JP2000247683A - Corrosion resistant glass fiber - Google Patents

Corrosion resistant glass fiber

Info

Publication number
JP2000247683A
JP2000247683A JP11056408A JP5640899A JP2000247683A JP 2000247683 A JP2000247683 A JP 2000247683A JP 11056408 A JP11056408 A JP 11056408A JP 5640899 A JP5640899 A JP 5640899A JP 2000247683 A JP2000247683 A JP 2000247683A
Authority
JP
Japan
Prior art keywords
glass
glass fiber
temperature
fiber
acid resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11056408A
Other languages
Japanese (ja)
Inventor
Koji Sugano
浩司 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Boseki Co Ltd
Original Assignee
Nitto Boseki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Boseki Co Ltd filed Critical Nitto Boseki Co Ltd
Priority to JP11056408A priority Critical patent/JP2000247683A/en
Publication of JP2000247683A publication Critical patent/JP2000247683A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a glass fiber which is produced using inexpensive raw materials, easy to spin, and excellent in productivity and in corrosion resistance and which is improved in acid resistance and reduced in dielectric constant and in which the contents of B2O3 and F2 are decreased as much as possible. SOLUTION: The glass fiber contains, by weight, 56 to 63% SiO2, 0.5 to 3% B2O3, 12 to 16% Al2O3, 16 to 25% CaO, 0.1 to 6% MgO, 0.1 to 5% ZnO, 1 to 8% MgO+ZnO, >=0 and <0.5% TiO2, 0 to 1% Na2O, 0 to 1% K2O and 0.1 to 1.0% Na2O+K2O and 0.05 to 1% F2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、Eガラス繊維と同
等の生産性があり、しかも同等の機械的特性や電気的特
性を持つ、耐酸性、耐水性に優れた耐食性ガラス繊維に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a corrosion-resistant glass fiber having the same productivity as that of an E glass fiber and having the same mechanical and electrical properties and excellent in acid resistance and water resistance. .

【0002】[0002]

【従来の技術】現在FRPなどの繊維補強樹脂製品に使
用されているガラス繊維の大部分はEガラス繊維と呼ば
れるSiO2 52〜56重量%、Al2 12〜1
6重量%、B 5〜8重量%、CaO 15〜2
5重量%を主成分とするガラス繊維である。(以下本発
明において、%は断りのない限り重量%を意味する。) この組成のガラス繊維が製造されはじめて既に50年以
上経過したにもかかわらず、現在なお世界で生産される
ほとんどのガラス繊維がEガラス繊維である理由は、そ
の溶融状態のガラスの失透温度が紡糸に適した温度より
も約100℃低く、紡糸上のトラブルがなく非常に生産
性が良いためである。
2. Description of the Related Art Most of the glass fibers currently used in fiber reinforced resin products such as FRP are 52 to 56% by weight of SiO 2 called E glass fiber and 12 to 1 of Al 2 O 3 .
6 wt%, B 2 O 3 5~8 wt%, CaO 15 to 2
It is a glass fiber mainly containing 5% by weight. (Hereinafter, in the present invention,% means% by weight unless otherwise specified.) Most glass fibers which are currently produced worldwide even though glass fibers of this composition have already been manufactured for more than 50 years. Is made of E glass fiber because the devitrification temperature of the glass in its molten state is about 100 ° C. lower than the temperature suitable for spinning, and there is no trouble in spinning and the productivity is very good.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、Eガラ
ス繊維は耐酸性が悪く、用途が拡大しているFRP下水
道管の補強材、コンクリート下水道管どの内側のライニ
ングやバッテリーセパレーターなど耐酸性が要求される
分野には使用出来ない。このためECRという略称で呼
ばれる耐酸性ガラス繊維をはじめとして、多数の組成を
有するガラス繊維が開発されているが、Eガラスに較べ
て紡糸し難い、電気特性がわるいなど種々の問題があり
更なる改良が望まれている。本発明において耐食性は、
耐酸性と耐水性を含むより広い概念である。また、Eガ
ラス繊維は組成中に多量のB2 3 を含有し、ガラス原
料の溶融を容易にするためF2 成分が配合されている
が、B23 資源の生産量の減少、F 2 の環境汚染対策
費用の増加などにより製造価格の上昇が問題となってい
る。本発明の解決しようとする課題は、具体的には、B
23 、F2 の含有量を減少させても溶融ガラスの紡糸
温度が1300℃以下で、液相温度が紡糸温度よりも6
0℃以上低く紡糸し易い、耐酸性、耐水性に優れ、しか
も機械的物性、電気的物性がEガラス繊維なみであるガ
ラス繊維を得ることである。
However, E gala
Fiber has poor acid resistance and its use is expanding in FRP sewage.
Duct reinforcement, concrete sewer pipe which linen inside
Acid resistance is required for packaging and battery separators
Cannot be used in the field. For this reason, it is referred to as ECR.
Many compositions including acid-resistant glass fiber
Glass fiber has been developed, but compared to E-glass.
Problems such as difficult spinning and poor electrical properties
Further improvements are desired. In the present invention, the corrosion resistance is
A broader concept that includes acid resistance and water resistance. In addition, E
Lath fiber contains a large amount of B in the compositionTwoOThree Containing glass
F to facilitate melting of the mixtureTwo Contains ingredients
But BTwo OThreeDecrease in resource production, F TwoEnvironmental pollution countermeasures
Rising production prices have become a problem due to increased costs, etc.
You. The problem to be solved by the present invention is, specifically,
Two OThree , FTwo Spinning of molten glass even if the content of
When the temperature is 1300 ° C or less and the liquidus temperature is 6
0 ° C or higher, easy to spin, excellent in acid resistance and water resistance, only
The mechanical and electrical properties are similar to those of E glass fiber.
It is to obtain lath fiber.

【0004】[0004]

【課題を解決するための手段】本発明の耐食性ガラス繊
維は、以下の組成のものである。 成分 割合(重量%) SiO2 56〜63 B 0.5〜 3 Al23 12〜16 CaO 16〜25 MgO 0.1〜 6 ZnO 0.1〜 5 MgO+ZnO 1〜 8 TiO2 0〜 0.5未満 Na2 O 0〜 1 K2 O 0〜 1 Na2 O+K2 O 0.1〜 1 F 0.05〜 1 これら成分の合計が少なくとも99.0%であり、この
他に、原料に含まれている微量の不純物、炉材からの溶
出成分などを含めて100重量%となる。この組成は、
粘度が1000ポイズの温度が1174〜1297℃の
範囲であり、粘度が1000ポイズの温度よりも少なく
とも60℃低い液相温度を持つ。そのため高温の操業条
件にもかかわらず、失透することなく紡糸が可能であ
る。
The corrosion resistant glass fiber of the present invention has the following composition. Component ratio (wt%) SiO 2 56~63 B 2 O 3 0.5~ 3 Al 2 O 3 12~16 CaO 16~25 MgO 0.1~ 6 ZnO 0.1~ 5 MgO + ZnO 1~ 8 TiO 2 0 Na 2 O 0-1 K 2 O 0-1 Na 2 O + K 2 O 0.1-1 F 2 0.05-1 The total of these components is at least 99.0%, and And 100% by weight including trace amounts of impurities contained in the raw materials and components eluted from the furnace material. This composition:
It has a liquidus temperature with a viscosity of 1000 poise at a temperature in the range of 1174-1297 ° C and a viscosity at least 60 ° C lower than the temperature of 1000 poise. Thus, spinning is possible without devitrification despite high operating conditions.

【0005】このような組成にすることにより、紡糸温
度を1300℃以下、液相温度を紡糸温度よりも60℃
以上低くなるよう、しかも耐酸性が優れた組成とするこ
とができた。SiOはガラスの耐酸性を向上させる成
分である。56%未満では耐酸性が十分でなく、63%
を越えると溶融温度が高くなると共に液相温度も高くな
り、紡糸性が悪化する。Bはガラスの溶解性を向
上させると共に液相温度を下げ、さらに誘電特性を小さ
くする成分である。0.5%未満では溶融温度が高くな
り、3%を越えると耐酸性が悪化する。Alはガ
ラスの耐水性を向上させると共に、液相温度を下げる成
分である。12%未満では液相温度が高くなり紡糸性が
悪くなる。16%を越えると耐水性は良くなるが溶融温
度が高くなりすぎる。CaOはガラスの耐水性を向上さ
せるとともにガラスの粘度を下げ溶融性を向上させる成
分である。16%未満では溶融温度が高くなりすぎ25
%を越えると液相温度が高くなり紡糸性が悪くなるとと
もに誘電率が悪くなる。
[0005] With such a composition, the spinning temperature is 1300 ° C or less, and the liquidus temperature is 60 ° C lower than the spinning temperature.
Thus, a composition having a lower acid resistance and excellent acid resistance could be obtained. SiO 2 is a component that improves the acid resistance of glass. If it is less than 56%, the acid resistance is not sufficient, and 63%
When the temperature exceeds the above range, the melting temperature increases and the liquidus temperature also increases, resulting in poor spinnability. B 2 O 3 is a component that improves the solubility of glass, lowers the liquidus temperature, and further reduces the dielectric properties. If it is less than 0.5%, the melting temperature becomes high, and if it exceeds 3%, the acid resistance deteriorates. Al 2 O 3 is a component that improves the water resistance of the glass and lowers the liquidus temperature. If it is less than 12%, the liquidus temperature increases and spinnability deteriorates. If it exceeds 16%, the water resistance is improved, but the melting temperature is too high. CaO is a component that improves the water resistance of the glass, reduces the viscosity of the glass, and improves the meltability. If it is less than 16%, the melting temperature becomes too high.
%, The liquidus temperature increases, spinnability deteriorates, and the dielectric constant deteriorates.

【0006】MgOはガラスの粘度を下げ溶融性を向上
させる成分である。0.1%未満では効果が得られず6
%を越えると液相温度が高くなり紡糸性が悪くなる。Z
nOはガラスの粘度を下げ溶融性を向上させると共に耐
酸性を向上させる成分である。0.1%未満では耐酸性
が悪くなり、5%を越えると液相温度が高くなり紡糸性
が悪くなる。本発明では溶融性と耐酸性を考慮し、Mg
OとZnOの合量を1〜8%とする。1%未満では溶融
性が悪化し、溶融温度が高くなり、8%を越えると液相
温度が高くなり紡糸性が悪くなる。
[0006] MgO is a component that lowers the viscosity of glass and improves the meltability. If less than 0.1%, no effect can be obtained.
%, The liquidus temperature increases and spinnability deteriorates. Z
nO is a component that lowers the viscosity of the glass, improves the meltability, and improves the acid resistance. If it is less than 0.1%, the acid resistance is poor, and if it exceeds 5%, the liquidus temperature is high and the spinnability is poor. In the present invention, in consideration of meltability and acid resistance, Mg
The total amount of O and ZnO is set to 1 to 8%. If it is less than 1%, the meltability deteriorates and the melting temperature increases, and if it exceeds 8%, the liquidus temperature increases and spinnability deteriorates.

【0007】TiOは溶融性を向上させる成分である
が、ガラスが黄色に着色し、このガラス繊維を使用した
FRPなどの製品の色調に悪影響をおよぼす。適正範囲
は0〜0.5%未満である。NaOとKOといった
アルカリ金属酸化物は、ガラスの粘度を下げ溶融性を向
上させる成分である。NaO+KOが0.1%未満
では溶融温度を低下させる効果が少なく、1.0%を越
えると耐水性や電気特性が悪くなる。Fは、ガラスの
溶融性を向上させるとともに、誘電特性を改善する成分
である。0.05%未満では効果が少なく、1%を越え
ると効果の増加が少ない。上記成分の他に、5%以下の
範囲でFe、MnO、SrO、BaO、P
などの成分を添加しても良い。また、原料の不純物と
して通常必然的に含まれるTiO、Fe、Sr
O等や、耐火物の浸食等からCrやZrO等が
それぞれ1%以下程度混入することがある。
TiO 2 is a component that improves the meltability, but the glass is colored yellow, which has an adverse effect on the color tone of products such as FRP using this glass fiber. An appropriate range is 0 to less than 0.5%. Alkali metal oxides such as Na 2 O and K 2 O are components that lower the viscosity of glass and improve the meltability. If the content of Na 2 O + K 2 O is less than 0.1%, the effect of lowering the melting temperature is small, and if it exceeds 1.0%, the water resistance and the electrical properties deteriorate. F 2, along with improving melting property of the glass is a component to improve the dielectric properties. If it is less than 0.05%, the effect is small, and if it exceeds 1%, the increase in the effect is small. In addition to the above components, Fe 2 O 3 , MnO 2 , SrO, BaO, P 2 O in a range of 5% or less.
Components such as 3 may be added. In addition, TiO 2 , Fe 2 O 3 , and Sr usually inevitably included as impurities of the raw material
O 2, Cr 2 O 3 , ZrO 2, etc. may be mixed in at about 1% or less due to erosion of refractory or the like.

【0008】他の望ましい実施態様としては、Si
、B、CaO、Al、MgO、Zn
O、MgO+ZnO、TiO、NaO+KO、F
の量は以下のようである。 成分 割合(重量%) SiO 58〜63 B 0.5〜 2.5 CaO 17〜24 Al 12〜15 MgO 0.1〜 5 ZnO 0.1〜 5 MgO+ZnO 1〜 7 TiO 0〜 0.4 NaO 0〜 1 KO 0〜 1 NaO+KO 0.1〜 1 F 0.05〜 1 この組成は、粘度が1000ポイズの温度が1224〜
1290℃の範囲であり、粘度が1000ポイズの温度
より少なくとも70℃低い液相温度を持つ。
[0008] In another preferred embodiment, Si
O 2 , B 2 O 3 , CaO, Al 2 O 3 , MgO, Zn
O, MgO + ZnO, TiO 2 , Na 2 O + K 2 O, F
The quantities of 2 are as follows. Component ratio (% by weight) SiO 2 58 to 63 B 2 O 3 0.5 to 2.5 CaO 17 to 24 Al 2 O 3 12 to 15 MgO 0.1 to 5 ZnO 0.1 to 5 MgO + ZnO 1 to 7 TiO 20 to 0.4 Na 2 O 0 to 1 K 2 O 0 to 1 Na 2 O + K 2 O 0.1 to 1 F 2 0.05 to 1 This composition has a viscosity of 1000 poise and a temperature of 1224 to
It has a liquidus temperature in the range of 1290 ° C and a viscosity at least 70 ° C below a temperature of 1000 poise.

【0009】更に好ましいSiO、B、Ca
O、Al、MgO、ZnO、MgO+ZnO、T
iO、NaO+KO、Fの量は以下である。 成分 割合(重量%) SiO 58〜62 B 0.5〜 2 CaO 18〜24 Al 12〜14 MgO 0.1〜 5 ZnO 0.1〜 4 MgO+ZnO 1〜 7 TiO 0〜 0.4 NaO 0〜 1 KO 0〜 1 NaO+KO 0.1〜 0.9 F 0.05〜 1 更に、特に好ましいのは、NaO+KOが0.8重
量%以下、さらに好ましくは0.5重量%以下である。
Further preferred are SiO 2 , B 2 O 3 , Ca
O, Al 2 O 3 , MgO, ZnO, MgO + ZnO, T
The amounts of iO 2 , Na 2 O + K 2 O, and F 2 are as follows. Component ratio (% by weight) SiO 2 58 to 62 B 2 O 3 0.5 to 2 CaO 18 to 24 Al 2 O 3 12 to 14 MgO 0.1 to 5 ZnO 0.1 to 4 MgO + ZnO 1 to 7 TiO 20 ~ 0.4 Na 2 O 0~ 1 K 2 O 0~ 1 Na 2 O + K 2 O 0.1~ 0.9 F 2 0.05~ 1 further particularly preferred, Na 2 O + K 2 O is 0. It is at most 8% by weight, more preferably at most 0.5% by weight.

【0010】特に好ましい態様の一例として、連続繊維
は次の組成をもっている。SiO 59.12%、B
1.10%、CaO 21.30%、Al
12.48%、MgO 2.44%、ZnO 2.
56%、NaO0.33%、KO 0.11%、F
0.14%、TiO 0.12%、F
0.30%。このガラスは1000ポイズの温度が12
45℃、液相温度1135℃、両温度の差、デルタTは
約110℃である。
As an example of a particularly preferred embodiment, continuous fiber
Has the following composition: SiO2 59.12%, B
2O3 1.10%, 21.30% CaO, Al 2O
3 12.48%, MgO 2.44%, ZnO
56%, Na2O 0.33%, K2O 0.11%, F
e2O3 0.14%, TiO2 0.12%, F2 
0.30%. This glass has a temperature of 1000 poise at 12
45 ° C, liquidus temperature 1135 ° C, difference between both temperatures, Delta T is
About 110 ° C.

【0011】[0011]

【発明の実施の形態】このガラス繊維は、BとF
の量を出来るだけ少なく使用してしかも、紡糸性を良
くして生産性をEガラス繊維並にして、耐酸性を従来の
耐酸性ガラス繊維と同程度或いはそれ以上に向上させ、
誘電率を小さくしたものである。本発明のガラス繊維
は、従来のガラス繊維と同じ公知の方法により製造され
る。ガラス繊維原料はクレー、シリカサンド、アルミ
ナ、コレマナイト、ライムストーン、消石灰、ドロマイ
ト、蛍石など公知のEガラス繊維に使用する原料の他
に、粉末状のZnO、TiOを通常の操業と同様に計
量、混合する。混合した原料を溶解炉中に投入し溶融、
清澄し、フォアハースの下部に取りつけた繊維を作るブ
ッシングに導く。フォアハースとブッシングの温度は、
溶融ガラスが紡糸に適した粘度になるよう調整される。
溶融ガラスはブッシングに設けられた、多数のノズルチ
ップから引き出され高速で延伸され、集束剤を付与され
て、巻き取られる。
DETAILED DESCRIPTION OF THE INVENTION This glass fiber is composed of B 2 O 3 and F
2. Use as little as possible, and improve the spinnability and the productivity to the same level as the E glass fiber, and improve the acid resistance to the same level or higher than the conventional acid resistant glass fiber,
The dielectric constant is reduced. The glass fiber of the present invention is manufactured by the same known method as the conventional glass fiber. Glass fiber material is clay, silica sand, alumina, colemanite, limestone, hydrated lime, dolomite, in addition to the raw materials used in the known E-glass fibers such as fluorite, powdered ZnO, the TiO 2 similar to the normal capacity Weigh and mix. Put the mixed raw materials into the melting furnace and melt,
It leads to a bushing, which clarifies and creates fibers attached to the bottom of the foreheart. The temperature of the foreheart and bushing
The molten glass is adjusted to have a viscosity suitable for spinning.
The molten glass is drawn from a number of nozzle tips provided in the bushing, stretched at a high speed, provided with a sizing agent, and wound up.

【0012】[0012]

【実施例】以下実施例により本発明の特徴を説明する。
本実施例においては、紡糸性の難易度はこの明細書中で
も記載したように紡糸温度と液相温度から容易に推定出
来るので、実施例では紡糸することなく紡糸温度と液相
温度の測定からその差(ΔT)を算出し、紡糸の難易度
の判定資料として表1、表2に示した。 <実施例>実施例1,2,3,4は本発明のガラス繊維
組成であり、表1に示すガラス繊維の組成となるように
原料を調合した。その混合した原料を白金るつぼに入れ
て、1500℃で8時間溶融し均一な溶融ガラスとした
後、カーボン板の上に流し出し、冷却して試料とするガ
ラスを得た。混合した原料の溶融過程を観察したが均一
な溶融ガラスになるまでの時間は、Eガラスの場合と差
がなかった。紡糸温度(溶融ガラスの粘度が1000ポ
イズになる温度)の測定は用意したガラスを白金るつぼ
中で再溶融し、高温回転粘度計を用いて測定した。液相
温度(その温度以上ではガラスの中に結晶が存在しない
温度)の測定は用意したガラスを直径約500〜100
0μmの粉末に砕き、白金ボートに入れ、温度勾配があ
る炉内に静置し12時間保持し、取り出した試料の結晶
発生位置を顕微鏡で観察する方法で測定した。
The features of the present invention will be described below with reference to examples.
In the present embodiment, the spinnability is easily estimated from the spinning temperature and the liquidus temperature as described in this specification, and thus the spinning temperature and the liquidus temperature are measured without spinning in the examples. The difference (ΔT) was calculated and shown in Tables 1 and 2 as data for judging the difficulty of spinning. <Examples> Examples 1, 2, 3, and 4 are glass fiber compositions of the present invention, and raw materials were prepared so as to have the glass fiber compositions shown in Table 1. The mixed raw material was put in a platinum crucible and melted at 1500 ° C. for 8 hours to form a uniform molten glass, which was then poured onto a carbon plate and cooled to obtain a glass as a sample. Observation of the melting process of the mixed raw materials revealed that the time required to obtain a uniform molten glass was not different from that of E glass. The spinning temperature (the temperature at which the viscosity of the molten glass becomes 1000 poise) was measured by remelting the prepared glass in a platinum crucible and using a high-temperature rotational viscometer. The liquidus temperature (the temperature above which the crystal does not exist in the glass) is measured using a prepared glass having a diameter of about 500 to 100.
The powder was crushed into a powder of 0 μm, put into a platinum boat, left still in a furnace having a temperature gradient, kept for 12 hours, and the crystal generation position of the sample taken out was measured by a microscope.

【0013】耐酸性は、各実施例のガラスを白金るつぼ
中で再溶融し、直径13μmのガラス繊維を紡糸したも
のを使用し、そのガラス繊維2gを200mlの80℃
に加熱した10重量%の硫酸溶液中に5時間浸漬したと
きの重量減少を測定し元の繊維重量に対する割合を算出
した。
The acid resistance is as follows. The glass of each Example is re-melted in a platinum crucible and spun glass fiber having a diameter of 13 μm is used.
The weight loss when immersed in a 10% by weight sulfuric acid solution heated for 5 hours was measured, and the ratio to the original fiber weight was calculated.

【0014】耐水性は、耐酸性の試験に用いた直径13
μmのガラス繊維を2g取り200mlの96℃に加熱
した蒸留水中に100時間浸漬したときの重量減少を測
定し元の繊維重量に対する割合を算出した。
The water resistance was measured using a diameter of 13 used in the acid resistance test.
2 g of a glass fiber having a diameter of 2 μm was taken and immersed in 200 ml of distilled water heated to 96 ° C. for 100 hours, and the weight loss was measured to calculate the ratio to the original fiber weight.

【0015】誘電率は、溶融したガラスを徐冷し厚さ2
mmに鏡面研磨したものをLCRメーター(HEWLE
T PACKARD社製)を用いて測定した。
The dielectric constant is determined by gradually cooling the molten glass to a thickness of 2.
mm mirror-polished LCR meter (HEWLE
T PACKARD).

【0016】実施例1,2,3はいずれも耐酸性試験の
重量減少率が0.5%以下であり、耐水性は0.4%以
下であり、誘電率は6.5以下の良好な値を示した。
In Examples 1, 2 and 3, the weight reduction rate in the acid resistance test was 0.5% or less, the water resistance was 0.4% or less, and the dielectric constant was 6.5 or less. The value was shown.

【0017】<比較例>比較例1は従来のEガラス、比
較例2〜4は本発明の範囲外の組成であり、比較例5は
耐酸性ガラスのECRガラスの組成である。実施例と同
様な試験を行い表2に結果を示した。耐酸性を各実施例
と比較例1のEガラス繊維と比較すると耐酸性が大幅に
向上し、比較例5のECR耐酸ガラス繊維と比較すると
同等の耐酸性を有し、しかも誘電率が低いことがわか
る。そしてECRガラスは高価なTiO原料を大量に
使用するが、本発明の組成はTiOは極めて少量であ
るため、着色もなく、原料価格も安いという点で大きい
違いがある。比較例2〜4は何れも、本発明の組成と近
似しているが、特許請求の範囲に含まれない組成で、比
較例2はBとFを含まないもので、耐酸性は十
分だが、紡糸性がEガラスより悪く、誘電率が高い。比
較例3は耐酸性がやや悪く、誘電率も大きく、TiO
を多く含むためガラスが黄色く着色した。比較例4は紡
糸性、耐酸性、誘電率が実施例と同じかそれ以上であ
る。しかしながら紡糸温度が高く、無駄な溶解エネルギ
ーを必要とするばかりでなく、炉材、紡糸用ノズルチッ
プが多数配置された白金合金のブッシングの消耗も増加
する、また高温のためブッシング表面の温度を均一にコ
ントロ〜ルすることが困難になり、糸切れ、繊維径のバ
ラツキの増大などの問題が発生する。
<Comparative Example> Comparative Example 1 is a composition of a conventional E glass, Comparative Examples 2 to 4 are compositions outside the scope of the present invention, and Comparative Example 5 is a composition of an acid-resistant glass ECR glass. The same test as in the example was conducted, and the results are shown in Table 2. The acid resistance is significantly improved when compared to the E glass fiber of each example and Comparative Example 1, and the acid resistance is equivalent to that of the ECR acid resistant glass fiber of Comparative Example 5, and the dielectric constant is low. I understand. ECR glass uses a large amount of expensive TiO 2 raw material, but the composition of the present invention has a great difference in that since the TiO 2 is extremely small, there is no coloring and the raw material price is low. Comparative Examples 2 to 4 are all similar to the composition of the present invention, but are not included in the scope of claims. Comparative Example 2 does not contain B 2 O 3 and F 2 , Is sufficient, but the spinnability is lower than E glass and the dielectric constant is high. Comparative Example 3 has slightly poor acid resistance, a large dielectric constant, and TiO 2
The glass was colored yellow because it contained much. Comparative Example 4 has the same or higher spinnability, acid resistance, and dielectric constant than those of the examples. However, the high spinning temperature not only requires wasteful melting energy, but also increases the consumption of the bushing of the platinum alloy, in which a large number of furnace materials and spinning nozzle tips are arranged. This makes it difficult to control the yarn, and causes problems such as yarn breakage and an increase in fiber diameter variation.

【0018】[0018]

【表1】 ΔT(℃)=紡糸温度(℃)−液相温度(℃) 耐酸性(%)=(耐酸試験前繊維重量−耐酸試験後繊維
重量)×1/耐酸試験前繊維重量×100 耐水性(%)=(耐水試験前繊維重量−耐水試験後繊維
重量)×1/耐水試験前繊維重量×100
[Table 1] ΔT (° C) = spinning temperature (° C)-liquidus temperature (° C) Acid resistance (%) = (weight of fiber before acid resistance test-weight of fiber after acid resistance test) x 1 / weight of fiber before acid resistance test x 100 Water resistance (% ) = (Weight of fiber before water resistance test−weight of fiber after water resistance test) × 1 / weight of fiber before water resistance test × 100

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【発明の効果】本発明は、請求項1に記載した組成のガ
ラス繊維を製造することにより、原料の溶融性を良くし
生産性をあげるために、大きな影響を持つB及び
の含有量を出来る限り少なくしたガラス繊維にもか
かわらず、生産性を下げることなくEガラス繊維と同様
にし、しかも耐酸性を向上させ、誘電率を小さくすると
いう、困難な課題を解決することが出来た。また高価な
TiOを原料に極少量使用するかあるいは原料として
配合することなく製造が可能なので経済的にも有利であ
る。
According to the present invention, B 2 O 3 and F 2, which have a great influence on the production of the glass fiber having the composition described in claim 1, in order to improve the meltability of the raw material and increase the productivity. Despite the glass fiber having the lowest possible content, it is possible to solve the difficult problem of making the same as the E glass fiber without lowering the productivity, improving the acid resistance and reducing the dielectric constant. done. In addition, it is economically advantageous because it can be produced without using a very small amount of expensive TiO 2 as a raw material or blending it as a raw material.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G062 AA05 BB01 DA06 DB04 DC02 DC03 DD01 DE02 DE03 DF01 EA01 EB01 EB02 EC01 EC02 ED02 ED03 EE04 EF01 EG01 FA01 FA10 FB01 FB02 FC01 FD01 FE01 FF01 FG01 FH01 FJ01 FK01 FL01 GA01 GB01 GC01 GD01 GE02 HH01 HH03 HH05 HH07 HH09 HH11 HH13 HH15 HH17 HH20 JJ01 JJ03 JJ05 JJ07 JJ10 KK01 KK03 KK05 KK07 KK10 MM15 NN33 NN34  ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference) 4G062 AA05 BB01 DA06 DB04 DC02 DC03 DD01 DE02 DE03 DF01 EA01 EB01 EB02 EC01 EC02 ED02 ED03 EE04 EF01 EG01 FA01 FA10 FB01 FB02 FC01 FD01 FE01 FF01 FG01 F0101 GE02 HH01 HH03 HH05 HH07 HH09 HH11 HH13 HH15 HH17 HH20 JJ01 JJ03 JJ05 JJ07 JJ10 KK01 KK03 KK05 KK07 KK10 MM15 NN33 NN34

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量%でSiO2 56〜63%、B
0.5〜3%Al23 12〜16%、CaO 1
6〜25%、MgO 0.1〜 6%、ZnO 0.1
〜 5%、MgO+ZnO 1〜8%、TiO2 0〜
0.5%未満、Na2 O 0〜 1%、K2 O 0〜
1%、Na2 O+K2 O 0.1〜1%、F 0.0
5〜1%を含むことを特徴とする耐食性を有するガラス
繊維。
(1) SiO 2 content of 56 to 63% by weight, B 2 O
3 0.5 to 3% Al 2 O 3 12 to 16%, CaO 1
6-25%, MgO 0.1-6%, ZnO 0.1
5%, MgO + ZnO 1-8%, TiO 2 0
Less than 0.5%, Na 2 O 0-1%, K 2 O 0-0
1%, Na 2 O + K 2 O 0.1~1%, F 2 0.0
Glass fiber having corrosion resistance, characterized by containing 5-1%.
【請求項2】 紡糸温度と液相温度の差が少なくとも6
0℃以上であることを特徴とする請求項1記載のガラス
繊維組成。
2. The difference between the spinning temperature and the liquidus temperature is at least 6
The glass fiber composition according to claim 1, wherein the glass fiber composition is at least 0 ° C.
JP11056408A 1999-03-04 1999-03-04 Corrosion resistant glass fiber Pending JP2000247683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11056408A JP2000247683A (en) 1999-03-04 1999-03-04 Corrosion resistant glass fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11056408A JP2000247683A (en) 1999-03-04 1999-03-04 Corrosion resistant glass fiber

Publications (1)

Publication Number Publication Date
JP2000247683A true JP2000247683A (en) 2000-09-12

Family

ID=13026347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11056408A Pending JP2000247683A (en) 1999-03-04 1999-03-04 Corrosion resistant glass fiber

Country Status (1)

Country Link
JP (1) JP2000247683A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004035497A1 (en) * 2002-10-15 2004-04-29 Nippon Electric Glass Co., Ltd. Glass composition and glass fiber
JP2007039320A (en) * 2005-07-05 2007-02-15 Nippon Electric Glass Co Ltd Glass fiber composition, glass fiber and glass fiber-containing composite material
JP2007529401A (en) * 2004-03-17 2007-10-25 サン−ゴバン ベトロテックス フランス ソシエテ アノニム Glass strands that can reinforce organic and / or inorganic materials
JP2007529402A (en) * 2004-03-17 2007-10-25 サン−ゴバン ベトロテックス フランス ソシエテ アノニム Glass strand capable of strengthening organic and / or inorganic materials
JP2009233480A (en) * 2008-03-25 2009-10-15 Nitto Boseki Co Ltd Manufacturing method of woven glass fiber for bag filter
JP2009233481A (en) * 2008-03-25 2009-10-15 Nitto Boseki Co Ltd Woven glass fiber for bag filter
WO2009154062A1 (en) * 2008-06-18 2009-12-23 日本板硝子株式会社 Scale‑like glass and covered scale‑like glass
JP2010024092A (en) * 2008-07-18 2010-02-04 Ikebukuro Horo Kogyo Kk Glass formed product
WO2010017846A1 (en) * 2008-08-14 2010-02-18 Buerger Gerhard Highly temperature-resistant and chemically resistant glass and glass fiber having improved uc light transmission and the use thereof
US8252707B2 (en) 2008-12-24 2012-08-28 Ocv Intellectual Capital, Llc Composition for high performance glass fibers and fibers formed therewith
US8338319B2 (en) 2008-12-22 2012-12-25 Ocv Intellectual Capital, Llc Composition for high performance glass fibers and fibers formed therewith
US8341978B2 (en) 2005-11-04 2013-01-01 Ocv Intellectual Capital, Llc Method of manufacturing high performance glass fibers in a refractory lined melter and fiber formed thereby
JP2013047184A (en) * 2005-07-05 2013-03-07 Nippon Electric Glass Co Ltd Glass fiber composition, glass fiber, and glass fiber-containing composite material
US8563450B2 (en) * 2005-11-04 2013-10-22 Ocv Intellectual Capital, Llc Composition for high performance glass high performance glass fibers and articles therefrom
US8586491B2 (en) 2005-11-04 2013-11-19 Ocv Intellectual Capital, Llc Composition for high performance glass, high performance glass fibers and articles therefrom
US9187361B2 (en) 2005-11-04 2015-11-17 Ocv Intellectual Capital, Llc Method of manufacturing S-glass fibers in a direct melt operation and products formed there from
US9206068B2 (en) 2005-11-04 2015-12-08 Ocv Intellectual Capital, Llc Method of manufacturing S-glass fibers in a direct melt operation and products formed therefrom
JP2016513063A (en) * 2013-02-18 2016-05-12 ハインツ−ユルゲン プライス−ダイムラーHeinz−Juergen Preiss−Daimler Heat resistant aluminosilicate glass fiber and method for its production and use
JP2020100538A (en) * 2018-12-25 2020-07-02 日本電気硝子株式会社 Mixed raw material for glass production and glass production method using the same
WO2020230550A1 (en) * 2019-05-10 2020-11-19 日本電気硝子株式会社 Glass composition for glass fibers
KR20210038412A (en) * 2019-09-25 2021-04-07 주시 그룹 코., 엘티디. Electronic grade glass fiber composition and glass fiber and electronic cloth
US20220169561A1 (en) * 2020-12-02 2022-06-02 Taiwan Glass Industry Corp. Glass composition with low thermal expansion coefficient and glass fiber made of the same
CN117529456A (en) * 2021-06-29 2024-02-06 日东纺绩株式会社 Glass composition for glass fiber, and glass fiber-reinforced resin molded article

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7629279B2 (en) 2002-10-15 2009-12-08 Nippon Electric Glass Co., Ltd. Glass fiber
EP1561732A1 (en) * 2002-10-15 2005-08-10 Nippon Electric Glass Co., Ltd Glass composition and glass fiber
EP1561732A4 (en) * 2002-10-15 2008-10-08 Nippon Electric Glass Co Glass composition and glass fiber
WO2004035497A1 (en) * 2002-10-15 2004-04-29 Nippon Electric Glass Co., Ltd. Glass composition and glass fiber
JP2007529401A (en) * 2004-03-17 2007-10-25 サン−ゴバン ベトロテックス フランス ソシエテ アノニム Glass strands that can reinforce organic and / or inorganic materials
JP2007529402A (en) * 2004-03-17 2007-10-25 サン−ゴバン ベトロテックス フランス ソシエテ アノニム Glass strand capable of strengthening organic and / or inorganic materials
JP2007039320A (en) * 2005-07-05 2007-02-15 Nippon Electric Glass Co Ltd Glass fiber composition, glass fiber and glass fiber-containing composite material
JP2013047184A (en) * 2005-07-05 2013-03-07 Nippon Electric Glass Co Ltd Glass fiber composition, glass fiber, and glass fiber-containing composite material
US8341978B2 (en) 2005-11-04 2013-01-01 Ocv Intellectual Capital, Llc Method of manufacturing high performance glass fibers in a refractory lined melter and fiber formed thereby
US10407342B2 (en) 2005-11-04 2019-09-10 Ocv Intellectual Capital, Llc Method of manufacturing S-glass fibers in a direct melt operation and products formed therefrom
US9695083B2 (en) 2005-11-04 2017-07-04 Ocv Intellectual Capital, Llc Method of manufacturing S-glass fibers in a direct melt operation and products formed therefrom
US9656903B2 (en) 2005-11-04 2017-05-23 Ocv Intellectual Capital, Llc Method of manufacturing high strength glass fibers in a direct melt operation and products formed there from
US9206068B2 (en) 2005-11-04 2015-12-08 Ocv Intellectual Capital, Llc Method of manufacturing S-glass fibers in a direct melt operation and products formed therefrom
US9187361B2 (en) 2005-11-04 2015-11-17 Ocv Intellectual Capital, Llc Method of manufacturing S-glass fibers in a direct melt operation and products formed there from
US8563450B2 (en) * 2005-11-04 2013-10-22 Ocv Intellectual Capital, Llc Composition for high performance glass high performance glass fibers and articles therefrom
US8586491B2 (en) 2005-11-04 2013-11-19 Ocv Intellectual Capital, Llc Composition for high performance glass, high performance glass fibers and articles therefrom
JP2009233481A (en) * 2008-03-25 2009-10-15 Nitto Boseki Co Ltd Woven glass fiber for bag filter
JP2009233480A (en) * 2008-03-25 2009-10-15 Nitto Boseki Co Ltd Manufacturing method of woven glass fiber for bag filter
WO2009154062A1 (en) * 2008-06-18 2009-12-23 日本板硝子株式会社 Scale‑like glass and covered scale‑like glass
JP2010024092A (en) * 2008-07-18 2010-02-04 Ikebukuro Horo Kogyo Kk Glass formed product
EA021394B1 (en) * 2008-08-14 2015-06-30 П-Д Глассайден Гмбх Ошац Glass
JP2011530475A (en) * 2008-08-14 2011-12-22 ビュルガー,ゲルハルト Heat and chemical resistant glass and glass fiber with improved UV transmittance and use thereof
WO2010017846A1 (en) * 2008-08-14 2010-02-18 Buerger Gerhard Highly temperature-resistant and chemically resistant glass and glass fiber having improved uc light transmission and the use thereof
US8497219B2 (en) 2008-08-14 2013-07-30 Gerhard Bürger Highly temperature-resistant and chemically resistant glass and glass fiber having improved UV light transmission and the use thereof
US8338319B2 (en) 2008-12-22 2012-12-25 Ocv Intellectual Capital, Llc Composition for high performance glass fibers and fibers formed therewith
US8252707B2 (en) 2008-12-24 2012-08-28 Ocv Intellectual Capital, Llc Composition for high performance glass fibers and fibers formed therewith
JP2016513063A (en) * 2013-02-18 2016-05-12 ハインツ−ユルゲン プライス−ダイムラーHeinz−Juergen Preiss−Daimler Heat resistant aluminosilicate glass fiber and method for its production and use
JP2020100538A (en) * 2018-12-25 2020-07-02 日本電気硝子株式会社 Mixed raw material for glass production and glass production method using the same
CN113811516A (en) * 2019-05-10 2021-12-17 日本电气硝子株式会社 Glass composition for glass fiber
WO2020230550A1 (en) * 2019-05-10 2020-11-19 日本電気硝子株式会社 Glass composition for glass fibers
JP2020186138A (en) * 2019-05-10 2020-11-19 日本電気硝子株式会社 Glass composition for glass fiber
JP7303486B2 (en) 2019-05-10 2023-07-05 日本電気硝子株式会社 Glass composition for glass fiber
US20210130226A1 (en) * 2019-09-25 2021-05-06 Jushi Group Co., Ltd. Electronic-grade glass fiber composition, and glass fiber and electronic fabric thereof
JP2022503318A (en) * 2019-09-25 2022-01-12 ジュシ グループ カンパニー リミテッド Electronic grade fiberglass composition, its fiberglass and electronic grade fiberglass cloth
US11643360B2 (en) 2019-09-25 2023-05-09 Jushi Group Co., Ltd. Electronic-grade glass fiber composition, and glass fiber and electronic fabric thereof
KR102549757B1 (en) * 2019-09-25 2023-06-29 주시 그룹 코., 엘티디. Electronic grade glass fiber composition and its glass fiber and electronic cloth
KR20210038412A (en) * 2019-09-25 2021-04-07 주시 그룹 코., 엘티디. Electronic grade glass fiber composition and glass fiber and electronic cloth
JP7466729B2 (en) 2019-09-25 2024-04-12 ジュシ グループ カンパニー リミテッド Electronic grade glass fiber composition, glass fiber and electronic grade glass fiber fabric
US20220169561A1 (en) * 2020-12-02 2022-06-02 Taiwan Glass Industry Corp. Glass composition with low thermal expansion coefficient and glass fiber made of the same
JP2022088298A (en) * 2020-12-02 2022-06-14 台湾玻璃工業股▲ふん▼有限公司 Glass composition comprising low thermal expansion coefficient and glass fiber thereof
JP7195693B2 (en) 2020-12-02 2022-12-26 台湾玻璃工業股▲ふん▼有限公司 Glass composition having low thermal expansion coefficient and its glass fiber
CN117529456A (en) * 2021-06-29 2024-02-06 日东纺绩株式会社 Glass composition for glass fiber, and glass fiber-reinforced resin molded article

Similar Documents

Publication Publication Date Title
JP2000247683A (en) Corrosion resistant glass fiber
JP4580141B2 (en) Glass fiber forming composition
CN102482142B (en) What improve modulus does not contain lithium glass
US5789329A (en) Boron-free glass fibers
US9428414B2 (en) Composition for preparing high-performance glass fiber by tank furnace production
KR101652139B1 (en) Composition for high performance glass fibers and fibers formed therewith
JP7488260B2 (en) High performance glass fiber composition having improved elastic modulus - Patents.com
JP7480142B2 (en) High performance glass fiber composition having improved specific modulus
CN101503279A (en) Novel glass fibre composition
JP2000247677A (en) Corrosion resistant glass fiber composition
JP2003500330A (en) Glass fiber composition
CN109982982B (en) Glass composition for glass fiber, and method for producing glass fiber
US3973974A (en) Alkali resistant glass compositions and alkali resistant glass fibers prepared therefrom
WO2019100782A1 (en) Glass fiber composition, and glass fiber and composite material thereof
WO1999001393A1 (en) Glass composition for fibers
JP3771073B2 (en) Glass fiber
EP1187793A1 (en) Glass fiber composition
JPH10231143A (en) Corrosion-resistant glass fiber
JP3801293B2 (en) Corrosion resistant glass fiber
JP2023510200A (en) Fiberglass composition for higher modulus
JPH09156957A (en) Corrosion resistant glass fiber
JPH11157876A (en) Corrosion resistant glass fiber
JPH0127008B2 (en)
JPH10203845A (en) Corrosion resistant glass fiber
JPH11157875A (en) Corrosion resistant glass fiber