JP2000258020A - Freezer/refrigerator - Google Patents

Freezer/refrigerator

Info

Publication number
JP2000258020A
JP2000258020A JP11064914A JP6491499A JP2000258020A JP 2000258020 A JP2000258020 A JP 2000258020A JP 11064914 A JP11064914 A JP 11064914A JP 6491499 A JP6491499 A JP 6491499A JP 2000258020 A JP2000258020 A JP 2000258020A
Authority
JP
Japan
Prior art keywords
evaporator
refrigerator
temperature
refrigerant
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11064914A
Other languages
Japanese (ja)
Inventor
Shogo Sano
省吾 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP11064914A priority Critical patent/JP2000258020A/en
Publication of JP2000258020A publication Critical patent/JP2000258020A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a freezer/refrigerator in which frosting to a second evaporator disposed in a refrigeration chamber can be reduced. SOLUTION: The freezer/refrigerator comprises a refrigerator body 2 including a freezer compartment 3 and a refrigerator compartment 4, and a cooling system for cooling the inside of the refrigerator body 2. The cooling system comprises a compressor 6, a condenser 7, a pressure reducing means 8, a first evaporator 9 disposed in the freezer compartment 3, and a second evaporator 11 disposed in the refrigeration chamber, which are coupled sequentially in series. The freezer/refrigerator comprises further comprises a first temperature detecting means 23 for detecting the temperature of the first evaporator 9, a second temperature detecting means 24 for detecting the temperature of the second evaporator 11, and means 25 for controlling the compressor 6 based on the temperatures detected by the first and second temperature detecting means 23, 24 and regulating the quantity of refrigerant being delivered from the compressor 6 such that the refrigerant is evaporated substantially completely when it passes through the first evaporator 9.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は冷凍冷蔵庫に関し、
更に詳しくは、冷凍室及び冷蔵室を含む冷蔵庫本体と、
この冷蔵庫本体内部を冷却する冷却システムとを備え、
この冷却システムが、圧縮機と、凝縮器と、減圧手段
と、冷凍室内に設けられた第1の蒸発器と、冷蔵室内に
設けられた第2の蒸発器とを順次直列に接続して成るも
のである冷凍冷蔵庫の改良に関するものである。
TECHNICAL FIELD The present invention relates to a refrigerator and a refrigerator.
More specifically, a refrigerator body including a freezer compartment and a refrigerator compartment,
A cooling system for cooling the inside of the refrigerator body,
This cooling system is configured by sequentially connecting a compressor, a condenser, a decompression unit, a first evaporator provided in a freezing room, and a second evaporator provided in a refrigerator room in series. The present invention relates to an improvement of a refrigerator-freezer.

【0002】[0002]

【従来の技術】一般に、冷凍冷蔵庫の冷却システムは、
圧縮機から吐出された冷媒が凝縮器、減圧手段、蒸発器
を順次通過して再び圧縮機に戻る冷却サイクルを構成
し、冷蔵室と冷凍室の二つの異なる温度の空間を一つの
蒸発器と一つの冷気循環ファンで冷却するようになって
いる。このように一つの蒸発器で温度の異なる複数の室
を冷却する場合には、温度制御のための通風経路が複雑
になり、水蒸気を多量に含む冷蔵室内の空気が蒸発器
(冷凍室を冷却し得るように低い温度になっている)の
近傍を流れるため着霜量が多くなり、野菜室が乾燥する
等の問題点があった。
2. Description of the Related Art Generally, a cooling system for a refrigerator is
The refrigerant discharged from the compressor constitutes a cooling cycle in which the refrigerant sequentially passes through the condenser, the decompression means, and the evaporator and returns to the compressor again, and the two different temperature spaces of the refrigerating room and the freezing room are combined with one evaporator. It is designed to cool with one cool air circulation fan. When a plurality of chambers having different temperatures are cooled by a single evaporator, the ventilation path for controlling the temperature becomes complicated, and the air in the refrigerating room containing a large amount of water vapor is cooled by the evaporator (cooling the freezing room). (The temperature is low so that the temperature can be reduced) so that the amount of frost increases and the vegetable room is dried.

【0003】そこで、冷凍室と冷蔵室にそれぞれ蒸発器
とファンを設置した冷凍冷蔵庫が提案されている。この
種の冷凍冷蔵庫は、例えば特開平8−210753号公
報に開示されているように、圧縮機と、凝縮器と、減圧
手段と、冷凍室内に設けられた第1の蒸発器と、冷蔵室
内に設けられた第2の蒸発器とを順次直列に接続して成
る冷却システムを備えており、各蒸発器の近傍にそれぞ
れファンが設置されている。
[0003] Therefore, a refrigerator having an evaporator and a fan installed in a freezer compartment and a refrigerator compartment has been proposed. This type of refrigerator-freezer includes a compressor, a condenser, a decompression means, a first evaporator provided in a freezing chamber, a refrigerator, And a second evaporator arranged in series is connected in series, and a cooling system is provided near each evaporator.

【0004】図5はその冷凍冷蔵庫の概略構成を示して
おり、圧縮機103により高温高圧に圧縮された気体状
の冷媒が凝縮器104によって凝縮し、減圧手段105
によって減圧されて膨張した後、冷凍室101内に設け
られた第1の蒸発器106と冷蔵室102内に設けられ
た第2の蒸発器107とを通過する間に蒸発し、冷凍室
送風ファン108及び冷蔵室送風ファン109によって
第1の蒸発器106と第2の蒸発器107を通過する空
気の熱を奪うようになっている。
FIG. 5 shows a schematic configuration of the refrigerator-freezer. A gaseous refrigerant compressed to a high temperature and a high pressure by a compressor 103 is condensed by a condenser 104 and decompressed by a decompression means 105.
After being decompressed and expanded by the pressure, it evaporates while passing through the first evaporator 106 provided in the freezing room 101 and the second evaporator 107 provided in the refrigerating room 102, and a fan for the freezing room The heat of the air passing through the first evaporator 106 and the second evaporator 107 is taken by the fan 108 and the refrigerator fan 109.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うな構成の冷凍冷蔵庫においては、冷凍室101内に設
けられた第1の蒸発器106への着霜量は少なくなるも
のの、冷蔵室102内に設けられた第2の蒸発器107
への着霜量が多くなるという問題点があった。これは、
第2の蒸発器107に流れ込む冷媒は液体を多く含んで
おり、速やかに温度が上昇しにくいため、第2の蒸発器
107の温度が第1の蒸発器106とほぼ同じ温度にな
り、これによって第2の蒸発器107の温度と冷蔵室1
02内の空気の温度との差が大きくなることによるもの
である。
However, in the refrigerating refrigerator having such a configuration, although the amount of frost formed on the first evaporator 106 provided in the freezing room 101 is reduced, the amount of frost formed in the refrigerating room 102 is reduced. The provided second evaporator 107
There is a problem that the amount of frost formed on the surface increases. this is,
Since the refrigerant flowing into the second evaporator 107 contains a large amount of liquid and the temperature does not easily rise quickly, the temperature of the second evaporator 107 becomes almost the same as that of the first evaporator 106. Temperature of second evaporator 107 and refrigerator compartment 1
This is because the difference from the temperature of the air in the area 02 becomes large.

【0006】また、各蒸発器に対してそれぞれ除霜ヒー
タを設けなくてはならないという問題点と、除霜を行う
場合には冷凍システムを停止させるため、冷凍室101
のみの除霜の場合でも冷蔵室102の温度が上昇し、除
霜終了後に冷蔵室102の温度を所定温度まで降下させ
なければならないため、無駄な電力を消費するという問
題点とがあった。
[0006] In addition, a defrost heater must be provided for each evaporator, and the refrigeration system must be stopped when defrosting.
Even in the case of only defrosting, the temperature of the refrigerator compartment 102 rises, and the temperature of the refrigerator compartment 102 must be lowered to a predetermined temperature after the completion of the defrost, so that there is a problem that wasteful power is consumed.

【0007】本発明は上述した問題点を解決するために
なされたものであって、第1の目的は、冷蔵室内に設け
られた第2の蒸発器への着霜量を減少させることができ
る冷凍冷蔵庫を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and a first object of the present invention is to reduce the amount of frost formed on a second evaporator provided in a refrigerator. An object of the present invention is to provide a refrigerator-freezer.

【0008】また、本発明の第2の目的は、冷凍室内に
設けられた第1の蒸発器を除霜ヒータを使用せずに短時
間で除霜することができるとともに、消費電力量を低減
することができる冷凍冷蔵庫を提供することにある。
[0008] A second object of the present invention is to defrost a first evaporator provided in a freezing room in a short time without using a defrost heater and to reduce power consumption. It is an object of the present invention to provide a refrigerator-freezer.

【0009】[0009]

【課題を解決するための手段】上述した目的を達成する
ために、請求項1の発明は、冷凍室及び冷蔵室を含む冷
蔵庫本体と、この冷蔵庫本体内部を冷却する冷却システ
ムとを備え、この冷却システムが、圧縮機と、凝縮器
と、減圧手段と、前記冷凍室内に設けられた第1の蒸発
器と、前記冷蔵室内に設けられた第2の蒸発器とを順次
直列に接続して成るものである冷凍冷蔵庫において、前
記第1の蒸発器の温度を検出する第1の温度検出手段
と、前記第2の蒸発器の温度を検出する第2の温度検出
手段と、前記第1及び第2の温度検出手段によって検出
された温度に基づいて前記圧縮機を制御し、前記圧縮機
から吐出される冷媒の量を前記第1の蒸発器を通過する
間にほぼ全てが蒸発するように調節する圧縮機制御手段
とを設けたことを特徴とするものである。
According to a first aspect of the present invention, there is provided a refrigerator having a freezer compartment and a refrigerator compartment, and a cooling system for cooling the interior of the refrigerator. A cooling system sequentially connects a compressor, a condenser, a decompression unit, a first evaporator provided in the freezing chamber, and a second evaporator provided in the refrigerator compartment in series. A first temperature detecting means for detecting a temperature of the first evaporator; a second temperature detecting means for detecting a temperature of the second evaporator; The compressor is controlled based on the temperature detected by the second temperature detecting means so that almost all of the refrigerant discharged from the compressor is evaporated while passing through the first evaporator. And a compressor control means for adjusting. It is intended to.

【0010】このような構成によれば、圧縮機から吐出
される冷媒のほぼ全てが第1の蒸発器で気化され、冷媒
は第2の蒸発器に流れ込むと速やかに温度が上昇するた
め、第2の蒸発器の温度低下が少なくなり、第2の蒸発
器への着霜量が減少する。
According to such a configuration, almost all of the refrigerant discharged from the compressor is vaporized in the first evaporator, and the temperature of the refrigerant rises quickly when flowing into the second evaporator. The temperature drop of the second evaporator is reduced, and the amount of frost on the second evaporator is reduced.

【0011】また、請求項2の発明は、請求項1の冷凍
冷蔵庫において、前記第1の蒸発器と前記第2の蒸発器
の間に気液分離器を設けたことを特徴とするものであ
る。
According to a second aspect of the present invention, in the refrigerator-freezer of the first aspect, a gas-liquid separator is provided between the first evaporator and the second evaporator. is there.

【0012】この場合、第2の蒸発器に気体状の冷媒が
優先的に流れ込むため、第2の蒸発器の温度低下がより
少なくなり、第2の蒸発器への着霜量がより減少する。
In this case, since the gaseous refrigerant flows into the second evaporator preferentially, the temperature of the second evaporator is less reduced, and the amount of frost on the second evaporator is further reduced. .

【0013】また、請求項3の発明は、冷凍室及び冷蔵
室を含む冷蔵庫本体と、この冷蔵庫本体内部を冷却する
冷却システムとを備え、この冷却システムが、圧縮機
と、凝縮器と、減圧手段と、前記冷凍室内に設けられた
第1の蒸発器と、前記冷蔵室内に設けられた第2の蒸発
器とを順次直列に接続して成るものである冷凍冷蔵庫に
おいて、前記減圧手段が、冷媒に減圧処理を行う状態と
冷媒に減圧処理を行わずに通過させる状態とのいずれか
を選択し得るように構成され、前記第1の蒸発器と前記
第2の蒸発器の間に前記減圧手段と同様に構成された減
圧手段を設けたことを特徴とするものである。
Further, the invention of claim 3 includes a refrigerator body including a freezing room and a refrigerator room, and a cooling system for cooling the inside of the refrigerator body. The cooling system comprises a compressor, a condenser, Means, a first evaporator provided in the freezer compartment, and a second evaporator provided in the refrigerator compartment connected in series in a refrigerator-freezer, the decompression means, It is configured to be able to select one of a state in which the refrigerant is subjected to a decompression process and a state in which the refrigerant is passed without performing the decompression process, and the decompression is performed between the first evaporator and the second evaporator. And a pressure reducing means configured similarly to the means.

【0014】この場合、凝縮器と第1の蒸発器の間に設
けられた減圧手段を冷媒に減圧処理を行わない状態に
し、第1の蒸発器と第2の蒸発器の間の減圧手段を冷媒
に減圧処理を行う状態にすることにより、第1の蒸発器
における冷媒の蒸発・凝縮温度が氷点以上になり、第1
の蒸発器表面に付着した霜に熱を与えて溶かすことがで
きる。また、第1の蒸発器と第2の蒸発器の間の減圧手
段で減圧された冷媒は第2の蒸発器で蒸発し、第2の蒸
発器を通過する冷蔵室内の空気から熱を奪うため、冷蔵
室内が冷却される。したがって、冷蔵室の温度を上昇さ
せずに第1の蒸発器の除霜を行うことができる。
In this case, the pressure reducing means provided between the condenser and the first evaporator is set to a state in which the refrigerant is not subjected to the pressure reducing process, and the pressure reducing means between the first evaporator and the second evaporator is changed to a state. By setting the refrigerant to a state in which the refrigerant is subjected to the decompression process, the temperature at which the refrigerant evaporates and condenses in the first evaporator becomes higher than the freezing point, and
The frost adhering to the evaporator surface can be melted by applying heat. Further, the refrigerant decompressed by the decompression means between the first evaporator and the second evaporator evaporates in the second evaporator and takes heat from the air in the refrigerator compartment passing through the second evaporator. Then, the refrigerator compartment is cooled. Therefore, the first evaporator can be defrosted without increasing the temperature of the refrigerator compartment.

【0015】[0015]

【発明の実施の形態】以下、本発明の具体的な実施形態
を図面を参照しながら説明する。図1は本発明の一実施
形態である冷凍冷蔵庫1の概略構成を示す図、図2は冷
凍冷蔵庫1の通常運転時における冷媒の流れを示す説明
図、図3は冷凍冷蔵庫1の通常運転時における圧縮機6
からの冷媒の吐出量の制御方法を示すフローチャート、
図4は冷凍冷蔵庫1の冷凍室除霜運転時における冷媒の
流れを示す説明図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a schematic configuration of a refrigerator 1 according to an embodiment of the present invention, FIG. 2 is an explanatory diagram showing a flow of refrigerant during normal operation of the refrigerator 1, and FIG. Compressor 6
Flow chart showing a control method of the discharge amount of the refrigerant from the,
FIG. 4 is an explanatory diagram showing the flow of the refrigerant during the freezing compartment defrosting operation of the refrigerator 1.

【0016】図1に示すように、冷凍冷蔵庫1は、冷凍
室3及び冷蔵室4を含む冷蔵庫本体2と、この冷蔵庫本
体2の内部を冷却する冷却システム5(図2参照)とを
備えており、冷却システム5は、圧縮機6と、凝縮器7
と、第1の減圧手段8と、冷凍室3内に設けられた第1
の蒸発器9と、第2の減圧手段10と、冷蔵室4内に設
けられた第2の蒸発器11とを管路12を介して順次直
列に接続することにより構成されている。
As shown in FIG. 1, the refrigerator 1 includes a refrigerator main body 2 including a freezer compartment 3 and a refrigerator compartment 4, and a cooling system 5 (see FIG. 2) for cooling the inside of the refrigerator main body 2. The cooling system 5 includes a compressor 6 and a condenser 7
A first pressure reducing means 8 and a first pressure reducing means 8 provided in the freezing compartment 3.
The evaporator 9, the second decompression means 10, and the second evaporator 11 provided in the refrigerator compartment 4 are sequentially connected in series via a pipe 12.

【0017】第1の減圧手段8は、管路12中に設けら
れた第1の減圧器13と、第1の減圧器13に対して並
列的に設けられ、両端がそれぞれ管路12における第1
の減圧器13よりも上流側の部分と下流側の部分とに接
続されたバイパス管14と、管路12における第1の減
圧器13よりも上流側の部分とバイパス管14との接続
点に設けられた第1の切換弁15とから成っており、第
1の切換弁15を切り換えることにより、冷媒が第1の
減圧器13を通過する流路と、冷媒がバイパス管14を
通過する流路とのいずれかを選択し得るようになってい
る。
The first decompression means 8 is provided in parallel with the first decompressor 13 provided in the pipe 12 and the first decompressor 13, and both ends of the first decompressor 13 are provided in the pipe 12. 1
A bypass pipe 14 connected to a portion upstream of the pressure reducer 13 and a portion downstream thereof, and a connection point between the portion of the pipe 12 upstream of the first pressure reducer 13 and the bypass pipe 14. The first switching valve 15 is provided. By switching the first switching valve 15, the refrigerant flows through the first pressure reducer 13 and the refrigerant flows through the bypass pipe 14. You can choose either the road or the road.

【0018】第2の減圧手段10は、両端がそれぞれ管
路12における第1の蒸発器9と第2の蒸発器11の間
の部分に接続された第2の減圧器17と、第2の減圧器
17における上流側の端部と管路12との接続点に設け
られた第2の切換弁18とから成っている。また、管路
12における第2の減圧器17との二つの接続点の間の
部分には気液分離器19が設けられている。第2の切換
弁18を切り換えることにより、冷媒が第2の減圧器1
7を通過する流路と、冷媒が気液分離器19を通過する
流路とのいずれかを選択し得るようになっている。
The second decompression means 10 includes a second decompression device 17 having both ends connected to portions of the pipe 12 between the first evaporator 9 and the second evaporator 11, respectively. It comprises a second switching valve 18 provided at a connection point between the upstream end of the pressure reducer 17 and the pipeline 12. Further, a gas-liquid separator 19 is provided in a portion of the pipe 12 between two connection points with the second decompressor 17. By switching the second switching valve 18, the refrigerant is supplied to the second decompressor 1
7 and a flow path through which the refrigerant passes through the gas-liquid separator 19.

【0019】第1の蒸発器9の近傍には冷凍室送風ファ
ン20が設置され、第2の蒸発器11の近傍には冷蔵室
送風ファン21が設置されており、これらを駆動するこ
とにより第1及び第2の蒸発器9、11がそれぞれを通
過する空気から効果的に熱を奪うようになるとともに、
冷凍室3及び冷蔵室4の内部の温度を均一化することが
できる。また、凝縮器7の近傍には凝縮器冷却ファン2
2が設置されている。
A freezing room blower fan 20 is installed near the first evaporator 9, and a refrigerating room blower fan 21 is installed near the second evaporator 11. The first and second evaporators 9 and 11 effectively remove heat from the air passing therethrough,
The temperatures inside the freezer compartment 3 and the refrigerator compartment 4 can be made uniform. In the vicinity of the condenser 7, a condenser cooling fan 2 is provided.
2 are installed.

【0020】また、図1に示すように、第1の蒸発器9
には第1の温度検出手段23が設けられ、第2の蒸発器
11には第2の温度検出手段24が設けられており、こ
れらはそれぞれ圧縮機制御手段25に接続されている。
圧縮機制御手段25は電気回路により構成され、第1及
び第2の温度検出手段23、24によって検出された温
度に基づいて圧縮機6の回転数を制御し、圧縮機から吐
出される冷媒の量を第1の蒸発器9を通過する間にほぼ
全てが蒸発するように調節する。
As shown in FIG. 1, the first evaporator 9
Is provided with first temperature detecting means 23, and second evaporator 11 is provided with second temperature detecting means 24, which are connected to compressor control means 25, respectively.
The compressor control unit 25 is configured by an electric circuit, controls the rotation speed of the compressor 6 based on the temperatures detected by the first and second temperature detection units 23 and 24, and controls the refrigerant discharged from the compressor. The volume is adjusted so that almost everything evaporates while passing through the first evaporator 9.

【0021】上述した構成の冷凍冷蔵庫1の通常運転の
場合には、図2に示すように、第1の減圧手段8の第1
の切換弁15が冷媒を第1の減圧器13に通すように切
り換えられ、第2の減圧手段10の第2の切換弁18が
冷媒を気液分離器19に通すように切り換えられる。ま
た、凝縮器冷却ファン22が駆動される。圧縮機6によ
って高温高圧に圧縮された気体状の冷媒は凝縮器7によ
り凝縮し、第1の減圧器13により蒸発・凝縮温度が−
30℃程度になるまで減圧される。
In the case of the normal operation of the refrigerator 1 having the above-described structure, as shown in FIG.
Is switched so that the refrigerant passes through the first decompressor 13, and the second switching valve 18 of the second decompression means 10 is switched so that the refrigerant passes through the gas-liquid separator 19. Further, the condenser cooling fan 22 is driven. The gaseous refrigerant compressed to a high temperature and a high pressure by the compressor 6 is condensed by the condenser 7, and the first decompressor 13 reduces the evaporation / condensation temperature by −
The pressure is reduced to about 30 ° C.

【0022】減圧された冷媒は第1の蒸発器9を通過す
る間に蒸発し、冷凍室送風ファン20により第1の蒸発
器9を通過する冷凍室3内の空気の熱を奪う。このと
き、図3に示すように、第1の温度検出手段23によっ
て検出された第1の蒸発器9の温度があらかじめ設定さ
れた第1の蒸発器9の目標温度より高くなったときには
圧縮機6からの冷媒の吐出量を増加させ、第2の温度検
出手段24によって検出された第2の蒸発器11の温度
があらかじめ設定された第2の蒸発器11の目標温度よ
り低くなったときには圧縮機6からの冷媒の吐出量を減
少させるように圧縮機制御手段25により圧縮機6の回
転数が制御される。
The depressurized refrigerant evaporates while passing through the first evaporator 9, and takes away heat of the air in the freezing room 3 passing through the first evaporator 9 by the freezing room blowing fan 20. At this time, as shown in FIG. 3, when the temperature of the first evaporator 9 detected by the first temperature detecting means 23 becomes higher than a preset target temperature of the first evaporator 9, When the temperature of the second evaporator 11 detected by the second temperature detecting means 24 becomes lower than the preset target temperature of the second evaporator 11, the compression is performed. The rotation speed of the compressor 6 is controlled by the compressor control means 25 so as to reduce the discharge amount of the refrigerant from the compressor 6.

【0023】これにより、冷媒は第1の蒸発器9を通過
する間にほとんど全てが蒸発する。また、気液分離器1
9によって気体状の冷媒が優先的に第2の蒸発器11に
送られ、この冷媒は、冷蔵室送風ファン21により第2
の蒸発器11を通過する冷蔵室4内の空気の熱を奪いな
がら冷蔵室4内の空気の温度とほぼ同じ温度まで速やか
に昇温する。これにより、第2の蒸発器11の表面の温
度と冷蔵室4内の空気の温度との差が小さくなるため、
第2の蒸発器11への着霜を防ぐことができる。さら
に、冷媒の顕熱分を冷蔵室4内の空気の冷却に有効利用
できるため、消費電力を低減することができる。
Thus, almost all of the refrigerant evaporates while passing through the first evaporator 9. Gas-liquid separator 1
9, the gaseous refrigerant is sent preferentially to the second evaporator 11, and the refrigerant is sent to the second evaporator 11 by the refrigerating room blower fan 21.
The temperature of the air in the refrigerating compartment 4 is quickly raised to substantially the same temperature as the temperature of the air in the refrigerating compartment 4 while removing the heat of the air in the refrigerating compartment 4 passing through the evaporator 11. Thereby, the difference between the temperature of the surface of the second evaporator 11 and the temperature of the air in the refrigerator compartment 4 becomes smaller,
Frost formation on the second evaporator 11 can be prevented. Further, since the sensible heat of the refrigerant can be effectively used for cooling the air in the refrigerator compartment 4, the power consumption can be reduced.

【0024】冷凍冷蔵庫1の除霜運転の場合には、図4
に示すように、第1の減圧手段8の第1の切換弁15が
冷媒をバイパス管14に通すように切り換えられ、第2
の減圧手段10の第2の切換弁18が冷媒を第2の減圧
器17に通すように切り換えられる。また、凝縮器冷却
ファン22は駆動されない。圧縮機6によって高温高圧
に圧縮された気体状の冷媒は、凝縮器冷却ファン22が
駆動されていないため凝縮器7では完全に凝縮しないま
まバイパス管14を通って第1の蒸発器9に流れ込む。
In the case of the defrosting operation of the refrigerator 1, FIG.
As shown in (1), the first switching valve 15 of the first decompression means 8 is switched to pass the refrigerant through the bypass pipe 14, and
The second switching valve 18 of the pressure reducing means 10 is switched so that the refrigerant passes through the second pressure reducer 17. Further, the condenser cooling fan 22 is not driven. The gaseous refrigerant compressed to a high temperature and a high pressure by the compressor 6 flows into the first evaporator 9 through the bypass pipe 14 without being completely condensed in the condenser 7 because the condenser cooling fan 22 is not driven. .

【0025】第1の蒸発器9では冷媒の蒸発・凝縮温度
が0℃以上になるため、冷媒は第1の蒸発器9に付着し
た霜に熱を与えながらさらに凝縮し、液相の比率が高く
なる。その後、冷媒は第2の減圧器17によって減圧さ
れ、第2の蒸発器11を通過する間に蒸発し、冷蔵室送
風ファン21により第2の蒸発器11を通過する空気の
熱を奪う。
In the first evaporator 9, the evaporation / condensation temperature of the refrigerant becomes 0 ° C. or higher. Therefore, the refrigerant is further condensed while giving heat to the frost attached to the first evaporator 9, and the ratio of the liquid phase is reduced. Get higher. Thereafter, the refrigerant is depressurized by the second decompressor 17, evaporates while passing through the second evaporator 11, and takes heat of the air passing through the second evaporator 11 by the refrigerating room blower fan 21.

【0026】このように、冷凍室3の除霜運転時におい
ては第1の蒸発器9表面の温度が上昇し、第1の蒸発器
9に付着した霜が第1の蒸発器9との接触部分から融解
して落下するため、短時間で除霜を行うことができる。
また、除霜中に冷蔵室4の冷却が継続され、冷蔵室4の
温度が上昇しないため、除霜終了後に冷蔵室4の温度を
降下させる必要がなく、消費電力を低減することができ
る。なお、冷凍室3の除霜中の冷蔵室4の冷却は冷凍室
3の除霜運転を行うことによって副次的に生じるもので
あるため、冷凍室3の除霜運転に要する電力のみで冷蔵
室4を冷却することができる。
As described above, during the defrosting operation of the freezing compartment 3, the temperature of the surface of the first evaporator 9 rises, and the frost adhering to the first evaporator 9 comes into contact with the first evaporator 9. Since it melts from the part and falls, defrosting can be performed in a short time.
Further, since the cooling of the refrigerator compartment 4 is continued during the defrosting, and the temperature of the refrigerator compartment 4 does not rise, it is not necessary to lower the temperature of the refrigerator compartment 4 after the completion of the defrosting, and the power consumption can be reduced. Since the cooling of the refrigerator compartment 4 during the defrosting of the freezing compartment 3 is caused by performing the defrosting operation of the freezing compartment 3, the refrigerating compartment 4 is cooled only by the electric power required for the defrosting operation of the freezing compartment 3. The chamber 4 can be cooled.

【0027】[0027]

【発明の効果】以上説明したように、請求項1の発明に
よれば、圧縮機から吐出される冷媒のほぼ全てが第1の
蒸発器で気化され、冷媒は第2の蒸発器に流れ込むと速
やかに温度が上昇するため、第2の蒸発器の温度と冷蔵
室内の空気の温度との差が少なくなり、第2の蒸発器へ
の着霜量が減少する。これにより、第2の蒸発器の除霜
回数を少なくすることができ、あるいは第2の蒸発器の
除霜を不要とすることができる。また、冷媒の顕熱分を
冷蔵室内の空気の冷却に有効利用できるため、消費電力
を低減することができる。
As described above, according to the first aspect of the present invention, almost all of the refrigerant discharged from the compressor is vaporized in the first evaporator, and the refrigerant flows into the second evaporator. Since the temperature rises quickly, the difference between the temperature of the second evaporator and the temperature of the air in the refrigerator is reduced, and the amount of frost on the second evaporator is reduced. Thereby, the number of times of defrosting of the second evaporator can be reduced, or defrosting of the second evaporator can be made unnecessary. In addition, since the sensible heat of the refrigerant can be effectively used for cooling the air in the refrigerator, power consumption can be reduced.

【0028】請求項2の発明によれば、気液分離器によ
り気体状の冷媒が優先的に第2の蒸発器に供給され、第
2の蒸発器の温度と冷蔵室内の温度差がより少なくなる
ため、第2の蒸発器への着霜量がより減少する。また、
冷媒の顕熱分の有効利用がより促進される。
According to the second aspect of the present invention, the gaseous refrigerant is preferentially supplied to the second evaporator by the gas-liquid separator, and the difference between the temperature of the second evaporator and the temperature in the refrigerator compartment is reduced. Therefore, the amount of frost on the second evaporator is further reduced. Also,
Effective utilization of the sensible heat of the refrigerant is further promoted.

【0029】請求項3の発明によれば、凝縮器と第1の
蒸発器の間に設けられた減圧手段を冷媒に減圧処理を行
わない状態にし、第1の蒸発器と第2の蒸発器の間の減
圧手段を冷媒に減圧処理を行う状態にすることにより、
第1の蒸発器における冷媒の蒸発・凝縮温度が氷点以上
になり、第1の蒸発器表面に付着した霜に熱を与えて溶
かすことができるため、除霜ヒータを使用せずに第1の
蒸発器の除霜を行うことができる。なお、この場合、霜
が第1の蒸発器との接触部分から融解して落下するた
め、短時間で除霜を行うことができる。また、第1の蒸
発器と第2の蒸発器の間の減圧手段で減圧された冷媒は
第2の蒸発器で蒸発し、第2の蒸発器を通過する冷蔵室
内の空気から熱を奪うため、除霜中にも冷蔵室の冷却が
継続され、除霜終了後に冷蔵室の温度を降下させる必要
がない。したがって、消費電力を低減することができる
ものである。
According to the third aspect of the present invention, the decompression means provided between the condenser and the first evaporator is set to a state in which the refrigerant is not subjected to the decompression processing, and the first evaporator and the second evaporator are set. By putting the pressure reducing means in the state of performing the pressure reducing process on the refrigerant,
Since the evaporation / condensation temperature of the refrigerant in the first evaporator becomes equal to or higher than the freezing point and the frost attached to the surface of the first evaporator can be heated and melted, the first frost can be used without using the defrost heater. Defrosting of the evaporator can be performed. In this case, since the frost is melted and dropped from the contact portion with the first evaporator, the defrost can be performed in a short time. Further, the refrigerant decompressed by the decompression means between the first evaporator and the second evaporator evaporates in the second evaporator and takes heat from the air in the refrigerator compartment passing through the second evaporator. Also, the cooling of the refrigerator compartment is continued during the defrosting, and there is no need to lower the temperature of the refrigerator compartment after the completion of the defrosting. Therefore, power consumption can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施形態である冷凍冷蔵庫1の概
略構成を示す図。
FIG. 1 is a diagram showing a schematic configuration of a refrigerator-freezer 1 according to an embodiment of the present invention.

【図2】 冷凍冷蔵庫1の通常運転時における冷媒の流
れを示す説明図。
FIG. 2 is an explanatory diagram showing a flow of a refrigerant during a normal operation of the refrigerator-freezer 1;

【図3】 冷凍冷蔵庫1の通常運転時における圧縮機6
からの冷媒の吐出量の制御方法を示すフローチャート。
FIG. 3 shows the compressor 6 during normal operation of the refrigerator 1
The flowchart which shows the control method of the discharge amount of the refrigerant | coolant from a machine.

【図4】 冷凍冷蔵庫1の冷凍室除霜運転時における冷
媒の流れを示す説明図。
FIG. 4 is an explanatory diagram showing a flow of a refrigerant during a freezing compartment defrosting operation of the refrigerator 1;

【図5】 従来の冷凍冷蔵庫の概略構成を示す図。FIG. 5 is a diagram showing a schematic configuration of a conventional refrigerator-freezer.

【符号の説明】[Explanation of symbols]

1 冷凍冷蔵庫 2 冷蔵庫本体 3 冷凍室 4 冷蔵室 5 冷却システム 6 圧縮機 7 凝縮器 8 第1の減圧手段 9 第1の蒸発器 10 第2の減圧手段 11 第2の蒸発器 19 気液分離器 23 第1の温度検出手段 24 第2の温度検出手段 25 圧縮機制御手段 DESCRIPTION OF SYMBOLS 1 Refrigerator-freezer 2 Refrigerator main body 3 Freezer room 4 Refrigerator room 5 Cooling system 6 Compressor 7 Condenser 8 1st decompression means 9 1st evaporator 10 2nd decompression means 11 2nd evaporator 19 Gas-liquid separator 23 first temperature detecting means 24 second temperature detecting means 25 compressor control means

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 冷凍室及び冷蔵室を含む冷蔵庫本体と、
この冷蔵庫本体内部を冷却する冷却システムとを備え、
この冷却システムが、圧縮機と、凝縮器と、減圧手段
と、前記冷凍室内に設けられた第1の蒸発器と、前記冷
蔵室内に設けられた第2の蒸発器とを順次直列に接続し
て成るものである冷凍冷蔵庫において、 前記第1の蒸発器の温度を検出する第1の温度検出手段
と、前記第2の蒸発器の温度を検出する第2の温度検出
手段と、前記第1及び第2の温度検出手段によって検出
された温度に基づいて前記圧縮機を制御し、前記圧縮機
から吐出される冷媒の量を前記第1の蒸発器を通過する
間にほぼ全てが蒸発するように調節する圧縮機制御手段
とを設けたことを特徴とする冷凍冷蔵庫。
A refrigerator body including a freezer compartment and a refrigerator compartment;
A cooling system for cooling the inside of the refrigerator body,
The cooling system sequentially connects a compressor, a condenser, a decompression unit, a first evaporator provided in the freezing chamber, and a second evaporator provided in the refrigerator compartment in series. A first temperature detecting means for detecting a temperature of the first evaporator; a second temperature detecting means for detecting a temperature of the second evaporator; And controlling the compressor based on the temperature detected by the second temperature detecting means so that almost all of the refrigerant discharged from the compressor evaporates while passing through the first evaporator. And a compressor control means for adjusting the temperature of the refrigerator.
【請求項2】 前記第1の蒸発器と前記第2の蒸発器の
間に気液分離器を設けたことを特徴とする請求項1に記
載の冷凍冷蔵庫。
2. The refrigerator according to claim 1, wherein a gas-liquid separator is provided between the first evaporator and the second evaporator.
【請求項3】 冷凍室及び冷蔵室を含む冷蔵庫本体と、
この冷蔵庫本体内部を冷却する冷却システムとを備え、
この冷却システムが、圧縮機と、凝縮器と、減圧手段
と、前記冷凍室内に設けられた第1の蒸発器と、前記冷
蔵室内に設けられた第2の蒸発器とを順次直列に接続し
て成るものである冷凍冷蔵庫において、 前記減圧手段が、冷媒に減圧処理を行う状態と冷媒に減
圧処理を行わずに通過させる状態とのいずれかを選択し
得るように構成され、前記第1の蒸発器と前記第2の蒸
発器の間に前記減圧手段と同様に構成された減圧手段を
設けたことを特徴とする冷凍冷蔵庫。
3. A refrigerator body including a freezer compartment and a refrigerator compartment;
A cooling system for cooling the inside of the refrigerator body,
The cooling system sequentially connects a compressor, a condenser, a decompression unit, a first evaporator provided in the freezing chamber, and a second evaporator provided in the refrigerator compartment in series. In the refrigerator-freezer, the decompression means is configured to be able to select one of a state in which the refrigerant is subjected to a decompression process and a state in which the refrigerant is passed without performing the decompression process, A refrigerator having a decompression device between the evaporator and the second evaporator, the decompression device having the same configuration as the decompression device.
JP11064914A 1999-03-11 1999-03-11 Freezer/refrigerator Pending JP2000258020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11064914A JP2000258020A (en) 1999-03-11 1999-03-11 Freezer/refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11064914A JP2000258020A (en) 1999-03-11 1999-03-11 Freezer/refrigerator

Publications (1)

Publication Number Publication Date
JP2000258020A true JP2000258020A (en) 2000-09-22

Family

ID=13271803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11064914A Pending JP2000258020A (en) 1999-03-11 1999-03-11 Freezer/refrigerator

Country Status (1)

Country Link
JP (1) JP2000258020A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011247522A (en) * 2010-05-28 2011-12-08 Mitsubishi Electric Corp Refrigerating cycle device, refrigerator using refrigerating cycle device, low temperature device and air conditioner
EP2592372A3 (en) * 2011-11-08 2015-09-09 Samsung Electronics Co., Ltd Refrigerator using non-azeotropic refrigerant mixture and control method thereof
EP2868998A3 (en) * 2013-11-04 2015-11-04 LG Electronics Inc. Refrigerator
CN113465134A (en) * 2021-04-23 2021-10-01 青岛海尔空调器有限总公司 Control method and device of air conditioner, storage medium and air conditioner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011247522A (en) * 2010-05-28 2011-12-08 Mitsubishi Electric Corp Refrigerating cycle device, refrigerator using refrigerating cycle device, low temperature device and air conditioner
EP2592372A3 (en) * 2011-11-08 2015-09-09 Samsung Electronics Co., Ltd Refrigerator using non-azeotropic refrigerant mixture and control method thereof
EP2868998A3 (en) * 2013-11-04 2015-11-04 LG Electronics Inc. Refrigerator
US9733009B2 (en) 2013-11-04 2017-08-15 Lg Electronics Inc. Refrigerator
CN113465134A (en) * 2021-04-23 2021-10-01 青岛海尔空调器有限总公司 Control method and device of air conditioner, storage medium and air conditioner

Similar Documents

Publication Publication Date Title
US6931870B2 (en) Time division multi-cycle type cooling apparatus and method for controlling the same
JP3576092B2 (en) refrigerator
US8640470B2 (en) Control method of refrigerator
KR100885583B1 (en) Refrigerator
US20130192280A1 (en) Refrigerator and defrosting method thereof
JP5641875B2 (en) Refrigeration equipment
JP2010532462A (en) High temperature gas defrosting method and apparatus
JP3816872B2 (en) Operation control method of refrigeration system with two evaporators
JPH1089817A (en) Frosting preventing device for heat pump
US20070130966A1 (en) Refrigerator and method for controlling the refrigerator
WO2005061976A1 (en) Refrigerator
JP4622901B2 (en) Air conditioner
US10443913B2 (en) Refrigerator and method for controlling the same
JP2000258020A (en) Freezer/refrigerator
KR100913144B1 (en) Time divided multi-cycle type cooling apparatus
KR100549062B1 (en) Refrigerator
JP2004132635A (en) Vehicular refrigeration unit with two cold storages, and its control method
JP2604326Y2 (en) Refrigerator cooler
JP2014066420A (en) Freezer
JP2003279190A (en) Device and method for dehumidifying gas
JP3495956B2 (en) refrigerator
JPH0821664A (en) Refrigerating cycle device
JP2002195734A (en) Refrigerator-freezer
KR100474907B1 (en) defrosting method in the heating and cooling apparatus
JPH07234041A (en) Cascade refrigerating equipment