JP2000233448A - Method for thermally welding molten liquid crystal polyester resin molded object and metal - Google Patents

Method for thermally welding molten liquid crystal polyester resin molded object and metal

Info

Publication number
JP2000233448A
JP2000233448A JP35575899A JP35575899A JP2000233448A JP 2000233448 A JP2000233448 A JP 2000233448A JP 35575899 A JP35575899 A JP 35575899A JP 35575899 A JP35575899 A JP 35575899A JP 2000233448 A JP2000233448 A JP 2000233448A
Authority
JP
Japan
Prior art keywords
polyester resin
molten liquid
liquid crystalline
crystalline polyester
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35575899A
Other languages
Japanese (ja)
Inventor
Toru Nagashima
徹 永嶋
Hiroshi Nakamura
宏 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP35575899A priority Critical patent/JP2000233448A/en
Publication of JP2000233448A publication Critical patent/JP2000233448A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/44Joining a heated non plastics element to a plastics element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/56Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits
    • B29C65/64Joining a non-plastics element to a plastics element, e.g. by force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/303Particular design of joint configurations the joint involving an anchoring effect
    • B29C66/3032Particular design of joint configurations the joint involving an anchoring effect making use of protrusions or cavities belonging to at least one of the parts to be joined
    • B29C66/30321Particular design of joint configurations the joint involving an anchoring effect making use of protrusions or cavities belonging to at least one of the parts to be joined making use of protrusions belonging to at least one of the parts to be joined
    • B29C66/30322Particular design of joint configurations the joint involving an anchoring effect making use of protrusions or cavities belonging to at least one of the parts to be joined making use of protrusions belonging to at least one of the parts to be joined in the form of rugosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91921Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
    • B29C66/91931Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to the fusion temperature or melting point of the material of one of the parts to be joined
    • B29C66/91933Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to the fusion temperature or melting point of the material of one of the parts to be joined higher than said fusion temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0827Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1403Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the type of electromagnetic or particle radiation
    • B29C65/1406Ultraviolet [UV] radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0079Liquid crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2305/00Use of metals, their alloys or their compounds, as reinforcement

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Laminated Bodies (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To strongly weld a molten liquid crystal polyester resin molded object and a metal to produce a joined object. SOLUTION: The surface of a molten liquid crystal polyester resin molded object is activated to be thermally welded to a metal at the flow start temp. of a molten liquid crystal polyester resin or higher. Pref., the surface of the molten liquid crystal polyester resin molded object is irradiated with ultraviolet rays containing a wavelength of 254 nm to be thermally welded at the flow start temp. of a molten liquid crystal polyester resin or higher.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、溶融液晶性ポリエ
ステル樹脂成形体と金属とを熱融着する方法および溶融
液晶性ポリエステル樹脂成形体と金属との接合体の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for heat-sealing a molten liquid crystalline polyester resin molded article and a metal and a method for producing a joined body of the molten liquid crystalline polyester resin molded article and a metal.

【0002】[0002]

【従来の技術】溶融液晶性ポリエステル樹脂は、耐熱性
が優れ、溶融時の流動性が優れるなどの特徴から精密成
形可能な射出成形用材料として電子材料分野を中心に幅
広く使われるようになっている。そのすぐれた特徴の一
部である耐熱性や低線膨張性などを生かした用途の一つ
に、射出成形によって成形された部品や押出成形によっ
て成形されたフィルムの表面に、金属をメッキあるいは
接着剤により接着させ、機構部品や電気、電子部品とし
て用いるものがある。
2. Description of the Related Art Molten liquid crystalline polyester resins have been widely used mainly in the field of electronic materials as injection molding materials capable of precision molding due to their excellent heat resistance and excellent fluidity during melting. I have. One of the applications that takes advantage of some of its outstanding features, such as heat resistance and low linear expansion, is to plate or bond metal to the surface of parts formed by injection molding or the film formed by extrusion. Some are used as mechanical parts, electric or electronic parts by bonding with an agent.

【0003】このような部品は、実用上は成形体と金属
が十分な強度で接合されていなくてはならないが、溶融
液晶性ポリエステル樹脂成形体は、その分子が成形体表
面の平行方向に強く配向することから金属との接合性が
弱く、ほとんどの薬品に対して不活性であることから、
接着やメッキを施した際に十分な接合強度が得られない
ことがある。
[0003] In such a part, the molded body and the metal must be joined with sufficient strength in practical use. However, in the case of the molten liquid crystalline polyester resin molded body, the molecules thereof are strong in the direction parallel to the surface of the molded body. Since it is oriented, it has a weak bond with metals and is inactive against most chemicals,
When bonding or plating is performed, sufficient bonding strength may not be obtained.

【0004】そこで、溶融液晶性ポリエステル樹脂成形
体と金属との接合強度を改良する種々の方法が検討され
ている。たとえば、特開平1−216824号公報に
は、溶融液晶性ポリエステル樹脂成形体表面の改質方法
として、紫外線を照射し、塗装、印刷、接着、蒸着、メ
ッキなどを行うために適した表面を得る方法が開示され
ている。また、特開平9−100359号公報には、溶
融液晶性ポリエステル樹脂成形体の表面を部分的に紫外
線照射した後、エッチング液にて粗化することにより、
メッキ等との接合力に優れる成形体表面を得る方法につ
いて開示されている。
Therefore, various methods for improving the bonding strength between a molten liquid crystalline polyester resin molded article and a metal have been studied. For example, Japanese Patent Application Laid-Open No. 1-216824 discloses a method for modifying the surface of a molten liquid crystalline polyester resin molded article by irradiating ultraviolet rays to obtain a surface suitable for performing coating, printing, bonding, vapor deposition, plating, and the like. A method is disclosed. In Japanese Patent Application Laid-Open No. Hei 9-100359, the surface of a molten liquid crystalline polyester resin molded article is partially irradiated with ultraviolet rays, and then roughened with an etching solution.
It discloses a method for obtaining a molded body surface having excellent bonding strength with plating or the like.

【0005】しかし、溶融液晶性ポリエステル樹脂成形
体と金属とを接着剤にて接着させた場合、溶融液晶性ポ
リエステル樹脂が耐熱性や誘電特性などの優れた特性を
有しているにもかかわらず、接着剤の特性が劣るために
その接着された成形体の特性が大きく損なわれる。ま
た、メッキをほどこすにはエッチングなどの煩雑な工程
が必要になる。
However, when the molten liquid crystalline polyester resin molded article and the metal are adhered with an adhesive, the molten liquid crystalline polyester resin has excellent properties such as heat resistance and dielectric properties. In addition, since the properties of the adhesive are inferior, the properties of the bonded molded article are greatly impaired. In addition, complicated steps such as etching are required to perform plating.

【0006】一方、溶融液晶性ポリエステル樹脂成形体
と金属とを、接着やメッキによらず熱融着する方法が種
々検討されている。一例を挙げれば、特開平8−580
24号公報には、溶融液晶性ポリエステル樹脂からなる
フィルムと銅箔とを熱融着させ、回路基板として有用な
積層品を得る方法が記載されている。しかし、このよう
な手法で溶融液晶性ポリエステル樹脂成形体と金属とを
熱融着させたものであっても、溶融液晶性ポリエステル
樹脂成形体と金属との十分な接合強度が得られない場合
があった。
[0006] On the other hand, various methods for heat-sealing a molten liquid crystalline polyester resin molded article and a metal without using adhesion or plating have been studied. One example is described in JP-A-8-580.
No. 24 describes a method of heat-sealing a film made of a molten liquid crystalline polyester resin and a copper foil to obtain a laminate useful as a circuit board. However, even when the molten liquid crystalline polyester resin molded article and the metal are heat-sealed by such a method, a sufficient bonding strength between the molten liquid crystalline polyester resin molded article and the metal may not be obtained. there were.

【0007】[0007]

【発明が解決しようとする課題】本発明は、溶融液晶性
ポリエステル樹脂成形体と金属とを強固に熱融着させる
方法および溶融液晶性ポリエステル樹脂成形体と金属と
が強固に熱融着された接合体の製造方法を提供すること
を目的とするものである。
SUMMARY OF THE INVENTION The present invention relates to a method for firmly heat-fusing a molten liquid crystalline polyester resin molded article and a metal, and a method for firmly heat-fusing a molten liquid crystalline polyester resin molded article and a metal. It is an object of the present invention to provide a method for manufacturing a joined body.

【0008】[0008]

【発明を解決するための手段】本発明者らは、鋭意検討
した結果、溶融液晶性ポリエステル樹脂成形体の表面を
あらかじめ活性化し、その表面と金属とを溶融液晶性ポ
リエステル樹脂の流動開始温度以上で熱融着させること
により、上記目的が達成されることを見いだし、本発明
に到達した。
Means for Solving the Problems As a result of intensive studies, the present inventors have previously activated the surface of a molten liquid crystalline polyester resin molded article and caused the surface and metal to be heated to a temperature above the flow starting temperature of the molten liquid crystalline polyester resin. It has been found that the above objects can be achieved by heat-sealing with, and the present invention has been achieved.

【0009】すなわち、本発明は、(1).溶融液晶性
ポリエステル樹脂成形体の表面を活性化し、その表面と
金属とを溶融液晶性ポリエステル樹脂の流動開始温度以
上で熱融着する溶融液晶性ポリエステル樹脂成形体と金
属との熱融着方法に係るものである。また、本発明は、
(2).溶融液晶性ポリエステル樹脂成形体の表面に、
254nmの波長を含む紫外線を照射し、その表面と金
属とを溶融液晶性ポリエステル樹脂の流動開始温度以上
で熱融着する溶融液晶性ポリエステル樹脂成形体と金属
との熱融着方法に係るものである。さらに、本発明は、
(3).溶融液晶性ポリエステル樹脂成形体と金属とを
上記(1)または(2)の方法で熱融着する溶融液晶性
ポリエステル成形体と金属との接合体の製造方法に係る
ものである。さらに、本発明は、(4).溶融液晶性ポ
リエステル樹脂成形体と金属とを上記(1)または
(2)の方法で熱融着する溶融液晶性ポリエステル成形
体と金属との積層体の製造方法に係るものである。
That is, the present invention provides (1). A method for activating the surface of a molten liquid crystalline polyester resin molded article and thermally fusing the surface and the metal at a temperature equal to or higher than the flow start temperature of the molten liquid crystalline polyester resin to a method of heat fusion between the molten liquid crystalline polyester resin molded article and the metal. It is related. Also, the present invention
(2). On the surface of the molten liquid crystalline polyester resin molding,
The present invention relates to a method for heat-sealing a molten liquid crystalline polyester resin molded article and a metal, which is irradiated with ultraviolet light having a wavelength of 254 nm and heat-fuses the surface of the metal and the metal at a temperature equal to or higher than the flow start temperature of the molten liquid crystalline polyester resin. is there. Further, the present invention provides
(3). The present invention relates to a method for producing a joined body of a molten liquid crystalline polyester molded article and a metal, wherein the molten liquid crystalline polyester resin molded article and a metal are thermally fused by the method (1) or (2). Further, the present invention provides (4). The present invention relates to a method for producing a laminate of a molten liquid crystalline polyester molded article and a metal, wherein the molten liquid crystalline polyester resin molded article and the metal are thermally fused by the method (1) or (2).

【0010】[0010]

【発明の実施の形態】本発明で用いられる溶融液晶性ポ
リエステル樹脂成形体は、溶融液晶性ポリエステル樹脂
またはその組成物から射出成形や押し出し成形などによ
って成形されたものである。特にフィルムやシート状成
形体は、銅箔と貼り合わせることにより耐熱性や寸法精
度等に優れた回路基板として使用することができる。
BEST MODE FOR CARRYING OUT THE INVENTION The liquid crystalline polyester resin molded article used in the present invention is formed by injection molding or extrusion molding from a molten liquid crystalline polyester resin or a composition thereof. In particular, a film or a sheet-like molded body can be used as a circuit board having excellent heat resistance, dimensional accuracy, and the like by being bonded to a copper foil.

【0011】このような成形体を得るための溶融液晶性
ポリエステル樹脂は、芳香族ヒドロキシカルボン酸、芳
香族ジカルボン酸、芳香族ジヒドロキキシ化合物等のモ
ノマー成分を組み合わせて、重縮合反応させることによ
り得ることができる。
The molten liquid crystalline polyester resin for obtaining such a molded product is obtained by subjecting a monomer component such as an aromatic hydroxycarboxylic acid, an aromatic dicarboxylic acid, or an aromatic dihydroxy compound to a polycondensation reaction. Can be.

【0012】モノマー成分の芳香族ヒドロキシカルボン
酸に由来する構造単位としては、
The structural units derived from the aromatic hydroxycarboxylic acid of the monomer component include:

【化1】 などが例示される。Embedded image And the like.

【0013】また、芳香族ジヒドロキシ化合物に由来す
る構造単位としては、
The structural units derived from the aromatic dihydroxy compound include:

【化2】 などが例示される。Embedded image And the like.

【0014】また、芳香族ジカルボン酸に由来する構造
単位としては、
Further, as a structural unit derived from an aromatic dicarboxylic acid,

【化3】 などが例示される。Embedded image And the like.

【0015】ここで、上記構造単位の組み合わせとその
比率は、随意であるが、耐熱性や流動性の点から、下記
構造単位(1)、(2)、(3)および(4)を有し、
それらの合計が全体の97mol%以上であること、ま
たは下記構造単位(1)および(5)を有し、それらの
合計が全体の97mol%以上であることが好ましい。
Here, the combination of the above structural units and the ratio thereof are optional, but from the viewpoint of heat resistance and fluidity, the following structural units (1), (2), (3) and (4) are available. And
It is preferable that their total is 97 mol% or more of the whole, or that they have the following structural units (1) and (5), and that their total is 97 mol% or more of the whole.

【0016】[0016]

【化4】 Embedded image

【0017】中でも、上記構造単位(1)、(2)、
(3)および(4)からなる溶融液晶性ポリエステル樹
脂が、耐熱性の点で、より好ましい。さらに好ましく
は、構造単位(1)が全体の40〜70mol%であ
り、構造単位(2)と構造単位(3)の合計が構造単位
(4)と実質上同量で全体の15〜30mol%であ
り、かつ、構造単位(2)において主鎖結合位置がパラ
位にあるものが構造単位(2)全体の80〜100mo
l%であり、構造単位(4)において主鎖結合位置がパ
ラ位にあるものが構造単位(4)全体の50mol%〜
100mol%である。
In particular, the structural units (1), (2),
The molten liquid crystalline polyester resin composed of (3) and (4) is more preferable in terms of heat resistance. More preferably, the structural unit (1) is 40 to 70 mol% of the whole, and the total of the structural unit (2) and the structural unit (3) is substantially the same as the structural unit (4) and is 15 to 30 mol% of the whole. And the main chain bonding position in the structural unit (2) is in the para-position is 80 to 100 mo of the entire structural unit (2).
1%, and the structural unit (4) in which the main chain bonding position is at the para position is 50 mol% or less of the entire structural unit (4).
100 mol%.

【0018】本発明で用いられる液晶性ポリエステル樹
脂を製造する方法には、特に制限はなく周知の方法を用
いることができる。たとえば、上記モノマー成分からな
る混合物を重合槽中で重縮合反応させることにより得ら
れるが、これらモノマー成分の仕込みは一括方式でも、
分割方式でもよい。反応は不活性気体、たとえば窒素雰
囲気下に常圧、減圧またはそれらの組み合わせで行うこ
とができる。プロセスは回分式、連続式、またはそれら
の組み合わせを採用できる。なお、上記モノマー成分を
より重合し易い化合物に変える反応(たとえば、エステ
ル化反応)を重縮合反応に先立って行った後、引き続き
重縮合反応を行うこともできる。
The method for producing the liquid crystalline polyester resin used in the present invention is not particularly limited, and a known method can be used. For example, it is obtained by performing a polycondensation reaction of a mixture of the above monomer components in a polymerization tank.
The division method may be used. The reaction can be carried out under normal pressure, reduced pressure or a combination thereof under an inert gas such as nitrogen atmosphere. The process can be batch, continuous, or a combination thereof. In addition, after performing the reaction (for example, esterification reaction) which changes the said monomer component into the compound which is easy to polymerize before a polycondensation reaction, a polycondensation reaction can also be performed continuously.

【0019】重縮合反応の温度は、270〜380℃が
好ましい。温度が270℃より低いと重合反応の進行が
遅く、380℃を超えると分解等の副反応が起こり易
い。多段階の反応温度を採用しても構わないし、場合に
より昇温途中で、あるいは最高温度に達したらすぐに反
応生成物である溶融液晶性ポリエステル樹脂を溶融状態
で抜出し、回収することもできる。回収された溶融液晶
性ポリエステル樹脂は固化、粉砕によりパウダー状にさ
れるか、重合槽より直接押出機へ導入して、造粒し、ペ
レット状にすることができる。また、取出した溶融液晶
性ポリエステル樹脂の分子量をさらに上げるため、不活
性ガス雰囲気下、加温により固相重合等の後処理を施す
こともできる。
The temperature of the polycondensation reaction is preferably from 270 to 380 ° C. If the temperature is lower than 270 ° C., the progress of the polymerization reaction is slow, and if it exceeds 380 ° C., side reactions such as decomposition are likely to occur. A multi-stage reaction temperature may be employed, and depending on the case, a molten liquid crystalline polyester resin as a reaction product may be extracted in a molten state and recovered during the heating or as soon as the maximum temperature is reached. The recovered molten liquid crystalline polyester resin can be powdered by solidification and pulverization, or can be directly introduced into an extruder from a polymerization tank, granulated, and pelletized. Further, in order to further increase the molecular weight of the extracted molten liquid crystalline polyester resin, post-treatment such as solid phase polymerization can be performed by heating under an inert gas atmosphere.

【0020】得られた溶融液晶性ポリエステル樹脂がパ
ウダーの場合、溶融押出機でペレット形状とした後、射
出成形機や押し出し成形機へ投入し成形する方が、取扱
いの点で好ましい。
When the obtained molten liquid crystalline polyester resin is a powder, it is preferable in terms of handling that the melted liquid crystalline polyester resin be pelletized by a melt extruder and then injected into an injection molding machine or an extrusion molding machine and molded.

【0021】また、本発明の目的を阻害しない範囲にお
いて無機充填材、有機充填材、酸化防止剤、熱安定剤、
光安定剤、難燃剤、滑剤、帯電防止剤、防錆剤、蛍光
剤、表面平滑剤、表面改良剤または離型剤等の各種添加
剤を添加することができる。特に、射出成形用材料とし
て用いるにあたっては、成形された部品の弾性率を向上
させたり、異方性を緩和させたりする目的で、ガラス繊
維、タルクなどの充填材を溶融液晶性ポリエステル樹脂
100重量部に対して40〜70重量部充填したものが
好ましく用いられる。
In addition, as long as the object of the present invention is not impaired, an inorganic filler, an organic filler, an antioxidant, a heat stabilizer,
Various additives such as a light stabilizer, a flame retardant, a lubricant, an antistatic agent, a rust inhibitor, a fluorescent agent, a surface smoothing agent, a surface improving agent or a release agent can be added. In particular, when used as an injection molding material, a filler such as glass fiber, talc or the like is added to a molten liquid crystalline polyester resin in an amount of 100% by weight in order to improve the modulus of elasticity of a molded part or to reduce anisotropy. Those charged to 40 to 70 parts by weight per part are preferably used.

【0022】本発明に用いられる溶融液晶性ポリエステ
ル樹脂は、流動開始温度(異方性溶融相を形成し始める
温度)にて剪断速度1000sec-1で測定した溶融粘
度(粘度1a)と、流動開始温度+20℃にて剪断速度
1000sec-1で測定した溶融粘度(粘度2a)との
比率[(粘度2a)/(粘度1a)]、または、流動開
始温度にて剪断速度100sec-1で測定した溶融粘度
(粘度1b)と、流動開始温度+20℃にて剪断速度1
00sec-1で測定した溶融粘度(粘度2b)との比率
[(粘度2b)/(粘度1b)]の少なくとも一方が
0.10〜0.70であることが好ましく、さらに好ま
しくは前者が0.10〜0.70、さらに好ましくは前
者が0.10〜0.50である。ここで言う流動開始温
度とは、4℃/minの昇温速度で加熱された樹脂を荷
重100Kgf/cm2のもとで、内径1mm、長さ1
0mmのノズルから押出したときに、溶融粘度が480
00ポイズを示す温度を言う。溶融粘度比が上記の範囲
外であると、特に押出し成形加工でフィルムやシートを
成形するに際して、フィルム引き取り性などの加工性が
低下したり、得られた加工品の異方性が強くなることが
ある。
The molten liquid crystalline polyester resin used in the present invention has a melt viscosity (viscosity 1a) measured at a flow start temperature (a temperature at which an anisotropic molten phase starts to form) at a shear rate of 1000 sec -1 and a flow start temperature. ratio of melt viscosity measured at a shear rate of 1,000 sec -1 at a temperature of + 20 ° C. (viscosity 2a) [(viscosity 2a) / (viscosity 1a)], or, melted measured at a shear rate of 100 sec -1 at flow temperature Viscosity (viscosity 1b), shear rate 1 at flow start temperature + 20 ° C
It is preferable that at least one of the ratio [(viscosity 2b) / (viscosity 1b)] to the melt viscosity (viscosity 2b) measured at 00 sec -1 is 0.10 to 0.70, more preferably 0.1 to 0.70. 10 to 0.70, more preferably the former is 0.10 to 0.50. The flow start temperature referred to herein means that the resin heated at a temperature rising rate of 4 ° C./min has an inner diameter of 1 mm and a length of 1 under a load of 100 kgf / cm 2.
When extruded from a 0 mm nozzle, the melt viscosity is 480.
It refers to a temperature that indicates 00 poise. If the melt viscosity ratio is out of the above range, especially when forming a film or sheet by extrusion molding, the processability such as film take-off property is reduced, or the obtained product has an increased anisotropy. There is.

【0023】本発明に用いられる溶融液晶性ポリエステ
ル樹脂は、耐熱性の点で、そのハンダ耐熱温度が250
℃以上あることが好ましい。ここでハンダ耐熱温度と
は、厚みが1.2mmのJIS1(1/2)号ダンベル
を成形し、錫60%、鉛40%からなる240℃のハン
ダ浴に浸漬し、同温度に60sec間保持した後取出
し、外観を観察する。その後、該ハンダ浴を10℃ずつ
昇温させては同様の実験を行い、同試験片が発泡または
変形しない最高温度を言う。ハンダ耐熱温度が250℃
未満の場合、本発明によって得られる金属と融着された
部品のハンダリフロー炉での使用などに制限が多くな
る。
The molten liquid crystalline polyester resin used in the present invention has a solder heat resistance temperature of 250 from the viewpoint of heat resistance.
It is preferable that the temperature is not lower than ° C. Here, the solder heat-resistant temperature means that a JIS 1 (1/2) dumbbell having a thickness of 1.2 mm is formed, immersed in a 240 ° C. solder bath composed of 60% tin and 40% lead, and maintained at the same temperature for 60 seconds. After taking out, observe the appearance. Thereafter, the same experiment is performed by raising the temperature of the solder bath by 10 ° C., and the maximum temperature at which the test piece does not foam or deform. Solder heat resistance temperature is 250 ℃
If the amount is less than the above range, the use of a metal-fused part obtained by the present invention in a solder reflow furnace is limited.

【0024】本発明に用いられる溶融液晶性ポリエステ
ル樹脂の溶融張力は10g以上であることが好ましい。
ここで言う溶融張力とは、該樹脂の流動開始温度より3
0℃高い温度に設定された長さ8.0mm×2.1mm
φのダイス中で樹脂を溶融させ、ピストン速度2mm/
minでこれを押出し、テンションプーリーを通した後
引き取りローラーでモノフィラメント状に引き取り、引
き取り速度を上げていったときに糸が破断する時のテン
ションプーリーにかかる力を表したものである。溶融張
力が10gより低い場合、特に溶融押し出しによるフィ
ルムやシートの成形においては成膜時の伸びが不十分と
なり、本発明に供する溶融液晶性ポリエステル樹脂成形
体を得るための加工が困難となる場合がある。
The melt tension of the liquid crystalline polyester resin used in the present invention is preferably 10 g or more.
The melt tension referred to here is 3 degrees from the flow start temperature of the resin.
8.0 mm x 2.1 mm length set at 0 ° C higher temperature
The resin is melted in a dice of φ and the piston speed is 2mm /
min, extruded, passed through a tension pulley, taken up in a monofilament shape by a take-off roller, and expressed the force applied to the tension pulley when the yarn was broken when the take-up speed was increased. When the melt tension is lower than 10 g, especially when forming a film or sheet by melt extrusion, the elongation at the time of film formation becomes insufficient, and processing for obtaining a molten liquid crystalline polyester resin molded article to be used in the present invention becomes difficult. There is.

【0025】また、本発明に用いられる溶融液晶性ポリ
エステル樹脂の固有粘度[η]は、5.5以上であるこ
とが望ましい。[η]が5.5未満の場合、上述の好ま
しい溶融粘度特性、溶融張力を得ることが困難となる。
Further, the intrinsic viscosity [η] of the molten liquid crystalline polyester resin used in the present invention is desirably 5.5 or more. When [η] is less than 5.5, it is difficult to obtain the above-mentioned preferable melt viscosity characteristics and melt tension.

【0026】このようにして得られた溶融液晶性ポリエ
ステル樹脂は、射出成形機や押出し成形機に投入され賦
形される。特に、金属との熱融着によって回路基板を形
成する目的のためには、その取り扱い性等の点でフィル
ムまたはシート状成形体であることが好ましく、フィル
ムで有ることがより好ましい。また、シートやフィルム
は、実質的に溶融液晶性ポリエステル樹脂のみからなる
のが好ましい。
The molten liquid crystalline polyester resin thus obtained is put into an injection molding machine or an extrusion molding machine and shaped. In particular, for the purpose of forming a circuit board by heat fusion with a metal, it is preferably a film or a sheet-like molded body from the viewpoint of handleability and the like, and more preferably a film. Further, it is preferable that the sheet or the film is substantially composed only of the molten liquid crystalline polyester resin.

【0027】特に、フィルムを成形する場合の成形法と
しては、溶融した樹脂をTダイと呼ばれるスリット状の
加工機から所定の幅、厚みに押出し、冷却してそのまま
フィルムとするキャスト法、また押出し後、製膜方向、
およびその直角方向に逐次延伸する延伸法、環状ダイか
ら円筒状に樹脂を押出し、ガスによって巻き取り方向と
それに直角方向に同時に延伸させるインフレ−ション法
等が挙げられる。溶融液晶性ポリエステル樹脂の場合、
異方性のコントロールのし易さの点でインフレ−ション
法が好ましく用いられる。
In particular, as a molding method for forming a film, a molten resin is extruded to a predetermined width and thickness from a slit-shaped processing machine called a T-die, and then cast into a film as it is after cooling. Later, the film forming direction,
And an inflation method in which a resin is extruded into a cylindrical shape from an annular die and stretched simultaneously in a winding direction and a direction perpendicular thereto with a gas. In the case of molten liquid crystalline polyester resin,
The inflation method is preferably used from the viewpoint of easy control of anisotropy.

【0028】次に、本発明の溶融液晶性ポリエステル樹
脂成形体と金属との熱融着方法と、接合体や積層体の製
造方法について説明する。本発明の溶融液晶性ポリエス
テル樹脂成形体と金属との熱融着方法は、溶融液晶性ポ
リエステル樹脂成形体の表面を活性化し、その表面と金
属とを溶融液晶性ポリエステル樹脂の流動開始温度以上
で熱融着することを特徴とする。溶融液晶性ポリエステ
ル樹脂成形体の表面を活性化する方法としては、紫外線
を照射することや、コロナ放電をすることやプラズマ処
理をすることが挙げられる。特に、溶融液晶性ポリエス
テル樹脂成形体の表面に、254nmの波長を含む紫外
線を照射することが好ましい。
Next, a method for heat-sealing the molten liquid crystalline polyester resin molded article of the present invention to a metal and a method for producing a joined body or a laminate will be described. The method of heat fusion between a molten liquid crystalline polyester resin molded article and a metal of the present invention activates the surface of the molten liquid crystalline polyester resin molded article, and the surface and the metal are heated at a flow starting temperature of the molten liquid crystalline polyester resin or higher. It is characterized by heat fusion. Examples of a method for activating the surface of the molten liquid crystalline polyester resin molded body include irradiating ultraviolet rays, performing corona discharge, and performing plasma treatment. In particular, it is preferable to irradiate the surface of the molten liquid crystalline polyester resin molded body with ultraviolet light having a wavelength of 254 nm.

【0029】ここで、溶融液晶性ポリエステル樹脂成形
体の表面が活性化された状態とは、紫外線、コロナ放
電、プラズマ照射などのエネルギー照射によって、成形
体表面が酸化された状態、あるいは官能基が形成された
状態、等をいう。成形体表面の酸化される程度として
は、本願の効果を発現する程度であれば特に限定される
ものではないが、例えば表面を構成する元素中の、酸素
原子が活性化以前の状態に比べて5%以上、好ましくは
20%以上増加することが挙げられる。表面に形成され
る官能基としては、例えば水酸基、カルボニル基などが
挙げられるが、これに限定されるものではない。また、
その官能基の密度も、本願の効果を発現する程度であれ
ば特に限定されるものではない。
Here, the activated state of the surface of the molten liquid crystalline polyester resin molded body refers to a state in which the molded body surface is oxidized by irradiation of energy such as ultraviolet rays, corona discharge, or plasma irradiation, or a state in which a functional group is present. It refers to the formed state, and the like. The degree of oxidation of the surface of the molded body is not particularly limited as long as the effect of the present application is exhibited, but, for example, in the elements constituting the surface, oxygen atoms are compared with the state before activation. The increase is 5% or more, preferably 20% or more. Examples of the functional group formed on the surface include a hydroxyl group and a carbonyl group, but are not limited thereto. Also,
The density of the functional group is not particularly limited as long as the effect of the present invention is exhibited.

【0030】このような活性化は、X線電子分光分析に
より表面元素構成を測定することで確認される。また、
表面に水酸基、カルボニル基など親水性の官能基が形成
されている場合、その表面に対する水の接触角が低下す
ることからも確認される。
Such activation is confirmed by measuring the surface element composition by X-ray electron spectroscopy. Also,
When a hydrophilic functional group such as a hydroxyl group or a carbonyl group is formed on the surface, it is confirmed from the fact that the contact angle of water with the surface is reduced.

【0031】また、上記の熱融着方法を適用することに
より、溶融液晶性ポリエステル樹脂成形体と金属との接
合体が得られる。特に、溶融液晶性ポリエステルフィル
ムまたはシートと金属箔とに、上記の熱融着方法を適用
することにより、溶融液晶性ポリエステル樹脂成形体と
金属との薄い積層体が得られる。以下、熱融着方法につ
いて主として記載するが、同方法をそのまま適用するこ
とにより、溶融液晶性ポリエステル樹脂成形体と金属と
の接合体や積層体が製造されることは明らかである。
By applying the above-mentioned heat fusion method, a joined body of a molten liquid crystalline polyester resin molded article and a metal can be obtained. In particular, a thin laminate of a molten liquid crystalline polyester resin molded article and a metal can be obtained by applying the above-mentioned heat fusion method to a molten liquid crystalline polyester film or sheet and a metal foil. Hereinafter, the heat fusion method will be mainly described, but it is apparent that a joint or a laminate of a molten liquid crystalline polyester resin molded product and a metal is manufactured by applying the method as it is.

【0032】本発明において、溶融液晶性ポリエステル
樹脂成形体と金属とを熱融着するには、その融着温度が
溶融液晶性ポリエステル樹脂の流動開始温度+10℃〜
流動開始温度+60℃であることが好ましく、さらに好
ましくは流動開始温度+30℃〜流動開始温度+60℃
である。熱融着温度が溶融液晶性ポリエステル樹脂の流
動開始温度+10℃より小さいと、成形体と金属との接
合強度が十分ではないことがあり、流動開始温度+60
℃より大きい場合、成形体の形状変形が著しくなること
がある。
In the present invention, in order to heat-fuse the molten liquid crystalline polyester resin molded body and the metal, the fusion temperature is set to the flow starting temperature of the molten liquid crystalline polyester resin + 10 ° C.
It is preferable that the flow start temperature is + 60 ° C, more preferably the flow start temperature + 30 ° C to the flow start temperature + 60 ° C.
It is. If the heat fusion temperature is lower than the flow start temperature of the molten liquid crystalline polyester resin + 10 ° C, the bonding strength between the molded body and the metal may not be sufficient, and the flow start temperature +60
If it is higher than ℃, the shape deformation of the molded body may be remarkable.

【0033】前記のようにして得られた溶融液晶性ポリ
エステル樹脂成形体の、金属と熱融着されようとする表
面は、その表面粗さがRa(中心線平均粗さ)で1〜50
μmの範囲であることが好ましい。このような範囲の表
面粗さへ調整する方法としては、射出成形に用いる金型
のキャビティー表面の粗さを調整して成形体へその表面
を転写する方法、エンボスを付したロールへフィルムを
加圧、加熱と共に連続的に通し、そのエンボスを転写す
る方法、エンボスを付した型を成形体へ押し当ててその
エンボスを転写する方法などがあるが、これらに限られ
るものではない。
The surface of the molten liquid crystalline polyester resin molded product obtained as described above, which is to be thermally fused with a metal, has a surface roughness Ra (center line average roughness) of 1 to 50.
It is preferably in the range of μm. As a method of adjusting the surface roughness to such a range, a method of transferring the surface to a molded body by adjusting the roughness of a cavity surface of a mold used for injection molding, and a method of transferring a film to an embossed roll There is a method in which the emboss is transferred by continuously passing the material under pressure and heat, and a method in which the embossed mold is pressed against the molded body to transfer the emboss, but the method is not limited thereto.

【0034】本発明で用いられる溶融液晶性ポリエステ
ル樹脂成形体と熱融着される金属としては、銅、銀、
金、鉄、亜鉛、マグネシウム、ニッケルなど、またはそ
の合金類が挙げられる。これらは、単独であるものや複
合されたものであってもかまわない。さらに、本発明を
妨げない範囲の表面処理、例えばアミノシラン剤などに
よる処理が施された金属であってもかまわない。
The metal to be heat-fused with the molten liquid crystalline polyester resin molded article used in the present invention includes copper, silver,
Gold, iron, zinc, magnesium, nickel, and the like, or alloys thereof are included. These may be used alone or in combination. Furthermore, a metal that has been subjected to a surface treatment that does not impair the present invention, for example, a treatment with an aminosilane agent or the like, may be used.

【0035】金属の形状としては、構造部品としての形
状の他、電気、電子回路を形成するための細線やエッチ
ング処理にて回路を形成するための箔状などが挙げられ
る。特に複雑で微細な回路形成のためには銅箔であるこ
とが好ましい。銅箔を用いた場合、それを溶融液晶性ポ
リエステル樹脂成形体と融着した後、エッチングによっ
て回路が形成される。
As the shape of the metal, in addition to the shape as a structural component, a thin wire for forming an electric or electronic circuit, a foil for forming a circuit by etching, and the like can be mentioned. In particular, copper foil is preferable for forming complicated and fine circuits. When a copper foil is used, a circuit is formed by fusing it to a molten liquid crystalline polyester resin molded article and then etching.

【0036】この銅箔とは、電解銅箔と称されるもので
あり、厚さが2〜200μm、片側の表面には微細な銅
粒子が析出されており、亜鉛やニッケルによってコート
されたのち、表面処理をなされたものが一般的である。
しかし、本発明はこれに限られるものではない。
This copper foil is referred to as an electrolytic copper foil, has a thickness of 2 to 200 μm, and has fine copper particles deposited on one surface, and after being coated with zinc or nickel, In general, those subjected to surface treatment are used.
However, the present invention is not limited to this.

【0037】溶融液晶性ポリエステル樹脂成形体と金属
とを熱融着するためには、前記の融着温度に設定された
プレス装置にて成形体と金属とを加圧する方法、予め上
記の融着温度に熱せられた金属を成形体に圧着する方
法、上記の融着温度に設定された熱ロールにてフィルム
やシート形状の成形体と金属箔とを連続的に加圧する方
法などが挙げられる。また、各々の成形体と金属は、成
形体と金属の片側同士が接合されても良いし、片方また
は各々の両面が接合される形態であってもかまわない。
これは、目的とする部品に要求される形状によって選択
されるものである。
In order to thermally fuse the molten liquid crystalline polyester resin molded body and the metal, a method in which the molded body and the metal are pressurized by a press apparatus set at the above-mentioned fusion temperature is performed by the above-mentioned method. Examples of the method include a method in which a metal heated to a temperature is press-bonded to a molded body, and a method in which a film or a sheet-shaped molded body and a metal foil are continuously pressed by a hot roll set at the above-mentioned fusing temperature. Further, each of the molded body and the metal may be joined to one side of the molded body and the metal, or may be a form in which one or both sides are joined.
This is selected according to the shape required for the target part.

【0038】また、例えばプレス装置にて加圧される成
形体と金属は、一度の融着操作につき一個の熱融着され
た成形体を得てもよいし、剥離用フィルムなどによって
複数組の融着させる金属と成形体を分離し、一度の融着
操作にて複数個の融着された成形体を得てもよい。これ
は、融着された成形体を得るために求められる生産性に
よって選択されるものである。
For example, a compact and a metal which are pressed by a press device may be obtained as one heat-fused compact per fusion operation, or a plurality of sets may be formed by a release film or the like. The metal to be fused and the compact may be separated, and a plurality of fused compacts may be obtained by a single fusing operation. This is selected according to the productivity required to obtain a fused molded body.

【0039】[0039]

【実施例】以下、実施例により本発明をさらに詳しく説
明するが、本発明はこれらによって限定されるものでは
ない。物性の測定法は、次のとおりである。 剥離強度:金属箔と成形体が融着された試験片から、幅
10mm、長さ64mmの試験片を切り取り、島津製作
所製オートグラフAG−5000Dを用いて、金属箔の
90℃引き剥がし試験(引き取り速度:50mm/分)
にて剥離強度(ピール強度ともいう)を測定した。 表面粗さ:熱融着させる成形体の表面粗さは、非接触表
面粗さ計 Feinpruf Perthen Gmb
H製 Focodyn、およびペルトメーターC5Dを
用いて計測した。 流動開始温度:島津製高化式フローテスターCFT−5
00型で測定した。すなわち、4℃/minの昇温速度
で加熱された樹脂を荷重100Kgf/cm2のもと
で、内径1mm、長さ10mmのノズルから押出したと
きに、溶融粘度が48000ポイズを示す温度を測定
し、これを流動開始温度とした。 溶融粘度:東洋精機社製キャピログラフ1Bで、所定温
度下、キャピラリー径0.5mm、キャピラリー長10
mm、剪断速度1000sec-1で測定を行った。 溶融張力:東洋精機キャピログラフ1Bを用い、所定温
度に設定された長さ8.0mm×2.1mmφのダイス
中で樹脂を溶融させ、ピストン速度2mm/minでこ
れを押出し、テンションプーリーを通した後巻き取る装
置において、巻き取りスピードを上げていきながら引き
取り、糸が破断する時のテンションプーリーにかかる力
をグラム単位で求めた。 固有粘度[η]:樹脂を3,5−ビストリフロロメチル
フェノールに溶解させ、ウベローデ粘度計を用いて60
℃で測定した。 ハンダ耐熱温度:射出成形機を用いて厚みが1.2mm
のJIS1(1/2)号ダンベルを成形し、錫60%、
鉛40%からなる230℃のハンダ浴に浸漬し、同温度
に60sec間保持した後取出し、外観を観察する。そ
の後、該ハンダ浴を10℃ずつ昇温させ同様の実験を行
い、同試験片が発泡または変形しない最高温度を求め
た。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the invention is limited thereto. The measuring method of the physical properties is as follows. Peel strength: A test piece having a width of 10 mm and a length of 64 mm was cut out from a test piece in which a metal foil and a molded body were fused, and a 90 ° C peeling test of the metal foil was performed using an Autograph AG-5000D manufactured by Shimadzu Corporation ( (Pickup speed: 50 mm / min)
The peel strength (also referred to as peel strength) was measured. Surface roughness: The surface roughness of the heat-sealed molded body is measured by a non-contact surface roughness meter Feinpruf Perthen Gmb.
The measurement was performed using Focodyn manufactured by H. Co. and Pertometer C5D. Flow initiation temperature: Shimadzu Koka type flow tester CFT-5
It was measured with type 00. That is, when a resin heated at a heating rate of 4 ° C./min is extruded from a nozzle having an inner diameter of 1 mm and a length of 10 mm under a load of 100 kgf / cm 2 , the temperature at which the melt viscosity shows 48,000 poise is measured. This was taken as the flow start temperature. Melt viscosity: Capillograph 1B manufactured by Toyo Seiki Co., Ltd., at a predetermined temperature, capillary diameter 0.5 mm, capillary length 10
mm and a shear rate of 1000 sec -1 . Melt tension: Using Toyo Seiki Capillograph 1B, the resin is melted in a 8.0 mm × 2.1 mmφ die set at a predetermined temperature, extruded at a piston speed of 2 mm / min, and passed through a tension pulley. In the winding device, the yarn was taken up while increasing the winding speed, and the force applied to the tension pulley when the yarn was broken was obtained in grams. Intrinsic viscosity [η]: The resin was dissolved in 3,5-bistrifluoromethylphenol, and the resin was dissolved in
Measured in ° C. Solder heat resistant temperature: 1.2mm thick using an injection molding machine
Of JIS1 (1/2) No. dumbbell, tin 60%,
It is immersed in a 230 ° C. solder bath made of 40% lead, kept at the same temperature for 60 seconds, taken out, and observed for appearance. Thereafter, the temperature of the solder bath was increased by 10 ° C. at a time, and the same experiment was performed to determine the maximum temperature at which the test piece did not foam or deform.

【0040】参考例1 (溶融液晶性ポリエステル樹脂、溶融液晶性ポリエステ
ル樹脂成形体の調製)p−アセトキシ安息香酸10.8
Kg(60モル)、テレフタル酸2.49Kg(15モ
ル)、イソフタル酸0.83Kg(5モル)、および、
4,4’−ジアセトキシジフェニル5.45Kg(2
0.2モル)を櫛形攪拌翼を持つ重合槽に仕込み、窒素
ガス雰囲気下で攪拌しながら昇温し、330℃で1時間
重合させた。この間に副生する酢酸を除去しながら、強
力な攪拌下で重合させた。その後、系を徐々に冷却し、
200℃で得られたポリマーを系外に取出した。得られ
たポリマーを細川ミクロン(株)製のハンマーミルで粉
砕し、2.5mm以下の粒子とした。
Reference Example 1 (Preparation of a molten liquid crystalline polyester resin and a molded product of a molten liquid crystalline polyester resin) p-acetoxybenzoic acid 10.8
Kg (60 mol), terephthalic acid 2.49 Kg (15 mol), isophthalic acid 0.83 Kg (5 mol), and
5.45 Kg of 4,4′-diacetoxydiphenyl (2
(0.2 mol) was charged into a polymerization tank having a comb-shaped stirring blade, and the temperature was increased while stirring under a nitrogen gas atmosphere, and polymerization was performed at 330 ° C. for 1 hour. The polymerization was carried out under strong stirring while removing acetic acid produced as a by-product during this time. After that, the system is gradually cooled,
The polymer obtained at 200 ° C. was taken out of the system. The obtained polymer was pulverized with a hammer mill manufactured by Hosokawa Micron Co., Ltd. to obtain particles of 2.5 mm or less.

【0041】これをさらにロータリーキルン中で窒素雰
囲気下に290℃、3時間処理することにより、流動開
始温度が341℃の粒子状の下記の繰り返し単位からな
る全芳香族の溶融液晶性ポリエステル樹脂を得た。
This is further treated in a rotary kiln under a nitrogen atmosphere at 290 ° C. for 3 hours to obtain a wholly aromatic molten liquid crystalline polyester resin having the following recurring units in the form of particles having a flow start temperature of 341 ° C. Was.

【化5】 =60:20:15:5(モル比)Embedded image = 60: 20: 15: 5 (molar ratio)

【0042】この溶融液晶性ポリエステル樹脂を、二軸
押出機(池貝鉄工(株)製PCM−30)を用いてシリ
ンダー温度350℃で造粒しペレットを得た。得られた
ペレットを用いて、上記方法によって樹脂の物性を測定
した。その結果は以下の通りである。 流動開始温度:332℃、固有粘度[η]:6.8 溶融粘度: (剪断速度:1000sec-1、332℃で測定) 9500poise (剪断速度:1000sec-1、352℃で測定) 1400poise (溶融粘度比) 0.15 溶融張力:25g、ハンダ耐熱温度:290℃
This molten liquid crystalline polyester resin was granulated at a cylinder temperature of 350 ° C. using a twin-screw extruder (PCM-30 manufactured by Ikegai Iron Works Co., Ltd.) to obtain pellets. Using the obtained pellets, the physical properties of the resin were measured by the above method. The results are as follows. Flow initiation temperature: 332 ° C., intrinsic viscosity [η]: 6.8 Melt viscosity: (shear rate: 1000 sec −1 , measured at 332 ° C.) 9500 poise (shear rate: 1000 sec −1 , measured at 352 ° C.) 1400 poise (melt viscosity) Ratio) 0.15 Melt tension: 25 g, Solder heat resistant temperature: 290 ° C

【0043】上記ペレットを、射出成形機(日精樹脂工
業(株)製PS40E5ASE)を用いてシリンダー温
度360℃、金型温度130℃で、64×64×1mm
tの平板を成形し、以下の実施例に用いた。
Using an injection molding machine (PS40E5ASE, manufactured by Nissei Plastics Industry Co., Ltd.), the pellets were prepared at a cylinder temperature of 360 ° C. and a mold temperature of 130 ° C. at 64 × 64 × 1 mm.
A flat plate of t was formed and used in the following Examples.

【0044】比較例1 参考例1にて成形した平板と、銅箔(厚さ18μm)を
以下に示す方法で張り合わせた。平板は、エタノールで
表面を払拭した後120℃で8時間以上乾燥して使用し
た。銅箔はマット面(銅の微粒子が析出している面)を
熱融着させ、上記のように成形品のMDに沿って幅10
mmに切断して、そのピール強度を測定した。さらに剥
離界面の状態を観察し、樹脂側で破壊が進行している状
態を材料破壊、樹脂と銅箔の界面で剥離している状態を
界面剥離、と判定した。 熱融着方法:平板(表面粗さ:0.8μm)と銅箔とを
重ね合せ、その上下を0.1mmtアルミ板ではさみ、
さらにその上下を3mmtSUS板ではさみ、あらかじ
め350℃に設定したプレス機のプラテン間にはさむ。
直ちに平板に対して40kg/cm2の圧力で加圧し2
分間保持した後、冷プレス機へ移して3分間冷却する。
SUS板、アルミ板を外して溶融液晶性ポリエステル樹
脂と銅箔の熱融着された成形体を得る。その結果は以下
の通りである。 ピール強度:0.6kg/cm、剥離状態:界面剥離
Comparative Example 1 The flat plate formed in Reference Example 1 and a copper foil (thickness: 18 μm) were bonded by the following method. The plate was wiped with ethanol and then dried at 120 ° C. for 8 hours or more before use. As for the copper foil, the mat surface (the surface where the copper fine particles are deposited) is heat-sealed, and a width of 10 mm along the MD of the molded product as described above.
mm, and the peel strength was measured. Furthermore, the state of the delamination interface was observed, and a state in which the destruction was progressing on the resin side was determined as material destruction, and a state in which delamination was occurring at the interface between the resin and the copper foil was determined as interfacial delamination. Thermal fusion method: Laminate a flat plate (surface roughness: 0.8 μm) and copper foil, sandwich the top and bottom with a 0.1 mmt aluminum plate,
Further, the upper and lower portions are sandwiched between 3 mmt SUS plates, and sandwiched between platens of a press machine previously set to 350 ° C.
Immediately press the plate with a pressure of 40 kg / cm 2 ,
After holding for 1 minute, it is transferred to a cold press and cooled for 3 minutes.
The SUS plate and the aluminum plate are removed to obtain a heat-fused molded body of the molten liquid crystalline polyester resin and the copper foil. The results are as follows. Peel strength: 0.6 kg / cm, peeling state: interfacial peeling

【0045】実施例1 エタノールで表面を払拭した後120℃で8時間以上乾
燥した平板に対して、低圧水銀灯(セン特殊光源(株)
製表面改質装置)を用いて17mW/cm2(測定波長
254nm)で紫外線を10分間照射して、紫外線を照
射した平板の面と銅箔とを張り合わせること以外は、比
較例1と同様にして銅箔を張り合わせ、そのピール強度
を測定し、剥離状態を観察した。その結果は以下の通り
である。 ピール強度:0.9kg/cm、剥離状態:材料破壊
Example 1 A flat plate dried at 120 ° C. for 8 hours or more after wiping the surface with ethanol was applied to a low-pressure mercury lamp (Sen Special Light Source Co., Ltd.).
17mW / cm 2 (measurement wavelength)
254 nm), and the copper foil was adhered in the same manner as in Comparative Example 1 except that the surface of the flat plate irradiated with the ultraviolet light was adhered to the copper foil, and the peel strength was measured. Was observed. The results are as follows. Peel strength: 0.9kg / cm, peeling state: material destruction

【0046】参考例2 比較例1で使用した熱融着前の平板表面、および実施例
1で使用した紫外線照射後の平板表面の元素構成を、X
線光電子分光測定装置(Surface Science Instruments
社製 SSX-100)で測定した。また、それぞれの表面に対
する水の接触角を接触角測定装置(協和界面科学株式会
社製 CA-A)を用いて測定した。その結果を表1に示
す。
Reference Example 2 The elemental structures of the flat plate surface before heat fusion used in Comparative Example 1 and the flat plate surface used in Example 1 after ultraviolet irradiation were X
Line Photoelectron Spectrometer (Surface Science Instruments
(SSX-100). The contact angle of water on each surface was measured using a contact angle measuring device (CA-A manufactured by Kyowa Interface Science Co., Ltd.). Table 1 shows the results.

【0047】[0047]

【表1】 [Table 1]

【0048】実施例2〜3、比較例2 熱融着の際、プラテンの温度を以下に示す温度に設定す
る他は実施例1と同様にして銅箔を貼り合わせ、そのピ
ール強度を測定し剥離状態を観察した。その結果は以下
の通りである。
Examples 2 to 3 and Comparative Example 2 At the time of heat fusion, a copper foil was adhered in the same manner as in Example 1 except that the temperature of the platen was set to the following temperature, and the peel strength was measured. The peeled state was observed. The results are as follows.

【0049】[0049]

【表2】 [Table 2]

【0050】比較例3 熱融着の際、プラテンの温度を390℃に設定する他は
比較例1と同様にして銅箔を貼り合わせ、そのピール強
度を測定し剥離状態を観察した。その結果は以下の通り
である。 ピール強度:0.8kg/cm、剥離状態:界面剥離
Comparative Example 3 A copper foil was adhered in the same manner as in Comparative Example 1 except that the temperature of the platen was set to 390 ° C. during heat fusion, and the peel strength was measured to observe the peeled state. The results are as follows. Peel strength: 0.8 kg / cm, peeling state: interfacial peeling

【0051】実施例4、5 銅箔と融着させる平板として、以下に示す方法で表面を
粗化されたものを使用する他は、実施例1と同様にして
表面払拭、紫外線照射を行い、銅箔を貼り合わせ、その
ピール強度を測定し剥離状態を観察した。 表面粗化方法:エタノールで表面を払拭した平板と#3
20または#600のサンドペーパーを、間に0.05
mmtフッ素樹脂フィルムを介して重ね合せ、その上下
を0.1mmtアルミ板、1mmtシリコーンシート、
3mmtSUS板の順ではさんで組み合わせ、あらかじ
め250℃に設定したプレス機のプラテン間にはさむ。
直ちに平板に対して10kg/cm2の圧力で加圧し5
分間保持した後、冷プレス機へ移して3分間冷却する。
SUS板、アルミ板、シリコーンシート、サンドペーパ
ー及びフッ素樹脂フィルムを外して、表面を粗化処理さ
れた平板を得る。得られた結果は次の通りである。
Examples 4 and 5 Surface wiping and ultraviolet irradiation were carried out in the same manner as in Example 1 except that a plate whose surface was roughened by the following method was used as a flat plate to be fused with a copper foil. The copper foil was bonded, the peel strength was measured, and the peeled state was observed. Surface roughening method: flat plate whose surface has been wiped with ethanol and # 3
20 or # 600 sandpaper with 0.05 in between
The upper and lower sides are laminated by a 0.1 mmt aluminum plate, 1 mmt silicone sheet,
Combine them in the order of 3 mmt SUS plate and sandwich them between the platens of the press set at 250 ° C. in advance.
Immediately press the plate with a pressure of 10 kg / cm 2 for 5 minutes.
After holding for 1 minute, it is transferred to a cold press and cooled for 3 minutes.
The SUS plate, the aluminum plate, the silicone sheet, the sandpaper and the fluororesin film are removed to obtain a flat plate whose surface is roughened. The results obtained are as follows.

【0052】[0052]

【表3】 [Table 3]

【0053】比較例4 銅箔と融着させる平板として、上記の方法で表面を粗化
し、表面粗さを4μmとされたものを使用する他は、比
較例1と同様にして銅箔を貼り合わせ、そのピール強度
を測定し剥離状態を観察した。使用したサンドペーパー
は、#320であった。得られた結果は、以下の通りで
ある。 ピール強度:0.7kg/cm、剥離状態:界面剥離
Comparative Example 4 A copper foil was adhered in the same manner as in Comparative Example 1, except that the surface was roughened by the above method and the surface roughness was set to 4 μm as a flat plate to be fused with the copper foil. The peel strength was measured by measuring the peel strength. The used sandpaper was # 320. The results obtained are as follows. Peel strength: 0.7 kg / cm, peeling state: interfacial peeling

【0054】[0054]

【発明の効果】本発明の方法によれば、溶融液晶性ポリ
エステル樹脂成形体と金属とを強固に熱融着させること
ができる。また、本発明の製造方法によれば、溶融液晶
性ポリエステル樹脂成形体と金属とが強固に熱融着され
た接合体や積層体を得ることができる。この方法によっ
て得られる溶融液晶性ポリエステル樹脂と金属の熱融着
された接合体や積層体は、電気、電子回路基板や産業用
機器、家電製品、OA機器、電気、電子部品などの用途
にきわめて有用なものである。
According to the method of the present invention, a molten liquid crystalline polyester resin molded article and a metal can be firmly thermally fused. Further, according to the production method of the present invention, it is possible to obtain a joined body or a laminated body in which a molten liquid crystalline polyester resin molded body and a metal are firmly thermally fused. A bonded body or a laminate obtained by heat-fusing a molten liquid crystalline polyester resin and a metal obtained by this method is extremely useful for applications such as electricity, electronic circuit boards, industrial equipment, home appliances, OA equipment, electricity, and electronic components. It is useful.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08L 67/03 C08L 67/03 // B29K 67:00 B29L 9:00 Fターム(参考) 4F073 AA04 AA28 BA23 BA25 BB01 BB07 CA45 GA01 HA02 HA04 HA06 4F100 AB01B AB17B AB33B AK41A BA02 BA10A BA10B DD07A EC032 EH361 EJ202 EJ422 EJ541 GB41 GB48 JA04A JA06A JA11A JK06 YY00A 4F211 AA24 AD03 AD08 AD29 AG01 AG03 AH33 AK01 AK03 TA01 TC02 TD11 TH02 TH06 TH10 TN26 TQ01 TQ04 4J002 CF061 CF181 FD010 GF00 GQ00 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) C08L 67/03 C08L 67/03 // B29K 67:00 B29L 9:00 F term (Reference) 4F073 AA04 AA28 BA23 BA25 BB01 BB07 CA45 GA01 HA02 HA04 HA06 4F100 AB01B AB17B AB33B AK41A BA02 BA10A BA10B DD07A EC032 EH361 EJ202 EJ422 EJ541 GB41 GB48 JA04A JA06A JA11A JK06 YY00A 4F211 AA24 AD03 T08 012 CF181 FD010 GF00 GQ00

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】溶融液晶性ポリエステル樹脂成形体の表面
を活性化し、その表面と金属とを溶融液晶性ポリエステ
ル樹脂の流動開始温度以上で熱融着することを特徴とす
る溶融液晶性ポリエステル樹脂成形体と金属との熱融着
方法。
1. A molten liquid crystalline polyester resin molding characterized by activating the surface of a molten liquid crystalline polyester resin molded article and thermally fusing the surface to a metal at a temperature equal to or higher than the flow start temperature of the molten liquid crystalline polyester resin. Heat fusion method between body and metal.
【請求項2】溶融液晶性ポリエステル樹脂成形体の表面
に254nmの波長を含む紫外線を照射し、その表面と
金属とを溶融液晶性ポリエステル樹脂の流動開始温度以
上で熱融着することを特徴とする溶融液晶性ポリエステ
ル樹脂成形体と金属との熱融着方法。
2. A method of irradiating an ultraviolet ray having a wavelength of 254 nm to a surface of a molten liquid crystalline polyester resin molded article, and thermally fusing the surface to a metal at a temperature equal to or higher than a flow starting temperature of the molten liquid crystalline polyester resin. Fusion method between a molten liquid crystalline polyester resin molded article and a metal.
【請求項3】熱融着する温度が、溶融液晶性ポリエステ
ル樹脂の流動開始温度+10℃〜流動開始温度+60℃
の範囲である請求項1または2に記載の溶融液晶性ポリ
エステル樹脂成形体と金属との熱融着方法。
3. The temperature at which heat fusion is carried out, the flow start temperature of the molten liquid crystalline polyester resin + 10 ° C. to the flow start temperature + 60 ° C.
3. The method for thermally fusing a molten liquid crystalline polyester resin molded product according to claim 1 or 2 with a metal.
【請求項4】溶融液晶性ポリエステル樹脂成形体の、金
属と熱融着される面の表面粗さが、Raで1〜50μm
の範囲である請求項1、2または3記載の溶融液晶性ポ
リエステル樹脂成形体と金属との熱融着方法。
4. The molten liquid crystalline polyester resin molded body has a surface roughness Ra of 1 to 50 μm which is thermally fused to a metal.
4. The method for heat-sealing a molten liquid crystalline polyester resin molded article and a metal according to claim 1, 2 or 3, wherein
【請求項5】溶融液晶性ポリエステル樹脂成形体が、実
質的に溶融液晶性ポリエステル樹脂のみからなるフィル
ムまたはシートである請求項1〜4のいずれかに記載の
溶融液晶性ポリエステル樹脂成形体と金属との熱融着方
法。
5. The molten liquid crystalline polyester resin molded product according to claim 1, wherein the molten liquid crystalline polyester resin molded product is a film or a sheet consisting essentially of the molten liquid crystalline polyester resin alone. And heat fusion method.
【請求項6】溶融液晶性ポリエステル樹脂の、流動開始
温度にて剪断速度1000sec-1で測定した溶融粘度
(粘度1)と、流動開始温度+20℃にて剪断速度10
00sec-1で測定した溶融粘度(粘度2)との比率
[(粘度2)/(粘度1)]が0.10〜0.70の範
囲であり、かつハンダ耐熱温度が250℃以上である請
求項1〜5のいずれかに記載の溶融液晶性ポリエステル
樹脂成形体と金属との熱融着方法。
6. A melt viscosity (viscosity 1) of a molten liquid crystalline polyester resin measured at a flow start temperature at a shear rate of 1000 sec -1 and a shear rate of 10 at a flow start temperature of + 20 ° C.
The ratio [(viscosity 2) / (viscosity 1)] to the melt viscosity (viscosity 2) measured at 00 sec -1 is in the range of 0.10 to 0.70, and the solder heat resistance temperature is 250 ° C. or higher. Item 6. A method for thermally fusing a molten liquid crystalline polyester resin molded article according to any one of Items 1 to 5 to a metal.
【請求項7】金属が電解銅箔である請求項1〜6のいず
れかに記載の溶融液晶性ポリエステル樹脂成形体と金属
との熱融着方法。
7. The method according to claim 1, wherein the metal is an electrolytic copper foil.
【請求項8】溶融液晶性ポリエステル樹脂成形体と金属
とを請求項1〜7のいずれかに記載の方法で熱融着する
ことを特徴とする溶融液晶性ポリエステル樹脂成形体と
金属との接合体の製造方法。
8. A joint between a molten liquid crystalline polyester resin molded article and a metal, wherein the molten liquid crystalline polyester resin molded article and the metal are thermally fused by the method according to claim 1. How to make the body.
【請求項9】溶融液晶性ポリエステル樹脂成形体と金属
とを請求項1〜7のいずれかに記載の方法で熱融着する
ことを特徴とする溶融液晶性ポリエステル樹脂成形体と
金属との積層体の製造方法。
9. A lamination of a molten liquid crystalline polyester resin molded article and a metal, wherein the molten liquid crystalline polyester resin molded article and the metal are thermally fused by the method according to any one of claims 1 to 7. How to make the body.
JP35575899A 1998-12-16 1999-12-15 Method for thermally welding molten liquid crystal polyester resin molded object and metal Pending JP2000233448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35575899A JP2000233448A (en) 1998-12-16 1999-12-15 Method for thermally welding molten liquid crystal polyester resin molded object and metal

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-357548 1998-12-16
JP35754898 1998-12-16
JP35575899A JP2000233448A (en) 1998-12-16 1999-12-15 Method for thermally welding molten liquid crystal polyester resin molded object and metal

Publications (1)

Publication Number Publication Date
JP2000233448A true JP2000233448A (en) 2000-08-29

Family

ID=26580325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35575899A Pending JP2000233448A (en) 1998-12-16 1999-12-15 Method for thermally welding molten liquid crystal polyester resin molded object and metal

Country Status (1)

Country Link
JP (1) JP2000233448A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005320478A (en) * 2004-05-11 2005-11-17 Ueno Seiyaku Oyo Kenkyusho:Kk Joining method of liquid crystal polyester resin composition and joined product of liquid crystal resin composition
EP1645662A1 (en) 2004-10-06 2006-04-12 Furukawa Circuit Foil Co., Ltd. Surface treated copper foil and circuit board
WO2007029440A1 (en) * 2005-09-01 2007-03-15 Osaka University Method for joining metal and resin and metal-resin composite, method for joining glass and resin and glass-resin composite, and method for joining ceramic and resin and ceramic-resin composite
US7381475B2 (en) 2004-02-06 2008-06-03 Furukawa Circuit Foil Co., Ltd. Treated copper foil and circuit board
WO2008102585A1 (en) * 2007-02-22 2008-08-28 Rohm Co., Ltd. Substrate bonding method, microchip manufacturing method and microchip
JP2010103269A (en) * 2008-10-23 2010-05-06 Kuraray Co Ltd Multilayer circuit board and manufacturing method thereof
JP2014042043A (en) * 2013-10-01 2014-03-06 Kuraray Co Ltd Evaluation method of thermoplastic liquid crystal polymer film
JP2016062954A (en) * 2014-09-16 2016-04-25 株式会社プライマテック Laminate for electronic circuit board and electronic circuit board
JP2017222089A (en) * 2016-06-15 2017-12-21 株式会社新技術研究所 Copper alloy article containing polyester resin and method for producing the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7381475B2 (en) 2004-02-06 2008-06-03 Furukawa Circuit Foil Co., Ltd. Treated copper foil and circuit board
JP2005320478A (en) * 2004-05-11 2005-11-17 Ueno Seiyaku Oyo Kenkyusho:Kk Joining method of liquid crystal polyester resin composition and joined product of liquid crystal resin composition
JP4558374B2 (en) * 2004-05-11 2010-10-06 上野製薬株式会社 Bonding method of liquid crystal polyester resin composition and liquid crystal polyester resin composition joined body
US7238769B2 (en) * 2004-05-11 2007-07-03 Kabushiki Kaisha Ueno Seiyaku Oyo Kenkyujo Method for joining liquid-crystalline polyester resin composition parts and jointed article made of liquid-crystalline polyester resin composition
EP1645662A1 (en) 2004-10-06 2006-04-12 Furukawa Circuit Foil Co., Ltd. Surface treated copper foil and circuit board
JPWO2007029440A1 (en) * 2005-09-01 2009-03-26 国立大学法人大阪大学 Metal resin bonding method and metal resin composite, glass resin bonding method and glass resin composite, ceramic resin bonding method and ceramic resin composite
WO2007029440A1 (en) * 2005-09-01 2007-03-15 Osaka University Method for joining metal and resin and metal-resin composite, method for joining glass and resin and glass-resin composite, and method for joining ceramic and resin and ceramic-resin composite
US8168031B2 (en) 2005-09-01 2012-05-01 Osaka University Method for metal-resin joining and a metal-resin composite, a method for glass-resin joining and a glass-resin composite, and a method for ceramic-resin joining and a ceramic-resin composite
WO2008102585A1 (en) * 2007-02-22 2008-08-28 Rohm Co., Ltd. Substrate bonding method, microchip manufacturing method and microchip
JP2010103269A (en) * 2008-10-23 2010-05-06 Kuraray Co Ltd Multilayer circuit board and manufacturing method thereof
JP2014042043A (en) * 2013-10-01 2014-03-06 Kuraray Co Ltd Evaluation method of thermoplastic liquid crystal polymer film
JP2016062954A (en) * 2014-09-16 2016-04-25 株式会社プライマテック Laminate for electronic circuit board and electronic circuit board
JP2017222089A (en) * 2016-06-15 2017-12-21 株式会社新技術研究所 Copper alloy article containing polyester resin and method for producing the same
WO2017217467A1 (en) * 2016-06-15 2017-12-21 株式会社新技術研究所 Copper alloy article including polyester-based resin, and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP3245437B2 (en) Manufacturing method of laminate
EP3991970A1 (en) Lcp extruded film, flexible laminate using same and method for producing same
TWI815895B (en) Thermoplastic liquid crystal polymer shaped article and production method thereof
EP0951206B1 (en) Liquid crystal polymer film, laminate, method of making them and multi-layered parts-mounted circuit board
TWI359159B (en) Aromatic liquid-crystalline polyester
EP0508368B1 (en) Process for treating film comprising liquid crystal polymer
JP2019178326A (en) Production method of thermoplastic liquid crystal polymer film, circuit board and method for manufacturing the same
JP6316178B2 (en) Single-sided metal-clad laminate and manufacturing method thereof
JP4304854B2 (en) Multilayer polyimide film and laminate
JPH0890570A (en) Processing method of liquid crystal polymer film
TW201021655A (en) Laminated product and production method thereof, and circuit substrate using the same
JP2000233448A (en) Method for thermally welding molten liquid crystal polyester resin molded object and metal
JP2003071982A (en) Copper-clad sheet for protection against heat
JP2010103269A (en) Multilayer circuit board and manufacturing method thereof
JP2024071437A (en) Insulating film, double-sided metal-clad laminate and electronic circuit board
US6468665B1 (en) Process for melt-bonding molded article of liquid crystalline polyester with metal
CN100354115C (en) Method for producing laminate
JP3121445B2 (en) Laminated body and method for manufacturing the same
JP5893596B2 (en) Adhesive thermoplastic liquid crystal polymer film, multilayer circuit board, and manufacturing method thereof
JP3860679B2 (en) Method for modifying thermoplastic liquid crystal polymer film
JP2003192789A (en) Heat-bondable polyimide and laminate using the same
CN113727832A (en) Thermoplastic liquid crystal polymer film, laminate, molded body, and method for producing same
JP2006272744A (en) Method for producing laminate
JP4184529B2 (en) Thermoplastic liquid crystal polymer film and method for modifying the same
JPH11291350A (en) Polymer film and its manufacture