the time of transmission and reception after the second time as described above. The measured value of the arrival time is discarded, and when the measurement is successful, the flow velocity and the flow rate are calculated using the measured value of the arrival time.

【0042】[0042]

【発明の効果】本発明は上述のように構成されているの
で、測定時の分解能向上の利点を生かしたまま、到達時
点検知の間違い(エラー)を検出して、エラー検知のと
きは、到達時間の測定値を捨てて使わないようにしたた
め、到達時点の検知間違いによる誤差が、流速や流量の
計測値に入り込むことがなく、流量計の精度が向上す
る。
Since the present invention is constructed as described above, an error (error) in detection of the arrival point is detected while taking advantage of the improvement in the resolution at the time of measurement. Since the measured value of time is not discarded and used, errors due to erroneous detection at the arrival time do not enter the measured values of flow velocity and flow rate, and the accuracy of the flow meter is improved.

【0043】また、各方向について、n回の測定全てが
狙った特定波を捉えるようにするために、S/Nの高い
低ノイズの高価な増幅器を使う必要がなく、受信波を大
きくするため送信電力を上げるなど消費電力の面からの
不利な構成を使う必要もない。従って、低コスト化で
き、電力消費の面から電池駆動の超音波流量計の実現が
期待できる。
In addition, in order to make the n-th measurement in each direction catch a specific wave aimed at, it is not necessary to use an expensive amplifier with high S / N and low noise, and to increase the reception wave. It is not necessary to use a disadvantageous configuration in terms of power consumption, such as increasing transmission power. Therefore, it is possible to reduce the cost and to realize a battery-driven ultrasonic flowmeter from the viewpoint of power consumption.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の全体構成を示すブロック図で
ある。
FIG. 1 is a block diagram showing an overall configuration of an embodiment of the present invention.

【図2】図1の実施例における受信波検知部の構成を示
す電気回路図である。
FIG. 2 is an electric circuit diagram showing a configuration of a received wave detection unit in the embodiment of FIG.

【図3】実施例のタイミング図である。FIG. 3 is a timing chart of the embodiment.

【図4】実施例のフロー図である。FIG. 4 is a flowchart of an embodiment.

【図5】超音波流量計の原理を説明する略図である。FIG. 5 is a schematic diagram illustrating the principle of an ultrasonic flowmeter.

【図6】従来の超音波流量計の受信波検知部の動作を説
明する電気信号波形を示す図である。
FIG. 6 is a diagram showing an electric signal waveform for explaining an operation of a reception wave detection unit of a conventional ultrasonic flowmeter.

【符号の説明】[Explanation of symbols]

1,2 送受波器 4 受信波検知部 5 送波器駆動部 6 コントロール部 7,8,20 カウンタ 17 比較器 18 記憶器 13,16 RSフリップフロップ 1, 2 transmitter / receiver 4 received wave detector 5 transmitter transmitter 6 controller 7, 8, 20 counter 17 comparator 18 memory 13, 16 RS flip-flop

フロントページの続き (72)発明者 廣山 徹 愛知県東海市新宝町507−2 東邦瓦斯株 式会社総合技術研究所内 (72)発明者 鍋島 徳行 愛知県名古屋市熱田区千年一丁目2番70号 愛知時計電機株式会社内 Fターム(参考) 2F035 DA19 DA23 Continued on the front page (72) Inventor Toru Hiroyama 507-2 Shinhocho, Tokai-shi, Aichi Prefecture Toho Gas Co., Ltd. (72) Inventor Tokuyuki Nabeshima 2-70-1 Tennen, Atsuta-ku, Nagoya-shi, Aichi Aichi F-term (for reference) in Watch Electronics Co., Ltd. 2F035 DA19 DA23

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 送信側にも受信側にもはたらく超音波送
受波器を少なくとも一対設け、流体の流れの中を上流か
ら下流の順方向及び下流から上流の逆方向に超音波の送
受信を行い、その各方向の到達時間より流速さらに流量
を求める超音波流量計で、かつ、各方向毎に、先ず一方
の送受波器を送信側として送信し、他方の受信側送受波
器の信号を入力とする受信波検知部が受信波を検知する
と再び送信側送受波器を発信させて送信し、これを複数
回繰り返すように構成し、各方向毎に最初の送信から複
数回目の受信までの時間、つまり到達時間の複数倍をま
とめて測定し、その測定結果から順方向と逆方向の伝播
時間を求める超音波流量計において、 受信波検知部は、各方向毎に、第1回目の受信は1つの
発信による一群の受信波のうち特定番目と判断した波の
ゼロクロスポイントを到達ポイントとして受信波を検知
し、第2回目以後前記複数回目までは、前回の送信から
到達ポイントまでの時間から一定時間を減じた時間だけ
その回の送信時から経過した時以後の最初のゼロクロス
ポイントを到達ポイントとして受信波を検知する機能を
有し、 順方向について得た伝播時間と逆方向について得た伝播
時間の和あるいは逆数和を演算する演算機能と、この演
算結果を記憶する記憶機能と、最新の和あるいは逆数和
の値をそれ以前の記憶していた和あるいは逆数和の値と
比較する比較機能とを具備し、 前記両値の差がほとんど変動しないときは、測定成功と
して到達時間の測定値を用いて流速さらに流量を求める
ことを特徴とする超音波流量計。
At least one pair of ultrasonic transducers, which work on both a transmitting side and a receiving side, are provided to transmit and receive ultrasonic waves in a fluid flow in a forward direction from upstream to downstream and in a reverse direction from downstream to upstream. , An ultrasonic flowmeter that determines the flow velocity and the flow rate from the arrival time in each direction, and for each direction, first transmits one transducer as the transmitting side, and inputs the signal of the other receiving transducer. When the received wave detector detects the received wave, the transmitting side transmitter / receiver is transmitted again and transmitted, and this is repeated a plurality of times, and the time from the first transmission to the plurality of receptions in each direction. In other words, in an ultrasonic flowmeter that collectively measures multiple times of the arrival time and obtains the forward and reverse propagation times from the measurement result, the reception wave detecting unit performs the first reception for each direction. Identification of a group of received waves from one transmission The received wave is detected with the zero cross point of the wave judged as the arrival point as the arrival point. From the second time to the plurality of times, the time of the transmission for the time obtained by subtracting a certain time from the time from the previous transmission to the arrival point. Has the function of detecting the received wave with the first zero crossing point after the time elapsed from as the arrival point, and the arithmetic function of calculating the sum of the propagation time obtained in the forward direction and the propagation time obtained in the reverse direction or the reciprocal sum A storage function for storing the calculation result, and a comparison function for comparing the latest sum or reciprocal sum value with the previously stored sum or reciprocal sum value. An ultrasonic flowmeter characterized by determining a flow rate and a flow rate using a measured value of an arrival time as a measurement success when there is no fluctuation.
JP06580599A 1999-03-12 1999-03-12 Ultrasonic flow meter Expired - Lifetime JP3958886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06580599A JP3958886B2 (en) 1999-03-12 1999-03-12 Ultrasonic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06580599A JP3958886B2 (en) 1999-03-12 1999-03-12 Ultrasonic flow meter

Publications (3)

Publication Number Publication Date
JP2000258214A true JP2000258214A (en) 2000-09-22
JP2000258214A5 JP2000258214A5 (en) 2005-05-12
JP3958886B2 JP3958886B2 (en) 2007-08-15

Family

ID=13297622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06580599A Expired - Lifetime JP3958886B2 (en) 1999-03-12 1999-03-12 Ultrasonic flow meter

Country Status (1)

Country Link
JP (1) JP3958886B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010223855A (en) * 2009-03-25 2010-10-07 Panasonic Corp Ultrasonic flowmeter
WO2014205884A1 (en) * 2013-06-25 2014-12-31 国家电网公司 Time difference type ultrasonic flowmeter measurement method based on zero point analysis

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5346870B2 (en) * 2010-04-16 2013-11-20 株式会社アツデン Ultrasonic flow meter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010223855A (en) * 2009-03-25 2010-10-07 Panasonic Corp Ultrasonic flowmeter
WO2014205884A1 (en) * 2013-06-25 2014-12-31 国家电网公司 Time difference type ultrasonic flowmeter measurement method based on zero point analysis

Also Published As

Publication number Publication date
JP3958886B2 (en) 2007-08-15

Similar Documents

Publication Publication Date Title
US7073395B2 (en) Ultrasonic flowmeter and ultrasonic flow rate measuring method
JPH06148003A (en) Ultrasonic temperature measuring equipment
US8744785B2 (en) Determination of a reception time of an ultrasonic signal by means of pulse shape detection
JP2014224685A (en) Flow rate measuring device
JP2007187506A (en) Ultrasonic flowmeter
JP5467328B2 (en) Flow measuring device
JP4760115B2 (en) Fluid flow measuring device
JP2000258214A (en) Ultrasonic flowmeter
JP3781485B2 (en) Ultrasonic flow meter
JPH10332452A (en) Ultrasonic flowmeter
JP3727097B2 (en) Ultrasonic flow meter
JP2828615B2 (en) Ultrasonic flow meter
JP3883093B2 (en) Ultrasonic flow meter
JP2000329597A5 (en)
JP2002365108A (en) Ultrasonic flowmeter
JP4485641B2 (en) Ultrasonic flow meter
JP2001059757A (en) Ultrasonic flow rate meter
JPH073346B2 (en) Ultrasonic flowmeter measurement value processing method
JP4671481B2 (en) Ultrasonic flow meter
JP6767628B2 (en) Flow measuring device
JPH1123333A (en) Ultrasonic flowmeter
JP4236479B2 (en) Ultrasonic transceiver
JPH1090029A (en) Ultrasonic wave flowmeter
JPH073348B2 (en) Method and apparatus for processing measured values of ultrasonic flowmeter
JP2001289681A (en) Ultrasonic flowmeter

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040628

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070511

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term