JP2000240562A - High pressure gas-liquid pumping device - Google Patents

High pressure gas-liquid pumping device

Info

Publication number
JP2000240562A
JP2000240562A JP11084443A JP8444399A JP2000240562A JP 2000240562 A JP2000240562 A JP 2000240562A JP 11084443 A JP11084443 A JP 11084443A JP 8444399 A JP8444399 A JP 8444399A JP 2000240562 A JP2000240562 A JP 2000240562A
Authority
JP
Japan
Prior art keywords
liquid
gas
pump
pressure
pumps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11084443A
Other languages
Japanese (ja)
Inventor
Takeshi Yoshioka
健 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP11084443A priority Critical patent/JP2000240562A/en
Publication of JP2000240562A publication Critical patent/JP2000240562A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electromagnetic Pumps, Or The Like (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high pressure gas-liquid pumping device capable of rotating at a low speed, providing high pressure power, reducing the noise vibration, reducing the energy loss, simplifying the structure and operation with the low cost, free from the environmental destruction and being used in various purposes. SOLUTION: In this pumping device, a plurality of pumps 1-1, 1-2,... 1-p for forcibly feeding the gas-liquid through a common pipe, are connected in series by means of a gas-liquid force feed pipe 2, a second and following pumps 1-2,... 1-p are mounted in a sealed container 3 and provided with liquid reducers 4 so that each pump can cope with the pressure, a gas-liquid amount and a gas-liquid ratio, the gas-liquid is injected into the first pump 1-1 with a desired ratio, the pumps are simultaneously rotated by 1-100 times/min, the pressure force is successively accumulated, the excess liquid in the sealed container 3, of the second and following pumps is reduced by the liquid reducer 4, and the maximum pressure is force fed to the external which needs the pressure, through the last gas-liquid force feed pipe 5 from the last pump 1-p.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、気体と液体(以下「気
液」と言う)を共に同一のパイプで圧送するポンプ(以
下「気液ポンプ」と言う)を、直列に連結し、液体減量
機器4を付設し、各々のポンプの内部構成を変えて、気
液を高圧化可能にして圧送し、各種の用途に利用する高
圧気液ポンプ装置に関するもので、たとえば揚水ポンプ
等の気体と液体の圧送ポンプ、コンプレッサー等の加圧
貯留装置、真空ポンプ等の真空形成装置、スリラーポン
プ等の物質輸送装置、エアレーター等の浄化装置、圧気
ケーソン工事や圧気シールド工事の圧気内外への気体供
給装置や物資輸送装置、水中の材料を引き揚げるエアリ
フトポンプへの給気装置、COガス等を深海へ注入し
溶解液化沈降させる装置等として利用するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pump (hereinafter referred to as "gas-liquid pump") for pumping a gas and a liquid (hereinafter referred to as "gas-liquid") together in the same pipe, and connecting them in series. It relates to a high-pressure gas-liquid pump device that is provided with a weight-reduction device 4 and changes the internal configuration of each pump so that the gas-liquid can be pressurized to a high pressure and is used for various applications. Liquid pressure pumps, pressurized storage devices such as compressors, vacuum forming devices such as vacuum pumps, mass transport devices such as chiller pumps, purification devices such as aerators, gas supply to and from compressed air in pneumatic caisson construction and pneumatic shielding construction It is used as a device, a material transporting device, an air supply device for an air lift pump for lifting materials in water, a device for injecting CO 2 gas or the like into the deep sea, and dissolving and liquefying the sediment.

【0002】[0002]

【従来の技術】従来、気液を高圧化する技術は多数あっ
たが、「気液ポンプ」による高圧化の装置は見られなか
った。また、気液ポンプは国内には見当たらず、外国で
も連結方法による高圧化は見られなかった。また、気液
ポンプは特徴として、単数では高圧化に限度があり10
気圧以上の加圧は効果的とは言えない欠点があった。国
内では単数の気液ポンプは特許出願されているが、更な
る効果的な高圧化の技術はなく、気体と液体を圧送する
ポンプの多くの特徴を生かすため、効果的に高圧化する
技術が必要とされていた。
2. Description of the Related Art Conventionally, there have been many techniques for increasing the pressure of gas and liquid, but no apparatus for increasing the pressure by a "gas-liquid pump" has been found. In addition, no gas-liquid pump was found in Japan, and no increase in pressure due to the connection method was seen in foreign countries. In addition, the gas-liquid pump is characterized by a limitation in increasing the pressure by a single unit.
Pressurization above atmospheric pressure has the drawback of not being effective. In Japan, a single gas-liquid pump has been filed for a patent, but there is no further effective technology for increasing the pressure, and a technology for effectively increasing the pressure is required to take advantage of many features of the pump for pumping gas and liquid. Was needed.

【0003】また、気液ポンプを高圧化させるために
は、巻数の増強、パイプ巻体11の直径の増大化、気液
の体積比の調整等の操作を行うが、気液ポンプはその特
徴として、ポンプ1のパイプ巻体11が自から回転する
ため、高圧化させるため稼働中の操作は極めて困難と言
う欠点があった。
In order to increase the pressure of the gas-liquid pump, operations such as increasing the number of turns, increasing the diameter of the pipe winding 11, and adjusting the volume ratio of gas and liquid are performed. However, since the pipe winding 11 of the pump 1 itself rotates, there is a disadvantage that the operation during operation is extremely difficult to increase the pressure.

【0004】高圧化で気液の体積比が1:3〜3:1の
範囲を越えると高圧化は非効率になり、単数の気液ポン
プでの効果的な高圧化は10気圧程度であるが、単なる
気液ポンプの直列連結だけではこれ以上の高圧化は非効
率と言う欠点があった。
[0004] When the volume ratio of gas and liquid exceeds the range of 1: 3 to 3: 1 at high pressure, the high pressure becomes inefficient, and the effective high pressure with a single gas-liquid pump is about 10 atm. However, there is a drawback that simply increasing the pressure by simply connecting the gas-liquid pumps in series is inefficient.

【0005】気液ポンプを稼働させながら、更なる効果
的な高圧化ができる技術の開発が必要とされていた。
[0005] There has been a need for the development of a technology that can further effectively increase the pressure while operating the gas-liquid pump.

【0006】また、気液ポンプを高圧化させるため、複
数の連結だけでなくポンプの構成技術についても対応が
迫られていた。
Further, in order to increase the pressure of the gas-liquid pump, not only a plurality of connections but also a construction technique for the pump has been required.

【0007】気液ポンの一部として必須である接続機器
6(気液スイベルジョイント)は、パイプ内外の圧力差
で高圧化につれて機能性、耐久性に影響が起きる危険性
があり、高圧化の技術開発の解決すべき課題として残さ
れていた。
The connection device 6 (gas-liquid swivel joint), which is indispensable as a part of the gas-liquid pump, has a risk that its function and durability will be affected as the pressure is increased by the pressure difference between the inside and outside of the pipe. It was left as an issue to be solved in technology development.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、前述
した従来の気液ポンプの欠陥を解決することにあって、
単数の装置や、単なる複数連結の装置では困難とされて
いる10気圧以上の効果的な高圧化を実現することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned deficiencies of the conventional gas-liquid pump.
An object of the present invention is to realize an effective high pressure of 10 atm or more, which is difficult with a single device or a simple multiple connection device.

【0009】本発明の他の目的は、気液ポンプを稼働さ
せながら、高圧化を可能にする簡単で効果的な装置の開
発にある。
Another object of the present invention is to develop a simple and effective device that enables high pressure while operating a gas-liquid pump.

【0010】本発明の目的は、前述した従来の気液ポン
プの欠陥を解決することにあって、気液の体積比が1:
3〜3:1の効果的な範囲内でも、必要とする高圧化を
実現する技術の開発にある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned deficiencies of the conventional gas-liquid pump.
Even within the effective range of 3 to 3: 1, there is a need to develop a technology for achieving the required high pressure.

【0011】本発明の他の目的は、気液を高圧化を実現
するため、気液ポンプの構成技術の開発にある。
Another object of the present invention is to develop a technique for forming a gas-liquid pump in order to realize a high-pressure gas-liquid.

【0012】本発明の他の目的は、気液ポンプの一部と
しての接続機器6(スイベルジョイント)に関して、パ
イプ内外の圧力差に高圧力でも機能性、耐久性に無理が
起きず、影響が小さい方法の開発にある。
Another object of the present invention is to provide a connection device 6 (swivel joint) as a part of a gas-liquid pump, which does not cause excessive effects on functionality and durability even at high pressure due to a pressure difference between the inside and outside of a pipe. Is in the development of small ways.

【0013】[0013]

【課題を解決するための手段】本発明は、前述の課題を
解決するため、気体と液体を共に同一のパイプで圧送す
るポンプ1を複数個、気液圧送パイプ2で直列に連通連
結し、最初のポンプ1をポンプ1−1とし、2基目をポ
ンプ1−2とし、p基目をポンプ1−pとする、ポンプ
1−2以降のポンプ1は密閉容器3内に設けて液体減量
機器4を付設し、各々のポンプを同時に1〜100回/
分で回転させ、ポンプ1−1によって気体と液体を必要
な割合で汲水し、気体と液体が各々のポンプを通過する
につれて順次圧力を累積し、気体の圧縮による体積減少
で、ポンプ1−2以降の密閉容器3内の液体を液体減量
機器4により減量し、最終のポンプ1−pで最高圧とし
て最終気液圧送パイプ5から外部の高圧を必要とする場
所に圧送することに特徴がある。
According to the present invention, in order to solve the above-mentioned problems, a plurality of pumps 1 for pumping both gas and liquid by the same pipe are connected in series by a gas-liquid pumping pipe 2, The first pump 1 is the pump 1-1, the second pump is the pump 1-2, and the p-th pump is the pump 1-p. The pumps 1 and subsequent pumps 1 are provided in the closed vessel 3 to reduce the amount of liquid. Equipment 4 is attached, and each pump is operated 1 to 100 times /
Minutes, pump and pump gas and liquid at the required ratio, and accumulate pressure sequentially as the gas and liquid pass through each pump. The second and subsequent liquids in the closed container 3 are reduced by the liquid reduction device 4 and are pumped as the highest pressure by the final pump 1-p from the final gas-liquid pumping pipe 5 to a place requiring external high pressure. is there.

【0014】また、本発明は、パイプ巻体11のリング
パイプ12の巻数と口径は、ポンプ1の1基目1−1か
ら2基目1−2、最終基1−pと順次変遷するにつれ
て、巻数を増加させ口径を小さい構成とすることに特徴
がある。
Further, according to the present invention, the number of turns and the diameter of the ring pipe 12 of the pipe winding body 11 are sequentially changed from the first 1-1 to the second 1-2 and the last 1-p of the pump 1. It is characterized in that the number of turns is increased and the diameter is reduced.

【0015】また、本発明は、密閉容器3を設けない
で、各々のポンプ1を連通連結する気液圧送パイプ2に
液体減量機器4を接続し、ポンプ1−2以降のパイプ巻
体11の前後に各々接続機器6を設けることに特徴があ
る。
Further, according to the present invention, a liquid reduction device 4 is connected to a gas-liquid pressure-feeding pipe 2 which communicates and connects each pump 1 without providing a closed container 3, and a pipe winding body 11 after the pump 1-2 is formed. It is characterized in that connection devices 6 are provided before and after, respectively.

【0016】また、本発明は、ポンプ1として『気液圧
送装置(平成10年特許願第40971号)』または
『気液ポンプ装置(平成10年特許願第134146
号)』または『気液巻体ポンプ装置(平成10年特許願
第309338号)』を使用することに特徴がある。
In the present invention, the pump 1 is a gas-liquid pumping device (1998 Patent Application No. 40971) or a gas-liquid pump device (1998 Patent Application No. 134146).
) Or a gas-liquid winding pump (1998 Patent Application No. 309338).

【0017】[0017]

【実施の態様】本発明のガス液化沈降装置の一例を、図
1(イ)に従って説明すると、気体と液体を共に同一の
パイプで圧送するポンプ1を複数個、気液圧送パイプ2
で直列に連通連結し、最初のポンプ1をポンプ1−1と
し、2基目をポンプ1−2とし、p基目をポンプ1−p
とする、ポンプ1−2以降のポンプ1は密閉容器3内に
設けて液体減量機器4を付設し、各々のポンプを同時に
1〜100回/分で回転させ、ポンプ1−1によって気
体と液体を必要な割合で汲水し、気体と液体が各々のポ
ンプを通過するにつれて順次圧力を累積し、気体の圧縮
による体積減少で、ポンプ1−2以降の密閉容器3内の
液体を液体減量機器4により減量し、最終のポンプ1−
pで最高圧として最終気液圧送パイプ5から外部の高圧
を必要とする場所に圧送する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An example of a gas liquefaction sedimentation apparatus according to the present invention will be described with reference to FIG. 1 (A).
The first pump 1 is a pump 1-1, the second pump is a pump 1-2, and the p-th pump is a pump 1-p
The pump 1-2 after the pump 1-2 is provided in the closed vessel 3 and the liquid reduction device 4 is attached, and each pump is simultaneously rotated at a rate of 1 to 100 times / min. Is pumped in a required ratio, and the pressure is sequentially accumulated as the gas and the liquid pass through each pump, and the volume in the gas is reduced by the compression, and the liquid in the closed vessel 3 after the pump 1-2 is reduced by the liquid reducing device. 4 and the final pump 1-
At p, the pressure is sent from the final gas-liquid pressure feed pipe 5 as a maximum pressure to a place where an external high pressure is required.

【0018】図1(ロ)は、加圧された気体や特定ガス
等の、通常の空気以外の気体を加圧する場合は、ポンプ
1をすべて密閉容器3内に設けて、2基目以降のポンプ
1には液体減量機器4を付設して使用する場合もある。
FIG. 1 (b) shows that when a gas other than ordinary air, such as a pressurized gas or a specific gas, is to be pressurized, the pump 1 is entirely provided in the closed vessel 3 and the second and subsequent pumps are provided. In some cases, the pump 1 may be provided with a liquid reduction device 4.

【0019】図1(ハ)は、加圧された気体や特定ガス
等の、通常の空気以外の気体を特定気体容器9を設けて
ストックし、最初のポンプ1−1を特定気体容器9内に
設けて使用し、この場合、最初のポンプ1−1は密閉容
器3内に設ける必要はない。
FIG. 1C shows a state in which a gas other than ordinary air, such as a pressurized gas or a specific gas, is stored in a specific gas container 9 and the first pump 1-1 is placed in the specific gas container 9. In this case, the first pump 1-1 does not need to be provided in the closed container 3.

【0020】図2(イ)は、請求項3の場合を示し、密
閉容器3を使用しないで高圧化する装置の1例図で、各
々のポンプを連通連結する気液圧送パイプ2に液体減量
機器4を接続し、ポンプ1−2以降のパイプ巻体11の
前後に各々接続機器6を設けたものである。
FIG. 2 (a) shows an example of an apparatus for increasing the pressure without using the closed vessel 3 according to the third embodiment. The gas-pressure pumping pipe 2 which connects and connects the respective pumps reduces the amount of liquid. The device 4 is connected, and connection devices 6 are provided before and after the pipe winding 11 after the pump 1-2.

【0021】図2(ロ)は、請求項3の場合の、特定気
体の高圧化、または特定気体に特定液体を使用して高圧
化する場合の装置を示す。
FIG. 2B shows an apparatus for increasing the pressure of a specific gas or increasing the pressure of a specific gas by using a specific liquid.

【0022】特定気体の高圧化の例として、二酸化炭素
の液化のための高圧化の装置として使用できる。特定気
体に特定液体を使用して高圧化の例としては、二酸化炭
素を含む混合気体を高圧化してアミン等の吸収液に接触
させて吸収させる場合等の装置として利用する。
As an example of increasing the pressure of a specific gas, it can be used as an apparatus for increasing the pressure for liquefying carbon dioxide. As an example of increasing the pressure by using a specific liquid as the specific gas, a specific gas is used as a device in a case where a mixed gas containing carbon dioxide is increased in pressure and brought into contact with an absorbing liquid such as an amine to be absorbed.

【0023】図1、図2共、高圧を形成するため液体減
量機器4から減量する余剰の液体は、循環させて特定気
体容器9内に誘導して使用することもある。
In both FIGS. 1 and 2, the excess liquid to be reduced from the liquid reduction device 4 to form a high pressure may be circulated and guided into the specific gas container 9 for use.

【0024】本発明は、気液ポンプとして『気液圧送装
置(平成10年特許願第40971号)』または『気液
ポンプ装置(平成10年特許願第134146号)』ま
たは『気液巻体ポンプ装置(平成10年特許願第309
338号)』を使用する理由は、現在気液を共に同一の
パイプで圧送する適切なポンプが見当たらないためであ
る。気液ポンプの詳細は主旨でないため本明細書では省
略する。
According to the present invention, a gas-liquid pump is used as a gas-liquid pumping device (1998 Patent Application No. 40971), a gas-liquid pump device (1998 Patent Application No. 134146), or a gas-liquid winding body. Pump device (1998 Patent Application No. 309)
No. 338)] is because there is currently no suitable pump for pumping both gas and liquid through the same pipe. Since the details of the gas-liquid pump are not the main purpose, they are omitted in this specification.

【0025】気液ポンプを使用する理由は、揚水や水中
送気に、同一の圧力でも従来のポンプやコンプレッサー
よりも高揚程、大深度注入が可能になるためである。す
なわち、気体と液体の体積比を調節することで気泡効果
(エアリフト作用)によって高揚程、大深度への送気、
送水が可能となる。同一の圧力で従来のポンプやコンプ
レッサーよりも高揚程は可能であるが、揚水量は少なく
なる。また、大深度の注入の場合は注入気体量は少なく
なる。
The reason why the gas-liquid pump is used is that it is possible to perform higher head and deeper injection than conventional pumps and compressors at the same pressure for pumping water and sending air underwater. In other words, by adjusting the volume ratio of gas and liquid, the air bubble effect (air lift effect) allows a high head and air to be sent to a large depth,
Water transmission becomes possible. At the same pressure, higher heads are possible than with conventional pumps and compressors, but the pumping volume is lower. In the case of deep injection, the amount of injected gas is small.

【0026】気液ポンプを使用する理由は、簡単な設備
と操作にある。すなわち、羽根、歯車、ピストン、スク
リュー等を必要とせず、簡単なな機器の構成で圧縮機能
が発揮できるためである。
The reason for using a gas-liquid pump is simple equipment and operation. That is, a compression function can be exhibited with a simple device configuration without requiring blades, gears, pistons, screws, and the like.

【0027】気液ポンプを使用する他の理由は、遠心力
を使用せず、低速回転(1〜100rpm程度)で圧縮
作業ができ、振動騒音が極めて小さいため振動騒音防止
の大きい施設が不要となるためである。
Another reason for using a gas-liquid pump is that compression work can be performed at a low speed (about 1 to 100 rpm) without using centrifugal force, and vibration noise is extremely small. It is because it becomes.

【0028】気液ポンプを使用する更なる理由は、常時
高圧化の作業にも従来のコンプレッサーに必要とされた
冷却施設が不要となるためである。すなわち、気体を高
圧化及び液化する場合に発生する高熱にも、気液が混在
しているため冷却施設が不要となるためである。
A further reason for using a gas-liquid pump is that the cooling facility required for the conventional compressor is not required for the operation of constantly increasing the pressure. That is, the high heat generated when the gas is pressurized and liquefied is also mixed with gas and liquid, so that a cooling facility is not required.

【0029】気液ポンプを使用するもう1つの理由は、
体積効率が100%で稼働するためである。すなわち、
従来は、羽根、歯車、ピストン、スクリュー等があり、
ケーシングとの隙間から漏気、漏水が起きたが、気液ポ
ンプ等には終始気密水密状態で、漏気、漏水がなく体積
効率は100%で稼働するためである。
Another reason for using a gas-liquid pump is that
This is because the volume efficiency operates at 100%. That is,
Conventionally, there are blades, gears, pistons, screws, etc.
Leakage and water leakage occurred from the gap with the casing, but the gas-liquid pump and the like were airtight and watertight all the time, and there was no leakage or water leakage, and the volume efficiency was 100%.

【0030】気液ポンプを使用するもう1つの理由は、
ポンプ内や圧送パイプ内に固形物が混入しても影響なく
圧送できるためである。すなわち、気液ポンプ等は呑口
から吐口まで空洞で障害物がないため故障が起きないこ
とにある。
Another reason for using a gas-liquid pump is that
This is because even if solid matter is mixed in the pump or the pressure feeding pipe, the pressure can be fed without any influence. That is, a gas-liquid pump or the like does not fail because there is no obstacle from the mouth to the spout.

【0031】気液ポンプを使用するもう1つの理由は、
吸込行程がないためキャビテーションの心配がなく、気
液が混在のため、気体がクッションの役目を果たすた
め、ウォーターハンマーの危険性がないことにある。
Another reason for using a gas-liquid pump is that
There is no danger of cavitation because there is no suction stroke, and there is no danger of a water hammer because gas serves as a cushion because gas and liquid are mixed.

【0032】気液ポンプを直列に連結する理由は、単数
の気液ポンプでは高圧化に限度があるためである。すな
わち、高圧化につれて気液の体積比のアンバランスが起
き、気液ポンプの高圧化機能が低下する、気液ポンプを
直列に連結し、液体減量機器4で液体を減量することで
気液の体積比を調整し、高圧化機能をポンプ毎に回復さ
せ、累加加圧することで効果的な高圧化ができるためで
ある。
The reason why the gas-liquid pumps are connected in series is that a single gas-liquid pump has a limitation in increasing the pressure. That is, the gas-liquid volume ratio becomes unbalanced as the pressure is increased, and the function of increasing the pressure of the gas-liquid pump is reduced. The gas-liquid pump is connected in series, and the liquid is reduced by the liquid reduction device 4 to reduce the gas-liquid. This is because an effective high pressure can be achieved by adjusting the volume ratio, restoring the high pressure function for each pump, and performing cumulative pressurization.

【0033】気液ポンプを密閉容器3内に設ける理由
は、密閉容器3内の全体を加圧してもポンプ1に付属す
る機器は通常の大気下と同様の状態で無理なく稼働で
き、気液の通過するパイプの内外の圧力差を緩和し、機
器、設備に無理な状況の発生を少なくするためである。
The reason that the gas-liquid pump is provided in the closed container 3 is that even if the entire inside of the closed container 3 is pressurized, the equipment attached to the pump 1 can be operated without difficulty in the same state as in the normal atmosphere. The purpose of this is to reduce the pressure difference between the inside and outside of the pipe through which the gas passes, and to reduce the occurrence of unreasonable situations for equipment and facilities.

【0034】気液ポンプを密閉容器内に設ける他の理由
は、接続機器(スイベルジョイント)の設置数を少なく
し、故障の原因箇所を少なくするためである。
Another reason for providing the gas-liquid pump in the closed container is to reduce the number of connected devices (swivel joints) and to reduce the number of failure points.

【0035】気液ポンプを密閉容器内に設けるもう1つ
の理由は、液量調整装置4等の気液ポンプ及び付属する
各機器に直接高圧力差を負担させるのでなく、密閉容器
内で累加される圧力差分のみの負担でよく、機能性、耐
久性、操作性を高めるためである。
Another reason for providing the gas-liquid pump in the closed container is that the high pressure difference is not directly applied to the gas-liquid pump such as the liquid amount adjusting device 4 and the attached devices, but is added in the closed container. This is for improving the functionality, the durability, and the operability.

【0036】前述の通り、気液ポンプの特性として、液
体の体積は変化しないが気体の体積は圧力の増加に伴っ
て縮小し、気液の体積比にアンバランスが起き効果的に
累積加圧できない状態となる。このことが単数の気液ポ
ンプでは高圧化は困難で、複数の気液ポンプを必要とす
る要因である。
As described above, as a characteristic of the gas-liquid pump, the volume of the liquid does not change, but the volume of the gas decreases with an increase in the pressure. It becomes impossible state. This is a factor that makes it difficult to increase the pressure with a single gas-liquid pump and requires a plurality of gas-liquid pumps.

【0037】気液ポンプが最高の状況で稼働するには、
気液の体積比が1:1の場合であるが、気体の圧縮でこ
の状態を維持するの極めて困難である。したがって、こ
れに近い範囲、すなわち1:2〜2:1の範囲で稼働さ
せることが効果的と考えられる。また、1:3〜3:1
の範囲を超えると圧縮効果は極端に非効果的となる。以
下、比較的効率のよい気液体積比率として1:2〜2:
1の範囲で3基のポンプを設けた実施例の主要数値表を
示す。この範囲は限定するものではない。 上表の通り、1基目1−1の気液比の範囲を確保すると
4atmまで加圧可能であり、2基目1−2では16a
tmまで加圧でき、最終基1−3(3基目)では64a
tmまで加圧可能となる。
In order for the gas-liquid pump to operate in the best situation,
In the case where the gas-liquid volume ratio is 1: 1, it is extremely difficult to maintain this state by compressing the gas. Therefore, it is considered effective to operate in a range close to this, that is, in a range of 1: 2 to 2: 1. Also, 1: 3 to 3: 1
Exceeds the range, the compression effect becomes extremely ineffective. Hereinafter, a relatively efficient gas-liquid volume ratio of 1: 2 to 2:
A main numerical table of an embodiment in which three pumps are provided in the range of 1 is shown. This range is not limiting. As shown in the table above, if the range of the gas-liquid ratio of the first unit 1-1 is ensured, it is possible to pressurize up to 4 atm.
tm, and 64a in the final group 1-3 (third group)
tm.

【0038】また、請求項2に請求の通り、上表から、
1基目ではn個のリングパイプの巻数は、2基目は4
n、3基目は16nの巻数が必要となる。また、リング
パイプの断面積は、1基目ではs、2基目はs×1/
4、3基目はs×1/16sとするのが適切となる。以
上のように、加圧力、気液量、気液比の変化に対応して
各々のポンプについて巻数、リングパイプ断面積が順次
大きく変化するため、各々のポンプは変化に合致した構
成とする必要がある。
Further, as claimed in claim 2, from the above table,
In the first unit, the number of turns of the n ring pipes is 4 in the second unit.
The nth and third units require 16n turns. The cross-sectional area of the ring pipe is s for the first unit and s × 1 / for the second unit.
It is appropriate to set the fourth and third units to s × 1/16 s. As described above, since the number of turns and the ring pipe cross-sectional area of each pump greatly change in response to changes in the pressing force, the gas-liquid amount, and the gas-liquid ratio, each pump must be configured to match the change. There is.

【0039】また、上表の通り、最初の1基目1−1で
は全体積100%、気体66.66%、液体33.33
%の状態を4atmまで加圧すると、気体は圧縮され1
6.66%となるが液体は体積減がなく33.33%の
ままで、気液比は2:1から1:2となる。気液比がこ
れ以上になると加圧効果が低下するため、2基目1−2
で液体を液体減量機器4にて25%減量して8.33%
とし気液比を2:1から再度1:2に戻し、全体積25
%、気体16.66%、液体8.33%の状態から加圧
が行われ、同様に4倍に加圧すると、圧力は4atmか
ら16atmとなり気体は圧縮され4.16%となるが
液体は体積減がなく8.33%のままで、気液比は2:
1から1:2となる。最終基(3基目)は気体4.16
%液体は再度液体減量機器4で6.25%減量して2.
08%として気液比を2:1に戻して全体積6.25%
として3基目の加圧を行う。この加圧で最終的には64
atmまで加圧が可能となる。すなわち、複数の気液ポ
ンプの直列連結が必要であり、各々のポンプの構成を、
加圧力、気液量、気液比の変化に対応する構成とし、2
基目以降のポンプでは液体を減量する必要があることが
解る。
As shown in the above table, the first unit 1-1 has a total volume of 100%, a gas of 66.66%, and a liquid of 33.33.
% Is pressurized to 4 atm, the gas is compressed and
Although it becomes 6.66%, the volume of the liquid does not decrease and remains at 33.33%, and the gas-liquid ratio becomes 2: 1 to 1: 2. If the gas-liquid ratio is higher than this, the pressurizing effect is reduced.
The liquid is reduced by 25% by the liquid reduction device 4 with 8.33%
The gas-liquid ratio is returned from 2: 1 to 1: 2 again, and the total volume 25
%, 16.66% of gas, and 8.33% of liquid. Pressurization is performed four times in the same manner. When the pressure is increased from 4 atm to 16 atm, the gas is compressed to 4.16%. The gas-liquid ratio remains at 8.33% without any volume loss, and the gas-liquid ratio is 2:
From 1 to 1: 2. The final group (third group) is gas 4.16
% Liquid is again reduced by 6.25% by the liquid reduction device 4 and 2.
08% to return the gas-liquid ratio to 2: 1 and 6.25% total volume
The third pressurization is performed. With this pressure, 64
Pressurization is possible up to atm. That is, it is necessary to connect a plurality of gas-liquid pumps in series.
A configuration corresponding to changes in pressure, gas-liquid volume, and gas-liquid ratio
It turns out that it is necessary to reduce the liquid in the pumps after the base.

【0040】[0040]

【発明の効果】本発明によると、コンプレッサーやブロ
ワ等の、ピストン型、ターボ型のポンプを使用せずに、
気液ポンプ(静寂な回転機械)で高圧の気液を得ること
が可能となった。
According to the present invention, without using a piston type or turbo type pump such as a compressor or a blower,
High-pressure gas-liquid can be obtained with a gas-liquid pump (quiet rotating machine).

【0041】本発明によると、従来の振動防止、騒音防
止、冷却装置等の設備を必要としないで高圧のを得るこ
とが可能となった。
According to the present invention, high pressure can be obtained without the need for conventional equipment such as vibration prevention, noise prevention, and a cooling device.

【0042】本発明によると、前述した従来単数の気液
ポンプでは10気圧前後が効果的加圧の限度であった
が、複数のポンプの設置と各種の機器の付設で、効果的
な気液の比率で更に高圧化が可能となった。
According to the present invention, the limit of the effective pressurization is about 10 atm in the conventional single gas-liquid pump described above. However, by installing a plurality of pumps and attaching various devices, an effective gas-liquid pump is provided. With this ratio, it is possible to further increase the pressure.

【0043】液体減量機器を設けることで、気液ポンプ
の稼働中に体積比の拡大に応じて自動的に液体の減量化
が可能となり、効果的に加圧累積ができるようになっ
た。
By providing the liquid reducing device, the amount of liquid can be automatically reduced according to the increase of the volume ratio during the operation of the gas-liquid pump, and the pressurization and accumulation can be performed effectively.

【0044】気液ポンプの一部として必須である接続機
器6(スイベルジョイント)は、高圧化に応じた機器の
使用ができ、機能性、耐久性、経済的に高圧の影響を少
なくすることが可能となった。
The connection device 6 (swivel joint), which is indispensable as a part of the gas-liquid pump, can use a device corresponding to a high pressure, and can reduce the influence of the high pressure in terms of functionality, durability, and economy. It has become possible.

【0045】気液ポンプを密閉容器の中に設置すること
で、接続機器6(スイベルジョイント)の負担する圧力
は密閉容器内の圧力分が軽減され、前述の接続機器6
(スイベルジョイント)は更に影響を少なくすることと
なった。
By installing the gas-liquid pump in the closed container, the pressure borne by the connection device 6 (swivel joint) is reduced by the pressure in the closed container.
(Swivel joint) will further reduce the impact.

【0046】従来のブロワ、コンプレッサーではできな
い機能、すなわち、同一圧力でも従来より高所への揚
水、または水中の大深度への気体の圧送が可能となっ
た。
A function that cannot be achieved with conventional blowers and compressors, that is, pumping to a higher place or pumping gas to a large depth in water is possible with the same pressure.

【0047】従来は非効率として敬遠されてきた気泡ポ
ンプについて、気体の供給が容易となり、気泡ポンプを
効果的なポンプ装置として使用を可能にした。ダム底の
無汚濁掘削や深海資源の地上への引き揚げに、気泡ポン
プへの気体供給手段として利用できるようになった。
The gas supply of the bubble pump, which has been conventionally avoided as being inefficient, has been facilitated, and the bubble pump can be used as an effective pump device. It can now be used as a gas supply means to bubble pumps for non-polluting excavation of dam bottoms and for withdrawing deep-sea resources to the ground.

【0048】二酸化炭素を高圧化して海水中へ溶解や液
化させて、深海への放流や貯留することが可能となっ
た。
It has become possible to increase the pressure of carbon dioxide to dissolve or liquefy it in seawater, and to discharge or store it in the deep sea.

【0049】大気中の二酸化炭素をアミン等の吸収液へ
の吸収溶解の手段するとして利用が可能となった。
It has become possible to use carbon dioxide in the atmosphere as a means for absorbing and dissolving it in an absorbing solution such as an amine.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の、(イ)は、2基目以降のポンプを密
閉容器内に設けた連結構造図を示し、(ロ)は、特定気
体容器を設け全てのポンプを密閉容器内に設置した連結
構造図を示す、(ハ)は、1基目のポンプを特定気体容
器内に設けた連結構造図を示す。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows (a) a connection structure diagram in which the second and subsequent pumps are provided in a closed container, and (b) is a specific gas container provided with all pumps in the closed container. (C) shows a connection structure diagram in which the first pump is provided in the specific gas container.

【図2】本発明の、(イ)は、密閉容器を設けずポンプ
を連結し、各ポンプ間に液体減量機器と接続機器を各々
2個づつ設けた連結構造図を示す、(ロ)は、(イ)
の、連結構造で1基目のポンプを特定気体容器内に設け
た連結構造図を示す。
FIG. 2 shows (a) a connection structure diagram in which pumps are connected without providing a closed container, and two liquid reduction devices and two connection devices are provided between each pump; ,(I)
FIG. 2 shows a connection structure diagram in which a first pump is provided in a specific gas container in the connection structure.

【図3】本発明の、気液ポンプを密閉容器3内に設置し
た詳細1例図で、(イ)は側断面図(ロ)は、密閉容器
3内のポンプの側面図。
FIG. 3 is a detailed example view of a gas-liquid pump according to the present invention installed in a closed container 3, (a) is a side sectional view, and (b) is a side view of the pump in the closed container 3.

【図4】本発明の、気液ポンプを密閉容器3内に設置し
た1例図の断面図で、パイプリングと巻体の状況を示
す。
FIG. 4 is a cross-sectional view of one example of the present invention in which a gas-liquid pump is installed in a closed container 3, and shows a state of a pipe and a winding body.

【符号の説明】[Explanation of symbols]

1 ポンプ 1−1 1基目のポンプ 1−2 2基目のポンプ 1−p 最終基のポンプ 2 気液圧送パイプ 3 密閉容器 4 液体減量機器 5 最終気液圧送パイプ 6 接続機器 7 給水パイプ 8 給気パイプ 9 特定気体容器 10 液槽 11 パイプ巻体 12 リングパイプ DESCRIPTION OF SYMBOLS 1 Pump 1-1 1st pump 1-2 Second pump 1-p Final pump 2 Gas-liquid pumping pipe 3 Closed vessel 4 Liquid reduction device 5 Final gas-liquid pumping pipe 6 Connection device 7 Water supply pipe 8 Air supply pipe 9 Specific gas container 10 Liquid tank 11 Pipe winding 12 Ring pipe

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年4月30日(1999.4.3
0)
[Submission date] April 30, 1999 (1999.4.3)
0)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】発明の名称[Correction target item name] Name of invention

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【発明の名称】 気液ポンプ装置 ─────────────────────────────────────────────────────
[Title of the Invention] Gas-liquid pump device ───────────────────────────────────────── ────────────

【手続補正書】[Procedure amendment]

【提出日】平成11年6月14日(1999.6.1
4)
[Submission date] June 14, 1999 (1999.6.1
4)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】発明の名称[Correction target item name] Name of invention

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【発明の名称】 高圧気液ポンプ装置[Title of the Invention] High-pressure gas-liquid pump device

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】気体と液体を共に同一のパイプで圧送する
ポンプ1を複数個、気液圧送パイプ2で直列に連通連結
し、最初のポンプ1をポンプ1−1とし、2基目をポン
プ1−2とし、p基目をポンプ1−pとする、ポンプ1
−2以降のポンプ1は密閉容器3内に設けて液体減量機
器4を付設し、各々のポンプを同時に1〜100回/分
の範囲で回転させ、ポンプ1−1によって気体と液体を
必要な割合で汲水し、気体と液体が各々のポンプを通過
するにつれて順次圧力を累積し、気体の圧縮による体積
減少で、ポンプ1−2以降の密閉容器3内の液体を液体
減量機器4により減量し、最終のポンプ1−pで最高圧
として最終気液圧送パイプ5から外部の高圧を必要とす
る場所に圧送する高圧気液ポンプ装置。
A plurality of pumps for pumping both gas and liquid through the same pipe are connected in series by a gas-liquid pumping pipe. The first pump is a pump 1-1 and the second pump is a pump. 1-2, and a p-th pump is a pump 1-p.
-2 and subsequent pumps 1 are provided in a closed container 3 and provided with a liquid reduction device 4, and each pump is simultaneously rotated at a rate of 1 to 100 times / minute, and gas and liquid are required by the pump 1-1. Water is pumped at a rate, and the pressure is sequentially accumulated as the gas and the liquid pass through each pump, and the liquid in the closed vessel 3 after the pump 1-2 is reduced by the liquid reduction device 4 due to the volume reduction due to the compression of the gas. A high-pressure gas-liquid pump device that pumps the final pump 1-p as the highest pressure from the final gas-liquid pressure feed pipe 5 to a location where high pressure is required outside.
【請求項2】ポンプ1−1からポンプ1−2、最終のポ
ンプ1−pと順次、パイプ巻体11の巻数とリングパイ
プ12の口径は、各ポンプ毎に巻数を増加させ、口径は
順次小さい構成とする請求項1記載の高圧気液ポンプ装
置。
2. The number of turns of the pipe winding body 11 and the diameter of the ring pipe 12 are sequentially increased from the pump 1-1 to the pump 1-2, and finally to the final pump 1-p. The high-pressure gas-liquid pump device according to claim 1, which has a small configuration.
【請求項3】密閉容器3を設けないで、各々のポンプを
連通連結する気液圧送パイプ2に液体減量機器4を接続
し、ポンプ1−2以降のパイプ巻体11の前後に各々接
続機器6を設ける請求項1または請求項2記載の高圧気
液ポンプ装置。
3. A liquid reducing device 4 is connected to a gas-liquid pressure-feeding pipe 2 which connects and connects respective pumps without providing a closed vessel 3, and connected devices are respectively provided before and after a pipe winding body 11 after the pump 1-2. The high-pressure gas-liquid pump device according to claim 1 or 2, further comprising:
【請求項4】ポンプ1として『気液圧送装置(平成10
年特許願第40971号)』または『気液ポンプ装置
(平成10年特許願第134146号)』または『気液
巻体ポンプ装置(平成10年特許願第309338
号)』を使用する請求項1または請求項2または請求項
3記載の高圧気液ポンプ装置。
4. A gas-liquid pressure feeder (Heisei 10
Patent Application No. 40971) or "Gas-Liquid Pump Device (1998 Patent Application No. 134146)" or "Gas-Liquid Roll Pump Device (1998 Patent Application No. 309338)
4. The high-pressure gas-liquid pump device according to claim 1, wherein
JP11084443A 1999-02-22 1999-02-22 High pressure gas-liquid pumping device Pending JP2000240562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11084443A JP2000240562A (en) 1999-02-22 1999-02-22 High pressure gas-liquid pumping device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11084443A JP2000240562A (en) 1999-02-22 1999-02-22 High pressure gas-liquid pumping device

Publications (1)

Publication Number Publication Date
JP2000240562A true JP2000240562A (en) 2000-09-05

Family

ID=13830753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11084443A Pending JP2000240562A (en) 1999-02-22 1999-02-22 High pressure gas-liquid pumping device

Country Status (1)

Country Link
JP (1) JP2000240562A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2576017A1 (en) * 2010-06-01 2013-04-10 Biosling AB Method, arrangement and use including a loop pump for separating carbon dioxide from gas
JP2014140834A (en) * 2013-01-24 2014-08-07 Takeshi Yoshioka Water purifier for supplying, via a gas-liquid pump, and contact-filtering water

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2576017A1 (en) * 2010-06-01 2013-04-10 Biosling AB Method, arrangement and use including a loop pump for separating carbon dioxide from gas
EP2576017A4 (en) * 2010-06-01 2014-01-01 Biosling Ab Method, arrangement and use including a loop pump for separating carbon dioxide from gas
JP2014140834A (en) * 2013-01-24 2014-08-07 Takeshi Yoshioka Water purifier for supplying, via a gas-liquid pump, and contact-filtering water

Similar Documents

Publication Publication Date Title
WO2022156262A1 (en) Low-pressure liquid intake manifold and fracturing device
AU2001287071A1 (en) Methods and apparatus for compressed gas
EP1963621A1 (en) Combined nitrogen generation system and well servicing fluid system in one power unit apparatus
CN111237286A (en) Isolated fluid pressure conversion device with linked hydraulic bag and piston
JP2000240562A (en) High pressure gas-liquid pumping device
CN112377384A (en) Controllable two-stage compression air compressor
CN212055335U (en) Isolated fluid pressure conversion device with linked hydraulic bag and piston
CN109236683A (en) It is a kind of can be according to the slag slurry pump under liquid of SEA LEVEL VARIATION
JPH0194916A (en) Dissolving method of carbon dioxide in high-pressure seawater
ES2043983T3 (en) COMPRESSED AIR TRANSPORTATION AND MIXING APPARATUS.
CN213899428U (en) Air jet vacuum pump
CN205772117U (en) A kind of novel mud oar and bulk cargo Load System
CN201068868Y (en) Turbine pump
CN115095510B (en) Diaphragm compressor
US20240151221A1 (en) Crankshaft and connecting rod assemblies for hydraulic fracturing pumps
CN212452849U (en) Sludge suction device suitable for bottom of high-fall gate
JP3404697B2 (en) Refrigeration gas-liquid pump device
CN114427367B (en) High-pressure abrasive jet cutting system and method in abandoned shaft of offshore oil production platform
CN101418909B (en) Gas recovery system and method
CN206608318U (en) A kind of high abrasion anti-return electric pump
CN2371376Y (en) Double volute oil sumersible pump
JPS6133997B2 (en)
CN105731108A (en) Slurry and bulk cargo loading system
CN212429357U (en) Double-layer pipe jet type pneumatic dredging pump
JPH11201071A (en) Gas-liquid forced feeding device