JP2000236682A - Piezoelectric actuator - Google Patents

Piezoelectric actuator

Info

Publication number
JP2000236682A
JP2000236682A JP11038687A JP3868799A JP2000236682A JP 2000236682 A JP2000236682 A JP 2000236682A JP 11038687 A JP11038687 A JP 11038687A JP 3868799 A JP3868799 A JP 3868799A JP 2000236682 A JP2000236682 A JP 2000236682A
Authority
JP
Japan
Prior art keywords
piezoelectric
actuator
sheet
base material
piezoelectric sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11038687A
Other languages
Japanese (ja)
Other versions
JP4382899B2 (en
Inventor
Kenji Morii
健二 森井
Akihiro Usui
明弘 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP03868799A priority Critical patent/JP4382899B2/en
Publication of JP2000236682A publication Critical patent/JP2000236682A/en
Application granted granted Critical
Publication of JP4382899B2 publication Critical patent/JP4382899B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an actuator of large expansion and shrinkage. SOLUTION: A satisfactory construction as an actuator is obtained by making the quantity of movement freely increasable, by arranging piezoelectric elements 20 curved downwardly convex on piezoelectric elements 30 curved upwardly convex, arranging a plurality of piezoelectric elements 20 in series and causing the quantity of movement of a load 45 to be proportional to the number of the piezoelectric elements 20. As a specific example, artificial muscle is cited. Namely, it is possible to cause a piezoelectric actuator 50 to function as a muscle and to actuate and artificial bone structure such as an artificial arm, an artificial leg, etc., if this piezoelectric actuator 50 is crossed over to the artificial skeleton. It is also the case here that the larger the quantity of displacement of the actuator is, the battery the actuator would be.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は大きな変位量を発生
させることのできる圧電式アクチュエータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piezoelectric actuator capable of generating a large displacement.

【0002】[0002]

【従来の技術】圧電式アクチュエータの代表例に圧電フ
ァンであり、この圧電ファンに係る技術としては、例え
ば特開平9−321360号公報「圧電ファン」が知ら
れている。すなわち、同公報図1(a),(b)におい
て、片持ち支持した平板を圧電作用で矢印,の如く
上下に振動させることにより、矢印の通りに風を送る
ことができるというものである。ここで圧電作用とは、
物質に電圧を印加すると伸びる又は縮む現象を言い、伸
縮の大きい材料(圧電セラミックス、圧電材料などと言
う)が各種提案されている。
2. Description of the Related Art A piezoelectric fan is a typical example of a piezoelectric actuator. As a technique related to the piezoelectric fan, for example, Japanese Patent Application Laid-Open No. 9-321360, entitled "Piezoelectric Fan" is known. That is, in FIGS. 1 (a) and 1 (b) of the publication, wind can be sent in the direction of the arrow by vibrating the cantilevered plate up and down by the piezoelectric action as shown by the arrow. Here, the piezoelectric action is
Various types of materials (referred to as piezoelectric ceramics, piezoelectric materials, and the like), which refer to a phenomenon of expanding or contracting when a voltage is applied to a substance and having large expansion and contraction, have been proposed.

【0003】[0003]

【発明が解決しようとする課題】しかし、前記圧電材料
においても、伸縮量は微小であり、このことが圧電式ア
クチュエータの普及の阻害要因となっている。伸縮量が
微小であることの具体例を次に説明する。図11は従来
の圧電式アクチュエータの実験モデルを示す図であり、
このモデルは、厚さ125μm、長さ50mm、幅20
mmのユニモルフ型圧電シート101を縦向きとし、上
部を支持部材102に取付け、下端に1g程度の重り1
03を取付け、電源104で2000Vまでの電圧を印
加できるようにしたものであり、鉛直軸Fnに沿った変
位を調べる実験を実施した。
However, the amount of expansion and contraction of the above-mentioned piezoelectric material is very small, which is an obstacle to the spread of piezoelectric actuators. Next, a specific example in which the amount of expansion and contraction is minute will be described. FIG. 11 is a diagram showing an experimental model of a conventional piezoelectric actuator,
This model has a thickness of 125 μm, a length of 50 mm, and a width of 20
mm unimorph type piezoelectric sheet 101 is oriented vertically, the upper part is attached to the support member 102, and the lower end has a weight of about 1 g.
03 was mounted so that a voltage of up to 2000 V could be applied by the power supply 104, and an experiment for examining displacement along the vertical axis Fn was performed.

【0004】圧電ファンであれば、図中、斜め方向Ft
に沿った変位を調べることに意味がある。しかし、アク
チュエータは物(外部負荷)を支持部材102を基準に
強制的に移動するものでなければならない。従って、鉛
直方向Fnの変位を調べることは重要である。
In the case of a piezoelectric fan, an oblique direction Ft
It makes sense to look at the displacement along. However, the actuator must move the object (external load) forcibly based on the support member 102. Therefore, it is important to examine the displacement in the vertical direction Fn.

【0005】図12は実験結果を示すグラフであり、横
軸は印加した電圧、縦軸は鉛直軸Fnに沿った変位を示
す。印加電圧を、0、500V、1000V、1500
V、2000V、−500V、−1000V、−150
0V、−2000Vと変化させたが、変位は目盛に表れ
ないほど微小であった。
FIG. 12 is a graph showing the results of the experiment. The horizontal axis indicates the applied voltage, and the vertical axis indicates the displacement along the vertical axis Fn. The applied voltage is 0, 500 V, 1000 V, 1500
V, 2000V, -500V, -1000V, -150
Although the voltage was changed to 0 V and -2000 V, the displacement was so small that it could not be displayed on the scale.

【0006】[0006]

【課題を解決するための手段】そこで、本発明者らは継
続して実験を進める中で、圧電シートを予め撓ませて圧
電シートに内部応力を発生させておけば、内部応力ゼロ
の圧電シートに比較して格段に大きな変位を発生させ得
ることを見出し、この思想に基づく構造を確立すること
に成功した。なお、以下の説明において使用する「プリ
フォーム」は、通電前に予め圧電シートに基材を湾曲し
た状態で貼り付けて成形することを意味する。
In view of the above, the inventors of the present invention continue to conduct experiments, and if a piezoelectric sheet is bent in advance to generate internal stress in the piezoelectric sheet, a piezoelectric sheet having zero internal stress can be obtained. It has been found that a significantly larger displacement can be generated as compared with that of, and a structure based on this idea has been successfully established. Note that the term “preform” used in the following description means that a base material is attached to a piezoelectric sheet in a curved state in advance before energization and is molded.

【0007】具体的には、請求項1の圧電式アクチュエ
ータは、全体的に湾曲しており、長尺シート状の圧電シ
ートに基材を貼りあわせた積層体であるユニモルフ型圧
電素子と、このユニモルフ型圧電素子の一端を支える支
持部材とからなり、前記圧電シートに通電して基材及び
圧電シートを撓ませることにより、ユニモルフ型圧電素
子の他端で負荷を前記支持部材を基準にして変位させる
ことを特徴する。
More specifically, the piezoelectric actuator according to the first aspect is a unimorph type piezoelectric element which is a laminate formed by laminating a substrate on a long sheet-shaped piezoelectric sheet which is entirely curved. A support member for supporting one end of the unimorph type piezoelectric element, and a current is applied to the piezoelectric sheet to bend the base material and the piezoelectric sheet, thereby displacing a load at the other end of the unimorph type piezoelectric element with respect to the support member. It is characterized by

【0008】プリフォームさせることで、長尺シート状
の基材に復元力を発生させる。この基材の復元力で圧電
シートに適度な内部応力を発生させる。この内部応力が
変位増加の要素となる。
[0008] By performing a preform, a restoring force is generated in a long sheet-shaped substrate. Appropriate internal stress is generated in the piezoelectric sheet by the restoring force of the base material. This internal stress becomes a factor of displacement increase.

【0009】請求項2の圧電式アクチュエータは、全体
的に蛇行しており、長尺シート状の圧電シートの上下面
に基材を貼り合せた積層体であって、圧電シートの上に
凸の部分には上面又は下面に基材を貼り、圧電シートの
下に凸の部分には下面又は上面に基材を貼ることで、複
数個のユニモルフ型圧電素子を直列配置したことを特徴
とする。
According to a second aspect of the present invention, there is provided a piezoelectric actuator having a meandering structure, a laminated body in which a base material is adhered to upper and lower surfaces of a long sheet-shaped piezoelectric sheet, and the piezoelectric actuator has a convex shape on the piezoelectric sheet. A plurality of unimorph type piezoelectric elements are arranged in series by attaching a base material to an upper surface or a lower surface of a portion and attaching a base material to a lower surface or an upper surface of a portion projecting below the piezoelectric sheet.

【0010】プリフォームさせることで、圧電シートに
適度な内部応力を発生させる。そして、複数個の圧電素
子を直列に配置したので、大きな変位を得ることができ
る。加えて、上に凸の圧電素子と下に凸の圧電素子とを
交互に配置したので、両素子の継ぎ目は中心線上に存在
し、この結果、アクチュエータの作動が直線的で滑らか
になる。
[0010] By performing the preform, an appropriate internal stress is generated in the piezoelectric sheet. Since a plurality of piezoelectric elements are arranged in series, a large displacement can be obtained. In addition, since the upwardly convex piezoelectric element and the downwardly convex piezoelectric element are arranged alternately, the seam between the two elements exists on the center line, and as a result, the operation of the actuator becomes linear and smooth.

【0011】請求項3は、圧電シートの材料を、ポリふ
っ化ビニリデンにしたことを特徴とする。ポリふっ化ビ
ニリデンは、可撓性の材料であることと、素材の分極方
向に対して鉛直方向に応力を印加することで圧電作用に
よる伸縮が大きくなる特性を持っていることの2つの作
用を発揮する。可撓性に富むため湾曲成形が極めて容易
となり、加えて伸縮量が大きいのでアクチュエータには
好適である。
According to a third aspect of the present invention, the material of the piezoelectric sheet is polyvinylidene fluoride. Polyvinylidene fluoride has two functions: being a flexible material, and having the property of expanding and contracting by piezoelectric action by applying stress in the direction perpendicular to the polarization direction of the material. Demonstrate. Since it is rich in flexibility, it is extremely easy to form a curve, and in addition, it has a large amount of expansion and contraction, which is suitable for an actuator.

【0012】[0012]

【発明の実施の形態】本発明の実施の形態を添付図に基
づいて以下に説明する。なお、2枚の圧電シートを重ね
あわせた圧電素子をバイモルフ型といい、1枚の圧電シ
ートに基材を貼り付けたものをユニモルフ型(若しくは
モノモルフ型)という。従来、ユニモルフ型はバイモル
フ型に比較してFn(図11参照)方向の変位量が小さ
いとされていたが、本発明は、湾曲させたユニモルフ構
造を提案することで素子としてのFn方向の変位量を増
大するための研究を完成するに至ったものである。
Embodiments of the present invention will be described below with reference to the accompanying drawings. Note that a piezoelectric element in which two piezoelectric sheets are overlapped is referred to as a bimorph type, and one obtained by attaching a base material to one piezoelectric sheet is referred to as a unimorph type (or a monomorph type). Conventionally, the unimorph type was considered to have a smaller displacement amount in the Fn direction (see FIG. 11) than the bimorph type. However, the present invention proposes a curved unimorph structure to provide a displacement in the Fn direction as an element. This has led to the completion of research to increase the amount.

【0013】図1は本発明に係る圧電式アクチュエータ
(第1実施例)の原理図であり、圧電式アクチュエータ
10は、全体的に湾曲させて貼り付けたユニモルフ型圧
電素子20(以下「圧電素子20」と記す。)と、この
圧電素子20の一端を支える支持部材30とからなり、
圧電素子20の圧電シートに電源40にて所定の電圧を
印加して撓ませることにより、圧電素子20の他端で負
荷45を鉛直軸Fn方向へ変位させるものであり、圧電
素子20をプリフォームさせておいたことを特徴とす
る。負荷45は例えば重りである。
FIG. 1 is a principle view of a piezoelectric actuator (first embodiment) according to the present invention. A piezoelectric actuator 10 is a unimorph type piezoelectric element 20 (hereinafter, referred to as a "piezoelectric element") which is entirely curved and attached. 20 ") and a support member 30 for supporting one end of the piezoelectric element 20.
The power supply 40 applies a predetermined voltage to the piezoelectric sheet of the piezoelectric element 20 to bend it, thereby displacing the load 45 at the other end of the piezoelectric element 20 in the direction of the vertical axis Fn. It is characterized by having been let. The load 45 is, for example, a weight.

【0014】図2は図1の2部拡大図であり、圧電素子
20は、厚さh3の長尺シート状の圧電シート23に厚
さh2の接着剤22にて厚さh1の基材21を貼り付け
た積層体である。ただし、プリフォームさせたときに、
圧電シート23と基材21のいづれが内周面側にあって
も差支えない。
FIG. 2 is an enlarged view of a part of FIG. 1. A piezoelectric element 20 is formed by bonding a long sheet-like piezoelectric sheet 23 having a thickness h3 with an adhesive 22 having a thickness h2. Are laminated. However, when preformed,
It does not matter which of the piezoelectric sheet 23 and the base material 21 is on the inner peripheral surface side.

【0015】基材21の材質はPET(ポリエチレンテ
レフタレート)が好適である。PETは必要な弾性率を
維持しながら適度な可撓性を有するからである。しか
し、基材21は、必要とされる変位や発生力を備えもつ
ものであれば、PETに限るものではない。また、接着
剤22は接着強度が大きく、耐久性の高いエポキシ樹脂
系接着剤が好適である。しかし、圧電伸縮による撓みや
剪断力に耐え、発生する変形を妨げなければ、エポキシ
樹脂系以外の接着剤であってもよい。
The material of the substrate 21 is preferably PET (polyethylene terephthalate). This is because PET has appropriate flexibility while maintaining the required elastic modulus. However, the substrate 21 is not limited to PET as long as it has the required displacement and generated force. The adhesive 22 is preferably an epoxy resin-based adhesive having high adhesive strength and high durability. However, an adhesive other than the epoxy resin may be used as long as the adhesive does not resist bending or shearing force due to piezoelectric expansion and contraction and does not prevent generated deformation.

【0016】さらに、圧電シート23はポリふっ化ビニ
リデン(PVDF)が適当である。ポリふっ化ビニリデ
ンは、可撓性の材料であることと、素材の分極方向に対
して鉛直方向に応力を印加することで圧電作用による伸
縮が大きくなる特性を持っていることの2つの作用を発
揮する。可撓性に富むため湾曲成形が極めて容易とな
り、加えて伸縮量が大きいのでアクチュエータには好適
である。
Further, the piezoelectric sheet 23 is suitably made of polyvinylidene fluoride (PVDF). Polyvinylidene fluoride has two functions: being a flexible material, and having the property of expanding and contracting by piezoelectric action by applying stress in the direction perpendicular to the polarization direction of the material. Demonstrate. Since it is rich in flexibility, it is extremely easy to form a curve, and in addition, it has a large amount of expansion and contraction, which is suitable for an actuator.

【0017】図3は本発明に係る圧電式アクチュエータ
(第2実施例)の原理図であり、圧電式アクチュエータ
50は、全体的に蛇行しており、圧電素子の分極方向に
対して鉛直方向を長手とした長尺シート状の圧電シート
23の上下面に複数枚の基材21・・・(・・・は複数を示
す。以下同様。)を貼り合せた積層体であって、圧電シ
ート23の上に凸の部分には上面又は下面に基材21,
21を貼り、圧電シート23の下に凸の部分には下面又
は上面に基材21,21を貼たものである。この結果、
複数個の圧電素子20・・・を直列に並べたことになる。
FIG. 3 is a principle view of a piezoelectric actuator (second embodiment) according to the present invention. The piezoelectric actuator 50 is meandering as a whole, and the direction perpendicular to the polarization direction of the piezoelectric element is set. A plurality of substrates 21... (... Indicate a plurality. The same applies hereinafter.) Are laminated on the upper and lower surfaces of a long, long sheet-like piezoelectric sheet 23. The base 21 on the upper surface or the lower surface is
21 is attached, and bases 21 and 21 are attached on the lower surface or the upper surface of the portion protruding below the piezoelectric sheet 23. As a result,
This means that a plurality of piezoelectric elements 20 are arranged in series.

【0018】一端を支持部材30に連結し、他端を負荷
45に繋ぎ、図示せぬ電源で圧電素子20・・・に通電す
れば、支持部材30に対して負荷45を矢印又はの
如く移動させることができる。このときに下に凸の圧電
素子20と上に凸の圧電素子20を交互に配置したの
で、両者の境界部の仮想点51・・・は常に中心線CL上
にあることになる。
If one end is connected to the support member 30 and the other end is connected to the load 45 and the piezoelectric elements 20 are energized by a power source (not shown), the load 45 moves relative to the support member 30 as indicated by an arrow or arrow. Can be done. At this time, the downwardly projecting piezoelectric elements 20 and the upwardly projecting piezoelectric elements 20 are alternately arranged, so that the virtual points 51 at the boundary between the two are always on the center line CL.

【0019】負荷45の移動量は圧電素子20・・・の個
数に正比例するので、移動量は自由に増加させることが
でき、アクチュエータとしては好適な構造であると言え
る。同時に、図3に示すアクチュエータ50を並列に複
数本配置することで、発生力を本数に比例して増加させ
ることができる。具体的用途としては、人工筋肉が挙げ
られる。すなわち、擬手、擬足などの人工骨格に圧電式
アクチュエータ50を掛け渡せば、この圧電式アクチュ
エータ50が筋肉の役割を果たして骨格を作動させるこ
とができ、このときにもアクチュエータの変位量は大き
な程よいことになる。
Since the amount of movement of the load 45 is directly proportional to the number of the piezoelectric elements 20..., The amount of movement can be increased freely, and it can be said that the structure is suitable for an actuator. At the same time, by arranging a plurality of the actuators 50 shown in FIG. 3 in parallel, the generated force can be increased in proportion to the number. Specific applications include artificial muscles. That is, if the piezoelectric actuator 50 is put over an artificial skeleton such as a pseudo-hand or a pseudo-foot, the piezoelectric actuator 50 can act as a muscle to operate the skeleton, and in this case, the displacement of the actuator is large. It will be moderate.

【0020】以上に述べた圧電素子20を製造するため
のプレス型を説明する。図4は本発明の圧電素子をプリ
フォームするためのプレス型の原理図であり、プレス型
60は、曲げ半径がRで中心角がθの凹部61を備えた
ダイ62と、曲げ半径がほぼRであるパンチ63とから
なり、このパンチ63を白抜き矢印のごとく凹部61へ
進入させることにより、図示せぬシート又は平板を湾曲
成形するものである。
A press die for manufacturing the piezoelectric element 20 described above will be described. FIG. 4 is a principle diagram of a press die for preforming the piezoelectric element of the present invention. The press die 60 has a die 62 having a concave portion 61 having a bending radius R and a central angle θ, and a bending radius substantially equal to the radius. The punch 63, which is an R, is formed into a concave portion 61 as shown by a white arrow, thereby forming a sheet or flat plate (not shown) in a curved shape.

【0021】以上のプレス型を使用して実施する圧電素
子のプリフォーム及び製造方法を説明する。図5は本発
明の圧電素子の製造フロー図であり、ST××はステッ
プ番号を示す。また、各ステップには便利のために略図
を添えた。 ST01:短冊状の基材の片面に接着剤を塗布する。そ
して、接着剤が硬化する前に圧電シートに基材を合せる
ことで平坦な圧電素子を形成する。又は、基材に圧電シ
ートを合せてもよい。 ST02:この平坦な圧電素子をプレス型にてプレス
し、湾曲させたままで接着剤の硬化を待つ。 ST03:一定時間保持し接着剤を硬化させた後、プレ
ス型を開放する。すると、圧電素子はスプリングバック
現象にて平坦になろうとする。接着剤硬化の作用によ
り、基材の復元力と圧電材料の伸縮量とのバランスした
ところで、緩く湾曲した状態になる。 ST04:緩く湾曲した状態の圧電素子、すなわちプリ
フォーム済みの圧電素子の一端に支持部材を取付ける。
これで、図1のアクチュエータが出来上がる。
A preform and a method for manufacturing a piezoelectric element, which are performed using the above-described press die, will be described. FIG. 5 is a manufacturing flowchart of the piezoelectric element of the present invention, where STxx indicates step numbers. In addition, a schematic diagram is attached to each step for convenience. ST01: An adhesive is applied to one surface of the strip-shaped substrate. Then, a flat piezoelectric element is formed by fitting the base material to the piezoelectric sheet before the adhesive is cured. Or you may combine a piezoelectric sheet with a base material. ST02: This flat piezoelectric element is pressed by a press die, and the curving of the adhesive is waited while keeping the curved state. ST03: After the adhesive is cured by holding for a certain period of time, the press mold is opened. Then, the piezoelectric element tends to be flat due to the springback phenomenon. Due to the effect of the curing of the adhesive, a state where the restoring force of the base material and the amount of expansion and contraction of the piezoelectric material are balanced is a state in which the material is gently curved. ST04: A support member is attached to one end of the piezoelectric element that is in a slightly curved state, that is, the preformed piezoelectric element.
Thus, the actuator shown in FIG. 1 is completed.

【0022】図6は圧電素子の製造フローの別実施例図
である。 ST11:予め短冊状の平坦な基材をプレス型内で湾曲
し、加熱する。 ST12:プレス型内の基材を冷却後開放すると、基材
は所定の形状に湾曲したものとなる。 ST13:湾曲形状の基材の片面に接着剤を塗布し、圧
電シートに合わせる。又は、基材に圧電シートを合わせ
る。 ST14:接着剤が硬化する前に、平坦な治具で基板及
び圧電シートを挟む。このことにより、湾曲していた基
板は強制的に平坦になる。この状態で接着剤の硬化を待
つ。 ST15:接着剤が硬化したら治具から開放する。接着
剤の作用で圧電シートに基材が強固に接合しているた
め、基板は元の湾曲形状に戻ろうとしてもそれを圧電シ
ートが妨げようとする。この結果、湾曲状態に戻ろうと
する基材と圧電材料の伸縮量とがバランスした緩く湾曲
した状態の圧電素子を得ることができる。 ST16:緩く湾曲させた圧電素子、すなわちプリフォ
ーム済みの圧電素子の一端に支持部材を取付ける。これ
で、図1のアクチュエータが出来上がる。
FIG. 6 is a flowchart showing another embodiment of the flow of manufacturing the piezoelectric element. ST11: A strip-shaped flat base material is previously curved in a press die and heated. ST12: When the base material in the press die is opened after cooling, the base material is curved into a predetermined shape. ST13: An adhesive is applied to one side of the curved base material, and is fitted to the piezoelectric sheet. Alternatively, a piezoelectric sheet is fitted to the substrate. ST14: Before the adhesive is cured, the substrate and the piezoelectric sheet are sandwiched between flat jigs. This forces the curved substrate to flatten. In this state, the adhesive is hardened. ST15: When the adhesive is cured, release from the jig. Since the substrate is firmly bonded to the piezoelectric sheet by the action of the adhesive, the piezoelectric sheet tends to hinder the substrate from returning to its original curved shape. As a result, it is possible to obtain a gently curved piezoelectric element in which the amount of expansion and contraction of the base material and the piezoelectric material that is to return to the curved state is balanced. ST16: A support member is attached to one end of the piezoelectric element that is slightly curved, that is, the preformed piezoelectric element. Thus, the actuator shown in FIG. 1 is completed.

【0023】内部応力は、基材を弾性変形させた状態で
圧電シートと接着することで、基材のスプリングバック
での復元力により、圧電シートに発生する。従って、平
坦な基材を湾曲にプリフォームさせた状態で圧電シート
と接着する、又は、湾曲にプリフォームしておいた基材
を平坦な状態で圧電シートに接着する、のいづれであっ
ても目的の内部応力を発生させることができる。
The internal stress is generated in the piezoelectric sheet due to the restoring force of the substrate by springback when the substrate is adhered to the piezoelectric sheet while the substrate is elastically deformed. Therefore, the flat substrate is bonded to the piezoelectric sheet in a state of being preformed in a curved state, or the substrate preformed in a curved state is bonded to the piezoelectric sheet in a flat state. A desired internal stress can be generated.

【0024】[0024]

【実施例】本発明に係る実施例を次に説明する。先ず、
曲げ半径と変位の関係を調べる実験を行った。実験条件
は次の通りである。 ○実験の条件: 圧電シートの材質: PVDF(ポリふっ化ビニリデ
ン) 圧電シートの厚さ: 40μm 圧電シートの長さ: 50mm 圧電シートの幅: 20mm 接着剤の材質: エポキシ樹脂系 接着剤の厚さ: 20μm 基材の材質: PET(ポリエチレンテレフタレー
ト) 基材の厚さ: 125μm 基材の長さ及び幅: 圧電シートと同じ 印加電圧: 500V単位で±2000Vまで変化さ
せる。 重り: 2g プレス型の曲げ半径R: 10mm、20mm、27m
mの3種類 測定項目: 図1に示す重りのFn方向の変位(m
m)
Embodiments of the present invention will be described below. First,
An experiment was conducted to investigate the relationship between bending radius and displacement. The experimental conditions are as follows. ○ Experiment conditions: Material of piezoelectric sheet: PVDF (polyvinylidene fluoride) Thickness of piezoelectric sheet: 40 μm Length of piezoelectric sheet: 50 mm Width of piezoelectric sheet: 20 mm Adhesive material: Epoxy resin Adhesive thickness : 20 μm Material of base material: PET (polyethylene terephthalate) Thickness of base material: 125 μm Length and width of base material: Same as piezoelectric sheet Applied voltage: Change to ± 2000 V in units of 500 V. Weight: 2g Bending radius of press die R: 10mm, 20mm, 27m
m Measurement items: Displacement of the weight shown in FIG.
m)

【0025】図7は実験の結果をプロットしたグラフで
あり、横軸は印加電圧、縦軸は変位を示す。実験の結
果、△印(R=10mm)での変位が大きく、○印(R
=27mm)での変位は最も小さいことが分かった。こ
のことから、曲げ半径Rは小さいほど良いことになる
が、曲げ半径を無限に小さくすることはできない。そこ
で、曲げ半径の影響をより詳しく調べた。
FIG. 7 is a graph in which the results of the experiment are plotted. The horizontal axis represents the applied voltage, and the vertical axis represents the displacement. As a result of the experiment, the displacement at the mark (R = 10 mm) was large, and the mark at the mark (R
= 27 mm) was found to be the smallest. From this, the smaller the bending radius R is, the better, but the bending radius cannot be reduced to infinity. Therefore, the influence of the bending radius was examined in more detail.

【0026】より詳しい調査は、次の条件で実施した。 ○条件: 圧電シートの材質: PVDF(ポリふっ化ビニリデ
ン) 圧電シートの厚さ: 40μm 圧電シートの長さ: 25mm 圧電シートの幅: 20mm 接着剤の材質: エポキシ樹脂系 接着剤の厚さ: 28μm 基材の材質: PET(ポリエチレンテレフタレー
ト) 基材の厚さ: 125μm 基材の長さ及び幅: 圧電シートと同じ 印加電圧: 2000V 重り: 2g プレス型の曲げ半径R: 5〜35mm 調査項目: 図1に示す重りのFn方向の変位(m
m)
A more detailed investigation was conducted under the following conditions. ○ Condition: Material of piezoelectric sheet: PVDF (polyvinylidene fluoride) Thickness of piezoelectric sheet: 40 μm Length of piezoelectric sheet: 25 mm Width of piezoelectric sheet: 20 mm Adhesive material: Epoxy resin Adhesive thickness: 28 μm Material of base material: PET (polyethylene terephthalate) Thickness of base material: 125 μm Length and width of base material: Same as piezoelectric sheet Applied voltage: 2000 V Weight: 2 g Bending radius R of press mold: 5-35 mm Survey item: Figure The displacement of the weight shown in FIG.
m)

【0027】図8は曲げ半径と変位の関係を詳しく調べ
たときのグラフであり、横軸はプレス型の曲げ半径、縦
軸は変位を示す。横軸目盛で0〜5mmの間は推定であ
るが、この範囲に曲げ半径を選定することは好ましくな
いと考えられる。理論的な説明は難しいが、曲げ半径が
小さくなり過ぎて曲率が過大となり、好ましくない内部
応力を発生させるためであると推定できる。従って、こ
のグラフに示すとおり、曲げ半径を5〜10mmの範囲
にすれば良いと考えられる。
FIG. 8 is a graph when the relationship between the bending radius and the displacement is examined in detail. The horizontal axis indicates the bending radius of the press die, and the vertical axis indicates the displacement. Although the estimated value is between 0 and 5 mm on the horizontal axis scale, it is considered that it is not preferable to select a bending radius in this range. Although it is difficult to explain theoretically, it can be estimated that the bending radius becomes too small, the curvature becomes excessive, and an undesirable internal stress is generated. Therefore, as shown in this graph, it is considered that the bending radius should be in the range of 5 to 10 mm.

【0028】本発明のアクチュエータは基材に圧電シー
トを貼り付けたものを基本としており、圧電シートに好
ましい内部応力を発生させる上で、基材の作用効果は重
要である。そこで、次に基材の厚さの影響を調べる。そ
の条件は次の通りである。 ○条件: 圧電シートの材質: PVDF(ポリふっ化ビニリデ
ン) 圧電シートの厚さ: 40μm 圧電シートの長さ: 25mm 圧電シートの幅: 20mm 接着剤の材質: エポキシ樹脂系 接着剤の厚さ: 20μm 基材の材質: PET(ポリエチレンテレフタレー
ト) 基材の厚さ: 5μm〜200μm 基材の長さ及び幅: 圧電シートと同じ 印加電圧: 2000V 重り: 2g プレス型の曲げ半径R: 10mm 調査項目: 図1に示す重りのFn方向の変位(m
m)
The actuator of the present invention is basically based on a piezoelectric sheet adhered to a base material, and the effect of the base material is important in generating a preferable internal stress in the piezoelectric sheet. Then, the influence of the thickness of the base material is examined next. The conditions are as follows. ○ Conditions: Material of piezoelectric sheet: PVDF (polyvinylidene fluoride) Thickness of piezoelectric sheet: 40 μm Length of piezoelectric sheet: 25 mm Width of piezoelectric sheet: 20 mm Adhesive material: Epoxy resin Adhesive thickness: 20 μm Material of base material: PET (polyethylene terephthalate) Thickness of base material: 5 μm to 200 μm Length and width of base material: Same as piezoelectric sheet Applied voltage: 2000 V Weight: 2 g Bending radius R of press mold: 10 mm Survey item: FIG. The displacement of the weight shown in FIG.
m)

【0029】図9は基材の厚さと変位の関係を詳しく調
べたときのグラフであり、横軸は基材の厚さ、縦軸は変
位を示す。グラフによれば、60μm付近にピークがあ
る。要求変位が1.0mm以上であれば、25μm以上
125μm以下に基材の厚さを設定する必要がある。2
5μm未満では基材が薄過ぎて、いわゆる腰が弱くなり
過ぎて、基材本来の効果が発揮できないものであり、ま
た、125μmを超えると基材が厚くなり過ぎ、腰が強
過ぎて圧電シートの作動を妨げていると考えられる。従
って、基材の厚さは、25〜125μmの範囲から選択
すればよいことになる。
FIG. 9 is a graph when the relationship between the thickness of the substrate and the displacement is examined in detail. The horizontal axis indicates the thickness of the substrate, and the vertical axis indicates the displacement. According to the graph, there is a peak around 60 μm. If the required displacement is 1.0 mm or more, it is necessary to set the thickness of the base material to 25 μm or more and 125 μm or less. 2
If it is less than 5 μm, the base material is too thin, so-called stiffness becomes too weak, and the original effect of the base material cannot be exhibited. If it exceeds 125 μm, the base material becomes too thick, stiffness becomes too strong, and the piezoelectric sheet becomes too strong. Is considered to be preventing the operation of. Therefore, the thickness of the substrate may be selected from the range of 25 to 125 μm.

【0030】以上の検討では基材や圧電シートの長さを
25μm又は50μmとしたが、この長さが適当である
か否かも確認することは好ましいことである。そこで、
次の条件で確認実験を実施した。 ○実験の条件: 圧電シートの材質: PVDF(ポリふっ化ビニリデ
ン) 圧電シートの厚さ: 40μm 圧電シートの長さ: 25,35,50mm 圧電シートの幅: 20mm 接着剤の材質: エポキシ樹脂系 接着剤の厚さ: 20μm 基材の材質: PET(ポリエチレンテレフタレー
ト) 基材の厚さ: 125μm 基材の長さ及び幅: 圧電シートと同じ 印加電圧: 500V単位で±2000Vまで変化さ
せる。 重り: 2g プレス型の曲げ半径R: 10mm 測定項目: 図1に示す重りのFn方向の変位(m
m)
In the above study, the length of the base material or the piezoelectric sheet was set to 25 μm or 50 μm, but it is preferable to confirm whether or not this length is appropriate. Therefore,
A confirmation experiment was performed under the following conditions. ○ Conditions of experiment: Material of piezoelectric sheet: PVDF (polyvinylidene fluoride) Thickness of piezoelectric sheet: 40 μm Length of piezoelectric sheet: 25, 35, 50 mm Width of piezoelectric sheet: 20 mm Adhesive material: Epoxy resin Adhesion Thickness of agent: 20 μm Material of base material: PET (polyethylene terephthalate) Thickness of base material: 125 μm Length and width of base material: Same as piezoelectric sheet Applied voltage: Change to ± 2000 V in 500 V units. Weight: 2 g Bending radius of press die R: 10 mm Measurement item: Displacement of the weight shown in FIG.
m)

【0031】図10は実験の結果をプロットしたグラフ
であり、横軸は印加電圧、縦軸は変位を示す。実験の結
果、△印(長さが50mm)のときに変位が大きく、○
印(長さが25mm)では変位は最も小さいかった。こ
のことから、圧電シート及び基材は長い程大きな変位が
得られることが確認できた。
FIG. 10 is a graph in which the results of the experiment are plotted. The horizontal axis represents the applied voltage, and the vertical axis represents the displacement. As a result of the experiment, when the mark (length: 50 mm) was marked, the displacement was large.
The mark (length 25 mm) showed the smallest displacement. From this, it was confirmed that the longer the piezoelectric sheet and the base material, the greater the displacement.

【0032】尚、圧電素子を湾曲するために実施例では
プレス型60を用いたが、湾曲成形法は、丸棒に圧電素
子を巻き付けて湾曲癖を付与する方法もある。従ってプ
リフォーム法は狭義のプレス型に限定するものではな
く、任意の湾曲法及び装置を使用することは差支えな
い。また、本発明の圧電式アクチュエータは擬手、擬足
に用いる人工筋肉に最適であるが、用途はこれに限るも
のではなく、任意である。
Although the press die 60 is used in the embodiment to bend the piezoelectric element, there is a method of bending the piezoelectric element by winding the piezoelectric element around a round bar. Therefore, the preform method is not limited to a press mold in a narrow sense, and any bending method and apparatus can be used. Further, the piezoelectric actuator of the present invention is most suitable for artificial muscles used for artificial hands and artificial feet, but the application is not limited to this, and is arbitrary.

【0033】[0033]

【発明の効果】本発明は上記構成により次の効果を発揮
する。請求項1は、圧電素子を全体的に湾曲させること
で、変位を増加させることに成功したものであり、バイ
モルフ構造より大きな変位を得ることが可能であるか
ら、コストを抑えたままで変位を増加させることがで
き、請求項1によれば、圧電式アクチュエータの普及を
大いに促進することができる。
According to the present invention, the following effects are exhibited by the above configuration. Claim 1 succeeds in increasing the displacement by bending the piezoelectric element as a whole, and it is possible to obtain a larger displacement than the bimorph structure, so that the displacement is increased while the cost is suppressed. According to the first aspect, the spread of the piezoelectric actuator can be greatly promoted.

【0034】請求項2は、複数個の圧電素子を直列に配
置したので、より大きな変位を得ることができる。加え
て、上に凸の圧電素子と下に凸の圧電素子とを交互に配
置したので、両素子の境界部の仮想点は常に中心線上に
存在し、この結果、アクチュエータの作動が直線的で滑
らかになる。
According to the second aspect, since a plurality of piezoelectric elements are arranged in series, a larger displacement can be obtained. In addition, since the upwardly convex piezoelectric element and the downwardly convex piezoelectric element are alternately arranged, a virtual point at the boundary between the two elements always exists on the center line, and as a result, the operation of the actuator is linear. Become smooth.

【0035】請求項3は、圧電シートの材料を、ポリふ
っ化ビニリデンにしたことを特徴とする。ポリふっ化ビ
ニリデンは、可撓性の材料であることと、素材の分極方
向に対して鉛直方向に応力を印加することで圧電作用に
よる伸縮が大きくなる特性を持っていることの2つの作
用を発揮する。可撓性に富むため湾曲成形が極めて容易
となり、加えて伸縮量が大きいのでアクチュエータには
好適である。
According to a third aspect of the present invention, the material of the piezoelectric sheet is polyvinylidene fluoride. Polyvinylidene fluoride has two functions: being a flexible material, and having the property of expanding and contracting by piezoelectric action by applying stress in the direction perpendicular to the polarization direction of the material. Demonstrate. Since it is rich in flexibility, it is extremely easy to form a curve, and in addition, it has a large amount of expansion and contraction, which is suitable for an actuator.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る圧電式アクチュエータ(第1実施
例)の原理図
FIG. 1 is a principle diagram of a piezoelectric actuator (first embodiment) according to the present invention.

【図2】図1の2部拡大図FIG. 2 is an enlarged view of a part of FIG. 1;

【図3】本発明に係る圧電式アクチュエータ(第2実施
例)の原理図
FIG. 3 is a principle view of a piezoelectric actuator (second embodiment) according to the present invention.

【図4】本発明の圧電素子をプリフォームするためのプ
レス型の原理図
FIG. 4 is a principle diagram of a press die for preforming the piezoelectric element of the present invention.

【図5】本発明の圧電素子の製造フロー図FIG. 5 is a manufacturing flowchart of the piezoelectric element of the present invention.

【図6】圧電素子の製造フローの別実施例図FIG. 6 is a diagram showing another embodiment of the flow of manufacturing the piezoelectric element.

【図7】実験の結果をプロットしたグラフFIG. 7 is a graph plotting the results of the experiment.

【図8】曲げ半径と変位の関係を詳しく調べたときのグ
ラフ
FIG. 8 is a graph when the relationship between bending radius and displacement is examined in detail.

【図9】基材の厚さと変位の関係を詳しく調べたときの
グラフ
FIG. 9 is a graph when the relationship between the thickness of the substrate and the displacement is examined in detail.

【図10】実験の結果をプロットしたグラフFIG. 10 is a graph in which the results of the experiment are plotted.

【図11】従来の圧電式アクチュエータの実験モデルを
示す図
FIG. 11 shows an experimental model of a conventional piezoelectric actuator.

【図12】従来の実験結果を示すグラフFIG. 12 is a graph showing the results of a conventional experiment.

【符号の説明】[Explanation of symbols]

10,50…圧電式アクチュエータ、20…ユニモルフ
型圧電素子(圧電素子)、21…基材、22…接着剤、
23…圧電シート、30…支持部材、40…電源、45
…負荷、60…プレス型。
10, 50: piezoelectric actuator, 20: unimorph type piezoelectric element (piezoelectric element), 21: base material, 22: adhesive,
23: piezoelectric sheet, 30: support member, 40: power supply, 45
... load, 60 ... press type.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 全体的に湾曲しており、長尺シート状の
圧電シートに基材を貼りあわせた積層体であるユニモル
フ型圧電素子と、このユニモルフ型圧電素子の一端を支
える支持部材とからなり、前記圧電シートに通電して基
材及び圧電シートを撓ませることにより、ユニモルフ型
圧電素子の他端で負荷を前記支持部材を基準にして変位
させることを特徴とした圧電式アクチュエータ。
1. A unimorph piezoelectric element, which is a laminate formed by laminating a substrate on a long sheet-shaped piezoelectric sheet that is curved as a whole, and a support member that supports one end of the unimorph piezoelectric element. A piezoelectric actuator characterized in that a load is displaced at the other end of the unimorph type piezoelectric element with reference to the support member by applying a current to the piezoelectric sheet to bend the substrate and the piezoelectric sheet.
【請求項2】 全体的に蛇行しており、長尺シート状の
圧電シートの上下面に基材を貼り合せた積層体であっ
て、圧電シートの上に凸の部分には上面又は下面に基材
を貼り、圧電シートの下に凸の部分には下面又は上面に
基材を貼ることで、複数個のユニモルフ型圧電素子を直
列配置したことを特徴とする圧電式アクチュエータ。
2. A laminated body which is meandering as a whole and in which a base material is adhered to upper and lower surfaces of a long sheet-shaped piezoelectric sheet, and a portion which is convex above the piezoelectric sheet has an upper surface or a lower surface. A piezoelectric actuator, wherein a plurality of unimorph-type piezoelectric elements are arranged in series by attaching a base material and attaching a base material on a lower surface or an upper surface of a convex portion below the piezoelectric sheet.
【請求項3】 前記圧電シートの材料は、ポリふっ化ビ
ニリデンであることを特徴とした請求項1又は請求項2
記載の圧電式アクチュエータ。
3. The piezoelectric sheet according to claim 1, wherein a material of the piezoelectric sheet is polyvinylidene fluoride.
The piezoelectric actuator as described.
JP03868799A 1999-02-17 1999-02-17 Piezoelectric actuator and manufacturing method thereof Expired - Lifetime JP4382899B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03868799A JP4382899B2 (en) 1999-02-17 1999-02-17 Piezoelectric actuator and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03868799A JP4382899B2 (en) 1999-02-17 1999-02-17 Piezoelectric actuator and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2000236682A true JP2000236682A (en) 2000-08-29
JP4382899B2 JP4382899B2 (en) 2009-12-16

Family

ID=12532218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03868799A Expired - Lifetime JP4382899B2 (en) 1999-02-17 1999-02-17 Piezoelectric actuator and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4382899B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006300580A (en) * 2005-04-18 2006-11-02 National Institute Of Advanced Industrial & Technology Internal pressure sensor for piping
JP2007521971A (en) * 2004-02-04 2007-08-09 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Flexible foil movable by non-mechanical means
WO2009084323A1 (en) * 2007-12-27 2009-07-09 Murata Manufacturing Co., Ltd. Actuator
US7949429B2 (en) 2007-12-27 2011-05-24 Murata Manufacturing Co., Ltd. Plural actuator system and control method thereof
WO2013015503A1 (en) * 2011-07-22 2013-01-31 Snu R&Db Foundation Smart soft composite actuator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007521971A (en) * 2004-02-04 2007-08-09 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Flexible foil movable by non-mechanical means
JP2006300580A (en) * 2005-04-18 2006-11-02 National Institute Of Advanced Industrial & Technology Internal pressure sensor for piping
WO2009084323A1 (en) * 2007-12-27 2009-07-09 Murata Manufacturing Co., Ltd. Actuator
US7949429B2 (en) 2007-12-27 2011-05-24 Murata Manufacturing Co., Ltd. Plural actuator system and control method thereof
WO2013015503A1 (en) * 2011-07-22 2013-01-31 Snu R&Db Foundation Smart soft composite actuator
US10079335B2 (en) 2011-07-22 2018-09-18 Snu R&Db Foundation Smart soft composite actuator

Also Published As

Publication number Publication date
JP4382899B2 (en) 2009-12-16

Similar Documents

Publication Publication Date Title
US5849125A (en) Method of manufacturing flextensional transducer using pre-curved piezoelectric ceramic layer
CN107431121B (en) Electroactive polymer-based actuator or sensor device
CN101222016B (en) A multilayer composite and a method of making such
US8810113B2 (en) Electromechanical transducer and method for manufacturing the same
Wilkie et al. Low-cost piezocomposite actuator for structural control applications
US20060181179A1 (en) High performance piezoelectric actuator
US7015624B1 (en) Non-uniform thickness electroactive device
US20110198971A1 (en) transducer comprising a composite material and method of making such a composite material
JP2003506858A (en) Electroactive polymer
WO2001031714A1 (en) Membrane position control
JP2000236682A (en) Piezoelectric actuator
JP2010539693A (en) Information converter and manufacturing method thereof
Grinberg et al. A piezoelectric twisting beam actuator
JP7020439B2 (en) Thin deformable panel that deforms out of plane using an auxetic structure
US6245172B1 (en) Method and apparatus for manufacturing multi-layered high deformation piezoelectric actuators and sensors
Tzou et al. Micro-control actions of segmented actuator patches laminated on deep paraboloidal shells
EP3076447B1 (en) Integrated compliant boundary for piezoelectric bimorph actuator
JP5652338B2 (en) Exciter
US20180226903A1 (en) Hybrid electroactive actuator device
JP4587010B2 (en) Piezoelectric actuator
Ozaki et al. Hot lamination and origami assembly fabrication of miniaturized compliant mechanism
JP2008273325A (en) Advanced grid structure and its manufacturing method
KR20130016004A (en) Transducer module
JP2585322B2 (en) Piezo actuator
US20030155842A1 (en) Piezo actuator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090918

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150