JP2000239020A - Titanium oxide for glass paste compounding - Google Patents

Titanium oxide for glass paste compounding

Info

Publication number
JP2000239020A
JP2000239020A JP11041282A JP4128299A JP2000239020A JP 2000239020 A JP2000239020 A JP 2000239020A JP 11041282 A JP11041282 A JP 11041282A JP 4128299 A JP4128299 A JP 4128299A JP 2000239020 A JP2000239020 A JP 2000239020A
Authority
JP
Japan
Prior art keywords
titanium oxide
glass
surface area
oxide powder
specific surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11041282A
Other languages
Japanese (ja)
Other versions
JP4239273B2 (en
Inventor
Shinichiro Tanaka
紳一郎 田中
Yoshinari Sawabe
佳成 沢辺
Kunio Saegusa
邦夫 三枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP04128299A priority Critical patent/JP4239273B2/en
Publication of JP2000239020A publication Critical patent/JP2000239020A/en
Application granted granted Critical
Publication of JP4239273B2 publication Critical patent/JP4239273B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a titanium oxide powder for a filler to be added to a glass material, suitable for a partition, etc., required to form on a substrate of PDP. SOLUTION: This rutile type titanium oxide powder for a glass paste compounding filler having a few aggregated particles has 0.4 μm to 10 μm primary particle diameter by SEEM photograph, 0.1 m2/g to 5 m2/g BET specific surface area and a valve obtained by dividing the primary particle diameter by the BET specific surface area of 1 to 3. This glass paste is obtained by mixing a low-melting glass powder having <=500 deg.C glass transition temperature with 1 wt.% to 80 wt.% of rutile type titanium oxide powder to give a composition and adding an organic substance to the composition. This filler for forming a plasma display panel partition rib uses the glass paste.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、プラズマディスプ
レイパネル(以下PDPと称する)の基板に形成する必
要のある隔壁等に好適な、ガラス材料に添加するフィラ
ー用の酸化チタン粉末に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a titanium oxide powder for a filler added to a glass material, which is suitable for a partition wall or the like required to be formed on a substrate of a plasma display panel (hereinafter referred to as a PDP).

【0002】[0002]

【従来の技術】PDPは,薄型軽量でかつ大画面が実現
可能なディスプレイパネルであり、今後,大画面テレビ
や壁掛けテレビ用に使用されることが期待されている。
パネルとしての現状の問題点の一つは、画面の輝度不足
であり、輝度向上のための提案が種々なされているとこ
ろである。例えば,蛍光体の塗布や隔壁形成の方法につ
いて検討がなされている。隔壁はガラス製であり、ガラ
ス粉末を成形し焼成して緻密化することにより形成され
ている。ガラス粉末にアルミナやジルコニア等の無機粉
末を充填することは従来から提案されていた。しかし、
ガラス粉末で隔壁を成形後、焼成する工程において溶融
状態となったガラスが成形された形を保つようにするの
がこれら無機粉末添加の目的であった。ガラス粉末で成
形された隔壁の反射率を向上させることができれば、隔
壁表面に塗布された蛍光体から発せられた光を効率良く
表示に使用することができ、実質的に画面の明るさの向
上を図ることができる。アルミナやジルコニアより屈折
率の高い酸化チタンを隔壁のガラスのフィラーとして使
用し、隔壁において蛍光体よりパネル後方に発せられた
光を高屈折率のフィラー粒子によりパネル前方へ反射お
よび散乱させることにより、輝度向上が図れる可能性が
ある。反射材として酸化チタンを使用する考えは、例え
ば、特開平8−321257号公報に「蛍光体の発光を
有効にパネル前面に導く目的で、逆に隔壁を白くした方
が良い場合もある。この場合には、耐火性の白色顔料と
してチタニア等が用いられる。」との開示があるが、酸
化チタン(チタニア)の粉末物性については検討されて
なかった。また、隔壁を作製した後、微粒の酸化チタン
を塗布する方法が特開平8−321257号公報に開示
されているが、隔壁を製造する工程とは別に隔壁表面に
塗布する工程が必要であった。
2. Description of the Related Art A PDP is a thin and lightweight display panel capable of realizing a large screen, and is expected to be used for a large-screen television or a wall-mounted television in the future.
One of the current problems with panels is lack of screen brightness, and various proposals for improving brightness have been made. For example, a method of applying a phosphor and forming a partition has been studied. The partition walls are made of glass, and are formed by molding, firing, and densifying glass powder. Filling glass powder with an inorganic powder such as alumina or zirconia has been conventionally proposed. But,
The purpose of the addition of these inorganic powders was to keep the glass in a molten state in the step of firing after molding the partition walls with the glass powder. If the reflectance of the partition wall formed of glass powder can be improved, the light emitted from the phosphor applied to the partition wall surface can be efficiently used for display, thereby substantially improving the brightness of the screen. Can be achieved. By using titanium oxide having a higher refractive index than alumina or zirconia as a filler for the glass of the partition wall, light emitted from the phosphor behind the panel at the partition wall is reflected and scattered by the high refractive index filler particles toward the front of the panel, Brightness may be improved. The idea of using titanium oxide as a reflecting material is described in, for example, Japanese Patent Application Laid-Open No. Hei 8-32257. "In some cases, it is better to make the partition walls white in order to effectively guide the light emission of the phosphor to the front surface of the panel. In such a case, titania or the like is used as a fire-resistant white pigment. ”However, the powder physical properties of titanium oxide (titania) have not been studied. Japanese Patent Application Laid-Open No. H8-32257 discloses a method of applying fine titanium oxide after forming a partition, but requires a step of coating the partition wall surface separately from the step of manufacturing the partition. .

【0003】[0003]

【発明が解決しようとする課題】ガラス粉末で成形され
た隔壁の反射率を向上させることができれば、隔壁表面
に塗布された蛍光体から発せられた光を効率良く表示に
使用することができ、実質的に画面の明るさの向上を図
ることができる。アルミナやジルコニアより屈折率の高
い酸化チタンを隔壁のガラスのフィラーとして使用する
ことにより、隔壁において蛍光体よりパネル後方に発せ
られた光を高屈折率のフィラー粒子によりパネル前方へ
反射および散乱させることにより、輝度向上に寄与する
可能性が想定される。しかし従来の市販酸化チタン粉末
は、ガラスフィラーとして開発されたものではなく、粉
末特性において不十分なものであった。ガラス粉末は3
〜5μm程度の粒径を有しているので、従来の0.2μ
m程度の微粒は混合する場合に粒径差があり過ぎ、さら
に凝集粒が多く不適であった。本発明の目的は、PDP
の基板に形成する必要のある隔壁等に好適な、ガラス材
料に添加するフィラー用の酸化チタン粉末を提供するこ
とにある。
If the reflectance of the partition wall formed of glass powder can be improved, the light emitted from the phosphor applied to the partition wall surface can be efficiently used for display. It is possible to substantially improve the brightness of the screen. By using titanium oxide, which has a higher refractive index than alumina or zirconia, as a filler for the glass of the partition walls, light emitted from the phosphor behind the panel at the partition walls is reflected and scattered to the front of the panel by high-refractive-index filler particles. Thus, it is assumed that there is a possibility of contributing to an improvement in luminance. However, conventional commercially available titanium oxide powder has not been developed as a glass filler and has insufficient powder properties. Glass powder is 3
Since it has a particle size of about 5 μm, the conventional 0.2 μm
Fine particles having a particle size of about m had an excessively large difference in particle size when mixed, and were further unsuitable because there were many aggregated particles. An object of the present invention is to provide a PDP
Another object of the present invention is to provide a titanium oxide powder for a filler to be added to a glass material, which is suitable for a partition wall or the like that needs to be formed on a substrate.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために鋭意検討の結果、ある特定の粒子形状
が多面体である酸化チタンがガラス添加試験における色
の評価での白色度が高く、目的のプラズマディスプレイ
パネル隔壁リブ形成用ガラスペーストに好適なフィラー
材として用いることができることを見出し、本発明を完
成させるに至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, it has been found that titanium oxide having a specific particle shape of polyhedron has a whiteness in a color evaluation in a glass addition test. And found that it can be used as a filler material suitable for the desired glass paste for forming a rib of a plasma display panel partition rib, and completed the present invention.

【0005】すなわち、本発明は下記の(1)〜(3)
を提供する。 (1)SEM写真による一次粒径が0.4μm以上10
μm以下であり、BET比表面積が0.1m2/g以上5
2/g以下であり、一次粒径をBET比表面積から算
出した粒径で除した値が1以上3以下である凝集粒子の
少ないガラスペースト配合フィラー用のルチル型酸化チ
タン粉末。 (2)ガラス転移点が500℃以下である低融点ガラス
粉末に上記(1)のルチル型酸化チタン粉末を1重量%
以上80重量%以下配合してなる組成物に有機物を加え
て混合したガラスペースト。 (3)上記(2)のガラスペーストを用いるプラズマデ
ィスプレイパネル隔壁リブ形成用フィラー材。
That is, the present invention provides the following (1) to (3)
I will provide a. (1) Primary particle size of 0.4 μm or more by SEM photograph 10
μm or less, and the BET specific surface area is 0.1 m 2 / g or more.
A rutile-type titanium oxide powder for a glass paste-containing filler having a small amount of agglomerated particles, having a value of m 2 / g or less and a value obtained by dividing a primary particle size by a particle size calculated from a BET specific surface area is 1 or more and 3 or less. (2) 1% by weight of the rutile type titanium oxide powder of (1) above to a low melting glass powder having a glass transition point of 500 ° C. or lower.
A glass paste obtained by adding an organic substance to a composition containing not less than 80% by weight and mixing. (3) A filler material for forming ribs of a plasma display panel using the glass paste of (2).

【0006】[0006]

【発明の実施の形態】以下本発明について詳細に説明す
る。粒子形状については従来の球状ではなく、反射や散
乱に適したが多面体形状が好適である。ガラス粉末との
混合には粒径差が少ない、SEM写真による一次粒径が
が0.4μm以上10μm以下の範囲が好適であり、好ま
しくは0.4〜5μmの範囲である。0.4μm未満ま
たは10μmを超える場合はガラス粉末との混合が適切
に行える。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. The particle shape is not a conventional spherical shape but is suitable for reflection and scattering, but a polyhedral shape is preferred. For mixing with the glass powder, the difference in particle size is small, and the primary particle size in the SEM photograph is preferably in the range of 0.4 μm to 10 μm, and more preferably in the range of 0.4 to 5 μm. If it is less than 0.4 μm or more than 10 μm, mixing with glass powder can be performed appropriately.

【0007】粒子が大きく、かつ粒子表面の凹凸が少な
いことを示す低いBET比表面積範囲、すなわち0.1
2/g以上5m2/g以下が、好ましく0.2〜4m2
/gが好適である。BET比表面積から算出した粒径が
10μmの場合のBET比表面積は0.1m2/gであ
るのでBET比表面積は0.1m2/g以上である。B
ET比表面積から算出した粒径が0.4μmでSEM写
真による一次粒径がをBET比表面積から算出した一次
粒径で除した値が1.5の場合のBET比表面積は5m
2/gであるのでBET比表面積は5m2/g以下であ
る。
[0007] A low BET specific surface area range, which indicates that the particles are large and the particle surface has few irregularities, ie, 0.1
m 2 / g or more 5 m 2 / g or less, preferably 0.2~4M 2
/ G is preferred. When the particle diameter calculated from the BET specific surface area is 10 μm, the BET specific surface area is 0.1 m 2 / g, so the BET specific surface area is 0.1 m 2 / g or more. B
When the particle diameter calculated from the ET specific surface area is 0.4 μm and the primary particle diameter in the SEM photograph divided by the primary particle diameter calculated from the BET specific surface area is 1.5, the BET specific surface area is 5 m
Since it is 2 / g, the BET specific surface area is 5 m 2 / g or less.

【0008】SEM写真による一次粒径がをBET比表
面積から算出した一次粒径で除した値が1以上3以下、
好ましくは1以上1.5以下である凝集粒子の少ない酸
化チタン粉末が好適である。BET比表面積から粒径を
算出するには、6÷4.25(ルチン型酸化チタンの理
論密度で単位はg/cm3)÷BET比表面積(m2
g)によりもとめることができる。凝集粒子が多い場合
は粒子の面同士がつながっているため表面積が小さくな
り、その結果SEM写真による一次粒径をBET比表面
積から算出した粒径で除した値が1より小さくなる。隔
壁を形成した場合の隔壁した場合の隔壁中の欠陥の原因
となる。一方、粒子形状が不定形で面に欠陥が多く、凹
凸が多い場合はSEM写真による一次粒径をBET比表
面積から算出した粒径で除した値は大きくなり、3以下
が好ましく、1.5以下がさらに好ましい。粒子表面に
欠陥が多く凹凸が多い場合は、本願が開示する光の反射
効果が十分発現しない。
The value obtained by dividing the primary particle size in the SEM photograph by the primary particle size calculated from the BET specific surface area is 1 to 3;
Titanium oxide powder having a small number of agglomerated particles, preferably 1 or more and 1.5 or less, is suitable. To calculate the particle size from the BET specific surface area, 6 ÷ 4.25 (the theoretical density of rutin-type titanium oxide, the unit is g / cm 3 ) ÷ BET specific surface area (m 2 /
g). When there are many agglomerated particles, the surfaces of the particles are connected to each other, so that the surface area is reduced. As a result, the value obtained by dividing the primary particle size in the SEM photograph by the particle size calculated from the BET specific surface area is smaller than 1. When the partition is formed, the partition may cause a defect in the partition. On the other hand, when the particle shape is irregular, the surface has many defects, and when there are many irregularities, the value obtained by dividing the primary particle size in the SEM photograph by the particle size calculated from the BET specific surface area becomes large, and is preferably 3 or less, and 1.5 or less. The following are more preferred. When the particle surface has many defects and many irregularities, the light reflection effect disclosed in the present application is not sufficiently exhibited.

【0009】粒子形状については従来の球状ではなく、
反射や散乱に適したが多面体形状が好適である。多面体
形状の粒子はルチル型酸化チタンの単結晶よりなる粒子
により実現される。単結晶粒子は原子の配列に起因する
結晶面が粒子表面に現れ、粒子に多面体形状を賦与す
る。ルチル単結晶の形状は直方体を基本とするので、面
の数は6面以上である。面の数が30面を超えると形状
が球状に近くなり、光の反射が球状粒子と変わらなくな
る。
[0009] The particle shape is not a conventional spherical shape,
Although suitable for reflection and scattering, a polyhedral shape is preferred. Polyhedral shaped particles are realized by particles made of a single crystal of rutile-type titanium oxide. In a single crystal particle, a crystal plane resulting from the arrangement of atoms appears on the particle surface, giving the particle a polyhedral shape. Since the shape of the rutile single crystal is basically a rectangular parallelepiped, the number of faces is six or more. If the number of faces exceeds 30, the shape becomes nearly spherical, and light reflection does not differ from spherical particles.

【0010】本願酸化チタン粉末は、次のようにして製
造することができる。例えば、硫酸法の酸化チタンの製
造工程で生じるメタチタン酸スラリーを乾燥させて得ら
れた粉末や、四塩化チタン水溶液の中和や加水分解によ
り生じるオルトチタン酸等、加熱により酸化チタンに転
換しうるチタン化合物を、塩化水素を1体積%以上、望
ましくは10体積%以上含む雰囲気中で600〜120
0℃、望ましくは800〜1100℃の温度で、10分
以上6時間以下焼成することにより、本願の酸化チタン
粉末を得ることができる
The titanium oxide powder of the present invention can be manufactured as follows. For example, a powder obtained by drying a metatitanic acid slurry generated in a titanium oxide manufacturing process of a sulfuric acid method, or orthotitanic acid generated by neutralization or hydrolysis of an aqueous solution of titanium tetrachloride can be converted to titanium oxide by heating. The titanium compound is contained in an atmosphere containing 1% by volume or more, preferably 10% by volume or more of hydrogen chloride in an amount of 600 to 120%.
The titanium oxide powder of the present invention can be obtained by baking at 0 ° C., preferably 800 to 1100 ° C. for 10 minutes or more and 6 hours or less.

【0011】焼成にはガス雰囲気が制御できる炉であれ
ば、工業的に使用される、バッチ式焼成炉、トンネル
炉、ロータリーキルンが使用できるが、炉材は塩化水素
ガスに耐えられる材質でなければならない。得られた粒
子が大きい場合は、微細なルチル型酸化チタン粉末を該
焼成用原料に混合することにより、微細なルチル型酸化
チタン粉末の粒子が種結晶として作用し、粒径を小さく
することができる。微細なルチル型酸化チタン粉末の添
加は、微細なルチル型酸化チタン粉末を水に分散させた
スラリーを作製し、該四塩化チタン水溶液に添加する
か、またはメタチタン酸スラリーに添加することにより
行え、添加量が多いほど粒径は小さくなる。
As long as the furnace can control the gas atmosphere, industrially used batch-type firing furnaces, tunnel furnaces, and rotary kilns can be used, but the furnace material must be a material that can withstand hydrogen chloride gas. No. When the obtained particles are large, the fine rutile-type titanium oxide powder is mixed with the raw material for firing, whereby the fine rutile-type titanium oxide powder particles act as seed crystals to reduce the particle size. it can. The addition of the fine rutile-type titanium oxide powder can be performed by preparing a slurry in which the fine rutile-type titanium oxide powder is dispersed in water and adding the slurry to the titanium tetrachloride aqueous solution or the metatitanic acid slurry, The larger the amount added, the smaller the particle size.

【0012】隔壁形成用ガラスペースト中への酸化チタ
ン粉末の混合方法は特に限定されないが、酸化チタン粉
末が均一かつ十分分散した状態で含有されている必要が
あり、バーティカルグラニュレータやレディゲミキサー
等の高速攪拌翼が装備された混合機、または、ボールミ
ル等メディアを用いる混合方法により、乾式または水や
有機溶媒を加えた湿式による混合を行うことができる。
The method of mixing the titanium oxide powder into the glass paste for forming the partition walls is not particularly limited. However, it is necessary that the titanium oxide powder is contained in a uniform and sufficiently dispersed state, and it is necessary to use a vertical granulator, a Loedige mixer, or the like. Drying or wet mixing with addition of water or an organic solvent can be performed by a mixer equipped with a high-speed stirring blade or a mixing method using a medium such as a ball mill.

【0013】[0013]

【実施例】以下に本発明の実施例を示すが、本発明はこ
れに限定されるものではない。
EXAMPLES Examples of the present invention will be described below, but the present invention is not limited to these examples.

【0014】なお、本発明における各種の測定は次のよ
うにした行った。 1.SEM写真による一次粒径 SEM(走査型電子顕微鏡、日本電子株式会社製:T−
220)を使用して粉末の写真を撮影し、その写真から
5ないし10個の粒子を選び出して大きさを測定し、そ
の平均値を求めた。 2.BET比表面積 マイクロメリティックス社製フローソーブII2300型
を使用してBET1点法により測定した。 3.ガラス添加試験における色の評価 ミノルタ株式会社製分光測定計CM−2002型を使用
してL*、a*、b*を測定した。
Various measurements in the present invention were performed as follows. 1. Primary particle size by SEM photograph SEM (scanning electron microscope, manufactured by JEOL Ltd .: T-
220), a photograph of the powder was taken, 5 to 10 particles were selected from the photograph, the size was measured, and the average value was determined. 2. BET Specific Surface Area BET specific surface area was measured by BET one-point method using Flowsorb II2300 manufactured by Micromeritics. 3. Evaluation of Color in Glass Addition Test L *, a *, and b * were measured using a spectrometer CM-2002 manufactured by Minolta Co., Ltd.

【0015】実施例1 酸化チタンを以下の方法で作製した。水1000gに四
塩化チタン500gを攪拌しながら滴下して四塩化チタ
ン水溶液とした。堺化学工業製チタニアSTR−60N
(商品名)を4g秤取し、塩酸を加えてpHを2に調整
した水200gに加え、超音波ホモジナイザーにより2
0kHzの超音波を45Wの出力で2分照射して分散さ
せた後、該分散液を四塩化チタン水溶液に添加した。種
結晶として添加したSTR−60Nは四塩化チタン50
0gから生成するチタニア211gを100重量部とし
て1.9重量部に該当する。水2000gを入れた反応
用容器にpH電極を攪拌機を取り付け、チューブポンプ
により該四塩化チタン水溶液を滴下するとともに、pH
電極をpH=4に設定したpHコントローラに接続して
別のチューブポンプを制御し、28重量%アンモニア水
を反応容器に滴下してpH=4に制御した中和析出反応
を行った。該四塩化チタン水溶液を全量送液して反応を
終了した後1時間攪拌を続けて放置し熟成を行い、28
重量%アンモニア水を滴下してpHを8に上げ、さらに
3時間程度攪拌を続けて熟成を行った。使用した28重
量%アンモニア水は662gであった。中和析出後の反
応液は白色の析出物が分散した状態であり、濾紙を使用
して吸引濾過により析出物のケーキを得、その上に水を
注いで吸引濾過を行うことによりケーキを洗浄した。得
られた洗浄ケーキを130℃に設定した乾燥機により8
時間乾燥させ、乾燥ケーキを得た。得られた乾燥ケーキ
を石英ガラス製のボートに仕込み、内容積20Lの不透
明石英ガラス製の炉芯管を有する炉により焼成した。
Example 1 Titanium oxide was produced by the following method. 500 g of titanium tetrachloride was dropped into 1000 g of water with stirring to obtain an aqueous solution of titanium tetrachloride. Titania STR-60N manufactured by Sakai Chemical Industry
4 g of (trade name) was weighed, and added to 200 g of water adjusted to pH 2 by adding hydrochloric acid, and 2 g was added with an ultrasonic homogenizer.
After dispersing by radiating an ultrasonic wave of 0 kHz at an output of 45 W for 2 minutes, the dispersion was added to an aqueous solution of titanium tetrachloride. STR-60N added as seed crystal is titanium tetrachloride 50
This corresponds to 1.9 parts by weight, assuming that 211 g of titania produced from 0 g is 100 parts by weight. A stirrer was attached to the pH electrode in a reaction vessel containing 2000 g of water, and the titanium tetrachloride aqueous solution was dropped by a tube pump.
The electrode was connected to a pH controller set to pH = 4, another tube pump was controlled, and 28% by weight aqueous ammonia was dropped into the reaction vessel to perform a neutralization precipitation reaction at pH = 4. After the entire amount of the titanium tetrachloride aqueous solution was fed to complete the reaction, stirring was continued for 1 hour and the mixture was left to ripen.
The pH was raised to 8 by dropwise addition of aqueous ammonia by weight, and stirring was continued for about 3 hours for aging. The used 28% by weight aqueous ammonia was 662 g. The reaction solution after the neutralization precipitation is a state in which a white precipitate is dispersed, and a cake of the precipitate is obtained by suction filtration using a filter paper, and the cake is washed by pouring water thereon and performing suction filtration. did. The obtained washed cake was dried by a dryer set at 130 ° C. for 8 hours.
After drying for an hour, a dried cake was obtained. The obtained dried cake was charged into a quartz glass boat and fired in a furnace having an inner volume of 20 L made of opaque quartz glass.

【0016】炉芯管にはガス導入管と排気管を有する蓋
を取り付け、雰囲気制御を可能とした。3L/minの
空気を流しながら5℃/minで200℃まで昇温し、
昇温速度を2.5℃/minに下げて600℃まで昇温
し、導入ガスを空気1.4L/min+HClガス0.
6L/minに切り替えて昇温速度を5℃/minに上
げ、導入ガスは導入開始10分後に空気0.7L/mi
n+HClガス0.3L/minに流量を下げ、900
℃まで昇温した。900℃で1時間保持した後導入ガス
を空気3L/minに切り替え、5℃/minの速度で
800℃まで温度を下げ、その後は炉の放熱が追いつか
ず5℃/minで降温できなくなったので自然冷却し
た。得られた酸化チタン粉末は粒子径の揃った多面体形
状の粒子であり、SEM写真から得られた平均粒径は
0.4μmであった。BET比表面積は3.7m2/g
であった。文献値のルチルの密度4.25g/cm3
BET比表面積から粒径を算出すると0.38μmとな
り、(SEM写真による平均粒径)/(BET比表面積
から算出した粒径)は1.1となる。
A lid having a gas introduction pipe and an exhaust pipe was attached to the furnace core tube to control the atmosphere. The temperature was raised to 200 ° C. at 5 ° C./min while flowing air at 3 L / min,
The heating rate was lowered to 2.5 ° C./min and the temperature was raised to 600 ° C., and the introduced gas was 1.4 L / min of air + 0.1% of HCl gas.
Switch to 6 L / min and raise the temperature rise rate to 5 ° C./min.
Reduce the flow rate to 0.3 L / min of n + HCl gas, 900
The temperature was raised to ° C. After holding at 900 ° C. for 1 hour, the introduced gas was switched to air at 3 L / min, and the temperature was lowered to 800 ° C. at a rate of 5 ° C./min. After that, the heat radiation of the furnace could not catch up and the temperature could not be lowered at 5 ° C./min. Naturally cooled. The obtained titanium oxide powder was polyhedral particles having a uniform particle diameter, and the average particle diameter obtained from the SEM photograph was 0.4 μm. The BET specific surface area is 3.7 m 2 / g
Met. The calculated particle size from the literature value of rutile density 4.25 g / cm 3 and BET specific surface area was 0.38 μm, and (average particle size by SEM photograph) / (particle size calculated from BET specific surface area) was 1.1. Becomes

【0017】ガラス添加試験を以下のように行った。得
られた酸化チタン粉末0.005gと、ガラス転移点が
420℃と低い旭硝子製ガラス粉末ASF−1340
(商品名)0.045gに水10滴を加えて乳鉢で混合
し、アルミナ製基板上に塗布した。自然乾燥させた後、
昇温速度10℃/分で空気中530℃で5分間焼成し
た。ガラスを塗布した面の色をミノルタ株式会社製分光
測色計CM−2002型を使用して測定した結果、L*
=91.1、a*=−0.6、b*=0.8であり、白
色度が高いことを示す高いL*の値と、色が付いていな
いことを示す低いa*およびb*の値が得られた。
A glass addition test was performed as follows. 0.005 g of the obtained titanium oxide powder and glass powder ASF-1340 made by Asahi Glass having a low glass transition point of 420 ° C.
(Trade name) 10 drops of water was added to 0.045 g, mixed in a mortar, and applied on an alumina substrate. After air drying,
It was calcined at 530 ° C. for 5 minutes in air at a rate of 10 ° C./min. As a result of measuring the color of the surface coated with glass using a spectrophotometer CM-2002 manufactured by Minolta Co., Ltd., L *
= 91.1, a * =-0.6, b * = 0.8, high L * value indicating high whiteness and low a * and b * indicating no color Was obtained.

【0018】実施例2 酸化チタンを以下の方法で作製した。水103gに四塩
化チタン52gを攪拌しながら滴下して四塩化チタン水
溶液とした。堺化学工業製チタニアSTR−60N(商
品名)を0.4g秤取し、塩酸を加えてpHを2に調整
した水20gに加え、超音波ホモジナイザーにより20
kHzの超音波を45Wの出力で2分照射して分散させ
た後、該分散液1gを四塩化チタン水溶液に添加した。
該分散液1g中に存在するSTR−60Nは0.02g
となり、四塩化チタン52gから生成するチタニア22
gを100重量部として0.1重量部に該当し、種結晶
として添加した。水200gを入れた反応用容器にpH
電極を攪拌機を取り付け、チューブポンプにより該四塩
化チタン水溶液を滴下するとともに、pH電極をpH=
4に設定したpHコントローラに接続して別のチューブ
ポンプを制御し、28wt%アンモニア水を反応容器に
滴下してpH=4に制御した中和析出反応を行った。該
四塩化チタン水溶液を全量送液して反応を終了した後1
時間攪拌を続けて放置し熟成を行い、28重量%アンモ
ニア水を滴下してpHを8に上げ、さらに3時間程度攪
拌を続けて熟成を行った。中和析出後の反応液は白色の
析出物が分散した状態であり、濾紙を使用して吸引濾過
により析出物のケーキを得、その上に水を注いで吸引濾
過を行うことによりケーキを洗浄した。得られた洗浄ケ
ーキを130℃に設定した乾燥機により2時間乾燥さ
せ、乾燥ケーキを得た。得られた乾燥ケーキをアルミナ
製のボートに仕込み、内径30mmの透明石英ガラス製
の炉芯管を有する炉により焼成した。
Example 2 Titanium oxide was produced by the following method. 52 g of titanium tetrachloride was added dropwise to 103 g of water while stirring to obtain an aqueous solution of titanium tetrachloride. 0.4 g of Titania STR-60N (trade name) manufactured by Sakai Chemical Industry Co., Ltd. was weighed, added to 20 g of water adjusted to pH 2 by adding hydrochloric acid, and added to an ultrasonic homogenizer.
After radiating ultrasonic waves of kHz at an output of 45 W for 2 minutes to disperse, 1 g of the dispersion was added to an aqueous solution of titanium tetrachloride.
STR-60N present in 1 g of the dispersion is 0.02 g
And titania 22 produced from 52 g of titanium tetrachloride
g corresponded to 0.1 part by weight based on 100 parts by weight, and was added as a seed crystal. PH into a reaction vessel containing 200 g of water
The electrode was equipped with a stirrer, and the aqueous solution of titanium tetrachloride was dropped by a tube pump.
Another tube pump was controlled by connecting to a pH controller set at 4, and 28 wt% ammonia water was dropped into the reaction vessel to perform a neutralization precipitation reaction at pH = 4. After completion of the reaction by sending the whole amount of the titanium tetrachloride aqueous solution, 1
The mixture was left to stir for a long time to ripen it, and the pH was raised to 8 by dropping 28% by weight aqueous ammonia, and the ripening was continued for about 3 hours. The reaction solution after the neutralization precipitation is a state in which a white precipitate is dispersed, and a cake of the precipitate is obtained by suction filtration using a filter paper, and the cake is washed by pouring water thereon and performing suction filtration. did. The obtained washed cake was dried with a dryer set at 130 ° C. for 2 hours to obtain a dried cake. The obtained dried cake was charged into an alumina boat and fired in a furnace having a 30 mm inner diameter transparent quartz glass furnace core tube.

【0019】炉芯管にはガス導入管を有する蓋と排気管
を有する蓋を両端にそれぞれ取り付け、雰囲気制御を可
能とた。100mL/minの空気を流しながら10℃
/minで600℃まで昇温し、導入ガスを空気70m
L/min+HClガス30mL/minに切り替えて
950℃まで昇温した。950℃で30分保持した後導
入ガスを空気100mL/minに切り替え、10℃/
minの速度で800℃まで温度を下げ、その後は炉の
放熱が追いつかず10℃/minで降温できなくなった
ので自然冷却した。得られた酸化チタン粉末は粒子径の
揃った多面体形状の粒子であり、SEM写真から得られ
た平均粒径は1.2μmであった。BET比表面積は
1.2m2/gであった。文献値のルチルの密度4.2
5g/cm3とBET比表面積から粒径を算出すると
1.2μmとなり、(SEM写真による平均粒径)/
(BET比表面積から算出した粒径)は1.0となる。
A lid having a gas introduction pipe and a lid having an exhaust pipe were attached to both ends of the furnace core tube, respectively, so that the atmosphere could be controlled. 10 ° C while flowing 100mL / min air
/ Min at 600 ° C / min.
The temperature was increased to 950 ° C. by switching to L / min + HCl gas 30 mL / min. After holding at 950 ° C. for 30 minutes, the introduced gas was switched to air at 100 mL / min and 10 ° C./min.
The temperature was lowered to 800 ° C. at a rate of min, and thereafter the temperature of the furnace could not be lowered at 10 ° C./min because the heat radiation of the furnace could not catch up. The obtained titanium oxide powder was polyhedral particles having a uniform particle diameter, and the average particle diameter obtained from the SEM photograph was 1.2 μm. The BET specific surface area was 1.2 m 2 / g. Documented rutile density 4.2
When the particle size was calculated from 5 g / cm 3 and the BET specific surface area, it was 1.2 μm, (average particle size by SEM photograph) /
(The particle size calculated from the BET specific surface area) is 1.0.

【0020】ガラス添加試験を実施例1と同様に行い、
L*=92.6、a*=−0.5、b*=0.2とな
り、白色度が高いことを示す高いL*の値と、色が付い
ていないことを示す低いa*およびb*の値が得られ
た。
A glass addition test was performed in the same manner as in Example 1,
L * = 92.6, a * = − 0.5, b * = 0.2, high L * value indicating high whiteness, low a * and b indicating no color The value of * was obtained.

【0021】比較例1 市販のルチル型酸化チタン粉末である石原産業株式会社
製CR−EL(商品名)(BET比表面積は6.8m2
/g、BET比表面積から算出した粒径は0.21μ
m、SEMによる粒径0.2μm)を、ガラス添加試験
を実施例1と同様に行い、L*=89.4、a*=−
0.5、b*=3.2の値が得られた。
Comparative Example 1 A commercially available rutile type titanium oxide powder, CR-EL (trade name) manufactured by Ishihara Sangyo Co., Ltd. (BET specific surface area: 6.8 m 2
/ G, the particle size calculated from the BET specific surface area is 0.21 μm.
m, particle size 0.2 μm by SEM), the glass addition test was performed in the same manner as in Example 1, L * = 89.4, a * = −
A value of 0.5, b * = 3.2 was obtained.

【0022】[0022]

【表1】 粒子形状 BET BET径 SEM粒径 / (m2/g) (μm) (μm) 実施例1 多面体 3.7 0.42 0.4 1.1 実施例2 多面体 1.2 1.2 1 1.0 比較例1 球状 6.8 0.2 0.2 1.0 Table 1 Particle shape BET BET diameter SEM particle diameter / (m 2 / g) (μm) (μm) Example 1 Polyhedron 3.7 0.42 0.4 1.1 Example 2 Polyhedron 1.2 2 1 1.0 Comparative Example 1 Spherical 6.8 0.2 0.2 0.2 1.0

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【発明の効果】本発明によれば、プラズマディスプレイ
パネル隔壁リブ形成用ガラスペーストに好適なフィラー
材として用いることができる酸化チタン粉末を提供でき
る。
According to the present invention, it is possible to provide a titanium oxide powder which can be used as a filler material suitable for a glass paste for forming ribs of plasma display panel partition ribs.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三枝 邦夫 茨城県つくば市北原6 住友化学工業株式 会社内 Fターム(参考) 4G031 AA11 BA01 CA01 CA04 GA01 GA03 4G047 CA02 CB05 CC03 CD03  ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Kunio Saegusa 6 Kitahara, Tsukuba, Ibaraki Sumitomo Chemical Co., Ltd. F-term (reference) 4G031 AA11 BA01 CA01 CA04 GA01 GA03 4G047 CA02 CB05 CC03 CD03

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】SEM写真による一次粒径が0.4μm以
上10μm以下であり、BET比表面積が0.1m2/g
以上5m2/g以下であり、一次粒径をBET比表面積
から算出した粒径で除した値が1以上3以下である凝集
粒子の少ないガラスペースト配合フィラー用のルチル型
酸化チタン粉末。
(1) a primary particle size of 0.4 μm or more and 10 μm or less in a SEM photograph, and a BET specific surface area of 0.1 m 2 / g;
Above 5 m 2 / g or less, rutile titanium oxide powder of primary particle size divided by the particle diameter calculated from the BET specific surface area of 1 to 3 for less small glass paste blend filler aggregation particles.
【請求項2】粒子が多面体形状である請求項1記載のル
チル型酸化チタン粉末。
2. The rutile-type titanium oxide powder according to claim 1, wherein the particles have a polyhedral shape.
【請求項3】SEM写真による一次粒径が5μm以下で
あり、BET比表面積が0.2m2/g以上である請求
項1記載のルチル型酸化チタン粉末。
3. The rutile-type titanium oxide powder according to claim 1, which has a primary particle size of 5 μm or less and a BET specific surface area of 0.2 m 2 / g or more in SEM photograph.
【請求項4】SEM写真による一次粒径をBET比表面
積から算出した一次粒径で除した値が1.5以下である
請求項1記載のルチル型酸化チタン粉末。
4. The rutile-type titanium oxide powder according to claim 1, wherein the value obtained by dividing the primary particle size in the SEM photograph by the primary particle size calculated from the BET specific surface area is 1.5 or less.
【請求項5】ガラス転移点が500℃以下である低融点
ガラス粉末に請求項1のルチル型酸化チタン粉末を1重
量%以上80重量%以下配合してなる組成物に有機物を
加えて混合したガラスペースト。
5. A composition comprising a low melting point glass powder having a glass transition point of 500 ° C. or lower and the rutile type titanium oxide powder of claim 1 in an amount of 1% by weight to 80% by weight, and an organic substance is added and mixed. Glass paste.
【請求項6】請求項5記載のガラスペーストを用いるプ
ラズマディスプレイパネル隔壁リブ形成用フィラー材。
6. A filler material for forming ribs of a plasma display panel using the glass paste according to claim 5.
JP04128299A 1999-02-19 1999-02-19 Rutile type titanium oxide powder for filler containing glass paste, glass paste and filler material for ribs for plasma display panel partition Expired - Fee Related JP4239273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04128299A JP4239273B2 (en) 1999-02-19 1999-02-19 Rutile type titanium oxide powder for filler containing glass paste, glass paste and filler material for ribs for plasma display panel partition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04128299A JP4239273B2 (en) 1999-02-19 1999-02-19 Rutile type titanium oxide powder for filler containing glass paste, glass paste and filler material for ribs for plasma display panel partition

Publications (2)

Publication Number Publication Date
JP2000239020A true JP2000239020A (en) 2000-09-05
JP4239273B2 JP4239273B2 (en) 2009-03-18

Family

ID=12604102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04128299A Expired - Fee Related JP4239273B2 (en) 1999-02-19 1999-02-19 Rutile type titanium oxide powder for filler containing glass paste, glass paste and filler material for ribs for plasma display panel partition

Country Status (1)

Country Link
JP (1) JP4239273B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001072418A (en) * 1999-06-30 2001-03-21 Sumitomo Chem Co Ltd Production of magnesium titanate powder
WO2004063431A1 (en) 2003-01-09 2004-07-29 Fujikura Ltd. Titanium oxide grain, process and apparatus for producing the same, and method of treating with the titanium oxide
JP2006052099A (en) * 2004-08-10 2006-02-23 Fujikura Ltd Titanium oxide particle, method for producing the same, and utilization of the particle
JP2011148697A (en) * 2011-04-01 2011-08-04 Fujikura Ltd Method for evaluating crystallinity of titanium oxide particle, and method for measuring surface defect density of the same particle
CN109476501A (en) * 2016-06-29 2019-03-15 住友大阪水泥股份有限公司 Titanium particles and the Titanium particles dispersion liquid and cosmetic preparation for using it
WO2019131833A1 (en) * 2017-12-28 2019-07-04 住友大阪セメント株式会社 Titanium oxide powder, and dispersion and cosmetic using same
EP3733607A4 (en) * 2017-12-28 2021-09-29 Sumitomo Osaka Cement Co., Ltd. Titanium oxide powder, and dispersion liquid and cosmetic using said powder
EP3733608A4 (en) * 2017-12-28 2021-09-29 Sumitomo Osaka Cement Co., Ltd. Titanium oxide powder, and dispersion liquid and cosmetic using said powder

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001072418A (en) * 1999-06-30 2001-03-21 Sumitomo Chem Co Ltd Production of magnesium titanate powder
WO2004063431A1 (en) 2003-01-09 2004-07-29 Fujikura Ltd. Titanium oxide grain, process and apparatus for producing the same, and method of treating with the titanium oxide
JP2006052099A (en) * 2004-08-10 2006-02-23 Fujikura Ltd Titanium oxide particle, method for producing the same, and utilization of the particle
JP2011148697A (en) * 2011-04-01 2011-08-04 Fujikura Ltd Method for evaluating crystallinity of titanium oxide particle, and method for measuring surface defect density of the same particle
US10717658B2 (en) 2016-06-29 2020-07-21 Sumitomo Osaka Cement Co., Ltd. Titanium oxide particles, and titanium oxide particle dispersion and cosmetics using same
CN109476501A (en) * 2016-06-29 2019-03-15 住友大阪水泥股份有限公司 Titanium particles and the Titanium particles dispersion liquid and cosmetic preparation for using it
CN109476501B (en) * 2016-06-29 2021-11-09 住友大阪水泥股份有限公司 Titanium oxide particles, and titanium oxide particle dispersion and cosmetic material using same
EP3480167A4 (en) * 2016-06-29 2019-12-04 Sumitomo Osaka Cement Co., Ltd. Titanium oxide particles, and titanium oxide particle dispersion and cosmetics using same
JP2019119626A (en) * 2017-12-28 2019-07-22 住友大阪セメント株式会社 Titania powder, and dispersion liquid and cosmetics using same
EP3733607A4 (en) * 2017-12-28 2021-09-29 Sumitomo Osaka Cement Co., Ltd. Titanium oxide powder, and dispersion liquid and cosmetic using said powder
EP3733608A4 (en) * 2017-12-28 2021-09-29 Sumitomo Osaka Cement Co., Ltd. Titanium oxide powder, and dispersion liquid and cosmetic using said powder
EP3733606A4 (en) * 2017-12-28 2021-10-06 Sumitomo Osaka Cement Co., Ltd. Titanium oxide powder, and dispersion and cosmetic using same
WO2019131833A1 (en) * 2017-12-28 2019-07-04 住友大阪セメント株式会社 Titanium oxide powder, and dispersion and cosmetic using same

Also Published As

Publication number Publication date
JP4239273B2 (en) 2009-03-18

Similar Documents

Publication Publication Date Title
JP3733599B2 (en) Metal oxide powder and method for producing the same
US4851293A (en) Stabilized metallic oxides
TW550239B (en) Method of preparing high brightness, shorter persistence zinc orthosilicate phosphor
JP3980272B2 (en) Perovskite-type titanium-containing composite oxide particles, sol and production method thereof, and thin film
TWI523813B (en) Tin oxide particles and the method for preparing the same
US4820593A (en) Stabilised metallic oxides
JP5992846B2 (en) Rod-shaped magnesium hydroxide particles having a high specific surface area, rod-shaped magnesium oxide particles, and methods for producing them
JP4239273B2 (en) Rutile type titanium oxide powder for filler containing glass paste, glass paste and filler material for ribs for plasma display panel partition
JP6468457B2 (en) Titanium oxide particles and method for producing the same
JP2022553585A (en) Nano zirconium oxide powder, preparation method thereof, resulting dispersion, optical film
JPH06171928A (en) Production of magnesium oxide high in hydration resistance and high in fluidity
JP4572439B2 (en) Method for producing magnesium titanate powder
AU648605B2 (en) Stabilised metal oxides
JP5296993B2 (en) Yttrium oxide powder
JP2001072434A (en) Inorganic filler for compounding of glass paste
JP3781486B2 (en) Rare earth activated barium fluoride halide phosphor powder and method for producing the same
JPH05139703A (en) Fine particle-shaped metal oxide hydrate and production thereof
JP2746708B2 (en) Composition for paint with excellent concealing properties
US6825140B2 (en) Glass paste
JP2002060220A (en) Method for producing rutile type titanium oxide powder
JP4795753B2 (en) Method for producing particulate cobalt trioxide pigment
JPH1111947A (en) Production of antimony doped tin oxide powder and coating material containing the same
JP6952051B2 (en) Method for manufacturing infrared shielding material and tin oxide particles
JPH05139704A (en) Production of fine particle-shaped metal oxide
KR20010069213A (en) Glass paste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051205

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080125

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees