JP2000256671A - Coke oven and its operation method - Google Patents

Coke oven and its operation method

Info

Publication number
JP2000256671A
JP2000256671A JP11057726A JP5772699A JP2000256671A JP 2000256671 A JP2000256671 A JP 2000256671A JP 11057726 A JP11057726 A JP 11057726A JP 5772699 A JP5772699 A JP 5772699A JP 2000256671 A JP2000256671 A JP 2000256671A
Authority
JP
Japan
Prior art keywords
supply port
combustion chamber
air
combustion
coke oven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11057726A
Other languages
Japanese (ja)
Other versions
JP3821980B2 (en
Inventor
Shuhei Yoshida
周平 吉田
Takafumi Sachi
孝文 佐地
Seiji Takase
省二 高瀬
Makoto Uchida
誠 内田
Hiroyuki Koyama
博之 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP05772699A priority Critical patent/JP3821980B2/en
Priority to EP00400569A priority patent/EP1033396B1/en
Priority to DE60014213T priority patent/DE60014213T2/en
Priority to US09/518,538 priority patent/US6797122B1/en
Priority to KR10-2000-0010655A priority patent/KR100494822B1/en
Publication of JP2000256671A publication Critical patent/JP2000256671A/en
Application granted granted Critical
Publication of JP3821980B2 publication Critical patent/JP3821980B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Coke Industry (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a coke oven capable of reducing NOx in the combustion exhaust gas, and its operation method by rendering the combustion temperature in the height direction of a combustion chamber uniform to remove localized high temperature combustion and. SOLUTION: When a poor gas supply port 7 and an air supply port 8 opened at the bottom of the combustion chamber in a coke oven at viewed from both of the furnace length direction (X-direction) and the furnace height direction (Y-direction), they never overlap completely in either of the directions. The above described poor gas supply port 7 and air supply port 8 may be in the state of having no overlapping part as in Fig. (a) when viewed from both of the furnace length direction and the furnace height direction of the combustion chamber or in the state of having a partially overlapping part as in Figs. (b) and (c) when viewed from the furnace length direction (X-direction) or the furnace height direction (Y-direction).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、室炉式コークス炉
とその操業方法に関するものであり、特に燃焼室内の燃
焼温度を均一化して、燃焼に伴って発生するNOxを減ら
すことが可能なコークス炉とその操業方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coke oven and a method of operating the same, and more particularly to a coke capable of reducing the NOx generated by combustion by making the combustion temperature in the combustion chamber uniform. Furnace and its operation.

【0002】[0002]

【従来の技術】コークス炉に要求される性能は、良質の
コークスの生産性能に加えて、排ガス中のNOx が少ない
ことと、これらを低コストで達成することである。これ
らは、燃焼室内での燃焼を高さ方向について均一にする
ことよって達成できる。
2. Description of the Related Art The performance required of a coke oven is, in addition to the production performance of high-quality coke, that NOx in exhaust gas is small and that these can be achieved at low cost. These can be achieved by making the combustion in the combustion chamber uniform in the height direction.

【0003】コークス炉の燃焼排ガス中のNOx生成率を
低減させる対策としては、燃焼排ガスを再循環させる
ことによる火炎温度を低下させる方法があり、コツパー
スサーキュレーション方式のコークス炉において実施さ
れている。また、燃焼用空気および燃料ガス、または
燃焼用空気のみを燃焼室高さ方向に複数の吐出ロを設け
て分割して供給し、部分的に燃焼させる方法があり、例
えば特開昭61-133286号や特開平1-306494号で提案され
ている。この方法は、カールスチル型コークス炉、オッ
トー型コークス炉、および日鉄式コークス炉において
「多段燃焼法」として採用されている。
[0003] As a measure for reducing the NOx generation rate in the flue gas of a coke oven, there is a method of lowering the flame temperature by recirculating the flue gas, which is implemented in a coke oven of the cooper circulation type. . Further, there is a method in which a plurality of discharge rollers are provided in a combustion chamber height direction and divided and supplied for combustion air and fuel gas, or only combustion air, and partially burned. And JP-A-1-306494. This method has been adopted as a "multi-stage combustion method" in Carl still type coke ovens, Otto type coke ovens, and Nippon Steel type coke ovens.

【0004】前記の対策は、燃焼排ガスの再循環によ
る火炎温度の低下と、部分的燃焼による酸素および窒素
濃度の減少との組合せであるため、NOx発生量の抑制に
は効果があるが、コツパースサーキュレーション方式で
の燃焼排ガスの再循環方式では、排ガス循環を任意に変
更することができない。さらに燃焼排ガスが増大するよ
うな操業、例えば燃焼室の高さが5m以上の大型コーク
ス炉で、しかも乾留時間が12時間以下の高稼働率操業
では、循環口の断面積の制約により、排ガス循環率を2
0%以上にすることができないという問題がある。
[0004] The above measures are a combination of a decrease in the flame temperature due to the recirculation of the combustion exhaust gas and a decrease in the oxygen and nitrogen concentrations due to the partial combustion. The exhaust gas circulation cannot be arbitrarily changed by the recirculation method of the combustion exhaust gas by the purse circulation method. In operations where the combustion exhaust gas further increases, for example, in a large coke oven with a combustion chamber height of 5 m or more and a high operation rate with a carbonization time of 12 hours or less, the exhaust gas circulation is restricted due to the restriction of the cross-sectional area of the circulation port. Rate 2
There is a problem that it cannot be 0% or more.

【0005】前記の対策の部分燃焼によるNOxの低減
方法は、加熱ガス量が大幅に増大した場合には、高さ方
向の加熱ガスまたは空気の分配比の調整が必要となる
が、その調整には多大の時間を要するだけでなく、調整
範囲も最上段の吐出ロや底部の供給口に限られ、充分な
機能を発揮できないという問題がある。
According to the above-mentioned countermeasure method for reducing NOx by partial combustion, when the amount of heating gas is greatly increased, it is necessary to adjust the distribution ratio of heating gas or air in the height direction. Not only takes a lot of time, but also has a problem that the adjustment range is limited to the uppermost discharge roller and the supply port at the bottom, so that sufficient functions cannot be exhibited.

【0006】コークス炉の燃料としては、コークス炉ガ
ス(富ガス)のほかに、貧ガスと呼ばれる燃料が使用さ
れる。これは、高炉ガスや高炉ガスとコークス炉ガスの
混合ガスなどの発熱量がおよそ800〜1300 kcal/Nm3程度
のガスである。
As fuel for the coke oven, a fuel called a poor gas is used in addition to the coke oven gas (rich gas). This is a gas having a calorific value of about 800 to 1300 kcal / Nm 3 such as blast furnace gas or a mixed gas of blast furnace gas and coke oven gas.

【0007】上記の貧ガスを燃焼させるための燃焼室の
底部構造としては、たとえば特開平4-501876号で提案さ
れているような、貧ガス供給口および空気供給口を中央
に並べて配置した構造、あるいは特公平5-29678号で提
案されているような貧ガス供給口と空気供給口を炉団方
向に対峙させた配置がある。このような燃焼室底部の構
造では、貧ガスと空気が供給口の出口付近(燃焼室底
部)で直ちに混合して燃焼するので、その部分での燃焼
温度が高くなって、NOx発生量が増えるだけでなく燃焼
室内の高さ方向の温度の均一性が損なわれる。
The bottom structure of the combustion chamber for burning the above-mentioned poor gas is, for example, a structure in which a poor gas supply port and an air supply port are arranged in the center as proposed in Japanese Patent Application Laid-Open No. 4-501876. Alternatively, there is an arrangement in which the poor gas supply port and the air supply port are opposed to the furnace group as proposed in Japanese Patent Publication No. Hei 5-29678. In such a structure at the bottom of the combustion chamber, the poor gas and air are immediately mixed and burned near the outlet of the supply port (bottom of the combustion chamber), so that the combustion temperature at that portion increases and the amount of NOx generated increases. Not only that, the temperature uniformity in the height direction in the combustion chamber is impaired.

【0008】ここで、炉団方向というのは、燃焼室(具
体的には仕切壁で分割された複数の燃焼室、いわゆるフ
リューの列)と炭化室とが交互に多数並列している方向
である。炉長方向というのは、炉団方向に直角な方向
で、室炉式コークス炉においてコークスの押出側と排出
側を結ぶ方向である。
Here, the furnace group direction is a direction in which a large number of combustion chambers (specifically, a plurality of combustion chambers divided by partition walls, so-called flue rows) and carbonization chambers are alternately arranged in parallel. is there. The furnace length direction is a direction perpendicular to the furnace group direction, and is a direction connecting the coke extrusion side and the discharge side in the coke oven with the furnace.

【0009】[0009]

【発明が解決しようとする課題】環境汚染防止に対する
要求は年々厳しさを増してきており、法規制の上でも新
設コークス炉のNOx排出規制値は既設炉のそれより相当
厳しくなってきており、従来技術ではコークス炉の建設
ができなくなる可能性さえあるといわれる。
The demands for environmental pollution prevention are increasing year by year, and the NOx emission regulation value of new coke ovens is considerably stricter than that of existing furnaces in terms of laws and regulations. It is said that it may even be impossible to construct a coke oven with the prior art.

【0010】本発明は、上記の問題を解決するためにな
されたものであり、炉高方向の燃焼温度を均一にし、局
部的な高温燃焼を無くし、燃焼排ガス中のNOxを効果的
に低減させることができるコークス炉およびその操業方
法を提供することを目的とする。
The present invention has been made in order to solve the above-mentioned problems, and has a uniform combustion temperature in a furnace height direction, eliminates local high-temperature combustion, and effectively reduces NOx in combustion exhaust gas. And a method of operating the same.

【0011】[0011]

【課題を解決するための手段】本発明は、燃料ガスとし
ての貧ガスの全部を燃焼室底部から供給するとともに燃
焼用空気の一部または全部を燃焼室底部から供給する構
造の室炉式コークス炉を対象とする。即ち、本発明の対
象となるコークス炉では、貧ガスは全て燃焼室の底部か
ら燃焼室内に供給されるが、空気は、その全部が燃焼室
底部から供給される場合(単段燃焼)と、一部が底部か
ら、残りが高さ方向の1カ所または複数カ所から供給さ
れる場合(多段燃焼)とがある。なお、燃焼室底部に
は、通常、富ガスを供給する供給口も設けられる。
SUMMARY OF THE INVENTION The present invention relates to a chamber furnace type coke having a structure in which all of the poor gas as a fuel gas is supplied from the bottom of the combustion chamber and a part or all of the combustion air is supplied from the bottom of the combustion chamber. For furnaces. That is, in the coke oven which is the object of the present invention, all the poor gas is supplied into the combustion chamber from the bottom of the combustion chamber, but the air is supplied entirely from the bottom of the combustion chamber (single-stage combustion). In some cases, part is supplied from the bottom and the rest is supplied from one or more places in the height direction (multi-stage combustion). In addition, a supply port for supplying a rich gas is usually provided at the bottom of the combustion chamber.

【0012】本発明は、上記のコークス炉であって、図
1に示すように「燃焼室の底部に開口する貧ガス供給口
7と空気供給口8を燃焼室の炉長方向(X方向)および
炉団方向(Y方向)の両方から見たとき、いずれの方向
でも完全重複することがないことを特徴とするコークス
炉」を要旨とする。
The present invention relates to the above-mentioned coke oven, in which the poor gas supply port 7 and the air supply port 8 opened at the bottom of the combustion chamber are connected to the furnace in the furnace length direction (X direction) as shown in FIG. And a coke oven characterized in that there is no complete overlap in any direction when viewed from both directions of the furnace group (Y direction).

【0013】上記の貧ガス供給口7と空気供給口8は、
燃焼室の炉長方向および炉団方向の両方から見たとき、
図1の(a)に示すように、まったく重複部分がない状態
でもよい。また、図1(b)および(c)に示すように、炉長
方向(X方向)または炉団方向(Y方向)から見た場合
に、一部が重複する状態でもよい。このとき、重複する
開口部分が完全重複長さ(図2に示すL)の80%以下で
あることが望ましい。
The above-mentioned poor gas supply port 7 and air supply port 8
When viewed from both the furnace length direction and the furnace group direction of the combustion chamber,
As shown in FIG. 1A, there may be no overlapping portion. Further, as shown in FIGS. 1B and 1C, when viewed from the furnace length direction (X direction) or the furnace group direction (Y direction), a part may be overlapped. At this time, it is desirable that the overlapping opening portion is 80% or less of the complete overlapping length (L shown in FIG. 2).

【0014】また、後述するように、貧ガス供給口7と
空気供給口8の少なくとも一方に調整手段(例えば耐火
煉瓦)を取り付けて、上記の80%以下の重複率を達成す
るようにしてもよい。
As will be described later, an adjusting means (for example, a refractory brick) is attached to at least one of the poor gas supply port 7 and the air supply port 8 so as to achieve the above-mentioned overlap ratio of 80% or less. Good.

【0015】本発明は、さらに、前記の多段燃焼の場合
に「炉底の空気供給口から供給する空気を、燃焼室内に
供給される全空気量の20〜70%とし、残りは燃焼室の仕
切壁に設けた1カ所以上の空気供給口から供給すること
を特徴とするコークス炉の操業方法」を要旨とする。こ
の方法においても、前記の重複する開口部分が完全重複
長さの80%以下であることが望ましい。また、貧ガス供
給口7と空気供給口8の少なくとも一方に調整手段を設
けて、貧ガスと空気の混合状態を調整してもよい。
[0015] The present invention further provides a method for performing the multistage combustion described above, wherein the air supplied from the air supply port at the furnace bottom is set to 20 to 70% of the total amount of air supplied to the combustion chamber, and the remainder is supplied to the combustion chamber. A method of operating a coke oven characterized by supplying air from one or more air supply ports provided in a partition wall ". Also in this method, it is desirable that the overlapping opening portion is 80% or less of the complete overlapping length. Further, an adjusting means may be provided in at least one of the poor gas supply port 7 and the air supply port 8 to adjust the mixed state of the poor gas and air.

【0016】燃焼室底部から供給される貧ガスと燃焼用
空気は、拡散して混合し、燃焼しながら燃焼室内を上昇
していく。このようなコークス炉の燃焼室、すなわち狭
く限定された空間内での燃焼においては、燃料ガスの供
給量、その発熱量および空気比等によって最大燃焼点は
異なるものの、燃料ガスと空気の混合状態の良い高さ方
向のある限られた領域(特に燃焼室の底部)で燃焼が促
進される。そして、そこに高温域が生成して、NOxの生
成率が高まるだけでなく、その他の領域(燃焼室の上
部)には逆に低温域が生じて、室内温度の均一性が失わ
れる。
The poor gas and the combustion air supplied from the bottom of the combustion chamber diffuse and mix, and rise in the combustion chamber while burning. In a combustion chamber of such a coke oven, that is, in a narrowly limited space, the maximum combustion point differs depending on the supply amount of the fuel gas, its calorific value and the air ratio, but the mixed state of the fuel gas and air. Combustion is promoted in a limited area (especially at the bottom of the combustion chamber) in a good height direction. Then, a high-temperature region is generated there, and not only the NOx generation rate is increased, but also a low-temperature region is generated in the other region (upper part of the combustion chamber), and the uniformity of the room temperature is lost.

【0017】本発明者は、上記のような燃焼室内での局
部的高温域の発生を抑えるには、燃焼室底部では燃焼ガ
スと空気の混合割合を小さくすること、言い換えれば部
分的に混合することが重要であると考えた。そして、そ
の部分混合を達成する具体的な手段について種々検討し
た結果、燃焼室底部から供給される貧ガスおよび燃焼用
空気の供給口の配置を適正化することによって、局部的
な高温域の発生がなくなり、排ガスの低NOx化が達成で
きることを見いだした。
The inventor of the present invention has found that in order to suppress the occurrence of the local high-temperature region in the combustion chamber as described above, the mixing ratio of the combustion gas and air is reduced at the bottom of the combustion chamber, in other words, the mixing is partially performed. I thought it was important. As a result of various studies on specific means for achieving the partial mixing, the location of the supply port of the poor gas and combustion air supplied from the bottom of the combustion chamber was optimized to generate a local high-temperature region. And found that it was possible to achieve lower NOx in exhaust gas.

【0018】以下、本発明の実施態様と作用効果を説明
する。
Hereinafter, embodiments and effects of the present invention will be described.

【0019】[0019]

【発明の実施の形態】図3および図4は、本発明のコー
クスの燃焼室の例を示す図である。図3の(a)は、コー
クス炉の複式多段燃焼室の縦断面(同図(b)のA−A断
面)である。 燃焼室1-1〜1-4は、燃焼室仕切壁9、10で
隣接燃焼室と仕切られている。仕切壁10の高さ方向の2
カ所に二次空気供給口2が設置されており、二次空気供
給ダクト3から燃焼用空気が供給される。底部11には貧
ガス供給ダクト4、一次空気供給ダクト5、富ガス供給口
6がある。貧ガス供給ダクト4および一次空気供給ダク
ト5は、それぞれ貧ガス供給口7および一次空気供給口8
につながっている。
3 and 4 show an example of a coke combustion chamber according to the present invention. FIG. 3A is a vertical cross section (AA cross section of FIG. 3B) of the multiple multi-stage combustion chamber of the coke oven. The combustion chambers 1-1 to 1-4 are separated from adjacent combustion chambers by combustion chamber partition walls 9 and 10. 2 in the height direction of the partition wall 10
Secondary air supply ports 2 are provided at various places, and combustion air is supplied from a secondary air supply duct 3. The bottom 11 has a poor gas supply duct 4, a primary air supply duct 5, and a rich gas supply port.
There are six. The poor gas supply duct 4 and the primary air supply duct 5 are provided with a poor gas supply port 7 and a primary air supply port 8, respectively.
Is connected to

【0020】図3(b)は、図3(a)のB−B断面の拡大図
である。底部11には貧ガス供給口7および一次空気供給
口8が図示のように配置されている。本発明で「空気供
給口」と言うのは、この一次空気供給口8のことであ
る。
FIG. 3B is an enlarged view of a section taken along line BB of FIG. 3A. At the bottom 11, a poor gas supply port 7 and a primary air supply port 8 are arranged as shown. In the present invention, the "air supply port" is the primary air supply port 8.

【0021】図4の(a)と(b)は、図3(b)と同様の断面
図であるが、貧ガス供給口7と一次空気供給口8の配置
が異なる例を示す図である。
FIGS. 4A and 4B are sectional views similar to FIG. 3B, but showing an example in which the arrangement of the poor gas supply port 7 and the primary air supply port 8 is different. .

【0022】図1は、燃焼室の一つ(図3、図4の1-
2)における貧ガス供給口7と一次空気供給口8の配置
の態様を模式的に示す図である。なお、隣り合う燃焼室
(例えば図3の1-1と1-2)は相互に反転しただけの構造
であるから、その一つ(1-2)でもって、燃焼室の構造
を代表させる。
FIG. 1 shows one of the combustion chambers (1--1 in FIGS. 3 and 4).
It is a figure which shows typically the aspect of arrangement | positioning of the poor gas supply port 7 and the primary air supply port 8 in 2). The adjacent combustion chambers (for example, 1-1 and 1-2 in FIG. 3) have a structure that is only inverted each other, and one of them (1-2) represents the structure of the combustion chamber.

【0023】図1の(a)は、図4の(a)に示した配置であ
る。これは、炉団方向(Y方向)から見ても、炉長方向
(X方向)から見ても、重複のない例である。即ち、炉
長方向にはX1の間隔があり、炉団方向にはY1の間隔があ
る。
FIG. 1A shows the arrangement shown in FIG. This is an example in which there is no overlap when viewed from the furnace group direction (Y direction) or from the furnace length direction (X direction). That is, the furnace length direction has spacing of X 1, the Rodin direction there is spacing of Y 1.

【0024】図1の(b)は、図3(b)に示した配置であ
る。即ち、炉団方向(Y方向)から見る場合は貧ガス供
給口7と一次空気供給口8は乖離しているが、炉長方向
(X方向)から見ると、両者はY2の範囲で重複してい
る。
FIG. 1B shows the arrangement shown in FIG. 3B. That is, when viewed from the furnace group direction (Y direction), the poor gas supply port 7 and the primary air supply port 8 are separated from each other, but when viewed from the furnace length direction (X direction), both overlap in the range of Y 2. are doing.

【0025】図1の(c)は、図4(b)に示した配置であ
る。即ち、炉団方向(Y方向)から見る場合は、貧ガス
供給口7と一次空気供給口8はX3の範囲で重複している
が、炉長方向(X方向)に見ると、両者はY3の間隔をお
いて乖離している。
FIG. 1C shows the arrangement shown in FIG. 4B. That is, when viewed from Rodin direction (Y direction), but poor gas supply port 7 and the primary air inlet 8 are overlapping with the range of X 3, when viewed in the furnace length direction (X direction), both at intervals of Y 3 is divergence.

【0026】図5の(a)および(b)は、従来の貧ガス供給
口7と一次空気供給口8の配置を示す参考図である。これ
らを模式的に示したのが図2である。
FIGS. 5A and 5B are reference views showing the arrangement of a conventional poor gas supply port 7 and a primary air supply port 8. FIG. FIG. 2 schematically shows these.

【0027】図2の(a)は、貧ガス供給口7および一次空
気供給口8が、炉団方向(Y方向)から見れば重複して
いないが、炉長方向(X方向)から見れば完全に重複し
ている例で、図5の(a)の配置に相当する。図2の(b)
は、一次空気供給口8が貧ガス供給口7 よりも短い例
で、その一次空気供給口8 が炉長方向では完全に貧ガス
供給口7の範囲に包含されている。
FIG. 2A shows that the poor gas supply port 7 and the primary air supply port 8 do not overlap when viewed from the furnace group direction (Y direction), but when viewed from the furnace length direction (X direction). This is an example of completely overlapping, and corresponds to the arrangement of FIG. FIG. 2 (b)
Is an example in which the primary air supply port 8 is shorter than the poor gas supply port 7, and the primary air supply port 8 is completely included in the range of the poor gas supply port 7 in the furnace length direction.

【0028】図2の(c)は、貧ガス供給口7と一次空気供
給口8が、上下に配置された例で、図5の(b)の例に相当
する。この場合は、炉団方向(Y方向)から見れば完全
に重複しており、炉長方向(X方向)に見れば重複部分
がなく、完全に乖離している。
FIG. 2 (c) shows an example in which the poor gas supply port 7 and the primary air supply port 8 are arranged vertically, and corresponds to the example of FIG. 5 (b). In this case, when viewed from the furnace group direction (Y direction), they completely overlap, and when viewed in the furnace length direction (X direction), there is no overlapping portion, and they are completely separated.

【0029】ここでは、図2のLを完全重複長さとい
う。図2に示した例では、空気供給口8の方が貧ガス供
給口7よりも短いから、空気供給口の長さがそのまま完
全重複長さLになる。逆に、空気供給口の方が貧ガス供
給口よりも長い場合は、貧ガス供給口の長さが完全重複
長さLになる。
Here, L in FIG. 2 is called a complete overlap length. In the example shown in FIG. 2, since the air supply port 8 is shorter than the poor gas supply port 7, the length of the air supply port becomes the complete overlap length L as it is. Conversely, when the air supply port is longer than the poor gas supply port, the length of the poor gas supply port becomes the completely overlapped length L.

【0030】先に述べたように、コークス炉の燃焼室と
いう狭い空間においては、燃焼室底部でのガスと空気の
過度の混合を抑制するためには、炉底部からの吐出直後
の過度の混合を抑えることが重要で、それには貧ガス供
給口と空気供給口をできるだけ離すことが必要である。
そのための具体的な構造が、図1に示したような、燃焼
室の底面の対角位置に貧ガス供給口7と空気供給口8を
おいた構造である。
As described above, in the narrow space of the combustion chamber of the coke oven, in order to suppress excessive mixing of gas and air at the bottom of the combustion chamber, excessive mixing immediately after discharge from the bottom of the furnace is required. It is important to keep the gas supply port and the air supply port as far apart as possible.
A specific structure for this purpose is a structure in which a poor gas supply port 7 and an air supply port 8 are provided at diagonal positions on the bottom surface of the combustion chamber as shown in FIG.

【0031】このような構造にすれば、燃焼室底部から
吐出された貧ガスと空気は燃焼室の縦断面でみた場合、
それぞれ単独に燃焼室内を拡散する。このため、燃焼室
底部ではガスと空気の混合が一部発生し、部分的な燃焼
が発生するが、大部分のガスと空気は混合せずに上昇
し、高さ方向全面に亘って徐々に混合して燃焼する。従
って、局部的な高温燃焼が発生せず、炉高方向の温度が
均一化し、NOxの発生量が少なくなる。 貧ガス供給口
と空気供給口とをできるだけ離す、という点では図1の
(a)に示した完全乖離の状態が望ましい。しかし、貧ガ
ス供給口と空気供給口を過度に離すと、燃焼室最下部の
燃焼が抑制され過ぎて、逆に炉最下部の温度低下を招く
ことになる。従って、図1に示した間隔X1,Y1,X2,Y3
は、先に定義した完全重複長さLの40%程度に抑えるの
が望ましい。なお、貧ガス供給口と空気供給口のそれぞ
れの大きさは、供給されるガスおよび空気が燃焼室内を
ほぼ均等に拡散するように、適宜選定すればよい。さら
に、貧ガス供給口および空気供給口の形状は矩形に限ら
ず楕円形などの形状でもよい。楕円形の場合は、それを
矩形に近似させて本発明で定める条件を満たすようにす
ればよい。
With such a structure, poor gas and air discharged from the bottom of the combustion chamber can
Each diffuses independently in the combustion chamber. For this reason, at the bottom of the combustion chamber, a mixture of gas and air is partially generated, and partial combustion occurs. However, most of the gas and air rise without mixing, and gradually rise over the entire surface in the height direction. Mix and burn. Therefore, local high-temperature combustion does not occur, the temperature in the furnace height direction becomes uniform, and the amount of generated NOx decreases. FIG. 1 shows that the gas supply port and the air supply port are separated as much as possible.
The state of complete deviation shown in (a) is desirable. However, if the poor gas supply port and the air supply port are too far apart, the combustion at the lowermost part of the combustion chamber will be excessively suppressed, and conversely, the temperature at the lowermost part of the furnace will decrease. Therefore, the intervals X 1 , Y 1 , X 2 , Y 3 shown in FIG.
Is desirably suppressed to about 40% of the complete overlap length L defined above. The size of the poor gas supply port and the size of the air supply port may be appropriately selected so that the supplied gas and air diffuse almost uniformly in the combustion chamber. Furthermore, the shape of the poor gas supply port and the air supply port is not limited to a rectangle, but may be an oval or the like. In the case of an elliptical shape, it may be approximated to a rectangle so as to satisfy the conditions defined in the present invention.

【0032】図1の(b)および(c)に示したように、貧ガ
ス供給口7と空気供給口8は、炉長方向(X方向)また
は炉団方向(Y方向)から見たときに一部が重複してい
てもよい。そのときの重複長さ(Y2またはX3)は、完全
重複長さLの80%以下とすべきである。後述する実施例
で示すように、これらの重複長さがLの80%を超えると
NOx濃度が急に上昇するからである。
As shown in FIGS. 1B and 1C, the poor gas supply port 7 and the air supply port 8 are viewed from the furnace length direction (X direction) or the furnace group direction (Y direction). May partially overlap. The overlap length (Y 2 or X 3 ) at that time should be 80% or less of the complete overlap length L. As shown in the examples described later, when the overlap length exceeds 80% of L.
This is because the NOx concentration suddenly increases.

【0033】貧ガス供給口と空気供給口が炉長方向また
は炉団方向から見て重複する範囲が大きい場合には、供
給口の出口付近(燃焼室の下部)において貧ガスと空気
の混合が盛んになり、局部的な高温燃焼が起きるおそれ
がある。その場合には、供給口に、その開度を調整する
手段を設けて、重複率を実質的に減らすとともに、貧ガ
スと空気の一方、または両方の燃焼室底部における吐出
方向を、貧ガスと空気の接触を抑制する方向に傾斜させ
ることで、一層の均一燃焼および低NOx化が達成でき
る。
If the poor gas supply port and the air supply port have a large overlapping range when viewed from the furnace length direction or the furnace group direction, mixing of the poor gas and air near the outlet of the supply port (lower part of the combustion chamber). It may become active and cause local high-temperature combustion. In that case, a means for adjusting the opening degree is provided at the supply port to substantially reduce the overlap rate, and the discharge direction at the bottom of one or both combustion chambers of the poor gas and the air is set to the poor gas. By inclining in a direction that suppresses air contact, more uniform combustion and lower NOx can be achieved.

【0034】逆に、貧ガス供給口と空気供給口が炉長方
向および炉団方向に全く重複しない場合、または重複し
ていてもその比率が小さい場合には、燃焼室下部での燃
焼が遅れて炉高方向の温度差が大きくなるおそれがあ
る。その場合は、供給口の一方または両方に、貧ガスと
空気の接触を促進する方向に気流を傾斜させる開度調整
手段を取り付ければよい。それによって、燃焼室底部に
おける燃焼が促進され、均一加熱が可能になる。
Conversely, if the poor gas supply port and the air supply port do not overlap at all in the furnace length direction and the furnace group direction, or if the ratio is small even if they overlap, combustion in the lower part of the combustion chamber is delayed. Therefore, the temperature difference in the furnace height direction may increase. In this case, one or both of the supply ports may be provided with an opening degree adjusting means for inclining the airflow in a direction to promote the contact between the poor gas and the air. Thereby, combustion at the bottom of the combustion chamber is promoted, and uniform heating is enabled.

【0035】上記の開度調整手段は、既設のコークス炉
において本発明を実施するときにも利用できる。即ち、
貧ガス供給口および空気供給口の少なくとも一方の端部
に耐火煉瓦等の調整手段を設けて開口部の一部を閉塞
し、本発明で定める寸法と位置の関係が得られるように
すればよい。この手段は、貧ガスまたは空気の流れの方
向を変化させて、貧ガスと空気の混合状態を適正化する
のに役立つ。
The above-described opening degree adjusting means can be used when the present invention is carried out in an existing coke oven. That is,
Adjustment means such as a refractory brick may be provided at at least one end of the poor gas supply port and the air supply port to partially close the opening so that the relationship between the dimensions and the position defined in the present invention can be obtained. . This measure serves to change the direction of the flow of the lean gas or air to optimize the mixing of the lean gas and air.

【0036】図3および図4に示した多段燃焼が可能な
炉では、空気の全量を一次空気供給口8から供給しても
よいが、その一部を二次空気供給口2から供給して多段
燃焼を行わせてもよい。その場合、一次供給口から供給
する空気は、全量の20〜70%とするのが望ましい。
In the furnace capable of multi-stage combustion shown in FIGS. 3 and 4, the whole amount of air may be supplied from the primary air supply port 8, but part of the air is supplied from the secondary air supply port 2. Multi-stage combustion may be performed. In that case, the air supplied from the primary supply port is desirably 20 to 70% of the total amount.

【0037】図6は、本発明の複式単段燃焼室コークス
炉の燃焼室の例を示す図3と同様の図である。(a)は縦
断面((b)図のC−C断面)、(b)は水平断面((a)図の
D−D断面)である。図示のとおり、図3の多段式のも
のと比較して、二次空気供給口2および二次空気供給ダ
クト3がない。この例では、炉底11における貧ガス供給
口7および一次空気供給口8の配置において、炉団方向か
ら見た場合は重複がなく、炉長方向から見たときは一部
が重複している。
FIG. 6 is a view similar to FIG. 3 showing an example of a combustion chamber of a coke oven of the present invention. (a) is a vertical cross section (CC cross section in (b) drawing), and (b) is a horizontal cross section (DD cross section in (a) drawing). As shown, there is no secondary air supply port 2 and secondary air supply duct 3 as compared with the multi-stage type shown in FIG. In this example, in the arrangement of the poor gas supply port 7 and the primary air supply port 8 in the furnace bottom 11, there is no overlap when viewed from the furnace group direction, and partly overlaps when viewed from the furnace length direction. .

【0038】[0038]

【実施例】(実施例1)多段燃焼方式の炉において、燃
料ガスとして1100 kcal/Nm3の貧ガスだけを使用し、燃
焼後の排ガス中酸素濃度が1.5%になるように燃焼用空
気を供給した。空気は、燃焼室底部の一次空気供給口8
から全空気量の50%を供給し、燃焼室仕切壁の1.7 mの
高さの二次空気ノズル2から全空気量の20%、残りを3.
5 mの高さ二次空気ノズル2から供給して多段燃焼を実
施した。なお、燃焼室の基本構造は、高さが6.6m、底面
の最小内寸法が0.91m×0.3mで、富ガス供給口の直径は7
7mmである。この基本構造は、単段燃焼を行う燃焼炉の
底面の最小内寸法が0.91m×0.35mであることを除いて、
以下の実施例においてすべて共通である。
[Example 1] (Example 1) In a multi-stage combustion type furnace, only 1100 kcal / Nm 3 of a poor gas is used as fuel gas, and combustion air is adjusted so that the oxygen concentration in the exhaust gas after combustion becomes 1.5%. Supplied. The air is supplied to the primary air supply port 8 at the bottom of the combustion chamber.
From the secondary air nozzle 2, which is 1.7 m high from the combustion chamber partition wall, and supplies the remaining air to 3.
Multistage combustion was performed by supplying the secondary air nozzle 2 having a height of 5 m. The basic structure of the combustion chamber is 6.6 m in height, the minimum inner dimension of the bottom is 0.91 m × 0.3 m, and the diameter of the rich gas supply port is 7 mm.
7 mm. This basic structure has a minimum internal dimension of 0.91m x 0.35m, except for the minimum inner dimension of the bottom of the combustion furnace that performs single-stage combustion.
All are common in the following embodiments.

【0039】図7は、図3(b)の燃焼室構造、即ち、貧
ガス供給口および空気供給口が図1の(b)に示すように
配置されたコークス炉で行った実験結果である。貧ガス
供給口および空気供給口のサイズは次のとおりである。
炉長方向の乖離長さX2は40mmの一定とし、炉長方向から
見たときの重複長さ(Y2)を変化させた。
FIG. 7 shows the results of an experiment conducted in a coke oven having the combustion chamber structure shown in FIG. 3B, that is, the poor gas supply port and the air supply port arranged as shown in FIG. 1B. . The sizes of the poor gas supply port and the air supply port are as follows.
Furnace length direction of the offset length X 2 is a constant 40 mm, changing the overlap length (Y 2) when viewed from the furnace length direction.

【0040】 図7の(a)は、炉長方向から見たときの重複長さ(図1
のY2)と排ガス中のNOx濃度との関係を示すグラフであ
る。この図で、重複長さが負の値になっている場合は重
複がなく、その絶対値が乖離長さを表す。同図から、重
複長さが−100〜200mmの場合はNOx濃度が低いこと、お
よび200mmを超えるとNOx濃度が急激に上昇することが明
らかである。上記の200mmは、貧ガス供給口(および空
気供給口)の炉団方向長さ(L1:250 mm)の80%であ
る。従って、重複長さ(Y2)は炉団方向長さL1の80%以
下にするべきである。この実施例の場合は、完全重複長
さLはL1と等しいから、上記の80%は、完全重複長さL
の80%となる。
[0040] FIG. 7A shows the overlapping length when viewed from the furnace length direction (FIG. 1).
4 is a graph showing the relationship between Y 2 ) and NOx concentration in exhaust gas. In this figure, when the overlap length is a negative value, there is no overlap, and the absolute value indicates the divergence length. It is clear from the figure that the NOx concentration is low when the overlap length is -100 to 200 mm, and that the NOx concentration sharply increases when the overlap length exceeds 200 mm. The above 200 mm is 80% of the length of the poor gas supply port (and the air supply port) in the furnace group direction (L 1 : 250 mm). Therefore, the overlap length (Y 2 ) should be 80% or less of the length L 1 in the furnace group direction. For this embodiment, since a complete overlap length L is equal to L 1, 80% of the completely overlapped length L
80% of

【0041】図7の(b)は、前記の重複長さY2が250 mm
(重複率100%)、0 mm(重複および乖離なし)および
−100 mm(乖離長さ100 mm、乖離率40%)の場合の炉高
方向の燃焼室壁温度である。この図から、重複長さ250
mmすなわち重複率が100 %の状態では下部の燃焼室壁温
度が高過ぎ、これが、図7(a)に示したNOx濃度の急激な
上昇の原因になっていることがわかる。一方、重複長さ
が−100 mmすなわち乖離率40 %の場合は、下部の燃焼室
温度が低く、上部では高くなって炉高方向の温度分布が
かなり不均一になっている。
FIG. 7B shows that the overlapping length Y 2 is 250 mm.
(Overlap rate 100%), 0 mm (no overlap and divergence) and -100 mm (deviation length 100 mm, divergence rate 40%) are the combustion chamber wall temperatures in the furnace height direction. From this figure, the overlap length 250
mm, that is, when the overlap ratio is 100%, the temperature of the lower combustion chamber wall is too high, which indicates that the NOx concentration rapidly increases as shown in FIG. 7 (a). On the other hand, when the overlap length is -100 mm, that is, when the deviation rate is 40%, the temperature of the lower combustion chamber is low, and the temperature of the upper combustion chamber is high, and the temperature distribution in the furnace height direction is considerably uneven.

【0042】燃焼室高さ方向の温度の不均一は、燃焼室
底部からの空気の供給比率の調整や、貧ガスまたは/お
よび空気の供給口に気流調整手段を設ける等の対策で或
程度は解消できるが、その効果にも限度がある。従っ
て、重複率は80 %以下、乖離率は40 %以下、とするのが
望ましい。
The non-uniformity of the temperature in the height direction of the combustion chamber can be reduced to some extent by taking measures such as adjusting the air supply ratio from the bottom of the combustion chamber and providing air flow adjusting means at the supply port of poor gas and / or air. It can be solved, but its effect is limited. Therefore, it is desirable that the overlap rate be 80% or less and the deviation rate be 40% or less.

【0043】図7の(c)は、同じ構造の燃焼室で空気を
全量底部から供給する単段式燃焼を実施したときの試験
結果(破線で示す)を図7の(a)に併記したものであ
る。単段燃焼の場合は多段燃焼の場合よりNOx濃度は高
めになるが、重複長さの効果の傾向は同様であつて、重
複長さが150 mm(重複率60 %)以下でNOx濃度は大幅に
低下する。
FIG. 7 (c) shows the test results (shown by broken lines) when a single-stage combustion in which all the air is supplied from the bottom in the combustion chamber having the same structure is also shown in FIG. 7 (a). Things. In the case of single-stage combustion, the NOx concentration is higher than in the case of multi-stage combustion, but the effect of the overlap length is the same, and the NOx concentration is large when the overlap length is 150 mm or less (overlap rate 60%). To decline.

【0044】図7の(d)は、同じ構造の燃焼室での多段
燃焼の場合に、燃焼排ガスを系内で再循環させた場合の
データを図7(a)に併記したものである。系内再循環を
行った場合は、再循環なしの場合と同様の傾向である
が、NOx濃度は低下する。即ち、本発明の効果は、再循
環の有無にかかわらず発揮される。
FIG. 7 (d) also shows data in the case where the combustion exhaust gas is recirculated in the system in the case of multi-stage combustion in a combustion chamber having the same structure, together with FIG. 7 (a). When the in-system recirculation is performed, the tendency is similar to that without recirculation, but the NOx concentration decreases. That is, the effect of the present invention is exhibited regardless of the presence or absence of recirculation.

【0045】図8は、同じ構造の燃焼室での多段燃焼に
おいて、貧ガス供給量(入熱量)を変化させた場合の燃
焼室壁の温度を調べた結果である。このとき、貧ガス供
給口と一次空気供給口の重複長さY2は0 mmとした。図中
に実線で示したベースが、図7(b)の「重複長さ0 mm」
の場合に相当する。図示のとおり、入熱量が変化しても
温度パターンは変化せず、したがってコークス炉の入熱
上の操業条件が大きく変化した場合でも、燃料および空
気供給口の寸法関係の調整は不要であり、本発明の効果
を維持できる。
FIG. 8 shows the result of examining the temperature of the combustion chamber wall when the amount of supplied poor gas (heat input) is changed in multistage combustion in the combustion chamber having the same structure. At this time, overlapping length Y 2 of the poor gas supply port and the primary air supply port was 0 mm. The base indicated by a solid line in the figure is the “overlap length 0 mm” in FIG. 7B.
Corresponds to the case of As shown in the figure, even if the heat input changes, the temperature pattern does not change, and therefore, even when the operating conditions on the heat input of the coke oven change greatly, it is unnecessary to adjust the dimensional relationship between the fuel and the air supply port, The effects of the present invention can be maintained.

【0046】(実施例2)図9は、図4(b)の配置、即
ち、図1の(c)の配置での試験結果で、図7の(a)と同様
のグラフである。貧ガス供給口および空気供給口のサイ
ズは下記のとおりである。炉団方向の乖離長さY3は40mm
の一定とし、炉団方向から見たときの重複長さ(X3)を
変化させた。
(Example 2) FIG. 9 is a graph showing the test results in the arrangement of FIG. 4B, that is, the arrangement of FIG. 1C, and is a graph similar to FIG. 7A. The sizes of the poor gas supply port and the air supply port are as follows. Divergence length Y 3 Rodin direction 40mm
And the overlap length (X 3 ) when viewed from the furnace group was varied.

【0047】 図9から、重複長さが−50 mm(乖離率50%)〜50 mm
(重複率50%)の場合にはNOx濃度が150 ppm以下になる
ことが明らかである。
[0047] From FIG. 9, the overlap length is -50 mm (deviation rate 50%) to 50 mm.
In the case of (50% overlap rate), it is clear that the NOx concentration becomes 150 ppm or less.

【0048】(実施例3)先の実施例1と同じ条件で、
図3(b)、即ち、図1(b)の配置において、炉長方向から
みたときの重複長さY2を200 mm(重複率80 %)とした場
合について、貧ガス供給口および空気供給口に調整手段
(調整煉瓦)を当てて開口部を調整する試験を行った。
(Embodiment 3) Under the same conditions as in Embodiment 1 above,
FIG. 3 (b), the words, in the arrangement of FIG. 1 (b), the case where the overlapping length Y 2 when viewed from the furnace length direction is 200 mm (overlap ratio of 80%), poor gas supply port and the air supply A test was conducted in which the opening was adjusted by applying an adjusting means (adjusting brick) to the mouth.

【0049】図10に調整煉瓦13の設置状態を示す。図
10の(a)に示すように、貧ガス供給口7と空気供給口
8の片端に50 mmの調整煉瓦13を当てた。そのとき、調
整煉瓦は、(b)図に示すように、貧ガス供給口では空気
供給口寄りに、空気供給口では貧ガス供給口寄りに設置
した。これによって、実質的な重複長さは100mm(重複
率は40%)に減少した。
FIG. 10 shows an installation state of the adjustment brick 13. As shown in FIG. 10A, a 50 mm adjusting brick 13 was applied to one end of the poor gas supply port 7 and one end of the air supply port 8. At that time, the conditioning brick was placed near the air supply port at the poor gas supply port and near the poor gas supply port at the air supply port as shown in FIG. This reduced the effective overlap length to 100mm (overlap rate 40%).

【0050】調整煉瓦を当てない場合は、両供給口の重
複長さY2は200 mmであり、その時のNOx濃度は図7(a)に
示したように約160 ppmであった。これに対して、調整
煉瓦13を当てた場合は、前記のように実質重複率が小さ
くなるとともに、貧ガスおよび燃焼用空気の流れ方向が
図10(b)に示すように相互に乖離する方向に変化す
る。これらの作用効果によって、NOx 濃度は95 ppmとな
った。このように、供給口の簡単な操作で本発明の効果
を高めることができる。
When the adjustment brick was not applied, the overlap length Y 2 between the two supply ports was 200 mm, and the NOx concentration at that time was about 160 ppm as shown in FIG. 7 (a). On the other hand, when the adjusting brick 13 is applied, the substantial overlap rate is reduced as described above, and the flow directions of the poor gas and the combustion air are separated from each other as shown in FIG. Changes to These effects resulted in a NOx concentration of 95 ppm. Thus, the effect of the present invention can be enhanced by a simple operation of the supply port.

【0051】(実施例4)図11は、図4(a)の配置の
貧ガス供給口と空気供給口に調整煉瓦を当てた状態を示
す。この時の貧ガス供給口7および空気供給口8のサイ
ズは実施例1とおなじであり、両供給口の炉長方向から
見たときの重複がなく(重複率0 %)、炉団方向から見
たときの間隔は100 mm(言い換えれば重複長さが−100m
mで、乖離率40%)である。この場合、重複長さがマイナ
スであるから図7(b)に示すように、燃焼室下部では上
部より低温である。
Embodiment 4 FIG. 11 shows a state in which an adjustment brick is applied to the poor gas supply port and the air supply port in the arrangement of FIG. 4 (a). At this time, the sizes of the poor gas supply port 7 and the air supply port 8 are the same as those in Example 1, and there is no overlap when viewed from the furnace length direction of both supply ports (overlap rate 0%). The distance when viewed is 100 mm (in other words, the overlap length is -100 m
m, the divergence rate is 40%). In this case, since the overlap length is minus, the temperature is lower in the lower part of the combustion chamber than in the upper part, as shown in FIG. 7 (b).

【0052】上記の配置において、図11(a)および(b)
に示すように、貧ガス供給口および燃焼用空気供給口に
それぞれ長さ50mmの調整煉瓦13を当てたところ、貧ガス
および燃焼用空気の流れ方向が図11(b)のように変化
した。この場合のNOx濃度は調整煉瓦設置の前後で変化
しないが、炉高方向の温度分布は、図12に示すように
炉底部の温度が上昇し、炉上部の温度が低下して炉高方
向の温度分布が均一化した。これは調整煉瓦の設置によ
り、貧ガスと燃焼用空気の流れが接近し、乖離率が減少
したのと同じ効果が得られたからである。
In the above arrangement, FIGS. 11 (a) and 11 (b)
As shown in FIG. 11, when the adjusting brick 13 having a length of 50 mm was applied to each of the poor gas supply port and the combustion air supply port, the flow direction of the poor gas and the combustion air changed as shown in FIG. 11 (b). In this case, the NOx concentration does not change before and after the installation of the adjustment brick, but the temperature distribution in the furnace height direction increases as shown in FIG. The temperature distribution became uniform. This is because the installation of the adjusting bricks brought about the same effect as the flow of the poor gas and the combustion air approached to reduce the divergence rate.

【0053】(実施例5)図3(b)に示した構造の装置
で実施例1と同じ条件(ただし、炉団方向から見たとき
の両供給口の重複長さを0とした)で、燃焼室底部の一
次空気供給口8から供給する空気量を全空気量の10〜90
%の範囲で変えた実験を行った。残りの空気は仕切壁の
1.7mおよび3.5mの高さに設けた二つの二次空気供給ノズ
ル2から、1:1.5の比率に分けて供給した。
(Embodiment 5) An apparatus having the structure shown in FIG. 3 (b) under the same conditions as in Embodiment 1 (however, the overlapping length of both supply ports when viewed from the furnace group direction was set to 0). The amount of air supplied from the primary air supply port 8 at the bottom of the combustion chamber is 10 to 90% of the total air amount.
Experiments with varying percentages were performed. The rest of the air is
The air was supplied at a ratio of 1: 1.5 from two secondary air supply nozzles 2 provided at a height of 1.7 m and 3.5 m.

【0054】図13の(a)は、燃焼室底部(一次空気供給
口8)から供給する空気量の比率と、排ガスのNOx濃度
との関係、同(b)は、同じく燃焼室壁の高さ方向での最
高温度と最低温度の差との関係を示すグラフである。図
示のとおり、燃焼室底部から供給する空気の比率が70%
を超えるとNOx濃度が急激に上昇するだけでなく、燃焼
壁の温度差も大きくなる。これは、燃焼室底部での燃焼
温度が局部的に高くなるからである。一方、その空気比
率が20%未満の場合は、燃焼室底部の温度が低下するた
めに、やはり燃焼壁の温度差が大きくなる。これらの結
果から明らかなように、燃焼室底部の一次空気供給口か
ら供給する空気は、全空気の20〜70%の範囲とするのが
望ましい。
FIG. 13A shows the relationship between the ratio of the amount of air supplied from the bottom of the combustion chamber (primary air supply port 8) and the NOx concentration of exhaust gas, and FIG. 13B shows the height of the combustion chamber wall. 7 is a graph showing a relationship between a maximum temperature and a minimum temperature difference in a vertical direction. As shown, the ratio of air supplied from the bottom of the combustion chamber is 70%
When the temperature exceeds the above, not only the NOx concentration sharply rises, but also the temperature difference of the combustion wall increases. This is because the combustion temperature at the bottom of the combustion chamber is locally increased. On the other hand, when the air ratio is less than 20%, the temperature at the bottom of the combustion chamber is reduced, so that the temperature difference between the combustion walls is also large. As is apparent from these results, it is desirable that the air supplied from the primary air supply port at the bottom of the combustion chamber be in the range of 20 to 70% of the total air.

【0055】[0055]

【発明の効果】以上説明したように、本発明に係るコー
クス炉では貧ガス供給口と燃焼室底部の空気供給口(一
次空気供給口)の配置を最適にしたので、炉高方向に均
一な燃焼が可能となる。その結果、局部的な高温燃焼が
防止され、NOxの発生量が減少する。また、炭化室内の
加熱温度も均一になるので良質のコークスが得られる。
本発明は、新設のコークス炉への適用は勿論のこと、貧
ガス供給口または/および空気供給口に開度調整手段を
設けるという簡単な方法で既設炉にも適用できる。
As described above, in the coke oven according to the present invention, the arrangement of the poor gas supply port and the air supply port (primary air supply port) at the bottom of the combustion chamber is optimized, so that the coke oven is uniform in the furnace height direction. Combustion becomes possible. As a result, local high-temperature combustion is prevented, and the amount of generated NOx is reduced. Further, since the heating temperature in the carbonization chamber becomes uniform, good quality coke can be obtained.
The present invention can be applied not only to a newly installed coke oven but also to an existing oven by a simple method of providing an opening adjusting means at a poor gas supply port and / or an air supply port.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の原理を説明するための貧ガス供給口と
空気供給口の配置を模式的に示す図である。
FIG. 1 is a diagram schematically showing the arrangement of a poor gas supply port and an air supply port for explaining the principle of the present invention.

【図2】従来の貧ガス供給口と空気供給口の配置を模式
的に示す図である。
FIG. 2 is a diagram schematically showing a conventional arrangement of a poor gas supply port and an air supply port.

【図3】本発明の多段燃焼方式のコークス炉の燃焼室構
造の一例を示す図である。
FIG. 3 is a diagram showing an example of a combustion chamber structure of a multi-stage coke oven of the present invention.

【図4】本発明のコークス炉の燃焼室の貧ガス供給口と
空気供給口の配置例を示す図である。
FIG. 4 is a diagram showing an example of arrangement of a poor gas supply port and an air supply port in a combustion chamber of a coke oven of the present invention.

【図5】従来のコークス炉の燃焼室の貧ガス供給口と空
気供給口の配置例を示す図である。
FIG. 5 is a diagram showing an example of arrangement of a poor gas supply port and an air supply port in a combustion chamber of a conventional coke oven.

【図6】本発明の単段燃焼方式のコークス炉の燃焼室構
造例を示す図である。
FIG. 6 is a diagram showing an example of a combustion chamber structure of a single-stage combustion type coke oven of the present invention.

【図7】実施例における試験結果を示すグラフである。FIG. 7 is a graph showing test results in Examples.

【図8】実施例における試験結果を示すグラフである。FIG. 8 is a graph showing test results in Examples.

【図9】実施例における試験結果を示すグラフである。FIG. 9 is a graph showing test results in Examples.

【図10】貧ガス供給口および空気供給口に調整煉瓦を
設置した燃焼室底部構造の一例を説明する図である。
FIG. 10 is a diagram illustrating an example of a combustion chamber bottom structure in which adjusting bricks are installed at a poor gas supply port and an air supply port.

【図11】貧ガス供給口および空気供給口に調整煉瓦を
設置した燃焼室底部構造の他の例を説明する図である。
FIG. 11 is a diagram illustrating another example of a combustion chamber bottom structure in which an adjustment brick is installed at a poor gas supply port and an air supply port.

【図12】図11に示した構造のコークス炉で行った実
験結果を示す図である。
FIG. 12 is a view showing the results of an experiment performed in a coke oven having the structure shown in FIG. 11;

【図13】燃焼室の底部から供給する一次空気の比率を
変えて行った実験結果を示す図である。
FIG. 13 is a diagram showing the results of an experiment performed by changing the ratio of primary air supplied from the bottom of the combustion chamber.

【符号の説明】[Explanation of symbols]

1 (1-1、1-2、1-3、1-4) 燃焼室 2 二次空気供給口 3 二次空気供給ダクト 4 貧ガス供給ダクト 5 空気供給ダクト(一次空気供給ダクト) 6 富ガス供給口 7 貧ガス供給口 8 空気(一次空気)供給口 9 、10 仕切壁 11 底部 12 炉壁 13 調整煉瓦 1 (1-1, 1-2, 1-3, 1-4) Combustion chamber 2 Secondary air supply port 3 Secondary air supply duct 4 Poor gas supply duct 5 Air supply duct (primary air supply duct) 6 Rich gas Supply port 7 Poor gas supply port 8 Air (primary air) supply port 9, 10 Partition wall 11 Bottom 12 Furnace wall 13 Regulating brick

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高瀬 省二 茨城県鹿嶋市大字光3番地住友金属工業株 式会社鹿島製鉄所内 (72)発明者 内田 誠 茨城県鹿嶋市大字光3番地住友金属工業株 式会社鹿島製鉄所内 (72)発明者 小山 博之 茨城県鹿嶋市大字光3番地住友金属工業株 式会社鹿島製鉄所内 Fターム(参考) 4H012 AA05 AA08  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shoji Takase 3rd Ojiko Kashima, Ibaraki Prefecture Sumitomo Metal Industries Co., Ltd. Kashima Works (72) Inventor Makoto Uchida 3rd Ojiko Kashima City, Ibaraki Sumitomo Metal Industries Inside Kashima Works, Ltd. (72) Inventor Hiroyuki Koyama 3rd Oaza Hikari, Kashima City, Ibaraki Prefecture F-term in Kashima Works, Sumitomo Metal Industries, Ltd. 4H012 AA05 AA08

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】燃料ガスとしての貧ガスの全部を燃焼室底
部から供給するとともに燃焼用空気の一部または全部を
燃焼室底部から供給する構造のコークス炉であって、燃
焼室の底部に開口する貧ガス供給口と空気供給口を燃焼
室の炉長方向および炉団方向の両方から見たとき、いず
れの方向でも完全に重複することがないことを特徴とす
るコークス炉。
1. A coke oven having a structure in which all of a poor gas as a fuel gas is supplied from a bottom of a combustion chamber and a part or all of combustion air is supplied from a bottom of the combustion chamber. A coke oven characterized in that when viewed from both the furnace length direction and the furnace group direction of the combustion chamber, the poor gas supply port and the air supply port do not completely overlap in any direction.
【請求項2】燃料ガスとしての貧ガスの全部を燃焼室底
部から供給するとともに燃焼用空気の一部または全部を
燃焼室底部から供給する構造のコークス炉であって、燃
焼室の底部に開口する貧ガス供給口と空気供給口を燃焼
室の炉長方向および炉団方向の両方から見たとき、いず
れの方向でも重複する長さが完全重複長さの80%以下で
あることを特徴とするコークス炉。
2. A coke oven having a structure in which all of a poor gas as a fuel gas is supplied from a bottom of a combustion chamber and a part or all of combustion air is supplied from a bottom of the combustion chamber. When the poor gas supply port and the air supply port are viewed from both the furnace length direction and the furnace group direction of the combustion chamber, the overlap length in any direction is 80% or less of the complete overlap length. Coke oven.
【請求項3】燃焼室の底部に開口する貧ガス供給口と空
気供給口の少なくとも一方に貧ガスまたは/および空気
の流れを調節する手段を備える請求項1または請求項2
に記載のコークス炉。
3. The method according to claim 1, wherein at least one of the poor gas supply port and the air supply port opened at the bottom of the combustion chamber is provided with a means for regulating the flow of the poor gas and / or air.
2. A coke oven according to claim 1.
【請求項4】燃料ガスとしての貧ガスの全部を燃焼室底
部から供給するとともに燃焼用空気の一部を燃焼室底部
から、残りを燃焼室の仕切壁に設けた1カ所以上の空気
供給口から、それぞれ供給する構造のコークス炉であっ
て、燃焼室の底部に開口する貧ガス供給口と空気供給口
を燃焼室の炉長方向および炉団方向の両方から見たと
き、いずれの方向でも完全に重複することがないコーク
ス炉を使用し、底部の空気供給口から供給する空気を燃
焼室内に供給される全空気量の20〜70%とし、残りを上
記燃焼室の仕切壁に設けた1カ所以上の空気供給口から
供給することを特徴とするコークス炉の操業方法。
4. One or more air supply ports provided with all of the poor gas as a fuel gas from the bottom of the combustion chamber, a part of the combustion air from the bottom of the combustion chamber, and the remainder on a partition wall of the combustion chamber. From the coke oven of the structure to supply respectively, when the poor gas supply port and the air supply port opened at the bottom of the combustion chamber are viewed from both the furnace length direction and the furnace group direction of the combustion chamber, in any direction Using a coke oven that does not completely overlap, the air supplied from the air supply port at the bottom was set to 20 to 70% of the total amount of air supplied to the combustion chamber, and the remainder was provided on the partition wall of the combustion chamber A method for operating a coke oven, characterized in that the coke oven is supplied from one or more air supply ports.
【請求項5】燃料ガスとしての貧ガスの全部を燃焼室底
部から供給するとともに燃焼用空気の一部を燃焼室底部
から、残りを燃焼室の仕切壁に設けた1カ所以上の空気
供給口から、それぞれ供給する構造のコークス炉であっ
て、燃焼室の底部に開口する貧ガス供給口と空気供給口
を燃焼室の炉長方向および炉団方向の両方から見たと
き、いずれの方向でも重複する長さが完全重複長さの80
%以下であるコークス炉を使用し、底部の空気供給口か
ら供給する空気を燃焼室内に供給される全空気量の20〜
70%とし、残りを上記燃焼室の仕切壁に設けた1カ所以
上の空気供給口から供給することを特徴とするコークス
炉の操業方法。
5. One or more air supply ports provided with all of the poor gas as fuel gas from the bottom of the combustion chamber, part of the combustion air from the bottom of the combustion chamber, and the remainder on the partition wall of the combustion chamber. From the coke oven of the structure to supply respectively, when the poor gas supply port and the air supply port opened at the bottom of the combustion chamber are viewed from both the furnace length direction and the furnace group direction of the combustion chamber, in any direction Duplicate length is 80 of full overlap length
% Of the total air supplied to the combustion chamber by using a coke oven that is
A method for operating a coke oven, characterized in that the coke oven is supplied at 70% and the remainder is supplied from one or more air supply ports provided on a partition wall of the combustion chamber.
【請求項6】燃焼室の底部に開口する貧ガス供給口と空
気供給口の少なくとも一方に貧ガスまたは/および空気
の流れを調節する手段を設け、貧ガスと空気との混合状
態を調整することを特徴とする請求項4または請求項5
に記載のコークス炉の操業方法。
6. A means for adjusting the flow of poor gas and / or air is provided in at least one of the poor gas supply port and the air supply port opened at the bottom of the combustion chamber to adjust the mixed state of the poor gas and air. 6. The method according to claim 5, wherein
3. The method for operating a coke oven according to item 1.
JP05772699A 1999-03-04 1999-03-04 Coke oven and its operation method Expired - Lifetime JP3821980B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP05772699A JP3821980B2 (en) 1999-03-04 1999-03-04 Coke oven and its operation method
EP00400569A EP1033396B1 (en) 1999-03-04 2000-03-02 Coke oven and method of operating the same
DE60014213T DE60014213T2 (en) 1999-03-04 2000-03-02 Coke oven and method of operating the same
US09/518,538 US6797122B1 (en) 1999-03-04 2000-03-03 Coke oven and method of operating the same
KR10-2000-0010655A KR100494822B1 (en) 1999-03-04 2000-03-03 Coke oven and method of operating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05772699A JP3821980B2 (en) 1999-03-04 1999-03-04 Coke oven and its operation method

Publications (2)

Publication Number Publication Date
JP2000256671A true JP2000256671A (en) 2000-09-19
JP3821980B2 JP3821980B2 (en) 2006-09-13

Family

ID=13063948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05772699A Expired - Lifetime JP3821980B2 (en) 1999-03-04 1999-03-04 Coke oven and its operation method

Country Status (1)

Country Link
JP (1) JP3821980B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113785033A (en) * 2019-05-08 2021-12-10 蒂森克虏伯工业解决方案股份公司 Coke oven plant for producing coke, method for operating a coke oven plant and use

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113785033A (en) * 2019-05-08 2021-12-10 蒂森克虏伯工业解决方案股份公司 Coke oven plant for producing coke, method for operating a coke oven plant and use
JP2022534669A (en) * 2019-05-08 2022-08-03 ティッセンクルップ インダストリアル ソリューションズ アクツィエンゲゼルシャフト Coke oven apparatus for producing coke, method of operating coke oven apparatus, and use

Also Published As

Publication number Publication date
JP3821980B2 (en) 2006-09-13

Similar Documents

Publication Publication Date Title
KR100659678B1 (en) Combustion method and burner
US4135874A (en) Two stage combustion furnace
CN106190184A (en) A kind of coke oven heating method and device reducing NOx generation
WO2020140382A1 (en) Flow-equalization-type fire piece
JP2000256671A (en) Coke oven and its operation method
KR100870980B1 (en) Heating furnace for forging having high efficiency
JP4767730B2 (en) Coke oven operation method
JP3821995B2 (en) Coke oven combustion chamber and its operating method
KR20210149150A (en) Coke oven apparatus for making coke, method of operation and use of coke oven apparatus
EP1033396B1 (en) Coke oven and method of operating the same
CN101749944A (en) Combustion control method for regenerative-combustion heat treat furnace
JP3149666B2 (en) Radiant heating device and combustion method thereof
JP2012107825A (en) LOW NOx/LOW SOOT COMBUSTION METHOD AND BOILER COMBUSTION CHAMBER
CN201819211U (en) Gas burner with multi-point burning, long flame and ultra-low nitrogen oxide emission
JP3712527B2 (en) Method for reducing NOx in coke oven combustion exhaust gas
JP2000008043A (en) Combustion chamber structure of coke oven, combustion method and burning apparatus
CN110512068A (en) A kind of each furnace section burner control method of soaking pit and device
KR101858850B1 (en) Mixing supply unit and cokes oven having thereof
CN219368366U (en) Tubular heating furnace
CN110527526B (en) Lamp cap brick with multi-section outlet
JP2004131515A (en) End flue heating system of regenerative chamber type coke oven
JPH057236Y2 (en)
JP4670715B2 (en) Sorting method of objects to be heated in continuous heating furnace group
KR200218374Y1 (en) Slit Burners for Direct Sinter Ignition Furnaces
JPS63304089A (en) Temperature control for combustion chamber of coke oven

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060621

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term