JP2000245278A - Production of medium for culturing algae - Google Patents

Production of medium for culturing algae

Info

Publication number
JP2000245278A
JP2000245278A JP32328499A JP32328499A JP2000245278A JP 2000245278 A JP2000245278 A JP 2000245278A JP 32328499 A JP32328499 A JP 32328499A JP 32328499 A JP32328499 A JP 32328499A JP 2000245278 A JP2000245278 A JP 2000245278A
Authority
JP
Japan
Prior art keywords
culture medium
producing
algae
medium according
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32328499A
Other languages
Japanese (ja)
Other versions
JP3619726B2 (en
Inventor
Tatsuaki Sato
龍明 佐藤
Masaya Miyamoto
真哉 宮本
Naomi Toyohara
尚実 豊原
Masaru Okamoto
優 岡本
Yoshinari Takamatsu
義成 高松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Engineering Corp
Toshiba Corp
Original Assignee
Toshiba Engineering Corp
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Engineering Corp, Toshiba Corp filed Critical Toshiba Engineering Corp
Priority to JP32328499A priority Critical patent/JP3619726B2/en
Publication of JP2000245278A publication Critical patent/JP2000245278A/en
Application granted granted Critical
Publication of JP3619726B2 publication Critical patent/JP3619726B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00758Uses not provided for elsewhere in C04B2111/00 for agri-, sylvi- or piscicultural or cattle-breeding applications
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/40Porous or lightweight materials
    • C04B2111/42Floating materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Cultivation Of Seaweed (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for mass-producing a culture medium for algae serviceable for solving global environmental problems by culturing a large amount of the algae in the ocean or lakes and marshes, absorbing gaseous carbon dioxide, obtaining a raw material for energy sources from the cultured algae, etc. SOLUTION: A mixture prepared by mixing a raw material containing an industrial waste such as coal ash or an incinerated ash with an inorganic material such as sand, a pulverized shell material or a diatom, a hardening material and a culturing nutrient for algae is molded into a molded product and cured to thereby mass-produce a culture medium for algae capable of floating on water. A cement, water glass, lime, a gypsum, etc., and the culturing nutrient for the algae such as a phosphoric acid compound can be used as the hardening material. A phosphorus component, a nitrogen component and an iron component can be used as the culturing nutrient. The mixture is extrusion molded and molded into a cylindrical form and both ends are closed to thereby make the interior thereof hollow. The apparent specific gravity is reduced to thereby make the molded product floatable on water. The specific gravity of the molded product can be reduced by using a material for reducing the weight. A compression molding method, a method for disintegrating a premolded product after premolding or an agitation molding method can be used. Waste heat of a power generation plant or an incineration furnace can be used as a waste for curing the molded product.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、海洋や湖において
大規模に藻類を培養するための藻類培養媒体の製造方法
に関し、特に火力発電所や焼却炉から発生する石炭灰や
焼却灰を有効利用し、あるいは砂や貝殻粉砕物を利用し
て、藻類培養用養分供給媒体を大量に製造するための製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an algae culture medium for cultivating algae on a large scale in oceans and lakes, and in particular, effectively utilizes coal ash and incinerated ash generated from thermal power plants and incinerators. The present invention relates to a production method for producing a large amount of a nutrient supply medium for algae cultivation using sand or crushed shells.

【0002】[0002]

【従来の技術】微細藻類は単位面積当たりの太陽光利用
率、すなわちCO2 を固定能が陸上植物に比べ高く、増
殖の速度も速いことから、大気中のCO2 を固定するた
めの有力な選択肢と考えられている。このため、地球温
暖化防止を目的として、微細藻類によってCO2 を吸収
・固定し、さらにこれらを原料として石油代替燃料など
の有用物を製造する研究が行われている。
BACKGROUND ART microalgae solar utilization rate per unit area, i.e., higher than the CO 2 to a fixed capacity land plants, the rate of proliferation since also fast, powerful for fixing CO 2 in the atmosphere Is considered an option. For this reason, for the purpose of preventing global warming, research has been conducted to absorb and fix CO 2 by microalgae and to produce useful materials such as petroleum alternative fuels using these as raw materials.

【0003】たとえば太陽光を集光し、これを効率的に
照射可能なフォトリアクターを設け、このフォトリアク
ター内にCO2 に富んだ火力発電所の排ガスを導入し、
微細藻類を培養する研究が多くの研究機関で実施されて
いる。
For example, a photoreactor capable of concentrating sunlight and irradiating it efficiently is provided, and exhaust gas from a thermal power plant rich in CO 2 is introduced into the photoreactor.
Research on culturing microalgae is being conducted by many research institutions.

【0004】[0004]

【発明が解決しようとする課題】ところで地球温暖化防
止に貢献する程の膨大なCO2 を固定するためには、広
大な面積での微細藻類の培養が必要となる。試算による
と日本で発生するCO2の10%を固定するためには、
300km四方の面積が必要となる。
In order to fix a huge amount of CO 2 that contributes to prevention of global warming, it is necessary to culture microalgae over a large area. According to trial calculations, to fix 10% of CO 2 generated in Japan,
An area of 300 km square is required.

【0005】日本国内の内陸部ではこのような広大な面
積を確保することは困難であり、海洋での大規模な培養
が必要となるが、従来は海洋での養分の効率的な供給が
困難であった。すなわち、海洋で養分を散布すると養分
は急速に海洋中に拡散するので、ほとんどの養分は藻類
の培養に利用されないばかりか、海洋全体が富栄養化し
てしまい、海洋汚染を引き起こすことになる。
[0005] It is difficult to secure such a vast area in the inland area in Japan, and large-scale cultivation in the ocean is required. However, conventionally, it has been difficult to efficiently supply nutrients in the ocean. Met. That is, when nutrients are sprayed in the ocean, the nutrients rapidly diffuse into the ocean, so that most of the nutrients are not used for algae culture, and the entire ocean becomes eutrophic, causing marine pollution.

【0006】このため、何らかの方法で養分を海面に固
定し、藻類の増殖に合わせて養分を供給する媒体が必要
となる。先に本発明者らの内のある者達は鋭意研究の結
果、水に浮遊可能でしかも養分を供給可能な媒体の製造
に関する提案を行った(特願平10-52050) 。
For this reason, a medium for fixing nutrients to the sea surface by some method and supplying nutrients in accordance with the growth of algae is required. Earlier, as a result of intensive studies, some of the present inventors have proposed a method for producing a medium that can be suspended in water and can supply nutrients (Japanese Patent Application No. 10-52050).

【0007】この発明により、海洋等で微細藻類が増殖
するための養分を供給することのできる媒体の製造が可
能となった。しかしながら、特願平10-52050の発明で
は、水への浮遊を維持するために、多量の撥水剤を添加
していた。撥水剤はこのような媒体の製造原料のうち、
最も高価であり、しかも長期に亘る浮遊において次第に
撥水剤が不十分となり、やがて沈降してしまうという問
題があった。
According to the present invention, it has become possible to produce a medium capable of supplying nutrients for microalgae to grow in the ocean and the like. However, in the invention of Japanese Patent Application No. 10-52050, a large amount of a water repellent was added in order to maintain the suspension in water. Water repellent is one of the raw materials for producing such media.
It is the most expensive, and there is a problem that the water repellent gradually becomes insufficient during long-term floating, and eventually sediments.

【0008】本発明は前述の課題を解決するためになさ
れたもので、、本発明の目的は、水に浮く藻類増殖の核
となる藻類培養媒体を火力発電所の石炭灰、焼却灰等の
産業廃棄物、砂、貝殻粉砕物から大量に、しかも安価に
製造する方法を提供し、それによって大量生産された藻
類培養媒体を広大な海域に散布することによって、大規
模かつクリーンに藻類の増殖を行うことを可能にするも
のである。
The present invention has been made to solve the above-mentioned problems. An object of the present invention is to provide an algae culture medium which is a nucleus for algae growth floating on water, such as coal ash or incineration ash of a thermal power plant. Large-scale and clean growth of algae by providing a large-scale and inexpensive method of producing industrial waste, sand, and shell crushed material, and thereby spreading the mass-produced algae culture medium over a vast sea area. It is possible to do.

【0009】[0009]

【課題を解決するための手段】本発明は、無機質材料と
硬化材と藻類培養養分とを含む原料を高速撹拌翼混合機
に投入し混合して混合物にする混合工程と、前記混合物
を成形する成形工程と、前記成形体を養生する養生工程
とを有し、水に浮遊可能にすることを特徴とする藻類培
養媒体の製造方法である。
According to the present invention, a raw material containing an inorganic material, a hardening material and algae culture nutrients is charged into a high-speed stirring blade mixer and mixed to form a mixture, and the mixture is formed. A method for producing an algae culture medium, comprising: a molding step; and a curing step of curing the molded body, wherein the medium is made floatable in water.

【0010】本発明においては、前記成形体を水に浮遊
可能とするために、前記成形体はその密度が1g/cm
3 以下となるように製造を行うことが特に好ましい。
In the present invention, in order to make the molded body floatable in water, the molded body has a density of 1 g / cm.
It is particularly preferable to carry out the production so as to be 3 or less.

【0011】本発明によれば、海水および淡水に浮遊す
る藻類培養媒体を大量に製造することができる。
According to the present invention, a large amount of algae culture medium floating in seawater and freshwater can be produced.

【0012】また、本発明は、上記混合物を型枠に投入
して成形した後、この成形体を解砕して微細な成形体と
する成形工程を用いることができる。この場合、型枠に
て成形したのち解砕する前の段階では解砕に適する程度
に養生を行っておき、解砕後にさらに養生を行うことが
できる。この方法によれば、一個ずつ型枠に混合物を投
入する必要がないので、大量の成形体を迅速に製造する
ことができる。
Further, the present invention can use a molding step in which the mixture is charged into a mold and molded, and then the molded body is crushed to form a fine molded body. In this case, curing is performed to an extent suitable for crushing in a stage before forming and crushing after molding in a mold, and further curing can be performed after crushing. According to this method, it is not necessary to put the mixture into the molds one by one, so that a large amount of molded articles can be rapidly manufactured.

【0013】本発明は、混合工程において、混合槽中に
高速で回転する撹拌翼を有する高速撹拌翼混合機を用い
れば、短時間で均一に混合を行うことができるので、好
ましく用いることができる。そして混合層槽をほぼ円筒
状の形状にし、撹拌翼を底部に配置することによって、
非常に効率的に撹拌、混合を行うことができる。撹拌翼
としては、ブレード型が上記混合を迅速に行うことがで
きるので特に好ましく用いられる。
In the present invention, in the mixing step, if a high-speed stirring blade mixer having a stirring blade rotating at a high speed in a mixing tank is used, uniform mixing can be performed in a short time, so that it can be preferably used. . And by making the mixed-layer tank a substantially cylindrical shape and disposing the stirring blade at the bottom,
Stirring and mixing can be performed very efficiently. As the stirring blade, a blade type is particularly preferably used because the mixing can be rapidly performed.

【0014】また本発明は成形工程として、上記混合物
を攪拌しながら水もしくは硬化材水溶液を散布して成形
体に成形する攪拌成形工程を用いることができる。この
成形体は成形後に養生して成形体の強度を高めることが
できる。この方法によれば、大量の粒状成形体をまとめ
て成形することができる。
Further, in the present invention, as the molding step, a stirring molding step of spraying water or an aqueous solution of a hardening agent while stirring the mixture to form a molded article can be used. This molded body can be cured after molding to increase the strength of the molded body. According to this method, a large number of granular compacts can be molded together.

【0015】上記の混合物を攪拌しながら水もしくは硬
化材水溶液を散布して成形体に成形する工程では、混合
工程で使用される高速撹拌翼混合機とは別の混合機を用
意して用いてもよいが、混合工程で使用の高速撹拌翼混
合機をそのまま継続して用いることができる。こうする
ことによって移送の手間やロスを省くことができる。ま
た、本発明は、成形工程として上記混合物を押出機に供
給するなどして、ダイスで押出して成形体とする工程を
用いることができる。この方法によれば、所定の形状の
成形体を生産性良く大量に製造することができる。
In the step of spraying water or an aqueous solution of a hardening material while stirring the mixture to form a molded article, a mixer different from the high-speed stirring blade mixer used in the mixing step is prepared and used. Alternatively, the high-speed stirring blade mixer used in the mixing step can be used as it is. By doing so, labor and loss of transfer can be saved. Further, in the present invention, a step of extruding the mixture with a die to form a molded body, for example, by supplying the mixture to an extruder can be used as a molding step. According to this method, a molded article having a predetermined shape can be mass-produced with high productivity.

【0016】そして本発明においては、混合物をダイス
から押出して成形する上記工程において、2重の管から
なるダイスを用い、混合物を2重の管の外側管内壁と内
側管外壁との間に移送して入れ、押出成形後にその両端
を圧縮し封じきることにより、外部に多孔質層を有し、
その内部に中空部を有する成形体とすることができる。
ここに中空部とは出入口がなく閉じられた空洞であ
る。このようにして製造を行うことによって、成形体の
みかけ比重を小さくすることができ、藻類培養媒体とし
て水面に浮上させる上で有利となる。
In the present invention, in the above step of extruding and molding the mixture from the die, the mixture is transferred between the outer wall of the outer tube and the outer wall of the inner tube of the double tube by using a double-tube die. By inserting and compressing and sealing both ends after extrusion, having a porous layer on the outside,
A molded article having a hollow portion therein can be obtained.
Here, the hollow portion is a closed cavity without an entrance. By carrying out the production in this manner, the apparent specific gravity of the molded body can be reduced, which is advantageous for floating on the water surface as an algae culture medium.

【0017】さらに混合物をダイスから押し出して成形
する上記工程において3重の管からなるダイスの最外側
の管と中間の管との間に多孔質性の材料を、中間の管と
最内側の管との間に低透水性の材料を入れることによっ
て、多孔質層と中空部との間に多孔質層よりも低透水性
の層を設けることにより、中空部の浸水が防止できるの
で、成形体の浮上状態が一層安定化する。
Further, in the above step of extruding and molding the mixture from the die, a porous material is interposed between the outermost tube and the intermediate tube of the triple-tube die, and the intermediate tube and the innermost tube are formed. By inserting a material having low water permeability between the porous layer and the hollow portion, by providing a layer having a lower water permeability than the porous layer between the porous layer and the hollow portion, it is possible to prevent the hollow portion from being flooded. Is more stabilized.

【0018】上記の低透水層には、石炭灰、焼却灰、モ
ンモリロナイト、カオリナイト、セメント、水ガラス、
石灰、石膏のうち、少なくとも一種を含むものを用いる
ことができる。これらを用いることによって、中空部の
周囲を気密に形成することができる。そして中空部を設
けることによってみかけ比重を小さくできるので、軽量
化材を含有しなくても水に浮遊可能にすることができ
る。
The low permeable layer includes coal ash, incineration ash, montmorillonite, kaolinite, cement, water glass,
A material containing at least one of lime and gypsum can be used. By using these, the periphery of the hollow portion can be formed airtight. Since the apparent specific gravity can be reduced by providing a hollow portion, the hollow portion can be made to float in water without containing a lightening material.

【0019】また、本発明は成形工程として、上記混合
物を圧縮して成形体とする工程を用いることができる。
この方法によれば所定の形状の成形体を生産性良く大量
に製造することができる。
Further, in the present invention, as the molding step, a step of compressing the mixture to form a molded body can be used.
According to this method, a molded article having a predetermined shape can be mass-produced with high productivity.

【0020】本発明の藻類媒体の製造方法に用いる無機
質材料としては、石炭灰、焼却灰、砂、貝殻粉砕物、お
よび珪藻から選択された少なくとも1種を含むものを好
ましく用いることができる。これらのうち、石炭灰や焼
却灰は多量に生成される産業廃棄物であり、その再利用
が可能になるため、特に好ましい。
As the inorganic material used in the method for producing an algal medium of the present invention, a material containing at least one selected from coal ash, incinerated ash, sand, ground shells, and diatoms can be preferably used. Of these, coal ash and incinerated ash are particularly preferable because they are industrial wastes generated in large amounts and can be reused.

【0021】そしてこれら石炭灰、焼却灰、砂、貝殻粉
砕物、および珪藻から選択された少なくとも1種を含む
無機質材料は、環境を汚染する成分、即ち、重金属や有
害な有機物質などの成分を低減もしくは除去処理したも
のが環境汚染の恐れがないので好ましく用ることができ
る。石炭灰はシリカとアルミナを主成分とし、成分的に
も比較的安定しており、環境を汚染する成分を含まない
ように管理して用いることが可能である。また、焼却灰
についても、分別収集の段階あるいは焼却灰の後処理の
段階で、環境を汚染する成分を除去して用いることが可
能である。
The inorganic material containing at least one selected from coal ash, incinerated ash, sand, shell crushed material, and diatoms contains components that pollute the environment, that is, components such as heavy metals and harmful organic substances. The reduced or removed one can be preferably used because there is no risk of environmental pollution. Coal ash contains silica and alumina as main components, is relatively stable in composition, and can be used in a controlled manner so as not to include components that pollute the environment. Also, incineration ash can be used after removing components that pollute the environment at the stage of separate collection or the stage of post-treatment of incineration ash.

【0022】また、本発明に用いる硬化材としては、セ
メント、水ガラス、石灰、および石膏から選択された少
なくとも1種を含むものが好ましく用いられる。そして
セメントまたは水ガラスから選択された少なくとも1種
を含む硬化材には、その構成成分として、藻類培養養
分、例えばリン酸化合物を含むものを用いることができ
る。
As the hardening material used in the present invention, those containing at least one selected from cement, water glass, lime, and gypsum are preferably used. As the hardening material containing at least one selected from cement or water glass, an algal culture nutrient, for example, a material containing a phosphate compound can be used as a component thereof.

【0023】また、本発明に用いる藻類培養養分として
は、リン分、窒素分、および鉄分から選択された少なく
とも1種を含むものが好ましい。これらを含むことによ
って藻類の培養に必要な養分の供給が可能になる。
The culture nutrients for algae used in the present invention preferably contain at least one selected from phosphorus, nitrogen and iron. By including these, it becomes possible to supply nutrients necessary for algae culture.

【0024】また、本発明に用いる軽量化材としては、
粉末アルミナ、パーライト、シラス、シラスバルーン、
または粒状軽石から選択された少なくともl種を含むも
のを好ましく用いることができる。これらを含有させる
ことによって藻類培養媒体の比重を小さくすることがで
き、水に浮遊させることが可能になる。
Further, as the lightening material used in the present invention,
Powdered alumina, perlite, shirasu, shirasu balloon,
Alternatively, those containing at least one selected from granular pumice can be preferably used. By containing these, the specific gravity of the algae culture medium can be reduced, and the medium can be suspended in water.

【0025】そして本発明において、硬化材、藻類培養
養分および軽量化材の添加量は、無機質材料の重量10
0重量部に対して、硬化材を少なくとも5重量部、そし
て藻類培養養分は20重量部を超えないことが好まし
い。硬化材の量が5重量部以上であれば望ましい硬度が
得られる。
In the present invention, the amount of the hardening material, the algal culture nutrient, and the weight-reducing material is determined by the weight of the inorganic material.
Preferably, the hardener is at least 5 parts by weight and the algal culture nutrient does not exceed 20 parts by weight, based on 0 parts by weight. If the amount of the hardening material is 5 parts by weight or more, a desired hardness can be obtained.

【0026】また本発明においては、混合物に撥水剤を
含有させてもよい。それによって、藻類培養媒体の水面
への浮上の安定化に役立てることができる。
In the present invention, the mixture may contain a water repellent. This can help stabilize the floating of the algal culture medium on the water surface.

【0027】本発明の混合工程において、混合機として
混合槽の底部をその排出口に向かって傾斜させた高速攪
拌翼混合機を用いることが好ましい。この底部の傾斜に
よって混合体の排出が良好になり、生産性が向上する。
In the mixing step of the present invention, it is preferable to use a high-speed stirring blade mixer in which the bottom of the mixing tank is inclined toward its discharge port as the mixer. The inclination of the bottom improves the discharge of the mixture and improves the productivity.

【0028】本発明においては、成形体を養生する養生
工程として、加熱養生を用いることができる。そして加
熱養生は、温度100℃以上の加熱養生を好ましく用い
ることができる。また加熱養生の熱源として、火力発電
所もしくは廃棄物焼却場の廃熱を好ましく用いることが
できる。これらの廃熱を用いれば、加熱養生のための新
たな熱源を用意する必要がなく、しかも廃熱が有効利用
できる。
In the present invention, heat curing can be used as a curing step for curing the molded body. Heat curing at a temperature of 100 ° C. or higher can be preferably used. Further, as a heat source for heating and curing, waste heat of a thermal power plant or a waste incineration plant can be preferably used. If these waste heats are used, there is no need to prepare a new heat source for heat curing, and the waste heats can be effectively used.

【0029】[0029]

【発明の実施の形態】以下に本発明の実施の形態を実施
例に基づき具体的に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention will be specifically described below based on examples.

【0030】(実施例1)図1に本実施例1における藻
類培養媒体の標準成形工程を示す。無機質材料として石
炭灰、焼却灰、砂、貝殻粉砕物のいずれかについて、硬
化材と軽量化材および藻類培養養分を添加し、さらに水
を加えて混合した。混合は、大量の材料を短時間で均一
にする観点から、撹拌翼がブレード型の高速撹拌翼混合
機の一種であるヘンシェルミキサにより行った。図2に
高速撹拌翼混合機の一種であるヘンシェルミキサの模式
的断面図を示す。図2において、符合1は攪拌槽、2は
攪拌翼、3は槽の蓋部、4は排出口、5は駆動手段、そ
して6は台である。
(Example 1) FIG. 1 shows a standard molding process of an algal culture medium in Example 1. For any one of coal ash, incinerated ash, sand and crushed shells as an inorganic material, a hardening material, a lightening material, and algae culture nutrients were added, and water was further added and mixed. The mixing was performed by a Henschel mixer, which is a kind of high-speed stirring blade mixer with a stirring blade, from the viewpoint of making a large amount of material uniform in a short time. FIG. 2 is a schematic cross-sectional view of a Henschel mixer that is a kind of high-speed stirring blade mixer. In FIG. 2, reference numeral 1 denotes a stirring tank, 2 denotes a stirring blade, 3 denotes a lid of the tank, 4 denotes a discharge port, 5 denotes a driving means, and 6 denotes a table.

【0031】こうして得た混合物を型枠に入れて養生
(温湿度を保って硬化)して成形体を作製する。
The mixture thus obtained is placed in a mold and cured (cured while maintaining the temperature and humidity) to produce a molded article.

【0032】続いて、脱型した成形体の硬化反応促進
(強度向上)のために成形体を加熱養生(110℃、2
4時間)してぺレット状の藻類培養媒体を作製した。な
お、製造した成形体がアルカリ分を多く含み、pHが高
くなる場合には、必要に応じて水に浸漬して成形体のp
Hを下げることも行った。また、無機質材料について
は、環境に影響する重金属や有機物が含有していること
が考えられるため、本試験ではこのような重金属や有機
物を予め除去し、かつ乾燥処理したものを用いた。
Subsequently, the molded product was heated and cured (110 ° C., 2 ° C.) in order to accelerate the curing reaction (improve the strength) of the demolded molded product.
4 hours) to produce a pellet-shaped algae culture medium. In the case where the manufactured molded article contains a large amount of alkali and has a high pH, the molded article may be immersed in water as necessary,
H was also lowered. In addition, since it is considered that the inorganic material may contain heavy metals and organic substances that affect the environment, in this test, such heavy metals and organic substances were removed in advance and dried.

【0033】表1に実施例1における実施条件およびそ
の結果を示す。表1において、藻類培養媒体成形体の製
作には、無機質材料として石炭灰、焼却灰、砂、貝殻粉
砕物を用い、硬化材として珪酸ナトリウムを用い、軽量
化材としてパーライトを用い、さらに藻類培養養分には
リン酸ナ卜リウムとリン酸鉄および硝酸ナトリウムを重
量比5:1:5で用いた。
Table 1 shows the operating conditions and the results in Example 1. In Table 1, for the production of the algae culture medium molded body, coal ash, incineration ash, sand, and shell crushed materials were used as inorganic materials, sodium silicate was used as a hardening material, pearlite was used as a lightening material, and algae culture was further performed. As nutrients, sodium phosphate, iron phosphate and sodium nitrate were used in a weight ratio of 5: 1: 5.

【0034】[0034]

【表1】 [Table 1]

【0035】これらの成形体を、藻の入った海水を貯え
た水槽の中に入れて試験した。表1に示したように、い
ずれの無機質材料を用いた場合でも、硬化材として珪酸
ナトリウムを用い、さらに軽量化材としてパーライトを
用いることによって、成形体の密度が1g/cm3 以下
で水に浮遊させることができること、そして藻類の増殖
が得られることが確認された。
These molded articles were tested by placing them in a water tank containing seawater containing algae. As shown in Table 1, when any of the inorganic materials was used, sodium silicate was used as a hardening material, and pearlite was used as a lightening material, so that the density of the formed body was 1 g / cm3 or less and the material was suspended in water. And that the growth of algae was obtained.

【0036】(実施例2)図3に実施例2における藻類
培養媒体の解砕成形工程を示す。実施例1と同様の条件
で無機質材料に硬イヒ材と軽量化材および藻類培養養分さ
らに水を加えて高速ブレード型混合機であるヘンシェル
ミキサにより混合を行った。こうして得た混合物を大型
の型枠に入れて300mm□×30mmt大の成形体を
作製した。これを、脱型および加熱養生(110℃、2
4時間)後に解砕造粒機に投入し、直径約5mmの角張
った成形体を得た。この成形体について、実施例1と同
じ方法で試験を行った。その結果を表2に示す。
(Example 2) FIG. 3 shows a process of crushing and forming an algal culture medium in Example 2. Under the same conditions as in Example 1, a hard burden material, a lightening material, algae culture nutrients and water were added to the inorganic material, and the mixture was mixed with a Henschel mixer as a high-speed blade type mixer. The mixture thus obtained was placed in a large mold to prepare a molded product having a size of 300 mm □ × 30 mmt. This is removed from the mold and cured by heating (110 ° C, 2
After 4 hours), the mixture was put into a crushing granulator to obtain a square shaped body having a diameter of about 5 mm. This molded article was tested in the same manner as in Example 1. Table 2 shows the results.

【0037】[0037]

【表2】 [Table 2]

【0038】表2から明らかなように、解砕成形法で作
製した成形体も標準成形工程による場合と同様に、密度
が1g/cm3 以下で水に浮遊し、藻類の増殖が得られ
ることを確認した。本成形方法によれば、混合物を型枠
に入れる操作回数が標準方法よりも低減できるため、よ
り大量の成形体を作製する際は有利であることが明確と
なった。
As is clear from Table 2, similarly to the case of the standard molding step, the molded body produced by the crushing molding method was suspended in water at a density of 1 g / cm 3 or less, and the growth of algae was obtained. It was confirmed. According to the present molding method, the number of operations for putting the mixture into the mold can be reduced as compared with the standard method, so that it has become clear that it is advantageous when producing a larger amount of molded articles.

【0039】(実施例3)図4に実施例3における藻類
培養媒体の攪拌成形の工程を示す。実施例1と同様に無
機質材料に硬化材と軽量化材および藻類培養養分を添加
して高速ブレード型混合機であるヘンシエルミキサによ
り混合した。この後、この混合物を撹拌翼によって撹拌
して成形する撹拌成形を行った。撹拌成形は回転翼によ
る撹拌の速さによって次に述べるように転動成形と混合
成形とに区分される。転動成形方法では、ミキサの回転
羽根を低速で回しながら粉末材料混合物に水を投入し
て、直径が約5〜15mmの球状の成形体とした。一
方、混合成形方法では、ミキサの回転羽根を高速で回し
て粉末材料混合物を乱流状態にして、この中にスプレー
を用いて水を噴射して供給することで、直径が約5〜1
9mmの球状の成形体を得た。これら成形体について、
ミキサのジャケットに蒸気を供給することで加熱養生
(110℃、24時間)して藻類培養媒体を作製した。
なお、実施例1と同様に作製した成形体がアルカリ分を
多く含み、pHが高くなる場合には、必要に応じて水に
浸漬して成形体のpHを下げることも行った。結果を表
3に示す。
(Embodiment 3) FIG. 4 shows a step of stirring and forming an algal culture medium in Embodiment 3. In the same manner as in Example 1, a hardening material, a lightening material, and algae culture nutrients were added to the inorganic material, and mixed with a Hensiel mixer that was a high-speed blade type mixer. Thereafter, the mixture was agitated by a stirring blade and formed by stirring. Agitation molding is classified into rolling molding and mixed molding as described below according to the speed of stirring by the rotating blades. In the rolling molding method, water was introduced into the powder material mixture while rotating the rotating blades of the mixer at a low speed to obtain a spherical compact having a diameter of about 5 to 15 mm. On the other hand, in the mixing molding method, the powder material mixture is turned into a turbulent state by rotating the rotating blades of the mixer at a high speed, and water is sprayed into the mixture using a spray to supply the powder material mixture.
A 9 mm spherical molded body was obtained. About these moldings,
By supplying steam to the mixer jacket, heat curing (110 ° C., 24 hours) was performed to prepare an algal culture medium.
When the molded body produced in the same manner as in Example 1 contained a large amount of alkali and had a high pH, the pH of the molded body was lowered by immersion in water as needed. Table 3 shows the results.

【0040】[0040]

【表3】 [Table 3]

【0041】表3の結果から明らかになったように、攪
拌成形方法で作製した成形体も標準成形工程により成形
し養生した場合と同様に、密度が1g/cm3 以下で水
に浮遊し、藻類の増殖が得られることを確認した。本成
形方法によれば、成形体の必要量に応じて、ミキサの大
きさを変えることで、大量の球状成形体として藻類培養
媒体が得られることが明確となった。また、本実施例で
明らかなように、本成形方法によれば、材料の混合と成
形および加熱養生の各工程を同一のミキサ内で行えるこ
とも分かった。だだし、成形工程専用のドラム型やパン
型造粒機を用いた転動成形方法、あるいは、フレキソミ
ックス装置を用いた混合成形方法により、各工程を単独
で行っても、もちろん構わない。
As is evident from the results in Table 3, the molded body produced by the stirring molding method was suspended in water at a density of 1 g / cm 3 or less and algae were formed in the same manner as when molded and cured by the standard molding process. Was obtained. According to the present molding method, it has been clarified that the algal culture medium can be obtained as a large amount of spherical molded body by changing the size of the mixer according to the required amount of the molded body. Further, as is apparent from the present example, it was also found that according to the present molding method, the steps of mixing and molding the materials and the steps of heat curing can be performed in the same mixer. However, of course, each step may be performed independently by a rolling molding method using a drum type or bread type granulator dedicated to the molding step, or a mixed molding method using a flexomix apparatus.

【0042】(実施例4)図5に実施例4における藻類
培養媒体の押出成形工程を示す。実施例1と同様の条件
で無機質材料に硬化材と軽量化材および藻類培養養分さ
らに水を加えてヘンシェルミキサにより混合を行った。
こうして得た混合物をスクリュー式押出造粒機に供給
し、直径約10mmで長さが約10mmの円柱状の成形
体を作製した。この成形体を加熱養生(110℃、24
時間)して藻類培養媒体を作製した。結果を表4に示
す。
Example 4 FIG. 5 shows an extrusion process of an algal culture medium in Example 4. Under the same conditions as in Example 1, a hardening material, a lightening material, algae culture nutrients, and water were added to the inorganic material, and mixed with a Henschel mixer.
The mixture thus obtained was supplied to a screw-type extrusion granulator to produce a columnar molded body having a diameter of about 10 mm and a length of about 10 mm. The molded body is cured by heating (110 ° C., 24
Time) to produce an algal culture medium. Table 4 shows the results.

【0043】[0043]

【表4】 [Table 4]

【0044】なお、実施例1と同様に作製した成形体が
アルカリ分を多く含み、pHが高くなる場合には、必要
に応じて水に浸漬して成形体のpHを下げることも行っ
た。表4の結果から明らかなように、押出成形で作製し
た成形体も標準成形工程で成形し養生した場合と同様
に、密度が1g/cm3 以下で水に浮遊し、藻類の増殖
が得られることを確認した。
When the molded article produced in the same manner as in Example 1 contains a large amount of alkali and has a high pH, it was immersed in water to lower the pH of the molded article, if necessary. As is evident from the results in Table 4, similarly to the case where the molded article produced by extrusion molding was molded and cured in the standard molding step, the molded article was suspended in water at a density of 1 g / cm 3 or less, and the growth of algae was obtained. It was confirmed.

【0045】(実施例5)図6に実施例5における藻類
培養媒体の圧縮成形工程を示す。実施例1と同様の条件
で無機質材料に硬化材と軽量化材および藻類培養養分さ
らに水を加えてヘンシェルミキサにより混合を行った。
こうして得た混合物を油圧式の圧縮造粒機に供給し、直
径約10mmで長さが約10mmの円柱状の成形体を作
製した。この成形体を加熱養生(110℃、24時間)
して藻類培養媒体を作製した。なお、実施例1と同様に
作製した成形体がアルカリ分を多く含み、pHが高くな
る場合には、必要に応じて水に浸漬して成形体のpHを
下げることも行った。結果を表5に示す。
(Embodiment 5) FIG. 6 shows a compression molding step of an algal culture medium in Embodiment 5. Under the same conditions as in Example 1, a hardening material, a lightening material, algae culture nutrients, and water were added to the inorganic material, and mixed with a Henschel mixer.
The mixture thus obtained was supplied to a hydraulic compression granulator to produce a columnar compact having a diameter of about 10 mm and a length of about 10 mm. This molded body is cured by heating (110 ° C, 24 hours)
Thus, an algal culture medium was prepared. When the molded body produced in the same manner as in Example 1 contained a large amount of alkali and had a high pH, the pH of the molded body was lowered by immersion in water as needed. Table 5 shows the results.

【0046】[0046]

【表5】 [Table 5]

【0047】表5の結果から明らかなように、圧縮成形
方法で作製した成形体も標準成形工程で成形し養生した
場合と同様に、密度が1g/cm3 以下で水に浮遊し、
藻類の増殖が得られることを確認した。
As is evident from the results in Table 5, the molded body produced by the compression molding method was floated in water at a density of 1 g / cm 3 or less in the same manner as when molded and cured in the standard molding step.
It was confirmed that the growth of algae was obtained.

【0048】(実施例6)無機質材料を石炭灰に限定し
た上で、硬化材を各種変えた他は上記実施例と同じ方法
で試験を行った。その結果を表6に示す。
Example 6 A test was performed in the same manner as in the above example, except that the inorganic material was limited to coal ash, and the curing material was changed in various ways. Table 6 shows the results.

【0049】[0049]

【表6】 [Table 6]

【0050】表6から明らかなように、硬化材として、
セメントの他に珪酸ナトリウム、珪酸カリウム、珪酸リ
チウム、およびシリカゾルを用いた場合にも、水に浮遊
し、藻類の増殖が得られる成形体、すなわち、藻類培養
媒体が得られることが確認された。
As is clear from Table 6, as the curing material,
When sodium silicate, potassium silicate, lithium silicate, and silica sol were used in addition to the cement, it was confirmed that a molded article floating in water and capable of obtaining algae growth, that is, an algae culture medium was obtained.

【0051】また、硬化材をセメントと珪酸ナトリウム
に限定して、上記実施例2〜5と同じ方法で試験を行
い、成形方法の違いによる影響も確認した。得られた結
果は標準成形工程による場合とほぼ同等であり、成形体
の密度がlg/cm3 以下で水に浮遊し、藻類の増殖が
確認された。この結果から、本発明における無機質材料
の成形工程、即ち、標準成形、解砕成形、撹拌成形(転
動成形、混合成形)、押出成形、圧縮成形のいずれにお
いても、いずれの硬化剤でも標準成形工程の場合と同等
の結果が得られる藻類培養媒体を作製できることを確認
した。
Tests were conducted in the same manner as in Examples 2 to 5 except that the hardening material was limited to cement and sodium silicate, and the influence of the difference in the molding method was also confirmed. The obtained results were almost the same as those obtained by the standard molding process. The molded product was suspended in water at a density of 1 g / cm 3 or less, and the growth of algae was confirmed. From these results, in any of the molding steps of the inorganic material in the present invention, that is, standard molding, crushing molding, stirring molding (rolling molding, mixing molding), extrusion molding, and compression molding, any molding agent can be subjected to standard molding. It was confirmed that an algal culture medium capable of obtaining the same results as in the case of the step can be produced.

【0052】(実施例7)藻類培養養分としても有効な
リン酸塩化合物を、硬化材として用いた。また、他の藻
類培養養分はリン酸鉄もしくは水酸化酸化鉄(鉄分)お
よび硝酸ナトリウム(窒素分)とした藻類培養媒体の成
形体を作製した。その結果を表7に示す。
(Example 7) A phosphate compound which is also effective as a nutrient for algae culture was used as a hardening material. As other algae culture nutrients, a molded product of an algae culture medium containing iron phosphate or iron hydroxide oxide (iron content) and sodium nitrate (nitrogen content) was prepared. Table 7 shows the results.

【表7】 [Table 7]

【0053】この結果から明らかなように、標準成形方
法においてリン酸ナ卜リウム、リン酸2水素ナトリウ
ム、リン酸アルミニウムおよびリン酸水素アルミニウム
は、いずれも硬イヒ材としても有効であり、これらを用い
た場合に水に浮遊し、藻類の増殖が得られる成形体が作
製できることを確認した。
As is clear from these results, sodium phosphate, sodium dihydrogen phosphate, aluminum phosphate and aluminum hydrogen phosphate are all effective as hard burrs in the standard molding method. When used, it was confirmed that a molded article floating in water and capable of obtaining algae growth could be produced.

【0054】また、リン酸塩としてリン酸ナトリウムと
リン酸アルミニウムをそれぞれ添加した条件について、
上記実施例2〜5と同じ方法で試験を行い、成形工程の
違いによる影響も確認した。この結果、得られた結果は
標準成形方法の場合とほぼ同等であり、成形体の密度が
1g/cm3 以下で水に浮遊し、藻類の増殖が確認され
た。本結果から、本発明における無機質材料の成形方
法、即ち、標準成形工程、解砕成形工程、撹拌成形工程
(転動成形工程、混合成形工程)、押出成形工程、圧縮
成形工程のいずれでも、藻類培養養分としても有効なリ
ン酸塩化合物を、硬化材として適用できることを確認し
た。
The conditions in which sodium phosphate and aluminum phosphate were respectively added as phosphates were as follows:
Tests were performed in the same manner as in Examples 2 to 5 above, and the influence of the difference in the molding process was also confirmed. As a result, the obtained results were almost the same as those in the case of the standard molding method. The molded body was suspended in water at a density of 1 g / cm 3 or less, and the growth of algae was confirmed. From these results, it can be seen that the method for forming an inorganic material according to the present invention, ie, the standard molding step, the crushing molding step, the stirring molding step (rolling molding step, the mixing molding step), the extrusion molding step, and the compression molding step, shows that It was confirmed that a phosphate compound that is also effective as a culture nutrient can be applied as a hardening material.

【0055】図7は、上記実施例6−1、6−2および
7−1の条件で、硬化材添加量をそれぞれ変化させた場
合について、作製した成形体の圧縮強度の変イヒを調べた
結果を示す。この結果から、硬化材は無機質材料の重量
100重量部に対して5重量部以上において、強度が基
準値を満たすことが分かつた。
FIG. 7 shows the change in the compressive strength of the formed molded body when the amount of the hardening material was changed under the conditions of Examples 6-1 and 6-2 and 7-1. The results are shown. From this result, it was found that the strength satisfies the reference value when the hardening material is 5 parts by weight or more with respect to 100 parts by weight of the inorganic material.

【0056】また図8には、硬化材として珪酸ナトリウ
ムに固定した場合について、成形工程の違いによる影響
も確認した結果を示す。この結果から、成形工程の違い
による強度への大きな変化は見られず、いずれも硬化材
が5重量部以上において強度の基準値を満たすことが分
かった。
FIG. 8 also shows the result of confirming the influence of the difference in the molding process when fixing to sodium silicate as a hardening material. From these results, it was found that there was no significant change in the strength due to the difference in the molding process, and that the hardening material satisfies the reference value of the strength at 5 parts by weight or more.

【0057】(実施例8)無機質材料を石炭灰に限定
し、さらに硬化材を珪酸ナトリウムに限定した上で、藻
類培養養分を各種変えた他は、実施例1と同じ標準成形
条件で藻類培養媒体を製作し、実施例1と同じ方法で試
験を行った。その結果を表8に示す。
Example 8 Algae cultivation was carried out under the same standard molding conditions as in Example 1, except that the inorganic material was limited to coal ash, the hardening material was limited to sodium silicate, and the algal culture nutrients were variously changed. A medium was manufactured and tested in the same manner as in Example 1. Table 8 shows the results.

【0058】[0058]

【表8】 [Table 8]

【0059】表8から明らかなように、藻類培養養分と
してリン酸鉄、水酸化酸化鉄、リン酸アルミニウム、お
よびリン酸ナトリウムを用いた場合に、水に浮遊し、藻
類の増殖が得られる藻類培養媒体が得られることが確認
できた。
As is clear from Table 8, when iron phosphate, iron hydroxide oxide, aluminum phosphate, and sodium phosphate are used as nutrients for algae culture, the algae floating in water and capable of growing algae are obtained. It was confirmed that a culture medium was obtained.

【0060】また、藻類培養養分としてリン酸鉄と水酸
化酸化鉄(鉄分)、およびリン酸アルミニウムとリン酸
ナトリウム(リン分)、さらに硝酸ナトリウム(窒素
分)を複合添加した場合について、上記実施例2〜5と
同じ方法で試験を行い、成形工程の違いによる影響をも
調べた結果を併せて表8に示す。この結果から明らかな
ように、得られた成形体はいずれも標準成形工程の場合
とほぼ同等であり、成形体の密度が1g/cm3 以下で
水に浮遊し、藻類の増殖が確認された。この結果から、
成形工程の違いに関わらず、藻類培養養分添加の効果が
確認された。
The above-mentioned procedure was carried out in the case where iron phosphate and iron oxide (iron), aluminum phosphate and sodium phosphate (phosphorus), and further sodium nitrate (nitrogen) were added as algal culture nutrients. Tests were conducted in the same manner as in Examples 2 to 5, and the results of examining the effects of the differences in the molding steps are also shown in Table 8. As is clear from these results, all of the obtained molded articles were almost the same as those in the standard molding step, and the molded articles were suspended in water at a density of 1 g / cm3 or less, and the growth of algae was confirmed. from this result,
Regardless of the difference in the molding process, the effect of adding algae culture nutrients was confirmed.

【0061】図9は、実施例8−1の条件で藻類培養養
分であるリン酸鉄+リン酸ナトリウム+硝酸ナトリウム
の添加量を変えた場合の、藻類成長速度の変化を調べた
結果を示す。この図9から、無機質材料100重量部に
対して藻類培養養分が20重量部以下であれば、藻類培
養養分の増加に対して藻類成長速度が飽和せず、添加量
として適切であることが分かる。
FIG. 9 shows the results of examining the change in algal growth rate when the amount of iron phosphate + sodium phosphate + sodium nitrate, which is the nutrient for algal culture, was changed under the conditions of Example 8-1. . From FIG. 9, it can be seen that if the algal culture nutrient is 20 parts by weight or less with respect to 100 parts by weight of the inorganic material, the algal growth rate is not saturated with respect to the increase in the algal culture nutrient, and the amount is appropriate as the addition amount. .

【0062】(実施例9)無機質材料を石炭灰に、硬化
材を珪酸ナトリウムに限定した他は、実施例1と同様の
標準成形工程で藻類培養媒体成形体を作製し、実施1と
同じ条件で試験を行い、各種軽量化材の有効性を調べ
た。その結果を表9に示す。この結果から、パーライト
の他、シラスおよびその化合物、粒状軽石、さらにこれ
らの混合物を利用することにより、水に浮遊し、かつ、
藻類の増殖が得られる藻類培養媒体成形体が得られるこ
とが確認された。また、軽量化材としてパーライトおよ
びシラスをぞれぞれ添加した条件について、上記実施例
2〜5と同じ方法で試験を行い、成形工程の違いによる
影響について確認した結果も併せて表9に示す。
(Example 9) An algae culture medium molded body was produced in the same standard molding step as in Example 1 except that the inorganic material was limited to coal ash and the hardening material was limited to sodium silicate. A test was conducted to examine the effectiveness of various lightening materials. Table 9 shows the results. From these results, in addition to pearlite, Shirasu and its compounds, granular pumice, and by using a mixture of these, floating in water, and,
It was confirmed that an algal culture medium molded body capable of obtaining algae growth was obtained. Table 9 also shows the results of tests performed on the conditions in which pearlite and shirasu were added as weight-reducing materials, in the same manner as in Examples 2 to 5 above, and the effects of the differences in the molding steps were confirmed. .

【0063】[0063]

【表9】 [Table 9]

【0064】この結果から明らかなように、得られた成
形体はいずれも標準成形工程の場合とほぼ同等であり、
成形体の密度がlg/cm3 以下で水に浮遊し、藻類の
増殖が確認された。この結果から、成形工程の違いに関
わらず、軽量化材添加の効果が確認された。
As is evident from the results, all of the obtained molded articles were almost equivalent to those in the standard molding step.
The molded product was suspended in water at a density of 1 g / cm 3 or less, and the growth of algae was confirmed. From these results, it was confirmed that the effect of adding the lightening material was obtained regardless of the difference in the molding process.

【0065】図10には、上記実施例9−2、 9−3、
および9−5のそれぞれの条件で、軽量化材であるパー
ライト、シラスおよび粉末アルミニウムの添加量を変化
させた場合について、成形体の密度変化を調べた結果を
示す。この結果から、無機質材料の100重量部に対し
て、軽量化材を10重量部以上添加することで、成形体
の密度をlg/cm3 以下にでき、水に浮遊させること
ができることが分かった。
FIG. 10 shows the above embodiments 9-2, 9-3,
The results obtained by examining the change in density of the molded body when the addition amount of pearlite, shirasu and powdered aluminum, which are lightening materials, were changed under the respective conditions of 9 and 9-5. From these results, it was found that by adding 10 parts by weight or more of the weight-reducing material to 100 parts by weight of the inorganic material, the density of the formed body could be made 1 g / cm3 or less, and the formed body could be suspended in water.

【0066】また、図11には軽量化材としてパーライ
トを用いた場合について、成形工程の違いによる影響も
確認した結果を示す。この結果から、成形工程に違いに
よる成形体密度の大きな変化は見られず、いすれも軽量
化材が10重量部以上において、基準である1g/cm
3 以下の密度となることが分かった。
FIG. 11 shows the results obtained by confirming the influence of the difference in the molding process when pearlite was used as the lightening material. From these results, no significant change in the density of the molded body due to the difference in the molding process was observed. In any case, when the weight-reducing material was 10 parts by weight or more, the standard value was 1 g / cm.
It was found that the density was 3 or less.

【0067】(実施例10)上記実施例1のRUN 1-1 と
同じ条件で、石炭灰に硬化材と軽量化材および藻類培養
養分、さらに水を混合する混合工程について、ミキサの
違いによる影響を調べた。混合槽の容量は20L(リッ
トル) で混合物の量は10Lとなるようにした。混合機
は周速5m/秒以上の高速攪拌翼混合機と、周速5m/秒で
使用する高速ブレ−ド型ミキサと周速5m/秒で使用する
中速ブレード型ミキサであって、それぞれについて図2
に示した標準タイプと、図12に模式的断面図を示した
高速攪拌翼混合機の混合槽の底部が排出口に向かって傾
斜しているタイプの各2種類、計4種類について行い、
さらにこれらブレード型との比較のために、低速のホイ
ール型混合機を用いた場合についても行った。ここに図
12の高速攪拌翼混合機において、符合1は攪拌槽、2
は攪拌翼、3は槽の蓋部、4は排出口、5は駆動手段、
6は台、そして7が攪拌槽の傾斜している底部である。
(Embodiment 10) Under the same conditions as in RUN 1-1 of Embodiment 1 above, the effect of the different mixers on the mixing step of mixing the coal ash with the hardening material, the lightening material, the algal culture nutrients, and the water. Was examined. The volume of the mixing tank was 20 L (liter), and the amount of the mixture was 10 L. The mixers are a high-speed stirring blade mixer having a peripheral speed of 5 m / sec or more, a high-speed blade mixer used at a peripheral speed of 5 m / sec, and a medium-speed blade mixer used at a peripheral speed of 5 m / sec. About Figure 2
And a standard type shown in FIG. 12 and a type in which the bottom of the mixing tank of the high-speed stirring blade mixer whose schematic sectional view is shown in FIG.
Further, for comparison with these blade types, a case where a low-speed wheel type mixer was used was also performed. Here, in the high-speed stirring blade mixer of FIG.
Is a stirring blade, 3 is a lid of a tank, 4 is an outlet, 5 is a driving means,
6 is the platform and 7 is the inclined bottom of the stirred tank.

【0068】結果を表10に示す。高速ブレード型およ
び中速ミキサでは5分間の混合で混合がなされた混合物
が得られたのに対して、ホイール型ミキサでは30分以
上の時間を要し、しかも混合が不均一であり、また凝集
塊が見られた。
Table 10 shows the results. The high-speed blade-type and medium-speed mixers produced a mixed mixture in 5 minutes, whereas the wheel-type mixers required more than 30 minutes, and the mixing was uneven and agglomerated. Lumps were seen.

【0069】[0069]

【表10】 [Table 10]

【0070】また、混合物をミキサーから排出し、この
排出重量と投入重量から排出率を求めた結果、高速およ
び中速いずれのブレード型ミキサにおいても、標準タイ
プの排出率が95重量%であるのに対して、混合槽の底
部が排出口に向かって傾斜しているタイプの排出率は9
9.5重量%であった。これは標準タイプが回転羽根下
部のクリアランス部の混合物を押し出せずに残るのに対
して、傾斜型は自重で混合物が排出できるため極めて排
出率が高いものと考えられる。一方、ホイール型では塊
が回転羽根に固着するなどして排出率が低く、80重量
%であった。
The mixture was discharged from the mixer, and the discharge rate was calculated from the discharge weight and the input weight. As a result, the discharge rate of the standard type was 95% by weight in both the high-speed and medium-speed blade mixers. In contrast, the discharge rate of the type in which the bottom of the mixing tank is inclined toward the discharge port is 9
It was 9.5% by weight. This is considered to be because the standard type is capable of discharging the mixture by its own weight, while the mixture remaining in the clearance portion below the rotary blade is not extruded, but the discharge rate is extremely high. On the other hand, in the wheel type, the mass was fixed to the rotating blades and the like, and the discharge rate was low, and was 80% by weight.

【0071】続いて、混合槽に10Lの水を加えて1分
間回転させた後に洗浄水を排出し、洗浄状況を目視で確
認した。この結果、高速ブレード型ミキサは良好に洗浄
できていた。ただし、標準タイプでは、回転羽根下部の
クリアランス部に洗浄水が残留していた。これに対し
て、中速ブレード型ミキサでは、混合槽の壁面や回転羽
根の表面に張り付くように若干の混合物が残留してい
た。このため、5MPa 程度の高圧水を吹きかけること
を試みたところ、良好に洗い落とすことができた。ホイ
ール型ミキサについては、初期洗浄後もかなりの混合物
が残留し、なおかつ高圧水の吹きかけでも落としきれず
に、人力で掻き落とす操作を併用することで洗浄でき
た。
Subsequently, 10 L of water was added to the mixing tank, and the mixture was rotated for 1 minute. After that, the washing water was discharged, and the washing condition was visually checked. As a result, the high-speed blade mixer was successfully cleaned. However, in the standard type, cleaning water remained in the clearance below the rotating blades. On the other hand, in the medium-speed blade type mixer, a small amount of the mixture remained so as to stick to the wall surface of the mixing tank and the surface of the rotating blade. For this reason, when an attempt was made to spray high-pressure water of about 5 MPa, washing was successfully performed. With respect to the wheel mixer, a considerable amount of the mixture remained even after the initial washing, and was not completely removed even by spraying high-pressure water.

【0072】以上の結果から、大量の混合物を短時問で
均−に混合するには高速攪拌翼混合機である高速ブレー
ド型および中速ブレード型混合機が適しており、その中
でも高速ブレード型で混合槽底部が排出口に向かって傾
斜しているタイプが、排出性や洗浄性からみて特に好ま
しいことを確認した。
From the above results, a high-speed stirring blade mixer and a high-speed blade-type mixer, which are high-speed stirring blade mixers, are suitable for uniformly mixing a large amount of a mixture in a short time. It was confirmed that the type in which the bottom of the mixing tank was inclined toward the discharge port was particularly preferable from the viewpoint of dischargeability and cleanability.

【0073】(実施例11)本発明の内部に中空部を有
する成形体を作製する押出成形方法の一実施例を、図1
3を参照して説明する。本実施例では、実施例4に示し
た押出成形工程に沿い、実施例4において軽量化材を含
まず、他は同じ配合で無機質材料(石炭灰)に硬化材
(珪酸ナトリウム) 、藻類培養養分 (リン酸ナトリウ
ム、リン酸鉄、硝酸ナトリウム) および水を添加して高
速ブレード型混合機により混合し、押出成形機で成形
後、110℃の温度で24時間養生することにより成形
体の内部に中空部を有する成形体を作製した。本実施例
では、まず2重の管の外側の管11と内側の管12の間
に多孔質層13の原料の混合物を挿入形成し、押出成形
によって円柱状に成形する。これを圧縮機14によって
押出成形体の両端を圧迫し、内部に中空部15を有する
成形体を作製した。成形体の大きさは、中空部の直径約
2mm、多孔質層の外径約5mm、成形体長約1cmと
なるようにした。本実施例による成形体の水への浮遊日
数は約200日であった。
(Example 11) One example of an extrusion molding method for producing a molded article having a hollow portion inside the present invention is shown in FIG.
3 will be described. In this example, the hardening material was added to the inorganic material (coal ash) in the same composition as in Example 4 except that the weight reduction material was not included in the extrusion molding process shown in Example 4.
(Sodium silicate), algae culture nutrients (sodium phosphate, iron phosphate, sodium nitrate) and water are added, mixed by a high-speed blade mixer, molded by an extruder, and cured at 110 ° C. for 24 hours Thus, a molded article having a hollow portion inside the molded article was produced. In this embodiment, first, a mixture of the raw materials of the porous layer 13 is inserted between the outer tube 11 and the inner tube 12 of the double tube, and formed into a cylindrical shape by extrusion. This was pressed against both ends of the extruded body by a compressor 14 to produce a formed body having a hollow portion 15 inside. The size of the compact was such that the diameter of the hollow portion was about 2 mm, the outer diameter of the porous layer was about 5 mm, and the length of the compact was about 1 cm. The number of days of floating of the molded article according to this example in water was about 200 days.

【0074】続いて、成形体内部に中空部と低透水層を
有してなる成形体の成形方法についての実施例を、図1
4を参照して説明する。図14において、図13と同じ
部分は同一番号を付している。上記図13を参照として
示した実施例においては、成形体内を浸透した水が中空
部内に入った場合、中空部内に水が蓄積すると成形体は
沈降する。しかし、図14を参照として示す本実施例で
は、低透水性層6を形成するために、3重の管からなる
ダイスの最外側の管と中間の管との間に多孔質の材料
を、中間の管と最内側の管との間に低透水性の材料を入
れて押し出し成形によって円筒状に成形する。低透水層
6には石炭灰、焼却灰、モンモリオナイト、カオリナイ
ト、セメント、水ガラス、石灰、石膏のうち少なくとも
1つを用いる。本実施例では、中空部は直径2mm、低
透水層1mm、多孔質層外径約6mm、成形体長約1c
mとなるように成形し、その他工程は上記図13の場合
と同等とした。このような構造とすることにより、多孔
質層を通過した水は低透水層で著しく透過速度が低下す
るので、微細藻類などの水性生物の養分を供給可能な期
間、水に浮遊させておくことが可能であることがわかっ
た。
Next, an example of a method for forming a molded article having a hollow portion and a low water-permeable layer inside the molded article will be described with reference to FIG.
This will be described with reference to FIG. 14, the same parts as those in FIG. 13 are given the same numbers. In the embodiment shown with reference to FIG. 13 described above, when water that has permeated the molded body enters the hollow portion, when the water accumulates in the hollow portion, the molded body sinks. However, in this embodiment shown with reference to FIG. 14, in order to form the low water-permeable layer 6, a porous material is provided between the outermost tube and the intermediate tube of the triple-tube die. A material having low water permeability is put between the middle tube and the innermost tube, and is formed into a cylindrical shape by extrusion. For the low permeable layer 6, at least one of coal ash, incineration ash, montmorillonite, kaolinite, cement, water glass, lime, and gypsum is used. In this embodiment, the hollow portion has a diameter of 2 mm, a low water-permeable layer of 1 mm, a porous layer outer diameter of about 6 mm, and a molded body length of about 1 c.
m, and the other steps were the same as those in FIG. With such a structure, the water that has passed through the porous layer has a low water-permeable layer, and the permeation rate is significantly reduced. Therefore, the water must be suspended in the water for a period that can supply nutrients for aqueous organisms such as microalgae. Turned out to be possible.

【0075】本実施例による成形体の水への浮遊期間は
1年を過ぎ、まだ浮遊中である。
The floating period of the molded body according to the present embodiment in water has passed one year, and is still floating.

【0076】(実施例12)実施例1と同じ標準成形工
程により成形した成形体を、硬化させる際に加熱養生し
た場合、および蒸気中で加熱しで養生した場合のそれぞ
れについて、硬化の進行を調べた。その結果を表11に
示す。
(Example 12) The progress of the curing of the molded article formed by the same standard molding step as in Example 1 was measured for each of the cases of curing by heating when curing and curing by heating in steam. Examined. Table 11 shows the results.

【0077】[0077]

【表11】 [Table 11]

【0078】この結果から、加熱養生した場合、および
蒸気中で加熱養生した場合には、これらの措置をしない
場合に比べて硬化が速くなり、製造時間の短縮がえられ
ることが分かった。また、上記実施例2〜5ど同じ方法
で試験し、成形方法の違いによる影響を確認した結果
も、併せて表11に示す。この結果からも明らかなよう
に、成形方法の違いに関わらず、100℃以上に加熱し
た場合は1日以内に硬化し、製造時間の短縮を確認し
た。また、本実施例では貫流ボイラーの蒸気を用いた
が、火力発電所や廃棄物焼却場に成形設備を設ける際
は、この廃熱を利用するのがコスト的に有利である。
From the above results, it was found that the curing time was increased and the production time was shortened in the case of heat curing and in the case of heat curing in steam as compared with the case where these measures were not taken. Table 11 also shows the results of tests performed in the same manner as in Examples 2 to 5 above, and the effects of differences in molding methods were confirmed. As is clear from these results, regardless of the difference in the molding method, when heated to 100 ° C. or more, the composition was cured within one day, and it was confirmed that the production time was shortened. Further, in this embodiment, the steam of the once-through boiler is used. However, when providing a molding facility in a thermal power plant or a waste incineration plant, it is cost-effective to utilize this waste heat.

【0079】なお、本発明に示された上記の実施例は例
示に過ぎず、発明を限定するものではない。発明の範囲
はクレームによって示されたものであって、クレームの
内容に含まれるすべての変形例は本発明に含まれるもの
である。
The above embodiments shown in the present invention are merely examples, and do not limit the present invention. The scope of the invention is indicated by the claims, and all the modifications included in the contents of the claims are included in the present invention.

【0080】[0080]

【発明の効果】本発明の無機質材料を主原料とする藻類
培養媒体の製造方法によれば、海面などの水面に浮遊さ
せて藻類を繁殖・増殖させることができる成形体を、短
時間、かつ、大量にしかも安価に製造することか可能と
なる。これにより、主原料として石炭灰や焼却灰等の産
業廃棄物を有効利用して、これを藻類の培養媒体として
海洋などに散布することで、海洋などの富栄養化や汚染
を防止して藻類を大量に培養でき、これにより大気中の
CO2 削減による地球温暖化防止に貢献できる。また、
培養した藻類はアルコール等の有効物の原料となること
から、これを化石燃料の代替エネルギーの供給等に貢献
できる。従って、本発明は今後の人類が当面する環境と
エネルギーの問題解決に大きく役立つものである。
According to the method of the present invention for producing an algae culture medium using an inorganic material as a main raw material, a molded body capable of floating and growing algae by floating on a water surface such as a sea surface can be produced in a short time. It can be manufactured in large quantities and at low cost. By effectively utilizing industrial waste such as coal ash and incinerated ash as the main raw material, and spraying it onto the ocean as a culture medium for algae, eutrophication and pollution of the ocean can be prevented to prevent algae Can be cultured in large quantities, which can contribute to the prevention of global warming by reducing CO 2 in the atmosphere. Also,
The cultured algae can be used as a raw material of an effective substance such as alcohol, and can contribute to supply of alternative energy to fossil fuels and the like. Therefore, the present invention will greatly contribute to solving future environmental and energy problems for humankind.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例1に記載の標準成形方法による無機質
材料を主原料とする藻類培養媒体の製造工程の流れ図で
ある。
FIG. 1 is a flowchart of a manufacturing process of an algae culture medium using an inorganic material as a main raw material according to a standard molding method described in Example 1.

【図2】 実施例1に記載の藻類培養媒体の製造工程に
おける高速攪拌翼混合機であるヘンシェルミキサの模式
的断面図を示す。
FIG. 2 is a schematic cross-sectional view of a Henschel mixer that is a high-speed stirring blade mixer in a process of manufacturing an algal culture medium described in Example 1.

【図3】 実施例2に記載の解砕成形方法による無機質
材料を主原料とする藻類培養媒体の製造工程の流れ図を
示す。
FIG. 3 shows a flowchart of a manufacturing process of an algae culture medium using an inorganic material as a main raw material by the crushing and molding method described in Example 2.

【図4】 実施例3に記載の攪拌混合成形方法による無
機質材料を主原料とする藻類培養媒体の成形工程の流れ
図を示す。
FIG. 4 shows a flowchart of a molding step of an algae culture medium using an inorganic material as a main raw material by the stirring and mixing molding method described in Example 3.

【図5】 実施例4に記載の押出成形方法による無機質
材料を主原料とする藻類培養媒体の製造工程の流れ図を
示す。
FIG. 5 shows a flowchart of a process for producing an algae culture medium using an inorganic material as a main raw material by the extrusion molding method described in Example 4.

【図6】 実施例5に記載の圧縮成形方法による無機質
材料を主原料とする藻類培養媒体の製造工程を示す図で
ある。
FIG. 6 is a view showing a production process of an algae culture medium using an inorganic material as a main raw material by the compression molding method described in Example 5.

【図7】 実施例7に記載の標準成形方法による藻類培
養媒体における硬化材添加量と藻類培養媒体強度の関係
を示す。
FIG. 7 shows the relationship between the amount of hardener added and the strength of the algal culture medium in the algal culture medium according to the standard molding method described in Example 7.

【図8】 実施例7に記載の各種成形方法における硬化
材添加量と藻類培養媒体強度の関係を示す。
8 shows the relationship between the amount of hardener added and the strength of the algal culture medium in the various molding methods described in Example 7. FIG.

【図9】 実施例8に記載の藻類培養媒体における養分
・供給剤の添加量と藻類の成長速度との関係を示す。
FIG. 9 shows the relationship between the amount of nutrient / supplement added and the growth rate of algae in the algae culture medium described in Example 8.

【図10】 実施例9に記載の標準成形方法における軽
量化材添加量と藻類培養媒体密度の関係を示す。
FIG. 10 shows the relationship between the amount of lightening material added and the algal culture medium density in the standard molding method described in Example 9.

【図11】 実施例9に記載の各種成形方法における軽
量化材添加量と藻類培養媒体密度の関係を示す。
FIG. 11 shows the relationship between the amount of the weight-reducing material added and the density of the algal culture medium in the various molding methods described in Example 9.

【図12】 実施例10に記載の藻類培養媒体の製造工
程における混合槽の底部が排気口に向かって傾斜してい
るヘンシェルミキサの模式的断面図を示す。
FIG. 12 is a schematic cross-sectional view of a Henschel mixer in which the bottom of a mixing tank is inclined toward an exhaust port in a step of manufacturing an algal culture medium described in Example 10.

【図13】 実施例11に記載の内部に中空部を有する
成形体を作製する押出成形方法の概要を模式的に示す図
である。
FIG. 13 is a diagram schematically showing an outline of an extrusion molding method for producing a molded article having a hollow portion therein described in Example 11.

【図14】 実施例11に記載の内部に中空部と低透水
層を有する成形体を作製する押出成形方法の概要を模式
的に示す図である。
FIG. 14 is a diagram schematically illustrating an outline of an extrusion molding method for producing a molded body having a hollow portion and a low water-permeable layer inside described in Example 11.

【符号の説明】[Explanation of symbols]

1……攪拌槽、 2……攪拌翼、 3……槽の蓋
部、 4……排出口、5……駆動源、 6……台、
7……底部、 11……外側の管、12……内側
の管、 12’……中間の管、 13……多孔
質層、14……圧迫機、 15……空孔部、 16
……低透水層
1 stirrer tank 2 stirrer blade 3 tank lid 4 discharge outlet 5 drive source 6 table
7 ... bottom part, 11 ... outer pipe, 12 ... inner pipe, 12 '... middle pipe, 13 ... porous layer, 14 ... compressor, 15 ... hole part, 16
…… Low permeable layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮本 真哉 神奈川県川崎市幸区神奈川県川崎市幸区小 向東芝町1番地 株式会社東芝研究開発セ ンター内 (72)発明者 豊原 尚実 神奈川県川崎市幸区神奈川県川崎市幸区小 向東芝町1番地 株式会社東芝研究開発セ ンター内 (72)発明者 岡本 優 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 (72)発明者 高松 義成 神奈川県川崎市幸区堀川町66番2 東芝エ ンジニアリング株式会社内 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Shinya Miyamoto 1 Kawasaki City, Kanagawa Prefecture, Komukai Toshiba-cho, Kawasaki City, Kanagawa Prefecture 1 Toshiba R & D Center Co., Ltd. (72) Inventor Naomi Toyohara Kawasaki, Kanagawa Prefecture 1 Toshiba, Komukai Toshiba-cho, Sachi-ku, Kawasaki-shi, Kanagawa Pref.Toshiba R & D Center Co., Ltd. (72) Inventor Yu Okamoto 8 Shinsugita-cho, Isogo-ku, Yokohama-shi, Kanagawa Pref. Inventor Yoshinari Takamatsu 66-2 Horikawa-cho, Saiwai-ku, Kawasaki-shi, Kanagawa Toshiba Engineering Corporation

Claims (20)

【特許請求の範囲】[Claims] 【請求項1】 無機質材料と硬化材と藻類培養養分とを
含む原料を混合物にする混合工程と、前記混合物を成形
体にする成形工程と、前記成形体を養生する養生工程と
を少なくとも有し、水に浮遊可能にすることを特徴とす
る藻類培養媒体の製造方法。
1. A method comprising the steps of: mixing a raw material containing an inorganic material, a hardening material, and algae culture nutrients into a mixture, forming the mixture into a molded body, and curing the molded body. A method for producing an algae culture medium, which is capable of floating in water.
【請求項2】 請求項1記載の藻類培養媒体の製造方法
において、前記成形工程が、前記混合物を型枠に投入し
て予備成形体とする予備成形工程と、前記予備成形体を
解砕して微細な成形体とする解砕成形工程とを有するこ
とを特徴とする藻類培養媒体の製造方法。
2. The method for producing an algae culture medium according to claim 1, wherein the forming step includes a step of charging the mixture into a mold to form a preformed body, and a step of crushing the preformed body. And a crushing and forming step of forming a finely formed body by using the method.
【請求項3】 請求項1記載の藻類培養媒体の製造方法
において、前記混合工程に高速回転翼混合機を用いると
ともに、前記成形工程が前記混合物を攪拌しながら水も
しくは硬化材水溶液を散布して成形体に成形する撹拌成
形工程を有することを特徴とする藻類培養媒体の製造方
法。
3. The method for producing an algae culture medium according to claim 1, wherein a high-speed rotary wing mixer is used in the mixing step, and water or a hardener aqueous solution is sprayed while stirring the mixture in the molding step. A method for producing an algal culture medium, comprising a stirring molding step of molding into a molded article.
【請求項4】 請求項3記載の藻類培養媒体の製造方法
において、前記撹拌成形工程を、前記混合工程と同一の
高速撹拌翼混合機内で行うことを特徴とする藻類培養媒
体の製造方法。
4. The method for producing an algae culture medium according to claim 3, wherein the stirring and forming step is performed in the same high-speed stirring blade mixer as in the mixing step.
【請求項5】 請求項1記載の藻類培養媒体の製造方法
において、前記成形工程が、前記混合物をダイスに移送
して押出成形して成形体とする押出成形工程を有するこ
とを特徴とする藻類培養媒体の製造方法。
5. The method for producing an algal culture medium according to claim 1, wherein the molding step includes an extrusion step of transferring the mixture to a die and extruding the mixture to form a molded body. A method for producing a culture medium.
【請求項6】 請求項5記載の藻類培養媒体の製造方法
において、押出成形工程は前記ダイスが2重の管からな
るダイスであって、前記2重の管からなるダイスの外側
管内壁と内側管外壁との間に前記混合物を移送して入
れ、これを押出してその両端を圧縮し封じきることによ
り、外部に多孔質層を有しその内部に中空部を有する成
形体とする工程であることを特徴とする藻類培養媒体の
製造方法。
6. The method for producing an algae culture medium according to claim 5, wherein in the extrusion forming step, the die is a double-tube die, and the inner and outer walls of the outer tube of the double-tube die are formed. This step is a step of transferring and putting the mixture between the outer wall of the pipe and extruding the mixture and compressing and sealing both ends thereof to form a molded body having a porous layer on the outside and a hollow portion inside. A method for producing an algae culture medium, comprising:
【請求項7】 請求項6記載の藻類培養媒体の製造方法
において、前記多孔質層と中空部との間に前記多孔質層
よりも低透水性の層を設ける工程を含むことを特徴とす
る藻類培養媒体の製造方法。
7. The method for producing an algae culture medium according to claim 6, further comprising a step of providing a layer having a lower water permeability than the porous layer between the porous layer and the hollow portion. A method for producing an algal culture medium.
【請求項8】 請求項7記載の藻類培養媒体の製造方法
において、3重の管からなるダイスの最外側の管と内側
管との間に多孔質性の材料を、前記ダイスの中間の管と
最内側の管との間に低透水性の材料を入れて押出成形を
行った後にその両端を圧縮し封じきることを特徴とする
藻類培養媒体の製造方法。
8. The method for producing an algae culture medium according to claim 7, wherein a porous material is provided between an outermost tube and an inner tube of a triple-tube die, and a tube is provided in the middle of the dice. A method for producing an algae culture medium, characterized in that a low water-permeable material is put between a tube and an innermost tube, extrusion-molded, and both ends are compressed and sealed.
【請求項9】 請求項8記載の藻類培養媒体の製造方法
において、前記低透水性の層には粘土質であるモンモリ
ロナイト、カオリナイト、セメント、水ガラス、石灰、
および石膏のうち、少なくとも一種を含むことを特徴と
する藻類培養媒体の製造方法。
9. The method for producing an algal culture medium according to claim 8, wherein the low water-permeable layer is made of clayey montmorillonite, kaolinite, cement, water glass, lime,
A method for producing an algal culture medium, comprising at least one of gypsum and gypsum.
【請求項10】 請求項1記載の藻類培養媒体の製造方
法において、前記成形工程が、前記混合物を圧縮して成
形体とする圧縮成形工程を有することを特徴とする藻類
培養媒体の製造方法。
10. The method for producing an algal culture medium according to claim 1, wherein the molding step includes a compression molding step of compressing the mixture to form a molded body.
【請求項11】 請求項1ないし10のいずれか1項記
載の藻類培養媒体の製造方法において、前記無機質材料
が石炭灰、焼却灰、砂、貝殻粉砕物、および珪藻から選
択された少なくとも1種を含むことを特徴とする藻類培
養媒体の製造方法。
11. The method for producing an algal culture medium according to claim 1, wherein the inorganic material is at least one selected from coal ash, incinerated ash, sand, ground shells, and diatoms. A method for producing an algal culture medium, comprising:
【請求項12】 請求項11記載の藻類培養媒体の製造
方法において、前記無機質材料が、環境を汚染する成分
を低減もしくは除去処理されたものであることを特徴と
する藻類培養媒体の製造方法。
12. The method for producing an algal culture medium according to claim 11, wherein the inorganic material has been subjected to a treatment for reducing or removing components that pollute the environment.
【請求項13】 請求項1ないし12のいずれか1項記
載の藻類培養媒体の製造方法において、前記硬化材が、
セメント、水ガラス、石灰、および石膏から選択された
少なくとも1種を含むことを特徴とする藻類培養媒体の
製造方法。
13. The method for producing an algal culture medium according to any one of claims 1 to 12, wherein the hardening material comprises:
A method for producing an algal culture medium, comprising at least one selected from cement, water glass, lime, and gypsum.
【請求項14】 請求項13記載の藻類培養媒体の製造
方法において、前記硬化材が、構成成分として藻類培養
養分を含むことを特徴とする藻類培養媒体の製造方法。
14. The method for producing an algae culture medium according to claim 13, wherein the hardening material contains algae culture nutrients as a constituent.
【請求項15】 請求項1ないし14のいずれか1項記
載の藻類培養媒体の製造方法において、前記藻類培養養
分は、リン分、窒素分、および鉄分から選択された少な
くとも1種を含むことを特徴とする藻類培養媒体の製造
方法。
15. The method for producing an algal culture medium according to any one of claims 1 to 14, wherein the algal culture nutrient contains at least one selected from a phosphorus content, a nitrogen content, and an iron content. A method for producing an algae culture medium.
【請求項16】 請求項1ないし15のいずれか1項記
載の藻類培養媒体の製造方法において、前記硬化材、前
記藻類培養養分および前記軽量化材の添加量は、前記無
機質材料の重量100重量部に対して、前記硬化材を少
なくとも5重量部、そして前記藻類培養養分は20重量
部を超えないことを特徴とする藻類培養媒体の製造方
法。
16. The method for producing an algal culture medium according to claim 1, wherein the hardening material, the algal culture nutrient, and the lightening material are added in an amount of 100% by weight of the inorganic material. Parts by weight of said hardening material and at least 20 parts by weight of said algal culture nutrient per part by weight.
【請求項17】 請求項1ないし16のいずれか1項記
載の藻類培養媒体の製造方法において、前記混合工程に
用いる混合機として、混合槽底部を排出口に向かって傾
斜させた高速撹拌翼混合機を用いることを特徴とする藻
類培養媒体の製造方法。
17. The method for producing an algae culture medium according to any one of claims 1 to 16, wherein, as a mixer used in the mixing step, a high-speed stirring blade mixer having a mixing tank bottom inclined toward an outlet. A method for producing an algae culture medium, comprising using a machine.
【請求項18】 請求項1ないし17のいずれか1項記
載の藻類培養媒体の製造方法において、前記成形体を養
生する養生工程が、温度100℃以上の加熱養生である
ことを特徴とする藻類培養媒体の製造方法。
18. The method for producing an algae culture medium according to claim 1, wherein the curing step of curing the molded body is heat curing at a temperature of 100 ° C. or higher. A method for producing a culture medium.
【請求項19】 請求項1ないし18のいずれか1項記
載の藻類培養媒体の製造方法において、前記養生工程が
加熱養生工程を有し、加熱養生の熱源が、火力発電所も
しくは廃棄物焼却場の廃熱であることを特徴とする藻類
培養媒体の製造方法。
19. The method for producing an algae culture medium according to claim 1, wherein the curing step includes a heat curing step, and the heat source of the heat curing is a thermal power plant or a waste incineration plant. A method for producing an algae culture medium, characterized in that the heat is waste heat.
【請求項20】 請求項1ないし19のいずれか1項記
載の藻類培養媒体の製造方法において、前記原料がさら
に軽量化材を含むことを特徴とする藻類培養媒体の製造
方法。
20. The method for producing an algal culture medium according to claim 1, wherein the raw material further comprises a lightening material.
JP32328499A 1998-11-13 1999-11-12 Method for producing algae culture medium Expired - Fee Related JP3619726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32328499A JP3619726B2 (en) 1998-11-13 1999-11-12 Method for producing algae culture medium

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-323869 1998-11-13
JP32386998 1998-11-13
JP32328499A JP3619726B2 (en) 1998-11-13 1999-11-12 Method for producing algae culture medium

Publications (2)

Publication Number Publication Date
JP2000245278A true JP2000245278A (en) 2000-09-12
JP3619726B2 JP3619726B2 (en) 2005-02-16

Family

ID=26571122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32328499A Expired - Fee Related JP3619726B2 (en) 1998-11-13 1999-11-12 Method for producing algae culture medium

Country Status (1)

Country Link
JP (1) JP3619726B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6391238B1 (en) * 1998-11-13 2002-05-21 Kabushiki Kaisha Toshiba Method of producing algae cultivating medium
CN107900278A (en) * 2017-10-11 2018-04-13 武汉纺织大学 A kind of used sodium silicate sand wawter bloom bio-regeneration automaton and method
CN111847991A (en) * 2019-04-29 2020-10-30 贵州建工安顺建筑工程有限公司 Waterproof bonding mortar for exterior wall tiles
CN112700358A (en) * 2020-12-25 2021-04-23 浙江弄潮儿智慧科技有限公司 Intelligent monitoring system for ocean space resources monitored by ocean ecological piles
CN113816496A (en) * 2021-10-19 2021-12-21 中国科学院兰州化学物理研究所 Algae removal and carbon sequestration system and method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6391238B1 (en) * 1998-11-13 2002-05-21 Kabushiki Kaisha Toshiba Method of producing algae cultivating medium
CN107900278A (en) * 2017-10-11 2018-04-13 武汉纺织大学 A kind of used sodium silicate sand wawter bloom bio-regeneration automaton and method
CN107900278B (en) * 2017-10-11 2020-07-03 武汉纺织大学 Automatic control method for biological regeneration of water glass used sand bloom
CN111847991A (en) * 2019-04-29 2020-10-30 贵州建工安顺建筑工程有限公司 Waterproof bonding mortar for exterior wall tiles
CN112700358A (en) * 2020-12-25 2021-04-23 浙江弄潮儿智慧科技有限公司 Intelligent monitoring system for ocean space resources monitored by ocean ecological piles
CN112700358B (en) * 2020-12-25 2023-11-28 浙江弄潮儿智慧科技有限公司 Marine space resource intelligent supervision system for monitoring marine ecological piles
CN113816496A (en) * 2021-10-19 2021-12-21 中国科学院兰州化学物理研究所 Algae removal and carbon sequestration system and method thereof
CN113816496B (en) * 2021-10-19 2022-06-28 中国科学院兰州化学物理研究所 Algae removal and carbon sequestration system and method thereof

Also Published As

Publication number Publication date
JP3619726B2 (en) 2005-02-16

Similar Documents

Publication Publication Date Title
US6391238B1 (en) Method of producing algae cultivating medium
CN104909460B (en) Porosity denitrogenation dephosphorizing filler for artificial swamp and preparation method thereof
CN105481094A (en) Ceramic filler for wastewater treatment, production method for ceramic filler and wastewater treatment device
CN110862252A (en) River and lake sludge-based non-fired ultra-light ceramsite as well as preparation method and application thereof
JPS6377596A (en) Microorganism immobilized carrier for waste water treatment
CN102603359B (en) Coal ash biological filter material and preparation method thereof
CN105036709A (en) Preparation method for firing light tourmaline ceramsite through sewage sludge and pulverized fuel ash
CN112661231A (en) Multifunctional long-acting composite filler and preparation method thereof
CN107285588A (en) Urban sludge treating method based on hydrothermal carbonization
JP2000245278A (en) Production of medium for culturing algae
CN111547839A (en) Composite sulfur-based porous filler
CN107032481A (en) A kind of biofilm packing and preparation method thereof and biofilm reactor
CN107417058A (en) A kind of river embankment bed mud is modified the method and its application for preparing ecology filler
KR101279135B1 (en) Treating method for ferment of sewage sludge
CN108424045B (en) Regeneration environment-friendly water purification brick
CN116161914B (en) Method for preparing plain concrete from waste gas and waste building materials by mineralized bacteria
JP2003310288A (en) Method for producing ethanol and biological carrier
CN112159167A (en) Sandwich foam ceramsite concrete product and preparation method and application thereof
CN111484131A (en) Carbon-free autotrophic nitrogen removal tank
CN111484191A (en) Sewage enhanced treatment method based on microalgae and hydrothermal liquefied biochar thereof
KR100310877B1 (en) Ceramic Carrier and its Manufacturing Method
CN112830541A (en) Method for continuously removing phosphorus for long time by using multifunctional long-acting composite filler
CN112174640A (en) Method for treating residual mud and residual soil
JP3619661B2 (en) Algal culture medium and method for producing the same
JP2002346535A (en) Method for manufacturing inorganic porous molded product

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees