JP2000237502A - Method and device for separating water and oil - Google Patents

Method and device for separating water and oil

Info

Publication number
JP2000237502A
JP2000237502A JP4395199A JP4395199A JP2000237502A JP 2000237502 A JP2000237502 A JP 2000237502A JP 4395199 A JP4395199 A JP 4395199A JP 4395199 A JP4395199 A JP 4395199A JP 2000237502 A JP2000237502 A JP 2000237502A
Authority
JP
Japan
Prior art keywords
water
oil
hollow fiber
fiber membrane
filtration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4395199A
Other languages
Japanese (ja)
Inventor
Satoru Takeda
哲 竹田
Osami Kato
修身 加藤
Kenji Shinkawa
健二 新川
Takeshi Yoshinaga
武司 吉永
Noriaki Aoki
範昭 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP4395199A priority Critical patent/JP2000237502A/en
Publication of JP2000237502A publication Critical patent/JP2000237502A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and device for separating water and oil by which performance for removal of a water component is stabilized for a long period and also separation of water and oil is performed with a high filtering flow rate. SOLUTION: The water-containing oil is fed from a water-containing oil storage means 1 to a filtering means 2 provided with a hydrophobic porous hollow fiber membrane 22 having >=0.01 μm and <0.04 μm average pore size, and an oil component is selectively passed through from an outer wall face side of the hydrophobic porous hollow fiber membrane 22 to the inner wall face side and simultaneously a portion of the water-containing oil existing in the outer wall face side of the hydrophobic porous hollow fiber membrane 22 of the filtering means 20 is returned to the water-containing oil storage means 1, and when a filtering flow rate of the oil component lowers, the oil component permeated through the hydrophobic porous hollow fiber membrane 22 is reversibly passed through from the inner wall face side of the hydrophobic porous hollow fiber membrane 22 to the outer wall face side.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水分を含む油(含
水油)中の油分を選択的に取り出すための油水分離方法
および油水分離装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oil / water separation method and an oil / water separation apparatus for selectively extracting oil from oil containing water (hydrous oil).

【0002】[0002]

【従来の技術】水分を含む油(以下、含水油と記す)中
から油分のみを選択的に取り出す方法が、様々な産業分
野において望まれている。例えば、各種装置で使用中の
潤滑油に混入してくる水分は、装置の腐食を引き起こす
だけでなく、潤滑油の酸化劣化を促進する。また、この
ような水分は、潤滑油の粘度を増加させたり、潤滑油内
にスラッジを発生させ、潤滑不良等の装置トラブルの原
因となる。例えば、生産設備で一旦装置トラブルが発生
すると、その復旧が必要になるばかりではなく、生産性
にも影響を与えるため、水分の混入した潤滑油からの水
分除去は非常に重要である。
2. Description of the Related Art Various industrial fields have demanded a method for selectively extracting only oil from oil containing water (hereinafter referred to as water-containing oil). For example, moisture mixed into lubricating oil used in various devices not only causes corrosion of the device but also promotes oxidative deterioration of the lubricating oil. Further, such moisture increases the viscosity of the lubricating oil or generates sludge in the lubricating oil, which causes equipment troubles such as poor lubrication. For example, once a device trouble occurs in a production facility, it is not only necessary to recover the trouble, but also the productivity is affected. Therefore, it is very important to remove water from lubricating oil mixed with water.

【0003】含水油の油水分離を行う方法としては、油
分と水分の比重差を利用した静置法や遠心法、吸水材料
を使用する方法、加熱法、電圧印加法等が挙げられる。
しかしながら、これらの油水分離方法にはいくつかの問
題点が挙げられる。例えば、吸水材料を用いる方法は、
水分除去性能は高いものの、吸水性能が飽和に達すると
吸水材料の交換が必要となる。この方法は分離コストが
高いうえ、煩雑な交換作業を伴うため、特に、定常的に
多量の水分が混入してくる系には適していない。静置法
は装置が非常に大型であり、水分除去性能も比較的低
い。また、加熱法や電圧印加法等においては、油分の変
質を生じる等の危惧を生ずる。
[0003] As a method of separating oil-water from water-containing oil, a stationary method or a centrifugal method utilizing a difference in specific gravity between oil and water, a method using a water-absorbing material, a heating method, a voltage applying method, and the like can be mentioned.
However, these oil-water separation methods have some problems. For example, a method using a water absorbing material is as follows:
Although the water removal performance is high, when the water absorption performance reaches saturation, it is necessary to replace the water absorption material. This method is not suitable for a system in which a large amount of water is constantly mixed, because the separation cost is high and complicated replacement work is required. In the stationary method, the apparatus is very large and the water removal performance is relatively low. Further, in the heating method, the voltage application method, and the like, there is a fear that the oil may be deteriorated.

【0004】[0004]

【発明が解決しようとする課題】これらを解決する方法
として、特開昭55−79011号公報に、疎水性の多
孔膜を用いて油水エマルジョンから油のみを分離させる
油エマルジョン処理方法が提案されている。この処理方
法は、多孔膜の孔径とW/O(油中水滴)タイプのエマ
ルジョン中に存在する水滴の粒子径との差を利用して分
離を行うものであり、含水油から水分が除去された油分
を得ることができる。しかしながら、短時間の処理にお
いては上述のように水分の除去が可能であるが、用途に
よっては長期間の処理が必要な場合があり、例えば定常
的に水分が混入してくる系での油水分離にこの処理方法
を用いて長期間の油水分離を行うと、多孔膜の吸湿によ
り多孔膜の撥水性が低下し、含水油中の水滴が多孔膜を
透過し、透過した油分の水分率が上昇する問題があっ
た。
As a method for solving these problems, Japanese Patent Laying-Open No. 55-79011 proposes an oil emulsion treatment method in which only oil is separated from an oil-water emulsion using a hydrophobic porous membrane. I have. In this treatment method, separation is performed using the difference between the pore size of a porous membrane and the particle size of water droplets present in a W / O (water-in-oil) emulsion, and water is removed from hydrous oil. Oil can be obtained. However, although water can be removed in a short-time treatment as described above, a long-term treatment may be required depending on the application. For example, oil-water separation in a system where water is constantly mixed When oil-water separation is performed for a long time using this treatment method, the water repellency of the porous membrane decreases due to moisture absorption of the porous membrane, water droplets in the water-containing oil permeate through the porous membrane, and the moisture content of the permeated oil increases. There was a problem to do.

【0005】よって、本発明の目的は、水分除去性能が
長期間安定し、かつ高い濾過流量で油水分離を行うこと
が可能な含水油の油水分離方法および油水分離装置を提
供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an oil / water separation method and an oil / water separation method for a water-containing oil, wherein the water removal performance is stable for a long time and the oil / water separation can be performed at a high filtration flow rate.

【0006】[0006]

【課題を解決するための手段】すなわち、本発明の油水
分離方法は、平均孔径0.01μm以上、0.04μm
未満の疎水性多孔質中空糸膜を設けた濾過手段に含水油
貯蔵手段から含水油を送液し、前記疎水性多孔質中空糸
膜の外壁面側から内壁面側に油分を選択的に透過させる
と同時に、前記濾過手段中の疎水性多孔質中空糸膜の外
壁面側にある含水油の一部を前記含水油貯蔵手段に返送
し、油分の濾過流量が低下した際には、前記疎水性多孔
質中空糸膜を透過した油分を前記疎水性多孔質中空糸膜
の内壁面側から外壁面側に逆通液させることを特徴とす
る。
That is, the oil-water separation method of the present invention has an average pore diameter of 0.01 μm or more and 0.04 μm or more.
The hydrated oil is sent from the hydrated oil storage means to the filtration means provided with less than the hydrophobic porous hollow fiber membrane, and the oil component is selectively transmitted from the outer wall side to the inner wall side of the hydrophobic porous hollow fiber membrane. At the same time, a part of the water-containing oil on the outer wall surface side of the hydrophobic porous hollow fiber membrane in the filtration means is returned to the water-containing oil storage means. The oil which has passed through the hydrophobic porous hollow fiber membrane is reversely passed from the inner wall surface side to the outer wall surface side of the hydrophobic porous hollow fiber membrane.

【0007】また、本発明の油水分離装置は、含水油貯
蔵手段と、含水油を前記含水油貯蔵手段に補給する補給
手段と、平均孔径0.01μm以上、0.04μm未満
の疎水性多孔質中空糸膜によって含水油の油水分離を行
う濾過手段と、前記含水油貯蔵手段から前記濾過手段の
疎水性多孔質中空糸膜の外壁面側に含水油を送液する送
液手段と、前記濾過手段において水分が除去された油分
を外部へ送液する排出手段と、前記濾過手段で水分が濃
縮された含水油を前記含水油貯蔵手段に返送する返送手
段と、前記濾過手段で水分が除去された油分を前記濾過
手段に逆通液する逆洗手段を具備してなることを特徴と
する。また、前記排出手段に使用されるポンプと前記逆
洗手段に使用されるポンプは、同一のポンプであること
が好ましい。
[0007] The oil-water separator of the present invention comprises a water-containing oil storage means, a supply means for supplying the water-containing oil to the water-containing oil storage means, and a hydrophobic porous material having an average pore diameter of 0.01 µm or more and less than 0.04 µm. Filtration means for separating oil-in-water from water-containing oil by means of a hollow fiber membrane; liquid-feeding means for feeding water-containing oil from the water-containing oil storage means to the outer wall surface of the hydrophobic porous hollow fiber membrane of the filtration means; Discharge means for sending the oil from which water has been removed by the means to the outside, return means for returning the water-containing oil whose water content has been concentrated by the filtration means to the water-containing oil storage means, and water removal by the filtration means. A backwashing means for backflowing the oil component to the filtration means. Further, it is preferable that the pump used for the discharge means and the pump used for the backwash means are the same pump.

【0008】[0008]

【発明の実施の形態】以下、本発明の油水分離方法およ
び油水分離装置を図面により詳細に説明する。図1は、
本発明の油水分離装置の一形態例を示す概略構成図であ
る。この油水分離装置は、油水分離を行う含水油を貯蔵
する水分濃縮タンク1と、含水油取入口2から供給され
た含水油を水分濃縮タンク1に補給するため含水油補給
ライン4と、この含水補給ライン4に設けられた含水油
補給ポンプ3と、含水油の油水分離を行う疎水性多孔質
中空糸膜22が内部に設けられた中空糸膜モジュール2
0と、中空糸膜モジュール20内の疎水性多孔質中空糸
膜22の外壁面側に、水分濃縮タンク1の含水油を送液
するための含水油送液ライン6と、この含水油送液ライ
ン6に設けられた含水油送液ポンプ5と、中空糸膜モジ
ュール20で水分が除去された油分(精製油)を排出す
るための精製油送液ライン7と、精製油を一時貯留する
ための逆通液タンク8と、逆通液タンク8の精製油を精
製油取出口11から装置外部に排出するための精製油取
出ライン10と、この精製油取出ライン10に設けられ
た排出・逆通液用ポンプ9と、中空糸膜モジュール20
で水分の濃縮された含水油を水分濃縮タンク1に返送す
るための返送ライン12と、濾過手段で水分が除去され
た油分を濾過手段に逆通液するための逆通液ライン13
とから概略構成される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The oil-water separation method and the oil-water separation device of the present invention will be described below in detail with reference to the drawings. FIG.
It is a schematic structure figure showing an example of one form of an oil-water separation device of the present invention. The oil-water separation device includes a water concentration tank 1 for storing water-containing oil for oil-water separation, a water-containing oil supply line 4 for supplying water-containing oil supplied from a water-containing oil intake port 2 to the water concentration tank 1, A hydrated oil supply pump 3 provided in a supply line 4 and a hollow fiber membrane module 2 having therein a hydrophobic porous hollow fiber membrane 22 for separating oily water from hydrated oil.
0, a water-containing oil supply line 6 for supplying water-containing oil in the water concentration tank 1 to the outer wall surface side of the hydrophobic porous hollow fiber membrane 22 in the hollow fiber membrane module 20, and this water-containing oil supply line A water-containing oil feed pump 5 provided in a line 6, a purified oil feed line 7 for discharging an oil component (refined oil) from which water has been removed by the hollow fiber membrane module 20, and a temporary storage of the purified oil , A refined oil take-out line 10 for discharging refined oil in the reverse-form liquid tank 8 from the refined oil outlet 11 to the outside of the apparatus, and a discharge / reverse line provided in the refined oil take-out line 10. Pump 9 for passing liquid and hollow fiber membrane module 20
A return line 12 for returning the water-containing oil whose water content has been concentrated to the water concentration tank 1 and a reverse liquid line 13 for returning the oil component whose water content has been removed by the filtration means to the filtration means.
It is roughly composed of

【0009】ここで、本発明における含水油貯蔵手段
は、本実施例における水分濃縮タンク1に相当し、以下
同様に、補給手段は含水油補給ポンプ3および含水油補
給ライン4に相当し、濾過手段は中空糸膜モジュール2
0に相当し、送液手段は含水油送液ポンプ5および含水
油送液ライン6に相当し、排出手段は精製油送液ライン
7、逆通液タンク8、排出・逆通液用ポンプ9および精
製油取出ライン10に相当し、返送手段は返送ライン1
2に相当し、逆洗手段は逆通液タンク8、排出・逆通液
用ポンプ9および逆通液ライン13に相当する。
Here, the water-containing oil storage means in the present invention corresponds to the water concentration tank 1 in the present embodiment, and similarly, the replenishing means corresponds to the water-containing oil supply pump 3 and the water-containing oil supply line 4. Means is hollow fiber membrane module 2
0, the liquid sending means corresponds to the oil-containing oil sending pump 5 and the oil-containing oil sending line 6, and the discharging means corresponds to the refined oil sending line 7, the reverse liquid tank 8, the discharge / reverse liquid pump 9 And a refined oil take-out line 10, and the return means is a return line 1
2, and the backwashing means corresponds to the backflow tank 8, the discharge / backflow pump 9 and the backflow line 13.

【0010】前記中空糸膜モジュール20は、上面およ
び底面がキャップで封止された略円筒形のハウジング2
1と、このハウジング21内に配設された複数の疎水性
多孔質中空糸膜22とを具備してなるものである。ハウ
ジング21の側面下部には、水分濃縮タンク1から送液
された含水油を疎水性多孔質中空糸膜22の外壁面側に
導入する含水油入口23が設けられ、ハウジング21の
上面には、疎水性多孔質中空糸膜22の外壁面側に連通
する含水油出口24が設けられ、ハウジング21の底面
には、疎水性多孔質中空糸膜22の内壁面側に連通する
精製油出口25が設けられている。また、疎水性多孔質
中空糸膜22は、U字状に折り返され、その繊維方向の
端部は、開口状態を保って前記精製油出口25に連通す
るように、前記ハウジング21の底面にポッティング樹
脂26によって固定されている。なお、中空糸膜モジュ
ールの形態は、図示例の形態に限られず、種々の形態の
ものを用いることができる。
The hollow fiber membrane module 20 has a substantially cylindrical housing 2 whose upper and lower surfaces are sealed with caps.
1 and a plurality of hydrophobic porous hollow fiber membranes 22 provided in the housing 21. A lower portion of the side surface of the housing 21 is provided with a hydrous oil inlet 23 for introducing the hydrous oil fed from the water concentration tank 1 to the outer wall surface side of the hydrophobic porous hollow fiber membrane 22. A water-containing oil outlet 24 communicating with the outer wall surface of the hydrophobic porous hollow fiber membrane 22 is provided, and a purified oil outlet 25 communicating with the inner wall surface of the hydrophobic porous hollow fiber membrane 22 is provided on the bottom surface of the housing 21. Is provided. The hydrophobic porous hollow fiber membrane 22 is folded back into a U-shape, and the end in the fiber direction is potted on the bottom surface of the housing 21 so as to keep the open state and communicate with the refined oil outlet 25. It is fixed by the resin 26. In addition, the form of the hollow fiber membrane module is not limited to the form of the illustrated example, and various forms can be used.

【0011】前記疎水性多孔質中空糸膜22としては、
平均孔径0.01μm以上、0.04μm未満の疎水性
多孔質中空糸膜が用いられる。W/Oタイプのエマルジ
ョンにおいては、通常水分は約0.1〜数十μmの水滴
として存在している。透過膜を用いて油水分離を行う場
合、油中の水滴は水滴径と膜孔径の差によってサイズ排
除されるため、例えば、平均孔径約0.1μm以下の透
過膜を用いることにより含水油中の油分のみを選択的に
透過させることができる。しかしながら、油水分離を開
始してしばらくの間は水分が除去された油分が得られる
が、長期間油水分離を継続すると水滴の透過を生じる。
これは、長時間油水分離を継続することにより透過膜が
吸湿し、撥水性が低下してしまうため、濾過時の膜間差
圧により透過膜の供給側表面において水滴径が変化した
際に、水滴が透過してしまうからである。
The hydrophobic porous hollow fiber membrane 22 includes:
A hydrophobic porous hollow fiber membrane having an average pore size of 0.01 μm or more and less than 0.04 μm is used. In a W / O type emulsion, water usually exists as water droplets of about 0.1 to several tens μm. When oil-water separation is performed using a permeable membrane, water droplets in oil are excluded in size due to the difference between the water droplet diameter and the membrane pore size. Only oil can be selectively permeated. However, for a while after the start of the oil-water separation, an oil component from which water has been removed can be obtained.
This is because when the oil-water separation is continued for a long time, the permeable membrane absorbs moisture and the water repellency decreases, so when the water droplet diameter changes on the supply side surface of the permeable membrane due to the transmembrane pressure difference during filtration, This is because water droplets pass through.

【0012】従って、平均孔径0.04μm未満の疎水
性多孔質中空糸膜を用いることにより、水滴径の変化や
透過膜の吸湿の影響を受けずに、高度に水分除去された
精製油を長期間にわたって得ることができる。また、平
均孔径が0.03μm未満の透過膜を用いることによ
り、より高度に水分が除去された精製油を得ることがで
きる。さらには、平均孔径が0.025μm以下の疎水
性多孔質中空糸膜を用いることがより好ましい。一方、
平均孔径0.01μm未満では、濾過流量が非常に低く
なる問題が生じる。
Therefore, by using a hydrophobic porous hollow fiber membrane having an average pore diameter of less than 0.04 μm, a purified oil from which highly water has been removed can be lengthened without being affected by changes in water droplet diameter or moisture absorption of a permeable membrane. Can be obtained over a period of time. Further, by using a permeable membrane having an average pore size of less than 0.03 μm, it is possible to obtain a refined oil from which water has been removed to a higher degree. Further, it is more preferable to use a hydrophobic porous hollow fiber membrane having an average pore size of 0.025 μm or less. on the other hand,
If the average pore diameter is less than 0.01 μm, there is a problem that the filtration flow rate becomes extremely low.

【0013】中空糸膜モジュール20に用いる疎水性多
孔質中空糸膜22としては、平均孔径0.01μm以
上、0.04μm未満のものであれば、材質に特に制限
はないが、例えば、ポリエチレン、ポリプロピレン、ポ
リ4−メチルペンテン等のポリオレフィン、ポリスルホ
ン、ポリテトラフルオロエチレン、ポリフッ化ビニリデ
ン等の素材を溶融延伸法、湿式法等により製膜して得ら
れる疎水性多孔質中空糸膜が挙げられる。疎水性多孔質
中空糸膜22の素材としては、耐油性に優れるポリオレ
フィンが好適に用いられる。
The material of the hydrophobic porous hollow fiber membrane 22 used in the hollow fiber membrane module 20 is not particularly limited as long as it has an average pore diameter of 0.01 μm or more and less than 0.04 μm. Examples include hydrophobic porous hollow fiber membranes obtained by forming a film of a material such as polyolefin such as polypropylene and poly-4-methylpentene, polysulfone, polytetrafluoroethylene, and polyvinylidene fluoride by a melt drawing method, a wet method, or the like. As a material of the hydrophobic porous hollow fiber membrane 22, a polyolefin excellent in oil resistance is suitably used.

【0014】また、疎水性多孔質中空糸膜22として、
内径が2mm以下、外径が3mm以下、空孔率が10〜
80%の範囲内にあるものを用いることによって、外圧
による疎水性多孔質中空糸膜22の潰れがおきにくくな
り、油分の濾過流量も多くなる。
Further, as the hydrophobic porous hollow fiber membrane 22,
Inner diameter 2 mm or less, outer diameter 3 mm or less, porosity is 10
By using a material within the range of 80%, collapse of the hydrophobic porous hollow fiber membrane 22 due to external pressure is less likely to occur, and the filtration flow rate of oil is also increased.

【0015】前記返送ライン12は、中空糸膜モジュー
ル20に設けられた含水油出口24と水分濃縮タンク1
を接続しており、含水油送液ポンプ5の圧力で、含水油
を水分濃縮タンク1に返送する機構となっている。ま
た、前記返送ライン12には、中空糸膜モジュール20
によって含水油の濾過を行う際の膜間差圧を調整するた
めの含水油出口バルブV1が設けられている。
The return line 12 is connected to a water-containing oil outlet 24 provided in the hollow fiber membrane module 20 and a water concentration tank 1.
And a mechanism for returning the water-containing oil to the water concentration tank 1 by the pressure of the water-containing oil feed pump 5. The return line 12 is provided with a hollow fiber membrane module 20.
A water-containing oil outlet valve V1 for adjusting the transmembrane pressure when filtering the water-containing oil is provided.

【0016】前記逆通液ライン13は、精製油送液ライ
ン7の途中と精製油取出ライン10の途中に連通して設
けられている。また、精製油取出ライン10と逆通液ラ
イン13との接続部には、精製油取出口11への精製油
の排出と、中空糸膜モジュール20への精製油の逆通液
とを切り換える排出・逆通液切替バルブV3が設けられ
ている。また、精製油送液ライン7と逆通液ライン13
との接続部の下流側には精製油出口バルブV2が設けら
れている。
The reverse liquid line 13 is provided so as to communicate with a part of the refined oil supply line 7 and a part of the refined oil take-out line 10. The connection between the refined oil take-out line 10 and the reverse liquid line 13 has a discharge for switching the discharge of the refined oil to the refined oil outlet 11 and the reverse flow of the refined oil to the hollow fiber membrane module 20. -A reverse flow switching valve V3 is provided. In addition, the refined oil feed line 7 and the reverse flow line 13
A refined oil outlet valve V2 is provided on the downstream side of the connection with the above.

【0017】前記水分濃縮タンク1内には、含水油量検
知器S1が設けられており、これにより含水油量の上
限、下限を検知している。また、前記水分濃縮タンク1
下部には、水分濃縮タンク1下部に溜まった水分を引き
抜くための水分排出ライン14が接続し、この水分排出
ライン14には排出バルブV5が設けられている。
The water concentration tank 1 is provided with a water content detector S1 for detecting the upper and lower limits of the water content. In addition, the water concentration tank 1
At the lower part, a water discharge line 14 for extracting water stored in the lower part of the water concentration tank 1 is connected, and the water discharge line 14 is provided with a discharge valve V5.

【0018】前記逆通液タンク8内には、精製油量検知
器S2が設けられており、これにより精製油量の上限、
下限を検知している。また、前記逆通液タンク8には、
精製油の水分率評価に用いるサンプルを採取するのため
サンプリングライン15が接続し、このサンプリングラ
イン15にはサンプリングバルブV4が設けられてい
る。
In the reverse liquid tank 8, there is provided a refined oil amount detector S2, whereby the upper limit of the refined oil amount,
The lower limit has been detected. In addition, the reverse liquid tank 8 includes:
A sampling line 15 is connected to collect a sample used for evaluating the moisture content of the refined oil, and the sampling line 15 is provided with a sampling valve V4.

【0019】また、含水油入口23付近の含水油送液ラ
イン6には、モジュール入口圧力計P1が設けられ、含
水油出口24付近の返送ライン12には、モジュール出
口圧力計P2が設けられ、精製油出口25付近の精製油
送液ライン7には、精製油圧力計P3が設けられてい
る。
A module inlet pressure gauge P1 is provided in the hydrous oil supply line 6 near the hydrous oil inlet 23, and a module outlet pressure gauge P2 is provided in the return line 12 near the hydrous oil outlet 24. A refined oil pressure gauge P3 is provided in the refined oil supply line 7 near the refined oil outlet 25.

【0020】本形態例の油水分離装置における含水油補
給ポンプ3、含水油送液ポンプ5および排出・逆通液用
ポンプ9としては、必要な流量で送液可能なものであれ
ば特に制限なく用いることができ、例えばトロコイドポ
ンプ、ベーンポンプ等が挙げられる。また、本実施例の
油水分離装置では、精製油の排出と逆通液を1台のポン
プ(排出・逆通液用ポンプ9)で行い、排出・逆通液切
替バルブV3の操作により各動作を切り替える機構とな
っている。このように、ポンプを兼用することにより、
ポンプの必要台数を減少させることができる。
The water-containing oil supply pump 3, the water-containing oil supply pump 5, and the discharge / backflow liquid pump 9 in the oil-water separator of this embodiment are not particularly limited as long as they can supply liquid at a required flow rate. Examples thereof include a trochoid pump and a vane pump. Further, in the oil-water separation device of this embodiment, the discharge of the refined oil and the backflow are performed by one pump (the discharge / backflow liquid pump 9), and each operation is performed by operating the discharge / backflow liquid switching valve V3. Switching mechanism. Thus, by also using the pump,
The required number of pumps can be reduced.

【0021】また、本形態例の油水分離装置において
は、25〜90℃の含水油を疎水性多孔質中空糸膜22
の外壁面側に供給することが好ましい。25℃未満の含
水油を供給すると、疎水性多孔質中空糸膜22内を流れ
る濾過された油分の粘度が高くなるため濾過流量が低下
する傾向にある。また、90℃を超える含水油を供給す
ると、疎水性多孔質中空糸膜22が酸化劣化され、疎水
性多孔質中空糸膜22の切断が起こりやすくなる傾向に
ある。
In the oil-water separator of this embodiment, the water-containing oil at 25 to 90 ° C. is supplied to the hydrophobic porous hollow fiber membrane 22.
Is preferably supplied to the outer wall surface side. When a water-containing oil having a temperature of less than 25 ° C. is supplied, the viscosity of the filtered oil flowing in the hydrophobic porous hollow fiber membrane 22 increases, and the filtration flow rate tends to decrease. Further, when a water-containing oil exceeding 90 ° C. is supplied, the hydrophobic porous hollow fiber membrane 22 is oxidized and deteriorated, and the hydrophobic porous hollow fiber membrane 22 tends to be easily cut.

【0022】次に、本形態例の油水分離装置を用いた油
水分離方法について説明する。含水油取入口2から供給
された工場設備等のオイルタンク内の含水油は、含水油
補給ポンプ3を駆動させることによって、含水油補給ラ
イン4を通って水分濃縮タンク1内に送液される。水分
濃縮タンク1に溜められた含水油は、含水油送液ポンプ
5を駆動させることによって、含水油送液ライン6を通
って中空糸膜モジュール20に送液される。
Next, an oil / water separation method using the oil / water separation device of this embodiment will be described. The water-containing oil in the oil tank such as factory equipment supplied from the water-containing oil inlet 2 is sent into the water concentration tank 1 through the water-containing oil supply line 4 by driving the water-containing oil supply pump 3. . The hydrated oil stored in the water concentration tank 1 is sent to the hollow fiber membrane module 20 through the hydrated oil supply line 6 by driving the hydrated oil supply pump 5.

【0023】中空糸膜モジュール20に送液された含水
油中の油分は、選択的に疎水性多孔質中空糸膜22の外
壁面側から内壁面側に透過する。このように、疎水性多
孔質中空糸膜22の外壁面側から内壁面側に油分を透過
させることによって、内壁面側から外壁面側に油分を透
過させた場合に比べ、圧力損失を小さくすることができ
る。
The oil component in the hydrous oil sent to the hollow fiber membrane module 20 selectively permeates from the outer wall side to the inner wall side of the hydrophobic porous hollow fiber membrane 22. As described above, by transmitting oil from the outer wall surface side to the inner wall surface side of the hydrophobic porous hollow fiber membrane 22, pressure loss is reduced as compared with the case where oil is transmitted from the inner wall surface to the outer wall surface side. be able to.

【0024】中空糸膜モジュール20内の含水油の一部
は、含水油中の油分を選択的に疎水性多孔質中空糸膜2
2の外壁面側から内壁面側に透過させると同時に、中空
糸膜モジュール20に設けられた含水油出口24から返
送ライン12を通って水分濃縮タンク1へと返送され
る。
Part of the water-containing oil in the hollow fiber membrane module 20 selectively converts the oil content in the water-containing oil into the hydrophobic porous hollow fiber membrane 2.
At the same time, the water is transmitted from the outer wall surface side to the inner wall surface side and is returned to the water concentration tank 1 through the return line 12 from the water-containing oil outlet 24 provided in the hollow fiber membrane module 20.

【0025】疎水性多孔質中空糸膜22の膜面を透過
し、水分が除去された油分、すなわち精製油は、精製油
出口25を出た後に、精製油送液ライン7を通って逆通
液タンク8に送られ、排出・逆通液用ポンプ9を駆動さ
せることによって、精製油取出ライン10を通って精製
油取出口11から外部へ排出される。
The oil, which has passed through the membrane surface of the hydrophobic porous hollow fiber membrane 22 and from which water has been removed, that is, the refined oil, passes through the refined oil outlet 25 and then flows back through the refined oil supply line 7. After being sent to the liquid tank 8 and driving the discharge / backflow liquid pump 9, the liquid is discharged to the outside from the refined oil outlet 11 through the refined oil extraction line 10.

【0026】含水油中の不純物等が疎水性多孔質中空糸
膜22の膜面に付着し、疎水性多孔質中空糸膜22の膜
面が閉塞され、油分の濾過流量が低下した際には、一旦
濾過を停止し、濾過時とは逆方向に油分を逆通液させ、
疎水性多孔質中空糸膜22の膜表面の逆洗を行う。
When impurities in the hydrous oil adhere to the membrane surface of the hydrophobic porous hollow fiber membrane 22, the membrane surface of the hydrophobic porous hollow fiber membrane 22 is closed, and when the filtration flow rate of the oil decreases, , Once stop the filtration, let the oil flow backward in the opposite direction to the filtration,
The membrane surface of the hydrophobic porous hollow fiber membrane 22 is backwashed.

【0027】逆通液を行う際には、精製油出口バルブV
2を閉じ、排出・逆通液切替バルブV3を逆通液側、す
なわち中空糸膜モジュール20側に切り替え、ついで排
出・逆通液用ポンプ9を駆動し、逆通液タンク8内の精
製油を逆通液ライン13を介して中空糸膜モジュール2
0に逆通液させる。
When performing reverse flow, the refined oil outlet valve V
2 is closed, the discharge / reverse liquid switching valve V3 is switched to the reverse liquid side, that is, the hollow fiber membrane module 20 side, and then the discharge / reverse liquid pump 9 is driven, and the purified oil in the reverse liquid tank 8 is returned. Through the reverse liquid line 13 to the hollow fiber membrane module 2
Reverse flow to 0.

【0028】中空糸膜モジュール20において油分の濾
過を継続すると、水分濃縮タンク1内の含水油量が減少
する。水分濃縮タンク1内の含水油量が下限に達し、含
水油量検知器S1がこれを検知すると、含水油補給ポン
プ3が駆動し、含水油量が上限に達するまで含水油が水
分濃縮タンク1に補給される。
When the filtration of oil in the hollow fiber membrane module 20 is continued, the amount of water-containing oil in the water concentration tank 1 decreases. When the water-containing oil amount in the water-concentrating tank 1 reaches the lower limit and the water-containing oil detector S1 detects this, the water-containing oil supply pump 3 is driven, and the water-containing oil is supplied to the water-concentrating tank 1 until the water-containing oil amount reaches the upper limit. Will be replenished.

【0029】また、中空糸膜モジュール20において油
分の濾過を継続すると、逆通液タンク8内の精製油量が
増加する。逆通液タンク8内の精製油量が上限に達し、
精製油量検知器S2がこれを検知すると、排出・逆通液
用ポンプ9が駆動し、精製油量が下限に達するまで精製
油取出口11から精製油が排出される。この際、排出・
逆通液切替バルブV3は排出側、すなわち精製油取出口
11側に開いた状態となっている。
When the filtration of oil in the hollow fiber membrane module 20 is continued, the amount of refined oil in the reverse liquid tank 8 increases. The amount of refined oil in the reverse flow liquid tank 8 reaches the upper limit,
When the refined oil amount detector S2 detects this, the discharge / backflow liquid pump 9 is driven, and the refined oil is discharged from the refined oil outlet 11 until the refined oil amount reaches the lower limit. At this time,
The reverse flow switching valve V3 is open on the discharge side, that is, on the refined oil outlet 11 side.

【0030】水分濃縮タンク1における含水油中の水分
率は、含水油の濾過を継続するに従って上昇する。それ
に伴って、含水油から水分が分離し、水分濃縮タンク1
下部に水分が溜まってくる。その場合、水分排出ライン
14に設けられた排出バルブV5を開くことによって、
水分濃縮タンク1下部から水分を引き抜くことができ
る。また、逆通液タンク8内の精製油の水分率を評価す
る際には、サンプリングライン15に設けられたサンプ
リングバルブV4を開くことによりサンプリングを行う
ことができる。
The water content of the water-containing oil in the water concentration tank 1 increases as the filtration of the water-containing oil is continued. As a result, water is separated from the hydrous oil and the water concentration tank 1
Moisture accumulates at the bottom. In that case, by opening the discharge valve V5 provided in the moisture discharge line 14,
Water can be extracted from the lower part of the water concentration tank 1. When evaluating the moisture content of the refined oil in the reverse liquid tank 8, sampling can be performed by opening the sampling valve V4 provided on the sampling line 15.

【0031】本形態例の油水分離装置を用いた油水分離
方法では、疎水性多孔質中空糸膜22を透過する油分の
濾過流量は、濾過時の膜間差圧を高くするにつれて増加
する。しかしながら、膜間差圧を高くしすぎると疎水性
多孔質中空糸膜22のつぶれによる濾過流量の低下、水
滴の透過等を生じやすくなるため、0.5MPa以下の
範囲内の膜間差圧で定圧濾過を行うことが好ましい。一
方、濾過時の膜間差圧が低すぎると濾過流量が低下する
ため、0.001MPa以上の膜間差圧で定圧濾過を行
うことが好ましい。
In the oil / water separation method using the oil / water separator of the present embodiment, the filtration flow rate of the oil passing through the hydrophobic porous hollow fiber membrane 22 increases as the transmembrane pressure during filtration increases. However, if the transmembrane pressure difference is too high, the filtration flow rate decreases due to the collapse of the hydrophobic porous hollow fiber membrane 22, water droplets are easily transmitted, and so on. It is preferable to perform constant pressure filtration. On the other hand, if the transmembrane pressure difference during filtration is too low, the filtration flow rate will decrease. Therefore, it is preferable to perform the constant pressure filtration at a transmembrane pressure difference of 0.001 MPa or more.

【0032】ここで、膜間差圧は、(p1+p2)/2
−p3によって計算される値である。ここで、p1、p
2、p3は各々、モジュール入口圧力計P1、モジュー
ル出口圧力計P2、精製油圧力計P3における圧力をい
う。また、中空糸膜モジュール20によって含水油の濾
過を行う際の膜間差圧は、返送ライン12に設けられた
含水油出口バルブV1により調整することができる。さ
らに、膜間差圧を一定に保つ方法としては、含水油送液
ポンプ5により含水油の送液量を制御する方法もある。
Here, the transmembrane pressure is (p1 + p2) / 2
-Value calculated by p3. Where p1, p
Reference numerals 2 and p3 denote pressures at the module inlet pressure gauge P1, the module outlet pressure gauge P2, and the refined oil pressure gauge P3, respectively. Further, the transmembrane pressure difference at the time of filtering the hydrous oil by the hollow fiber membrane module 20 can be adjusted by the hydrous oil outlet valve V1 provided in the return line 12. Further, as a method of keeping the transmembrane pressure constant, there is a method of controlling the amount of water-containing oil to be sent by the water-containing oil sending pump 5.

【0033】本形態例の油水分離装置を用いた油水分離
方法では、含水油の一部を中空糸膜モジュール20から
水分濃縮タンク1へと返送しながら、含水油中の油分を
中空糸膜モジュール20内で選択的に透過させる、いわ
ゆるクロスフロー濾過を行うことによって、疎水性多孔
質中空糸膜22の外壁面側表面に含水油の流れを発生さ
せることができる。
In the oil / water separation method using the oil / water separator of the present embodiment, while returning a part of the water-containing oil from the hollow fiber membrane module 20 to the water concentration tank 1, the oil content in the water-containing oil is removed from the hollow fiber membrane module. By performing the so-called cross-flow filtration, which selectively permeates in the inside 20, a flow of hydrous oil can be generated on the outer wall side surface of the hydrophobic porous hollow fiber membrane 22.

【0034】疎水性多孔質中空糸膜22の外壁面側を流
れる含水油の膜面流速は速くなるほど、疎水性多孔質中
空糸膜22の膜表面の目詰まりが少なくなり、高い濾過
流量を長時間保ちながら油水分離を行うことができるよ
うになる。好ましくは、含水油が疎水性多孔質中空糸膜
22の長手方向に0.5cm/sを超える膜面流速で通
過するように、含水油を中空糸膜モジュール20に送液
してクロスフロー濾過を行うと、前述した顕著な効果を
得ることができる。
As the membrane flow velocity of the hydrous oil flowing on the outer wall surface side of the hydrophobic porous hollow fiber membrane 22 increases, the clogging of the membrane surface of the hydrophobic porous hollow fiber membrane 22 decreases, and the high filtration flow rate increases. Oil-water separation can be performed while keeping time. Preferably, the hydrated oil is sent to the hollow fiber membrane module 20 so that the hydrated oil passes through the hydrophobic porous hollow fiber membrane 22 in the longitudinal direction at a membrane surface flow rate exceeding 0.5 cm / s, and is subjected to cross-flow filtration. , The remarkable effects described above can be obtained.

【0035】また、本形態例の油水分離装置を用いた油
水分離方法では、前記クロスフロー濾過を行っていて
も、含水油の濾過時間の経過と共に、含水油中の不純物
等が疎水性多孔質中空糸膜22の膜面に付着する。これ
によって、疎水性多孔質中空糸膜22の膜面が閉塞さ
れ、油分の濾過流量が低下してくる。そこで、一旦濾過
を停止し、濾過時とは逆方向に油分を逆通液させること
によって、疎水性多孔質中空糸膜22の膜表面の逆洗を
行うことができる。
In the oil / water separation method using the oil / water separation apparatus of the present embodiment, even if the above-mentioned cross-flow filtration is performed, the impurities and the like in the water-containing oil become hydrophobic porous with the elapse of the filtration time of the water-containing oil. It adheres to the membrane surface of the hollow fiber membrane 22. As a result, the membrane surface of the hydrophobic porous hollow fiber membrane 22 is closed, and the filtration flow rate of oil decreases. Therefore, by temporarily stopping the filtration and back-flowing the oil in the direction opposite to the direction of the filtration, the membrane surface of the hydrophobic porous hollow fiber membrane 22 can be back-washed.

【0036】このような逆通液を行うことによって、膜
面閉塞物質が膜面から除去され、低下した濾過流量を回
復させることができる。さらに好ましくは、油分の濾過
流量が、初期の濾過流量に対し30%に低下する前に逆
通液を行うと、効果的に濾過流量を回復させることがで
きる。また、油分により膜表面の逆洗を行うので、例え
ばエアーによる逆通気や、薬液により洗浄する場合と較
べて、エアーや薬液が油に混入せず好ましい。
By performing such a reverse flow, the substance blocking the membrane surface is removed from the membrane surface, and the lowered filtration flow rate can be recovered. More preferably, if the reverse flow is performed before the filtration flow rate of the oil component drops to 30% of the initial filtration flow rate, the filtration flow rate can be effectively recovered. Also, since the membrane surface is backwashed with oil, it is preferable that air and chemicals do not mix with oil, as compared with, for example, reverse ventilation with air or washing with chemicals.

【0037】逆通液を行う時間は、濾過流量の回復状況
に合わせ適宜設定することができる。そして、濾過およ
び逆通液を一定間隔で繰り返し実施することにより、長
期間、高い濾過流量で油水分離を行うことが可能とな
る。
The time for performing the reverse flow can be appropriately set in accordance with the recovery of the filtration flow rate. By repeatedly performing the filtration and the backflow at regular intervals, it becomes possible to perform oil / water separation at a high filtration flow rate for a long period of time.

【0038】逆通液を行う場合の圧力は、濾過の際の膜
間差圧と同程度の0.001〜0.5MPaの範囲内が
好ましい。逆通液時の膜間差圧が0.001MPa未満
では、疎水性多孔質中空糸膜22の外壁面側の膜面閉塞
物質を十分剥離除去することができず、0.5MPaを
超えると疎水性多孔質中空糸膜22が損傷を受けやすく
なる。さらには、逆通液を濾過の際の膜間差圧以上の膜
間差圧で行うことにより、より効果的に膜面閉塞物質を
除去し、濾過流量を回復させることができる。この際逆
通液時の膜間差圧は、濾過時の膜間差圧の1.1〜4倍
とするのがよい。
The pressure at the time of performing the reverse flow is preferably in the range of 0.001 to 0.5 MPa, which is almost the same as the transmembrane pressure during filtration. When the transmembrane pressure difference during the reverse flow is less than 0.001 MPa, it is not possible to sufficiently peel off and remove the membrane surface blocking substance on the outer wall surface side of the hydrophobic porous hollow fiber membrane 22. The porous hollow fiber membrane 22 is easily damaged. Further, by performing the reverse flow at a transmembrane pressure equal to or higher than the transmembrane pressure at the time of filtration, it is possible to more effectively remove the membrane surface blocking substance and recover the filtration flow rate. At this time, the transmembrane pressure difference at the time of reverse flow is preferably 1.1 to 4 times the transmembrane pressure difference at the time of filtration.

【0039】また、逆通液時には、含水油送液ポンプ5
を駆動させて含水油を中空糸膜モジュール20に送液
し、同時に中空糸膜モジュール20内の含水油を返送ラ
イン12を通して水分濃縮タンク1に返送することが好
ましい。このように、含水油を循環させながら逆通水す
ることによって、剥離した膜面閉塞物質が疎水性多孔質
中空糸膜22近傍に滞留せず、よって再び膜面を閉塞す
ることがない。
At the time of reverse flow, the water-containing oil feed pump 5
Is driven to feed the water-containing oil to the hollow fiber membrane module 20 and, at the same time, return the water-containing oil in the hollow fiber membrane module 20 to the water concentration tank 1 through the return line 12. In this way, by reversely passing water while circulating the water-containing oil, the peeled membrane surface blocking substance does not stay in the vicinity of the hydrophobic porous hollow fiber membrane 22, and thus does not block the membrane surface again.

【0040】逆通液の駆動源としては、前述したポンプ
のみではなく、逆通液ライン13の一部から加圧エアー
を送り込み、ライン内の精製油を逆通液させる方法もあ
る。また、逆通液タンク8を気密に設計すれば、加圧エ
アーを逆通液タンク8に送り込み逆通液させる方法も可
能である。但し、加圧エアーを使用する場合には、水分
を十分に除去したエアーを使用する必要がある。
As a driving source of the backflow liquid, not only the pump described above, but also a method of feeding pressurized air from a part of the backflow liquid line 13 to backflow purified oil in the line. If the reverse liquid tank 8 is designed to be airtight, a method of sending pressurized air to the reverse liquid tank 8 to cause reverse liquid flow is also possible. However, when using pressurized air, it is necessary to use air from which moisture has been sufficiently removed.

【0041】このように、本形態例の油水分離装置を用
いた油水分離方法においては、平均孔径0.01μm以
上、0.04μm未満の疎水性多孔質中空糸膜22を用
いているので、長期間安定した水分除去性能を維持する
ことができる。また、本形態例の油水分離装置を用いた
油水分離方法においては、疎水性多孔質中空糸膜22の
外壁面側に含水油を供給し、外壁面側から内壁面側に含
水油中の油分を透過させて、油水分離を行っているの
で、高粘度の含水油を供給しても疎水性多孔質中空糸膜
22において大きな圧力損失を生じることなく、高い濾
過流量で油水分離を行うことができる。また、本形態例
の油水分離装置を用いた油水分離方法においては、クロ
スフロー濾過を行っているので、疎水性多孔質中空糸膜
22の膜表面の目詰まりが防止され、高い濾過流量を長
時間保ちながら油水分離を行うことができる。また、本
形態例の油水分離装置を用いた油水分離方法において
は、濾過流量が減少した際に、一旦濾過を停止し、濾過
時とは逆方向に油分を逆通液させ、疎水性多孔質中空糸
膜22の膜表面の逆洗を行っているので、膜面閉塞物質
が膜面から除去され、低下した濾過流量を回復させるこ
とができる。
As described above, in the oil / water separation method using the oil / water separation device of the present embodiment, the hydrophobic porous hollow fiber membrane 22 having an average pore diameter of 0.01 μm or more and less than 0.04 μm is used, and thus the length is long. It is possible to maintain stable moisture removal performance for a period. Further, in the oil / water separation method using the oil / water separator of the present embodiment, the water-containing oil is supplied to the outer wall side of the hydrophobic porous hollow fiber membrane 22, and the oil content in the water-containing oil flows from the outer wall side to the inner wall side. And oil-water separation is performed, so that even if a high-viscosity hydrous oil is supplied, oil-water separation can be performed at a high filtration flow rate without causing a large pressure loss in the hydrophobic porous hollow fiber membrane 22. it can. Further, in the oil-water separation method using the oil-water separator of the present embodiment, since the cross-flow filtration is performed, clogging of the membrane surface of the hydrophobic porous hollow fiber membrane 22 is prevented, and the high filtration flow rate is increased. Oil-water separation can be performed while keeping time. In the oil / water separation method using the oil / water separation device of the present embodiment, when the filtration flow rate is reduced, the filtration is temporarily stopped, and the oil component is reversely passed in a direction opposite to that of the filtration, so that the hydrophobic porous material is removed. Since the membrane surface of the hollow fiber membrane 22 is backwashed, the membrane surface blocking substance is removed from the membrane surface, and the reduced filtration flow rate can be recovered.

【0042】また、本形態例の油水分離装置において
は、平均孔径0.01μm以上、0.04μm未満の疎
水性多孔質中空糸膜22を用いているので、長期間安定
した水分除去性能を維持することができる。また、本形
態例の油水分離装置においては、含水油送液ライン6が
中空糸膜モジュール20内の疎水性多孔質中空糸膜22
の外壁面側に含水油を供給するように設けられているの
で、疎水性多孔質中空糸膜22の外壁面側から内壁面側
に含水油中の油分を透過させて、油水分離を行うことが
でき、高粘度の含水油を供給しても疎水性多孔質中空糸
膜22において大きな圧力損失を生じることなく、高い
濾過流量で油水分離を行うことができる。また、本形態
例の油水分離装置においては、中空糸膜モジュール20
から水分濃縮タンク1へ含水油を返送するための返送ラ
イン12が設けられているので、クロスフロー濾過を行
うことができ、疎水性多孔質中空糸膜22の膜表面の目
詰まりが防止され、高い濾過流量を長時間保ちながら油
水分離を行うことができる。また、本形態例の油水分離
装置においては、排出・逆通液用ポンプ9を駆動するこ
とにより、逆通液タンク8内の精製油を逆通液ライン1
3を介して中空糸膜モジュール20に逆通液させること
ができるので、疎水性多孔質中空糸膜22の膜面閉塞物
質を除去することができ、低下した濾過流量を回復させ
ることができる。
Further, in the oil-water separator of the present embodiment, since the hydrophobic porous hollow fiber membrane 22 having an average pore diameter of 0.01 μm or more and less than 0.04 μm is used, stable water removal performance is maintained for a long time. can do. In the oil-water separation device of the present embodiment, the water-containing oil supply line 6 is connected to the hydrophobic porous hollow fiber membrane 22 in the hollow fiber membrane module 20.
Is provided so as to supply the water-containing oil to the outer wall surface side of the filter, so that the oil content in the water-containing oil can be transmitted from the outer wall surface side to the inner wall surface side of the hydrophobic porous hollow fiber membrane 22 to perform oil-water separation. Even if high-viscosity hydrous oil is supplied, oil-water separation can be performed at a high filtration flow rate without causing a large pressure loss in the hydrophobic porous hollow fiber membrane 22. In the oil-water separation device of the present embodiment, the hollow fiber membrane module 20
Since the return line 12 for returning the water-containing oil from the to the water concentration tank 1 is provided, cross-flow filtration can be performed, and clogging of the hydrophobic porous hollow fiber membrane 22 on the membrane surface is prevented, Oil-water separation can be performed while maintaining a high filtration flow rate for a long time. In the oil / water separator of the present embodiment, by driving the discharge / backflow liquid pump 9, the refined oil in the backflow liquid tank 8 passes through the reverse flow line 1.
Since the liquid can be made to flow backward through the hollow fiber membrane module 20 through the filter 3, the substance blocking the membrane surface of the hydrophobic porous hollow fiber membrane 22 can be removed, and the reduced filtration flow rate can be recovered.

【0043】[0043]

【実施例】以下、本発明を実施例により具体的に説明す
る。 (実施例1)図1に示される油水分離装置を用い、含水
油の油水分離試験を行った。疎水性多孔質中空糸膜22
としては、KPF205M(三菱レイヨン(株)製、材
質:ポリプロピレン、平均孔径:0.023μm、空孔
率:35%、内径:209μm、膜厚:27μm)を用
い、疎水性多孔質中空糸膜22、含水油入口23、含水
油出口24、精製油出口25を備えたU型中空糸膜モジ
ュール20(有効長:5cm、膜面積:25cm2 )を
作製した。なお、疎水性多孔質中空糸膜22の平均孔径
は、エタノールバブルポイント法にて測定した。また、
バブルポイント測定結果から、近似式[平均孔径(μ
m)=0.45×0.98/バブルポイント(MP
a)]を用いて算出した。
The present invention will be described below in more detail with reference to examples. (Example 1) Using the oil-water separator shown in FIG. 1, an oil-water separation test was performed on water-containing oil. Hydrophobic porous hollow fiber membrane 22
As the hydrophobic porous hollow fiber membrane 22 using KPF205M (manufactured by Mitsubishi Rayon Co., Ltd., material: polypropylene, average pore size: 0.023 μm, porosity: 35%, inner diameter: 209 μm, film thickness: 27 μm). A U-shaped hollow fiber membrane module 20 (effective length: 5 cm, membrane area: 25 cm 2 ) provided with a water-containing oil inlet 23, a water-containing oil outlet 24, and a refined oil outlet 25. The average pore size of the hydrophobic porous hollow fiber membrane 22 was measured by the ethanol bubble point method. Also,
From the bubble point measurement results, the approximate expression [average pore size (μ
m) = 0.45 × 0.98 / bubble point (MP
a)].

【0044】水分濃縮タンク1から、中空糸膜モジュー
ル20の含水油入口23に、工場の装置で使用した潤滑
油J−H150H(昭和シェル(株)製、初期水分率2
vol%、温度25℃)を送液し、精製油出口25より
精製油を取り出すとともに、水分の濃縮された含水油を
含水油出口24から水分濃縮タンク1に循環返送するク
ロスフロー濾過を行った。
From the water concentration tank 1, the lubricating oil J-H150H (manufactured by Showa Shell Co., Ltd., having an initial moisture content of 2)
(vol%, temperature: 25 ° C.), and the purified oil was taken out from the refined oil outlet 25, and cross-flow filtration was performed to circulate and return the water-containing oil with concentrated water to the water concentration tank 1 from the water-containing oil outlet 24. .

【0045】濾過は、膜間差圧0.1MPaで定圧濾過
するとともに、中空糸膜長手方向における含水油の膜面
流速を1cm/sとし、24時間の濾過を実施した。濾
過開始時および濾過終了時の濾過流量、総濾過量および
得られた精製油の水分率を表1に示す。
The filtration was carried out at a constant pressure with a transmembrane pressure difference of 0.1 MPa, and the filtration was carried out for 24 hours at a membrane surface flow rate of hydrous oil in the longitudinal direction of the hollow fiber membrane of 1 cm / s. Table 1 shows the filtration flow rate, the total filtration amount, and the water content of the obtained purified oil at the start and end of the filtration.

【0046】(実施例2)クロスフロー濾過における含
水油の膜面流速を6cm/sにした以外は、実施例1と
同様にして含水油の濾過試験を実施した。濾過試験の結
果を表1に示す。
(Example 2) A filtration test of hydrous oil was carried out in the same manner as in Example 1 except that the membrane surface flow rate of hydrous oil in cross-flow filtration was set at 6 cm / s. Table 1 shows the results of the filtration test.

【0047】[0047]

【表1】 [Table 1]

【0048】(実施例3)疎水性多孔質中空糸膜22と
して、KPF205Mを用い、含水油入口23、含水油
出口24、精製油出口25を備えたU型中空糸膜モジュ
ール20(有効長:5cm、膜面積:25cm2 )を作
製した。図1に示される油水分離装置を用いて、水分濃
縮タンク1から、中空糸膜モジュール20の含水油入口
23に、実施例1で用いたものと同じ含水油(温度25
℃)を送液し、クロスフロー濾過を実施した。ここで、
濾過は膜間差圧0.1MPaの定圧濾過で行い、中空糸
膜長手方向における含水油の膜面流速は6cm/sと
し、含水油の油水分離を23時間45分行った。この時
の濾過終了時点での濾過流量は、0.063(L/m2
・hr・(0.1MPa))であった。次いで、油分の
逆通液を、膜間差圧0.2MPaで15分間行った。こ
の際、疎水性多孔質中空糸膜22の外壁面側で含水油を
循環させながら逆通液を行った。
(Example 3) U-type hollow fiber membrane module 20 (effective length: KPF205M) having a hydrous oil inlet 23, a hydrous oil outlet 24, and a refined oil outlet 25 using KPF205M as the hydrophobic porous hollow fiber membrane 22 5 cm, film area: 25 cm 2 ). Using the oil-water separator shown in FIG. 1, the same water-containing oil as used in Example 1 (at a temperature of 25 ° C.) was introduced from the water concentration tank 1 to the water-containing oil inlet 23 of the hollow fiber membrane module 20.
C), and cross-flow filtration was performed. here,
Filtration was performed by constant pressure filtration with a transmembrane pressure difference of 0.1 MPa, the membrane surface flow rate of hydrous oil in the longitudinal direction of the hollow fiber membrane was 6 cm / s, and oil-water separation of hydrous oil was performed for 23 hours and 45 minutes. At this time, the filtration flow rate at the end of filtration is 0.063 (L / m 2
Hr · (0.1 MPa)). Next, a reverse flow of oil was performed at a transmembrane pressure difference of 0.2 MPa for 15 minutes. At this time, the reverse flow was performed while circulating the hydrous oil on the outer wall surface side of the hydrophobic porous hollow fiber membrane 22.

【0049】その後、再度濾過流量を測定し逆通液によ
る濾過流量回復性を評価した。濾過開始時、逆通液実施
後の濾過流量、逆通液による回復性および得られた精製
油の水分率を表2に示す。ここで、逆通液回復性は次式
により計算した。逆通液回復性(%)=逆通液後の濾過
流量/濾過開始時の濾過流量×100
Thereafter, the filtration flow rate was measured again to evaluate the recovery of the filtration flow rate by the reverse flow. At the start of filtration, Table 2 shows the filtration flow rate after the reverse flow, the recovery by the reverse flow, and the water content of the obtained purified oil. Here, the reverse flow recovery property was calculated by the following equation. Reverse flow recovery (%) = filtration flow rate after reverse flow / filtration flow rate at start of filtration × 100

【0050】[0050]

【表2】 [Table 2]

【0051】(実施例4)疎水性多孔質中空糸膜22と
して、KPF205Mを用い、含水油入口23、含水油
出口24、精製油出口25を備えたU型中空糸膜モジュ
ール20(有効長:25cm、膜面積:3m2 )を作製
した。
(Example 4) U-shaped hollow fiber membrane module 20 (effective length: KPF205M) provided with water-containing oil inlet 23, water-containing oil outlet 24, and purified oil outlet 25 using KPF205M as hydrophobic porous hollow fiber membrane 22 25 cm, membrane area: 3 m 2 ).

【0052】図1に示される油水分離装置を用いて、水
分濃縮タンク1から、中空糸膜モジュール20の含水油
入口23に実施例1で用いたものと同じ含水油(但し温
度は47℃とした)を送液し、クロスフロー濾過を実施
した。濾過は、膜間差圧0.1MPaの定圧濾過で行
い、中空糸膜長手方向における含水油の膜面流速は6c
m/sとし、含水油の油水分離を15分間行った。濾過
開始時の濾過流量は0.26(L/m2 ・hr・(0.
1MPa))、濾過終了時の濾過流量は0.24(L/
2 ・hr・(0.1MPa))であった。次いで、油
分の逆通液を、膜間差圧0.2MPaで1分30秒間行
った。この際、疎水性多孔質中空糸膜22の外壁面側で
含水油を循環させながら逆通液を行った。
Using the oil-water separator shown in FIG. 1, the same water-containing oil as that used in Example 1 (with a temperature of 47 ° C.) was introduced from the water concentration tank 1 to the water-containing oil inlet 23 of the hollow fiber membrane module 20. ), And cross-flow filtration was performed. Filtration was performed by constant pressure filtration with a transmembrane pressure difference of 0.1 MPa, and the membrane surface flow rate of hydrous oil in the longitudinal direction of the hollow fiber membrane was 6 c.
m / s, and the oil-water separation of the water-containing oil was performed for 15 minutes. The filtration flow rate at the start of filtration is 0.26 (L / m 2 · hr · (0.
1 MPa)), and the filtration flow rate at the end of filtration is 0.24 (L /
m 2 · hr · (0.1 MPa)). Next, a reverse flow of the oil was performed at a transmembrane pressure difference of 0.2 MPa for 1 minute and 30 seconds. At this time, the reverse flow was performed while circulating the hydrous oil on the outer wall surface side of the hydrophobic porous hollow fiber membrane 22.

【0053】以上の操作を1サイクルとして、濾過およ
び逆通液を繰り返し2,700サイクル行い、終了後再
度濾過流量を測定した。2,700サイクル終了後の濾
過流量、逆通液による回復性および得られた精製油の水
分率を表3に示す。
With the above operation as one cycle, filtration and back-flow were repeated for 2,700 cycles, and after completion, the filtration flow rate was measured again. Table 3 shows the filtration flow rate after the completion of 2,700 cycles, the recoverability by the reverse flow, and the water content of the obtained refined oil.

【0054】[0054]

【表3】 [Table 3]

【0055】(比較例1)疎水性多孔質中空糸膜22と
して、KPF190M(三菱レイヨン(株)製、材質:
ポリプロピレン、平均孔径:0.04μm、空孔率:5
0%、内径:200μm、膜厚:20μm)を用い、疎
水性多孔質中空糸膜22、含水油入口23、含水油出口
24、精製油出口25を備えたU型中空糸膜モジュール
モジュール20(有効長:25cm、膜面積:3m2
を作製した。
(Comparative Example 1) As the hydrophobic porous hollow fiber membrane 22, KPF190M (manufactured by Mitsubishi Rayon Co., Ltd., material:
Polypropylene, average pore size: 0.04 μm, porosity: 5
0%, inner diameter: 200 μm, film thickness: 20 μm), and a U-shaped hollow fiber membrane module module 20 having a hydrophobic porous hollow fiber membrane 22, a hydrous oil inlet 23, a hydrous oil outlet 24, and a refined oil outlet 25 ( Effective length: 25 cm, membrane area: 3 m 2 )
Was prepared.

【0056】図1に示される油水分離装置を用いて、実
施例4と同様にしてクロスフロー濾過を実施した。濾過
開始時の濾過流量は0.8(L/m2 ・hr・(0.1
MPa))、濾過終了時の濾過流量は0.76(L/m
2 ・hr・(0.1MPa))であった。
Using the oil-water separator shown in FIG. 1, cross-flow filtration was performed in the same manner as in Example 4. The filtration flow rate at the start of filtration is 0.8 (L / m 2 · hr · (0.1
MPa)), and the filtration flow rate at the end of filtration is 0.76 (L / m
2 · hr · (0.1 MPa)).

【0057】実施例4と同様にして、濾過および逆通液
を繰り返し2,700サイクル行い、終了後再度濾過流
量を測定した。2,700サイクル終了後の濾過流量、
逆通液による回復性および得られた精製油の水分率を表
4に示す。なお、試験開始直後の精製油水分率は0.0
1vol%であった。
In the same manner as in Example 4, filtration and back-flow were repeated for 2,700 cycles, and after completion, the filtration flow rate was measured again. Filtration flow rate after 2,700 cycles,
Table 4 shows the recoverability by reverse flow and the water content of the obtained refined oil. The water content of the refined oil immediately after the start of the test was 0.0
It was 1 vol%.

【0058】[0058]

【表4】 [Table 4]

【0059】[0059]

【発明の効果】以上説明したように、本発明の油水分離
方法によれば、平均孔径0.01μm以上、0.04μ
m未満の疎水性多孔質中空糸膜を設けた濾過手段に含水
油貯蔵手段から含水油を送液し、前記疎水性多孔質中空
糸膜の外壁面側から内壁面側に油分を選択的に透過させ
ると同時に、前記濾過手段中の疎水性多孔質中空糸膜の
外壁面側にある含水油の一部を前記含水油貯蔵手段に返
送し、油分の濾過流量が低下した際には、前記疎水性多
孔質中空糸膜を透過した油分を前記疎水性多孔質中空糸
膜の内壁面側から外壁面側に逆通液させているので、長
期間安定した水分除去性能で、かつ高い濾過量で含水油
の油水分離を行うことができる。
As described above, according to the oil-water separation method of the present invention, the average pore diameter is 0.01 μm or more and 0.04 μm or more.
m to the filtration means provided with a hydrophobic porous hollow fiber membrane having a volume of less than m, and feeds the water-containing oil from the water-containing oil storage means to selectively remove the oil component from the outer wall side to the inner wall side of the hydrophobic porous hollow fiber membrane. Simultaneously with the permeation, a part of the water-containing oil on the outer wall side of the hydrophobic porous hollow fiber membrane in the filtration means is returned to the water-containing oil storage means, and when the filtration flow rate of the oil drops, Oil that has passed through the hydrophobic porous hollow fiber membrane is reversely passed from the inner wall side to the outer wall side of the hydrophobic porous hollow fiber membrane. The oil-water separation of the water-containing oil can be performed.

【0060】また、本発明の油水分離装置によれば、含
水油貯蔵手段と、含水油を前記含水油貯蔵手段に補給す
る補給手段と、平均孔径0.01μm以上、0.04μ
m未満の疎水性多孔質中空糸膜によって含水油の油水分
離を行う濾過手段と、前記含水油貯蔵手段から前記濾過
手段の疎水性多孔質中空糸膜の外壁面側に含水油を送液
する送液手段と、前記濾過手段において水分が除去され
た油分を外部へ送液する排出手段と、前記濾過手段で水
分が濃縮された含水油を前記含水油貯蔵手段に返送する
返送手段と、前記濾過手段で水分が除去された油分を前
記濾過手段に逆通液する逆洗手段を具備しているので、
長期間安定した水分除去性能で、かつ高い濾過量で含水
油の油水分離を行うことができる。また、前記排出手段
に使用されるポンプと前記逆洗手段に使用されるポンプ
が同一のポンプである場合、ポンプの必要台数を減少さ
せることができ、装置の製造コストおよび運転コストを
低く抑えることができる。
According to the oil-water separation device of the present invention, the water-containing oil storage means, the replenishing means for supplying the water-containing oil to the water-containing oil storage means, the average pore diameter of 0.01 μm or more and 0.04 μm or more.
and a filter means for separating oil-in-water from water-containing oil by a hydrophobic porous hollow fiber membrane having a diameter of less than m, and sending water-containing oil from the water-containing oil storage means to the outer wall surface side of the hydrophobic porous hollow fiber membrane of the filtration means. A liquid sending unit, a discharging unit that sends an oil component from which water has been removed by the filtering unit to the outside, a returning unit that returns the water-containing oil whose water content has been concentrated by the filtering unit to the water-containing oil storage unit, Since there is provided a backwash means for back-flowing the oil from which water has been removed by the filtration means to the filtration means,
Oil-water separation of water-containing oil can be performed with stable water removal performance for a long period of time and with a high filtration amount. Further, when the pump used for the discharge means and the pump used for the backwash means are the same pump, the required number of pumps can be reduced, and the production cost and operation cost of the apparatus can be reduced. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の油水分離方法に用いられる油水分離
装置の一例を示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing an example of an oil / water separation device used in the oil / water separation method of the present invention.

【符号の説明】[Explanation of symbols]

1 水分濃縮タンク(含水油貯蔵手段) 3 含水油補給ポンプ(補給手段) 4 含水油補給ライン(補給手段) 5 含水油送液ポンプ(送液手段) 6 含水油送液ライン(送液手段) 7 精製油送液ライン(排出手段) 8 逆通液タンク(排出手段、逆洗手段) 9 排出・逆通液用ポンプ(排出手段、逆洗手段) 10 精製油取り出しライン(排出手段) 12 返送ライン(返送手段) 13 逆通液ライン(逆洗手段) 20 中空糸膜モジュール(濾過手段) 22 疎水性多孔質中空糸膜 Reference Signs List 1 water concentration tank (water-containing oil storage means) 3 water-containing oil supply pump (supply means) 4 water-containing oil supply line (supply means) 5 water-containing oil supply pump (liquid supply means) 6 water-containing oil supply line (liquid supply means) 7 Refined oil supply line (discharge means) 8 Backflow liquid tank (discharge means, backwash means) 9 Pump for discharge / reverse liquid (discharge means, backwash means) 10 Refined oil removal line (discharge means) 12 Return Line (return means) 13 Backflow liquid line (backwash means) 20 Hollow fiber membrane module (filtration means) 22 Hydrophobic porous hollow fiber membrane

───────────────────────────────────────────────────── フロントページの続き (72)発明者 新川 健二 愛知県名古屋市東区砂田橋四丁目1番60号 三菱レイヨン株式会社商品開発研究所内 (72)発明者 吉永 武司 広島県大竹市御幸町20番1号 三菱レイヨ ン株式会社大竹事業所内 (72)発明者 青木 範昭 広島県大竹市御幸町20番1号 三菱レイヨ ン・エンジニアリング株式会社内 Fターム(参考) 4D006 GA02 HA03 HA19 JA53A JA53Z JA58A KA63 KC03 KC13 KE01R KE02P KE03P KE06Q KE07P KE08P KE09P KE13P KE16R KE21Q KE22Q KE24Q KE28Q MA01 MA22 MA24 MA31 MA33 MB10 MC22 MC23X MC29 MC30 MC62 NA05 NA21 NA34 PA01 PB14 PB70  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kenji Shinkawa 4-1-1-60 Sunadabashi, Higashi-ku, Nagoya City, Aichi Prefecture Inside Mitsubishi Rayon Co., Ltd. Product Development Laboratory (72) Inventor Takeshi Yoshinaga 20-1 Miyukicho, Otake City, Hiroshima Prefecture No. Mitsubishi Rayon Co., Ltd. Otake Works (72) Inventor Noriaki Aoki 20-1 Miyukicho, Otake City, Hiroshima Prefecture Mitsubishi Rayon Engineering Co., Ltd. F-term (reference) 4D006 GA02 HA03 HA19 JA53A JA53Z JA58A KA63 KC03 KC13 KE01R KE02P KE03P KE06Q KE07P KE08P KE09P KE13P KE16R KE21Q KE22Q KE24Q KE28Q MA01 MA22 MA24 MA31 MA33 MB10 MC22 MC23X MC29 MC30 MC62 NA05 NA21 NA34 PA01 PB14 PB70

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 平均孔径0.01μm以上、0.04μ
m未満の疎水性多孔質中空糸膜を設けた濾過手段に含水
油貯蔵手段から含水油を送液し、前記疎水性多孔質中空
糸膜の外壁面側から内壁面側に油分を選択的に透過させ
ると同時に、前記濾過手段中の疎水性多孔質中空糸膜の
外壁面側にある含水油の一部を前記含水油貯蔵手段に返
送し、油分の濾過流量が低下した際には、前記疎水性多
孔質中空糸膜を透過した油分を前記疎水性多孔質中空糸
膜の内壁面側から外壁面側に逆通液させることを特徴と
する油水分離方法。
1. An average pore diameter of 0.01 μm or more, 0.04 μm
m to the filtration means provided with a hydrophobic porous hollow fiber membrane having a volume of less than m, and feeds the water-containing oil from the water-containing oil storage means to selectively remove the oil component from the outer wall side to the inner wall side of the hydrophobic porous hollow fiber membrane. Simultaneously with the permeation, a part of the water-containing oil on the outer wall side of the hydrophobic porous hollow fiber membrane in the filtration means is returned to the water-containing oil storage means, and when the filtration flow rate of the oil drops, An oil-water separation method, characterized in that oil permeated through the hydrophobic porous hollow fiber membrane is reversely passed from the inner wall surface side to the outer wall surface side of the hydrophobic porous hollow fiber membrane.
【請求項2】 含水油貯蔵手段と、含水油を前記含水油
貯蔵手段に補給する補給手段と、平均孔径0.01μm
以上、0.04μm未満の疎水性多孔質中空糸膜によっ
て含水油の油水分離を行う濾過手段と、前記含水油貯蔵
手段から前記濾過手段の疎水性多孔質中空糸膜の外壁面
側に含水油を送液する送液手段と、前記濾過手段におい
て水分が除去された油分を外部へ送液する排出手段と、
前記濾過手段で水分が濃縮された含水油を前記含水油貯
蔵手段に返送する返送手段と、前記濾過手段で水分が除
去された油分を前記濾過手段に逆通液する逆洗手段を具
備してなることを特徴とする油水分離装置。
2. A water-containing oil storage means, a supply means for supplying water-containing oil to the water-containing oil storage means, and an average pore diameter of 0.01 μm.
As described above, filtration means for separating oil-in-water from water-containing oil by a hydrophobic porous hollow fiber membrane having a particle diameter of less than 0.04 μm, and water-containing oil from the water-containing oil storage means to the outer wall surface of the hydrophobic porous hollow fiber membrane of the filtration means A liquid sending means for sending oil, and a discharging means for sending the oil from which water has been removed in the filtering means to the outside,
A return means for returning the water-containing oil whose water content has been concentrated by the filtration means to the water-containing oil storage means; and a backwash means for back-flowing the oil component whose water content has been removed by the filtration means to the filtration means. An oil-water separator.
【請求項3】 前記排出手段に使用されるポンプと前記
逆洗手段に使用されるポンプが、同一のポンプであるこ
とを特徴とする請求項2記載の油水分離装置。
3. The oil / water separator according to claim 2, wherein the pump used for the discharge means and the pump used for the backwash means are the same pump.
JP4395199A 1999-02-22 1999-02-22 Method and device for separating water and oil Withdrawn JP2000237502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4395199A JP2000237502A (en) 1999-02-22 1999-02-22 Method and device for separating water and oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4395199A JP2000237502A (en) 1999-02-22 1999-02-22 Method and device for separating water and oil

Publications (1)

Publication Number Publication Date
JP2000237502A true JP2000237502A (en) 2000-09-05

Family

ID=12678022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4395199A Withdrawn JP2000237502A (en) 1999-02-22 1999-02-22 Method and device for separating water and oil

Country Status (1)

Country Link
JP (1) JP2000237502A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010036183A (en) * 2008-07-08 2010-02-18 Sumitomo Electric Fine Polymer Inc Separating membrane module for treating wastewater containing oil, and method and device for treating wastewater containing oil
KR101029275B1 (en) * 2010-10-14 2011-04-18 엠씨테크주식회사 Coolant recycling apparatus for sawing process of polysilicon wafer
EP2537807A1 (en) * 2010-02-17 2012-12-26 Sumitomo Electric Fine Polymer, Inc. Separation membrane module for processing of oil-containing waste water, method for processing oil-containing waste water, and apparatus for processing oil-containing waste water
CN103454384A (en) * 2013-09-12 2013-12-18 重庆工商大学 Method for testing dewatering performance of coalescence-separation filter core to lubricating oil
JP2019150804A (en) * 2018-03-06 2019-09-12 三浦工業株式会社 Water treatment equipment
JP2021106670A (en) * 2019-12-27 2021-07-29 旭化成メディカル株式会社 Filter test device and test method
CN114656090A (en) * 2022-04-07 2022-06-24 潍坊科技学院 Electrical control device and method for automatic oil-water separation for sewage treatment

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010036183A (en) * 2008-07-08 2010-02-18 Sumitomo Electric Fine Polymer Inc Separating membrane module for treating wastewater containing oil, and method and device for treating wastewater containing oil
EP2537807A1 (en) * 2010-02-17 2012-12-26 Sumitomo Electric Fine Polymer, Inc. Separation membrane module for processing of oil-containing waste water, method for processing oil-containing waste water, and apparatus for processing oil-containing waste water
US20140042096A1 (en) * 2010-02-17 2014-02-13 Sumitomo Electric Industries, Ltd. Separation membrane module for processing of oil-containing waste water and method for processing oil-containing waste water
EP2537807A4 (en) * 2010-02-17 2014-11-05 Sumitomo Electric Industries Separation membrane module for processing of oil-containing waste water, method for processing oil-containing waste water, and apparatus for processing oil-containing waste water
KR101029275B1 (en) * 2010-10-14 2011-04-18 엠씨테크주식회사 Coolant recycling apparatus for sawing process of polysilicon wafer
CN103454384A (en) * 2013-09-12 2013-12-18 重庆工商大学 Method for testing dewatering performance of coalescence-separation filter core to lubricating oil
JP2019150804A (en) * 2018-03-06 2019-09-12 三浦工業株式会社 Water treatment equipment
JP2021106670A (en) * 2019-12-27 2021-07-29 旭化成メディカル株式会社 Filter test device and test method
JP7335161B2 (en) 2019-12-27 2023-08-29 旭化成メディカル株式会社 Filter testing device and testing method
CN114656090A (en) * 2022-04-07 2022-06-24 潍坊科技学院 Electrical control device and method for automatic oil-water separation for sewage treatment

Similar Documents

Publication Publication Date Title
US6432310B1 (en) Methods of running and washing spiral wound membrane module
US5047154A (en) Method and apparatus for enhancing the flux rate of cross-flow filtration systems
JP3704544B2 (en) Cleaning of hollow fiber membranes
EP0479492A1 (en) Membrane separation system and methods of operating and cleaning such a system
JP2003053160A (en) Cleaning method for separating membrane and membrane filtrater
JPH10286441A (en) Cleaning method of hollow yarn membrane module and filtration device used for the method
WO2006080482A1 (en) Method for manufacturing module having selectively permeable membrane and module having selectively permeable membrane
EP0079040A2 (en) Method and apparatus for increasing the cross-flow filtration fluxes of liquids containing suspended solids
EP0122439A2 (en) Method and apparatus for enhancing the flux rate of cross-flow filtration systems
JP2000237502A (en) Method and device for separating water and oil
JPS6362504A (en) Method for concentrating organic component in aqueous solution containing same
JP2001029751A (en) Separation apparatus and solid-liquid separation method
JP3354257B2 (en) Oil-water separation method and oil-water separation device
US10639590B2 (en) Filtration system and method for chemical rinsing a filtration system
JP2019018162A (en) Cleaning method of hollow fiber membrane filtering device, and the hollow fiber membrane filtering device
JP5918033B2 (en) Method and apparatus for treating wastewater containing oil
JP4433276B2 (en) Hollow fiber membrane filtration module and cleaning method thereof
JPH11138163A (en) Treatment of water in oil emulsion and device for treating water in oil emulsion
US20030132175A1 (en) Ceramic filter oil and water separation
JP2000153101A (en) Oil-water separation module
JP4454922B2 (en) Control method of filtration apparatus using hollow fiber type separation membrane
WO2017046214A1 (en) Filtration system and method for backwashing a filtration system
JPH10296003A (en) Method and apparatus for separation of oil from water
JPH10244103A (en) Oil/water separation method
JP3453695B2 (en) Oil-water separator

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060509