JP2000252250A - Semiconductor substrate cleaning liquid and cleaning method employing it - Google Patents

Semiconductor substrate cleaning liquid and cleaning method employing it

Info

Publication number
JP2000252250A
JP2000252250A JP11050826A JP5082699A JP2000252250A JP 2000252250 A JP2000252250 A JP 2000252250A JP 11050826 A JP11050826 A JP 11050826A JP 5082699 A JP5082699 A JP 5082699A JP 2000252250 A JP2000252250 A JP 2000252250A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
oxidizing agent
acid
chemical mechanical
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11050826A
Other languages
Japanese (ja)
Inventor
Tomoyuki Azuma
友之 東
Takehito Maruyama
岳人 丸山
Tetsuo Aoyama
哲男 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP11050826A priority Critical patent/JP2000252250A/en
Publication of JP2000252250A publication Critical patent/JP2000252250A/en
Pending legal-status Critical Current

Links

Landscapes

  • Detergent Compositions (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To remove metallic contaminant and particles without generating irregularities incident to dissolution of a material on the surface of a semiconductor substrate by cleaning the surface of a semiconductor subjected to chemical mechanical polishing using a semiconductor substrate cleaning liquid containing specified quantity of oxidizing agent and chelate. SOLUTION: The semiconductor substrate cleaning liquid comprises an oxidizing agent and a chelate, more preferably comprises an aqueous solution containing an oxidizing agent and a chelate. The oxidizing agent includes inorganic peroxides, e.g. hydrogen peroxide, ozone or hydrochlorous acid, and hydrogen peroxide is especially preferable. Concentration of the oxidizing agent is 0.1-60 wt.%, preferably 0.5-30 wt.%, in total solution. The chelate includes ethylenediamine tetraacetate EDTA, hydroxyethyl ethylenediamine tetraacetate DHEDDA and the concentration thereof is normally 0.01-5 wt.%, preferably 0.05-3 wt.%, in total solution.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置の製造
工程に於いて使用される半導体基板表面の洗浄処理液に
関する。さらに詳しくは、本発明は、層間絶縁膜の平坦
化、微細金属配線の形成などを目的とした化学的機械研
磨の後処理において使用される半導体基板表面の洗浄処
理液に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a cleaning solution for a semiconductor substrate surface used in a semiconductor device manufacturing process. More specifically, the present invention relates to a cleaning solution for a semiconductor substrate surface used in post-treatment of chemical mechanical polishing for the purpose of flattening an interlayer insulating film, forming fine metal wiring, and the like.

【0002】[0002]

【従来の技術】半導体装置製造プロセスにおける新たな
技術として化学機械研磨(CMP)の検討が進められて
いる。従来のリフロー技術やRIEなどのエッチバック
技術に比べ工程が短縮でき、しかもパターン依存性を受
け難く良好な平坦化が実現できる利点がある。化学機械
研磨は、半導体装置の集積度向上、多層化に伴い発生す
る様々な問題に対処するための有効な手法である。この
技術の適用としては、レジストパターニングのためのリ
ソグラフィにおける露光光の短波長化などにともなう焦
点深度の低下を補償しグローバル平坦化を実現させる層
間絶縁膜化学機械研磨、Si基板に形成された溝にSiO2を
埋め込み、Siウエハ表面より上部に位置するSiO2を研磨
除去することで素子間を分離する(埋め込み素子分離、
shallow trench isolation)STI 化学機械研磨、絶縁膜
に形成された孔や溝に銅などの配線材料を埋め込み、絶
縁膜表面より上部に位置するAl−Cu、W、Cuなど
の配線材料を研磨除去することで配線層を形成する金属
化学機械研磨などがある。
2. Description of the Related Art Chemical mechanical polishing (CMP) is being studied as a new technique in a semiconductor device manufacturing process. There is an advantage that the process can be shortened as compared with a conventional reflow technique or an etch-back technique such as RIE, and moreover, it is hardly affected by pattern dependency and good flattening can be realized. Chemical mechanical polishing is an effective method for addressing various problems that occur with the improvement in the degree of integration of semiconductor devices and the increase in the number of layers. Applications of this technology include chemical mechanical polishing of an interlayer insulating film that achieves global flattening by compensating for a decrease in the depth of focus due to shortening of the exposure light in lithography for resist patterning, grooves formed on a Si substrate, etc. The device is separated by embedding SiO2 in the silicon wafer and polishing and removing the SiO2 located above the surface of the Si wafer.
shallow trench isolation) STI Chemical mechanical polishing, burying wiring material such as copper in holes and grooves formed in the insulating film, and polishing and removing the wiring material such as Al-Cu, W, and Cu located above the surface of the insulating film. There is metal chemical mechanical polishing or the like for forming a wiring layer.

【0003】[0003]

【発明が解決しようとする課題】ところで、化学機械研
磨を半導体装置製造プロセスに適用するに際し、かかる
研磨では、KOH、Fe(NO3 2 水溶液等の分散剤
にアルミナ、シリカ等の砥粒を含んだ研磨剤が使用され
る。このため化学機械研磨後の半導体基板表面には、研
磨剤と研磨屑に由来するパーティクルと金属イオンが残
留する。これらは、可動イオンとして半導体に悪影響を
及ぼし2次汚染や半導体装置特性の劣化、あるいは歩留
まりの低下を引き起こす原因となる。そのため化学機械
研磨後の半導体基板の処理方法が極めて重要となる。従
来は、化学機械研磨の後処理として、フッ酸・アルカリ
を用いたメガソニック洗浄またはスクラブ洗浄が使用さ
れていた。しかしシリコン、層間絶縁膜および配線材料
などの複数の材料が混在する半導体基板表面では、フッ
酸・アルカリによる各材料の溶解速度の違いから、これ
らの処理によって半導体基板表面に凹凸ができるディッ
シングという現象が発生してしまう。この凹凸の発生を
防ぐため、フッ酸、アルカリ濃度を極力薄くし、処理時
間を極力短くする方法や有機酸を用いた処理方法も検討
されているが、材料の溶解が抑制されるものの、金属汚
染、パーティクル除去効果が弱くなり、充分な効果が得
られない。上記した従来技術の問題点に鑑み、本発明が
解決しようとする課題は、化学機械研磨の後処理とし
て、半導体基板表面に材料の溶解に伴う凹凸を発生させ
ることなく、金属汚染除去およびパーティクル除去が可
能な、半導体基板表面の洗浄処理液及びこれを用いた処
理方法を提供することにある。
When chemical mechanical polishing is applied to a semiconductor device manufacturing process, such polishing involves adding abrasive grains such as alumina and silica to a dispersant such as an aqueous solution of KOH and Fe (NO 3 ) 2. A contained abrasive is used. For this reason, particles and metal ions derived from the abrasive and the polishing dust remain on the semiconductor substrate surface after the chemical mechanical polishing. These adversely affect the semiconductor as mobile ions, causing secondary contamination, deterioration of semiconductor device characteristics, and reduction in yield. Therefore, a method of processing a semiconductor substrate after chemical mechanical polishing is extremely important. Conventionally, megasonic cleaning or scrub cleaning using hydrofluoric acid / alkali has been used as post-processing of chemical mechanical polishing. However, on the surface of a semiconductor substrate on which multiple materials such as silicon, interlayer insulating film, and wiring material are mixed, a difference in the dissolution rate of each material due to hydrofluoric acid and alkali causes a phenomenon called dishing, in which unevenness is formed on the surface of the semiconductor substrate by these processes. Will occur. In order to prevent the occurrence of these irregularities, methods of reducing the concentration of hydrofluoric acid and alkali as much as possible and shortening the processing time and processing methods using organic acids are also being studied. The effect of removing contamination and particles is weakened, and a sufficient effect cannot be obtained. In view of the problems of the prior art described above, the problem to be solved by the present invention is to remove metal contamination and remove particles without causing irregularities due to dissolution of a material on the surface of a semiconductor substrate as a post-treatment of chemical mechanical polishing. It is an object of the present invention to provide a semiconductor substrate surface cleaning treatment liquid and a treatment method using the same.

【0004】[0004]

【発明を解決するための手段】本発明者等は上記の如き
課題を解決すべく鋭意検討した結果、酸化剤とキレート
剤を含有する洗浄剤を化学機械研磨後の洗浄処理液とし
て用いることにより、材料の溶解に伴う凹凸を発生させ
ることなく、半導体基板表面に吸着又は付着した金属汚
染およびパーティクルを除去可能であることを見出し、
本発明を完成させるに至った。すなわち、本発明は、酸
化剤0.1〜60重量%とキレート剤0.01〜5重量
%を含んでなる半導体基板洗浄液に関する。また、本発
明は更に、酸化剤0.1〜60重量%とキレート剤0.
01〜5重量%を含んでなる半導体基板洗浄液を用い
て、化学機械研磨後の半導体基板表面の洗浄処理を行う
ことに関する。
The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, by using a cleaning agent containing an oxidizing agent and a chelating agent as a cleaning solution after chemical mechanical polishing. Finding that it is possible to remove metal contamination and particles adsorbed or attached to the semiconductor substrate surface without generating irregularities due to melting of the material,
The present invention has been completed. That is, the present invention relates to a semiconductor substrate cleaning liquid containing 0.1 to 60% by weight of an oxidizing agent and 0.01 to 5% by weight of a chelating agent. In addition, the present invention further comprises 0.1 to 60% by weight of an oxidizing agent and 0.1% of a chelating agent.
The present invention relates to performing a cleaning treatment of a semiconductor substrate surface after chemical mechanical polishing using a semiconductor substrate cleaning liquid containing from 0.01 to 5% by weight.

【0005】[0005]

【発明の実施の形態】本発明で用いられる半導体基板洗
浄液は、酸化剤とキレート剤とからなるものであり、特
に好ましくは酸化剤とキレート剤とを含有する水溶液か
ら構成される。ここで用いられる酸化剤としては、過酸
化水素、オゾン、次亜塩素酸等の無機過酸化物並びに過
酸化ベンゾイル等の有機過酸化物およびこれらを含有す
る有機溶剤溶液等があげられる。これらの酸化剤の中
で、無機過酸化物が好ましく、特に過酸化水素が好まし
い。本発明に使用される酸化剤の濃度は全溶液中0.1
〜60重量%で有り、好ましくは0.5〜30重量%で
ある。その濃度が0.1重量%未満では、所望の金属汚
染除去効果が得られず、60重量%を超えると金属材料
を腐食する恐れがある。一方、本発明に使用されるキレ
ート剤としては、エチレンジアミンテトラ酢酸(EDT
A)、ヒドロキシエチルエチレンジアミン四酢酸(DH
EDDA)、1,3−プロパンジアミン四酢酸(1,3
−PDTA)、ジエチレントリアミン五酢酸(DTP
A)、トリエチレンテトラミン六酢酸(TTNA)、ニ
トリロ三酢酸(NTA)、ヒドロキシエチルイミノ二酢
酸(HIMDA)等のアミノポリカルボン酸類、あるい
はこれらのアンモニウム塩、金属塩、有機アルカリ塩等
があげられる。さらには、メチルジホスホン酸、アミノ
トリスメチレンホスホン酸、エチリデンジホスホン酸、
1−ヒドロキシエチリ−1,1−ジホスホン酸、1−ヒ
ドロキシプロピリデン−1,1−ジホスホン酸、エチル
アミノビスメチレンホスホン酸、ドデシルアミノビスメ
チレンホスホン酸、ニトリロトリスメチレンホスホン
酸、エチレンジアミンビスメチレンホスホン酸、エチレ
ンジアミンテトラキスメチレンホスホン酸、ヘキサンジ
アミンテトラキスメチレンホスホン酸、ジエチレントリ
アミンペンタメチレンホスホン酸、1,2−プロパンジ
アミンテトラメチレンホスホン酸等の分子中にホスホン
酸基を1個以上有するホスホン酸系キレート剤、あるい
はこれらのアンモニウム塩、有機アミン塩、アルカリ金
属塩等、が挙げられ、それらの酸化体としては、これら
ホスホン酸系キレート剤の内、その分子中に窒素原子を
有するものが酸化されてNーオキシド体となっているも
のが挙げられる。本発明に係る縮合リン酸類としては、
例えばメタリン酸、テトラメタリン酸、ヘキサメタリン
酸、トリポリリン酸、あるいはこれらのアンモニウム
塩、金属塩、有機アミン塩等があげられる。上記キレー
ト剤は何れも使用できるが、より好ましくは、分子中に
ホスホン酸基を2個以上有するものが挙げられ、さらに
好ましくは、分子中にホスホン酸基を2〜6個有するも
のが挙げられる。具体的には、1,2−プロパンジアミ
ンテトラメチレンホスホン酸、ジエチレントリアミンペ
ンタメチレンホスホン酸、エチレンジアミンテトラキス
メチレンホスホン酸等が好ましく、特に好ましくは、
1,2−プロパンジアミンテトラメチレンホスホン酸で
ある。本発明で使用される上記キレート剤は、単独でも
2種以上適宜組み合わせて用いてもよい。上記キレート
剤の濃度は特に制限はないが、通常、全容液中0.01
〜5重量%の濃度で使用され、特に好ましくは0.05
〜3重量%使用される。濃度が0.01重量%未満で
は、所望の洗浄効果が得られず、一方5重量%を越える
と金属材料を腐食する恐れがある。本発明の剥離液のp
Hは特に制限はない。通常、pH3〜12の範囲で使用
されるが、化学機械研磨に使用される砥粒、分散剤の種
類や半導体基板表面に露出している金属材料等により選
択すれば良い。アルカリ性で使用する場合は、アンモニ
ア、アミン、テトラメチルアンモニウム水酸化物の如き
第四級アンモニウム水酸化物等を添加すれば良く、酸性
で使用する場合は、有機酸、無機酸等を添加すれば良
い。特に半導体基板表面のパーティクル(付着粒子)除
去に対する効果を向上させる場合は、pH7〜12で使用
することが好ましい。また本剥離液の濡れ性を向上させ
るために、界面活性剤を添加しても何等差し支えなく、
カチオン系、ノニオン系、アニオン系の何れの界面活性
剤も使用できる。本発明の洗浄方法を実施する際の温度
は、通常は常温〜80°Cの範囲であり、化学機械研磨
の条件や使用される金属材料等により適宜選択すればよ
い。本発明の洗浄液を用いた処理方法としては、本発明
の洗浄液が半導体基板表面と接触できる方法であれば良
く、半導体基板を本発明の洗浄液に浸漬する方法、半導
体基板表面に本発明の洗浄液を噴霧する方法等が挙げら
れる。また本発明の洗浄液による処理と、ブラシスクラ
ブやメガソニック等の物理的洗浄とを併用しても良い。
BEST MODE FOR CARRYING OUT THE INVENTION The semiconductor substrate cleaning solution used in the present invention comprises an oxidizing agent and a chelating agent, and particularly preferably comprises an aqueous solution containing an oxidizing agent and a chelating agent. Examples of the oxidizing agent used here include inorganic peroxides such as hydrogen peroxide, ozone, and hypochlorous acid, and organic peroxides such as benzoyl peroxide, and organic solvent solutions containing these. Among these oxidizing agents, inorganic peroxides are preferred, and hydrogen peroxide is particularly preferred. The concentration of the oxidizing agent used in the present invention is 0.1% in the total solution.
To 60% by weight, preferably 0.5 to 30% by weight. If the concentration is less than 0.1% by weight, the desired effect of removing metal contamination cannot be obtained, and if it exceeds 60% by weight, the metal material may be corroded. On the other hand, the chelating agent used in the present invention is ethylenediaminetetraacetic acid (EDT).
A), hydroxyethylethylenediaminetetraacetic acid (DH
EDDA), 1,3-propanediaminetetraacetic acid (1,3
-PDTA), diethylenetriaminepentaacetic acid (DTP
A), aminopolycarboxylic acids such as triethylenetetramine hexaacetic acid (TTNA), nitrilotriacetic acid (NTA), and hydroxyethyliminodiacetic acid (HIMDA), or ammonium salts, metal salts, and organic alkali salts thereof. . Further, methyl diphosphonic acid, amino tris methylene phosphonic acid, ethylidene diphosphonic acid,
1-hydroxyethyl-1,1-diphosphonic acid, 1-hydroxypropylidene-1,1-diphosphonic acid, ethylaminobismethylenephosphonic acid, dodecylaminobismethylenephosphonic acid, nitrilotrismethylenephosphonic acid, ethylenediaminebismethylenephosphonic Acids, ethylenediaminetetrakismethylenephosphonic acid, hexanediaminetetrakismethylenephosphonic acid, diethylenetriaminepentamethylenephosphonic acid, phosphonic acid-based chelating agents having at least one phosphonic acid group in a molecule such as 1,2-propanediaminetetramethylenephosphonic acid, Alternatively, ammonium salts, organic amine salts, alkali metal salts, and the like thereof may be mentioned. As the oxidized product, those having a nitrogen atom in the molecule among these phosphonic acid chelating agents are oxidized. Which has a N Okishido body Te and the like. As the condensed phosphoric acids according to the present invention,
Examples thereof include metaphosphoric acid, tetrametaphosphoric acid, hexametaphosphoric acid, and tripolyphosphoric acid, and ammonium salts, metal salts, and organic amine salts thereof. Although any of the above chelating agents can be used, more preferred are those having two or more phosphonic acid groups in the molecule, and more preferred are those having 2 to 6 phosphonic acid groups in the molecule. . Specifically, 1,2-propanediaminetetramethylenephosphonic acid, diethylenetriaminepentamethylenephosphonic acid, ethylenediaminetetrakismethylenephosphonic acid and the like are preferable, and particularly preferable are
1,2-propanediaminetetramethylenephosphonic acid. The chelating agents used in the present invention may be used alone or in appropriate combination of two or more kinds. The concentration of the chelating agent is not particularly limited, but is usually 0.01% in the total volume of the solution.
To 5% by weight, particularly preferably 0.05% by weight.
~ 3% by weight is used. If the concentration is less than 0.01% by weight, the desired cleaning effect cannot be obtained, while if it exceeds 5% by weight, the metal material may be corroded. P of the stripping solution of the present invention
H is not particularly limited. Usually, the pH is used in the range of 3 to 12, but it may be selected according to the type of abrasive used in chemical mechanical polishing, the type of dispersant, the metal material exposed on the surface of the semiconductor substrate, and the like. When used alkaline, ammonia, amine, quaternary ammonium hydroxide such as tetramethylammonium hydroxide may be added, and when used acidic, organic acid, inorganic acid, etc. may be added. good. In particular, when the effect of removing particles (adhered particles) on the surface of the semiconductor substrate is to be improved, it is preferable to use at pH 7 to 12. Also, in order to improve the wettability of the present stripping solution, there is no problem even if a surfactant is added,
Any of cationic, nonionic and anionic surfactants can be used. The temperature at the time of carrying out the cleaning method of the present invention is usually in the range of room temperature to 80 ° C., and may be appropriately selected depending on the conditions of chemical mechanical polishing, the metal material used, and the like. As a treatment method using the cleaning liquid of the present invention, any method can be used as long as the cleaning liquid of the present invention can be brought into contact with the surface of the semiconductor substrate, and a method of immersing the semiconductor substrate in the cleaning liquid of the present invention. A spraying method and the like can be mentioned. Further, the treatment with the cleaning solution of the present invention may be used in combination with the physical cleaning such as brush scrub or megasonic.

【0006】[0006]

【実施例】次に本発明を実施例によりさらに詳しく説明
するが、本発明は、これらの例によってなんら限定され
るものではない。
EXAMPLES Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0007】実施例1 図1は、この実施例における半導体基板製造工程の説明
である。図1(a)に示すように、シリコンウエハ上に
CVD酸化ケイ素膜を形成する。次に図1(b)に示す
ように、このCVD酸化ケイ素膜上にメッキCu膜を形
成する。この図1(b)の半導体基板を、アルミナを含
有したFe(NO3 2 水溶液を研磨剤として化学機械
研磨し、水洗することによりメッキCu膜を完全に除去
し、図1(c)に示すような半導体基板を得た。この図
1(c)の半導体基板の表面に吸着した金属汚染濃度
は、基板表面の金属を希フッ酸溶液で洗浄回収し、原子
吸光法(以下、希フッ酸回収−原子吸光法と略記する)
にて測定した。測定したところ、それぞれFeは2×1013
atoms/cm2 、Alは9××1013atoms /cm2 、Cuは5×1
013atoms /cm2 がウエハ表面に吸着されていることが
判った。上記半導体基板を表−1のNo. 1〜16の各組
成からなる本発明の洗浄液に浸漬し、50℃で5分間処理
した。その後、超純水で洗浄し、乾燥させ、ウエハ表面
金属量を希フッ酸回収−原子吸光法にて定量した。結果
を表−1に示す。
Embodiment 1 FIG. 1 is an illustration of a semiconductor substrate manufacturing process in this embodiment. As shown in FIG. 1A, a CVD silicon oxide film is formed on a silicon wafer. Next, as shown in FIG. 1B, a plated Cu film is formed on the CVD silicon oxide film. The semiconductor substrate of FIG. 1B is chemically and mechanically polished using an aqueous solution of Fe (NO 3 ) 2 containing alumina as a polishing agent and washed with water to completely remove the plated Cu film. A semiconductor substrate as shown was obtained. The concentration of the metal contamination adsorbed on the surface of the semiconductor substrate in FIG. 1C is determined by washing and recovering the metal on the surface of the substrate with a diluted hydrofluoric acid solution, and using an atomic absorption method (hereinafter abbreviated as dilute hydrofluoric acid recovery-atomic absorption method). )
Was measured. When measured, each Fe was 2 × 10 13
atoms / cm 2 , Al 9 × 10 13 atoms / cm 2 , Cu 5 × 1
It was found that 0 13 atoms / cm 2 was adsorbed on the wafer surface. The above semiconductor substrate was immersed in the cleaning solution of the present invention having each composition of Nos. 1 to 16 in Table 1, and treated at 50 ° C. for 5 minutes. Thereafter, the wafer was washed with ultrapure water and dried, and the amount of metal on the wafer surface was quantified by dilute hydrofluoric acid recovery-atomic absorption method. The results are shown in Table 1.

【0008】比較例1 実施例1で用い化学機械研磨後の半導体基板を表1のN
o.17〜26の各組成からなる溶液及び超純水(No. 2
7)に浸漬し、実施例1と同様にして処理を行った。結
果を表−1に併せて示す。表−1から明らかな如く、本
発明の洗浄液を用いて処理することにより、半導体基板
表面の金属残存量を大幅に減少させることができる。
Comparative Example 1 The semiconductor substrate after the chemical mechanical polishing used in Example 1 was N in Table 1.
o. Solutions having the respective compositions of Nos. 17 to 26 and ultrapure water (No. 2)
7) and treated in the same manner as in Example 1. The results are shown in Table 1. As is clear from Table 1, the amount of metal remaining on the surface of the semiconductor substrate can be significantly reduced by performing treatment using the cleaning solution of the present invention.

【0009】実施例2 シリコンウエハ表面に熱酸化膜を1.5 μm 形成し、これ
をヒュームドシリカを含有したKOH水溶液を研磨剤と
して化学機械研磨した。この研磨されたウエハを表−2
のNo. 1〜17の各組成からなる本発明の洗浄液に浸
漬し、50℃で5分間処理した。その後、超純水で洗浄
し、乾燥させ、ウエハ表面の0.2μm以上のパーティ
クル数を光散乱式ウエハ表面パーティクル検査装置を用
いて測定した。結果を表−2に示す。
Example 2 A thermal oxide film having a thickness of 1.5 μm was formed on the surface of a silicon wafer, and this was subjected to chemical mechanical polishing using a KOH aqueous solution containing fumed silica as an abrasive. Table 2 shows the polished wafer.
No. 1 to No. 17 were immersed in the cleaning solution of the present invention and treated at 50 ° C. for 5 minutes. Thereafter, the wafer was washed with ultrapure water and dried, and the number of particles of 0.2 μm or more on the wafer surface was measured using a light scattering type wafer surface particle inspection device. Table 2 shows the results.

【0010】比較例2 実施例2で用いた化学機械研磨されたウエハを表−2の
No. 17〜26の各組成からなる溶液及び超純水(N
o. 27)に浸漬し、実施例2と同様にして処理を行っ
た。結果を表−2に併せて示す。表−2から明らかな如
く、本発明の洗浄液を用いて処理することにより、ウエ
ハ表面のパーティクル数を大幅に減少させることができ
る。
Comparative Example 2 The chemically mechanically polished wafer used in Example 2 was treated with a solution having each composition of Nos. 17 to 26 in Table 2 and ultrapure water (N
o. 27), and treated in the same manner as in Example 2. The results are shown in Table-2. As is apparent from Table 2, the number of particles on the wafer surface can be significantly reduced by performing the treatment using the cleaning liquid of the present invention.

【0011】実施例3 図2は、この実施例における半導体基板製造工程の説明
である。図2(a)に示すように、シリコンウエハ上に
CVD酸化ケイ素膜を形成する。図2(a)のCVD酸
化ケイ素膜からなる絶縁膜層上に、図2(b)で示すよ
うに、ポジ型レジスト層を設けたのち、プロジェクショ
ン法(投影法)により、所定のマスクを介してi線を選
択的に照射して露光し、次いで加熱処理後、2.38%テ
トラメチルアンモニウムヒドロキシド(TMAH)水溶
液を用いて現像処理し、さらに水洗して乾燥することに
より、図2(c)に示すような開口部を有するレジスト
パターンを形成した。図2(c)で得られたレジストパ
ターンをマスクとして、絶縁膜層をドライエッチング処
理し、酸素プラズマによる灰化処理および薬液処理を実
施することによりレジストを除去し、図2(d)に示す
ような溝を形成した。図2(e)に示すように、図2
(d)上にAl−Cu膜を形成した後、アルミナを含有
したH2 2 水溶液を研磨剤として化学機械研磨し図2
(f)を得た。この図2(f)のウエハを表−3のN
o. 1〜16の各組成からなる本発明の洗浄液に浸漬
し、50℃で5分間処理した。その後、超純水で洗浄
し、乾燥させ、ウエハ表面の凹凸発生の有無を、原子間
力顕微鏡を用いて評価した。結果を表−3に示す。
Embodiment 3 FIG. 2 is an illustration of a semiconductor substrate manufacturing process in this embodiment. As shown in FIG. 2A, a CVD silicon oxide film is formed on a silicon wafer. As shown in FIG. 2B, a positive resist layer is provided on the insulating film layer composed of the CVD silicon oxide film shown in FIG. 2A, and then a predetermined mask is formed by a projection method (projection method). 2 by selectively irradiating with i-line and exposing, and then performing a heat treatment, a development treatment using a 2.38% aqueous solution of tetramethylammonium hydroxide (TMAH), further washing with water, and drying. A resist pattern having an opening as shown in c) was formed. Using the resist pattern obtained in FIG. 2C as a mask, the insulating film layer is dry-etched, and the resist is removed by performing an ashing process and a chemical solution process using oxygen plasma, as shown in FIG. 2D. Such a groove was formed. As shown in FIG.
(D) After forming an Al-Cu film thereon, chemical mechanical polishing was performed using an H 2 O 2 aqueous solution containing alumina as an abrasive, and FIG.
(F) was obtained. The wafer shown in FIG.
o. It was immersed in the cleaning solution of the present invention having each composition of 1 to 16 and treated at 50 ° C. for 5 minutes. Thereafter, the wafer was washed with ultrapure water and dried, and the presence or absence of unevenness on the wafer surface was evaluated using an atomic force microscope. The results are shown in Table-3.

【0012】比較例3 実施例3で用いた化学機械研磨されたウエハを表−3の
No.17〜26の各組成からなる溶液及び超純水(N
o. 27)に浸漬し、実施例3と同様にして処理を行っ
た。結果を表−3に併せて示す。表−3から明らかな如
く、本発明の洗浄液を用いて処理した場合は、ウエハ表
面に凹凸は発生せず、図2(f)の形状が維持されたの
に対し、本発明以外の洗浄液の一部では、図3に示すよ
うな形状変化(凹凸発生)が確認された。
Comparative Example 3 The wafer subjected to the chemical mechanical polishing used in Example 3 was treated with a solution having each composition of Nos. 17 to 26 in Table 3 and ultrapure water (N
o. 27) and treated in the same manner as in Example 3. The results are shown in Table-3. As is clear from Table 3, when the treatment was performed using the cleaning liquid of the present invention, no irregularities were generated on the wafer surface, and the shape of FIG. 2 (f) was maintained. In some parts, a shape change (the occurrence of irregularities) as shown in FIG. 3 was confirmed.

【0013】[0013]

【表1】 [Table 1]

【0014】[0014]

【表2】 [Table 2]

【0015】[0015]

【表3】 [Table 3]

【0016】[0016]

【発明の効果】本発明の半導体基板洗浄液を、化学機械
研磨後の後処理として使用することにより、半導体基板
表面に材料の溶解に伴う凹凸を発生させることなく、重
金属汚染およびパ−ティクルの除去を行うことができ
る。
By using the semiconductor substrate cleaning solution of the present invention as a post-treatment after chemical mechanical polishing, it is possible to remove heavy metal contamination and particles without causing irregularities due to the dissolution of the material on the semiconductor substrate surface. It can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる半導体基板を示す要部断面図で
ある。
FIG. 1 is a sectional view of a main part showing a semiconductor substrate according to the present invention.

【図2】本発明に係わる半導体基板を示す要部断面図で
ある。
FIG. 2 is a sectional view of a main part showing a semiconductor substrate according to the present invention.

【図3】本発明に係わる半導体基板を示す要部断面図で
ある。
FIG. 3 is a sectional view of a main part showing a semiconductor substrate according to the present invention.

【符号の説明】[Explanation of symbols]

1:CVD酸化ケイ素膜 2:シリコンウエハ 3:メッキCu膜 4:レジスト 5:Al−Cu 1: CVD silicon oxide film 2: Silicon wafer 3: Plated Cu film 4: Resist 5: Al-Cu

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4H003 BA12 DA15 DB01 DC01 EA05 EB16 EB24 ED02 EE04 FA07 FA15 FA28  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4H003 BA12 DA15 DB01 DC01 EA05 EB16 EB24 ED02 EE04 FA07 FA15 FA28

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】半導体基板の化学機械研磨後に使用される
酸化剤0.1〜60重量%とキレート剤0.01〜5重
量%を含んでなる半導体基板洗浄液。
1. A semiconductor substrate cleaning liquid comprising 0.1 to 60% by weight of an oxidizing agent and 0.01 to 5% by weight of a chelating agent used after chemical mechanical polishing of a semiconductor substrate.
【請求項2】酸化剤が、過酸化水素である請求項1記載
の半導体基板洗浄液。
2. The semiconductor substrate cleaning solution according to claim 1, wherein the oxidizing agent is hydrogen peroxide.
【請求項3】キレート剤が、ホスホン酸系キレート剤で
ある請求項1記載の半導体基板洗浄液。
3. The semiconductor substrate cleaning solution according to claim 1, wherein the chelating agent is a phosphonic acid chelating agent.
【請求項4】半導体基板に化学機械研磨を施した後、請
求項1、2または3記載の半導体基板洗浄液を用いて洗
浄することを特徴とする半導体基板の洗浄方法。
4. A method for cleaning a semiconductor substrate, comprising subjecting a semiconductor substrate to chemical mechanical polishing and then cleaning the semiconductor substrate using the semiconductor substrate cleaning liquid according to claim 1, 2, or 3.
JP11050826A 1999-02-26 1999-02-26 Semiconductor substrate cleaning liquid and cleaning method employing it Pending JP2000252250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11050826A JP2000252250A (en) 1999-02-26 1999-02-26 Semiconductor substrate cleaning liquid and cleaning method employing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11050826A JP2000252250A (en) 1999-02-26 1999-02-26 Semiconductor substrate cleaning liquid and cleaning method employing it

Publications (1)

Publication Number Publication Date
JP2000252250A true JP2000252250A (en) 2000-09-14

Family

ID=12869585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11050826A Pending JP2000252250A (en) 1999-02-26 1999-02-26 Semiconductor substrate cleaning liquid and cleaning method employing it

Country Status (1)

Country Link
JP (1) JP2000252250A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004253696A (en) * 2003-02-21 2004-09-09 Speedfam Co Ltd Method and device for semiconductor processing
US7442646B2 (en) 2004-08-03 2008-10-28 Samsung Electronics Co., Ltd. Slurry, chemical mechanical polishing method using the slurry, and method of forming metal wiring using the slurry
WO2009032460A1 (en) * 2007-08-02 2009-03-12 Advanced Technology Materials, Inc. Non-fluoride containing composition for the removal of residue from a microelectronic device
JP2009057570A (en) * 2008-10-23 2009-03-19 Kao Corp Rinse agent composition
WO2009102004A1 (en) * 2008-02-15 2009-08-20 Lion Corporation Cleaning composition and method for cleaning substrate for electronic device
JP2013119579A (en) * 2011-12-06 2013-06-17 Kanto Chem Co Inc Cleaning liquid composition for electronic device
JP2014082509A (en) * 2002-11-08 2014-05-08 Fujimi Inc Polishing composition
US8802613B2 (en) 2007-12-13 2014-08-12 Akzo Nobel N.V. Stabilized hydrogen peroxide solutions
JP5659152B2 (en) * 2009-04-30 2015-01-28 ライオン株式会社 Semiconductor substrate cleaning method and acidic solution

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014082509A (en) * 2002-11-08 2014-05-08 Fujimi Inc Polishing composition
JP2004253696A (en) * 2003-02-21 2004-09-09 Speedfam Co Ltd Method and device for semiconductor processing
JP4499365B2 (en) * 2003-02-21 2010-07-07 スピードファム株式会社 Semiconductor processing method
US7442646B2 (en) 2004-08-03 2008-10-28 Samsung Electronics Co., Ltd. Slurry, chemical mechanical polishing method using the slurry, and method of forming metal wiring using the slurry
WO2009032460A1 (en) * 2007-08-02 2009-03-12 Advanced Technology Materials, Inc. Non-fluoride containing composition for the removal of residue from a microelectronic device
US8802613B2 (en) 2007-12-13 2014-08-12 Akzo Nobel N.V. Stabilized hydrogen peroxide solutions
CN101946310B (en) * 2008-02-15 2012-09-12 狮王株式会社 Cleaning composition and method for cleaning substrate for electronic device
JP5286290B2 (en) * 2008-02-15 2013-09-11 ライオン株式会社 Cleaning composition, electronic device substrate cleaning method, and electronic device substrate
WO2009102004A1 (en) * 2008-02-15 2009-08-20 Lion Corporation Cleaning composition and method for cleaning substrate for electronic device
TWI448551B (en) * 2008-02-15 2014-08-11 Lion Corp Detergent composition and washing method of substrate for electronic device
US8809247B2 (en) 2008-02-15 2014-08-19 Lion Corporation Cleaning composition and method for cleaning substrate for electronic device
JP2009057570A (en) * 2008-10-23 2009-03-19 Kao Corp Rinse agent composition
JP5659152B2 (en) * 2009-04-30 2015-01-28 ライオン株式会社 Semiconductor substrate cleaning method and acidic solution
JP2013119579A (en) * 2011-12-06 2013-06-17 Kanto Chem Co Inc Cleaning liquid composition for electronic device

Similar Documents

Publication Publication Date Title
US7498294B2 (en) Cleaning composition, method for cleaning semiconductor substrate, and process for manufacturing semiconductor device
US6831048B2 (en) Detergent composition
JP4516176B2 (en) Substrate cleaning solution for electronic materials
US9334470B2 (en) Cleaning liquid composition for electronic device
US20090130849A1 (en) Chemical mechanical polishing and wafer cleaning composition comprising amidoxime compounds and associated method for use
JP4304988B2 (en) Semiconductor device substrate cleaning method
TWI254036B (en) Cleaning method for electronic component
JP3219020B2 (en) Cleaning agent
US20080076688A1 (en) Copper passivating post-chemical mechanical polishing cleaning composition and method of use
EP1363321B1 (en) Post-CMP washing liquid composition
TW200304962A (en) Liquid detergent for semiconductor device substrate and method of cleaning
JP5146445B2 (en) Cleaning composition and method for manufacturing semiconductor device
JPWO2018043440A1 (en) Processing solution, method of cleaning substrate, method of manufacturing semiconductor device
JP2005507436A (en) Cleaning composition
EP1447440A1 (en) Composition for cleaning
JP7173959B2 (en) cleaning liquid composition
JP2005260213A (en) Cleaning liquid for substrate for semiconductor device and cleaning method
WO2022044893A1 (en) Processing liquid, method for processing substrate
KR101330509B1 (en) Cleaning solution for semiconductor device or display device, and cleaning method
JP2005194294A (en) Cleaning liquid and method for producing semiconductor device
JP2000252250A (en) Semiconductor substrate cleaning liquid and cleaning method employing it
JP2000208467A (en) Cleaning liquid and cleaning method for semiconductor substrate
KR100672874B1 (en) Process for Removing Contaminant from a Surface and Composition Useful Therefor
JP2003068696A (en) Method for cleaning substrate surface
JPH1174180A (en) Manufacture of semiconductor device