JP2000231943A - Semiconductor electrode and its manufacture - Google Patents

Semiconductor electrode and its manufacture

Info

Publication number
JP2000231943A
JP2000231943A JP11347683A JP34768399A JP2000231943A JP 2000231943 A JP2000231943 A JP 2000231943A JP 11347683 A JP11347683 A JP 11347683A JP 34768399 A JP34768399 A JP 34768399A JP 2000231943 A JP2000231943 A JP 2000231943A
Authority
JP
Japan
Prior art keywords
semiconductor
film
vapor deposition
semiconductor electrode
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11347683A
Other languages
Japanese (ja)
Other versions
JP3506080B2 (en
Inventor
Kazuo Higuchi
和夫 樋口
Tomomi Motohiro
友美 元廣
Yasuhiko Takeda
康彦 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP34768399A priority Critical patent/JP3506080B2/en
Publication of JP2000231943A publication Critical patent/JP2000231943A/en
Application granted granted Critical
Publication of JP3506080B2 publication Critical patent/JP3506080B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Physical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily manufacture a semiconductor electrode and to enhance its energy conversion efficiency without lowering the specific surface of a semiconductor, by forming it by a film comprising the semiconductor having a columnar construction formed on the base and its surface. SOLUTION: When a semiconductor film having a large specific surface while leaving a gap to a certain extent between individual columnar structures in a columnar construction is used for a solar battery with its surface adhered by a color matter for example, energy conversion efficiency is enhanced by increasing adhesion of the color matter and securing the amount of received light. In addition to a metal, a metal oxide such as TiO2 and the like or sulphide such as CdS and the like is preferably used for the film comprising a semiconductor. A method to form a vapor deposition film on the surface of a base by an inclined vapor deposition method in which vapor deposition particles are inputted from a direction inclined at an angle of not less than 10 degree from the normal line of the base is preferable. Thereby, the inclined columnar construction is stablly formed and the specific surface gets larger. The color matter, the metal or the metal oxide is preferably adhered onto the surface of the vapor deposition film, and thereby, moisture adsorption in the atmosphere is reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【技術分野】本発明は,電池,光触媒,等に用いること
ができる半導体電極,およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor electrode that can be used for batteries, photocatalysts, and the like, and a method for manufacturing the same.

【0002】[0002]

【従来技術】従来より,後述する図6に示すごとく,色
素増感型の太陽電池3が知られている。色素増感型の太
陽電池3は,透明電極5を受光面120に配設した半導
体電極9と,これに対向する対向電極6とを有している
と共に,スペーサ81により電極間に設けた間隙に電解
液4を満たして構成してある。
2. Description of the Related Art A dye-sensitized solar cell 3 has been conventionally known as shown in FIG. The dye-sensitized solar cell 3 includes a semiconductor electrode 9 having a transparent electrode 5 disposed on a light receiving surface 120 and a counter electrode 6 facing the semiconductor electrode 9, and a gap provided between the electrodes by a spacer 81. Is filled with an electrolyte 4.

【0003】この従来の色素増感型太陽電池3は,上記
透明電極5を透過して半導体電極1に照射される光99
によって,半導体電極9内において電子を発生させる。
そして,半導体電極1内の電子は,透明電極5に集めら
れ,この透明電極5から取出される。従来の半導体電極
9は,図8に示すごとく,TiO2等の半導体の微粒子
(粒径:数nm〜数十nmオーダ)を部分的に焼結させ
て構成した多孔質の電極基体922と,その表面に配置
したルテニウム錯体等の色素923とよりなる。なお,
この半導体電極9は,上記色素923を配設していない
状態においては,上記太陽電池だけでなく,通常の電
池,光触媒等にも利用することができる。
In this conventional dye-sensitized solar cell 3, light 99 irradiating the semiconductor electrode 1 through the transparent electrode 5 is applied.
As a result, electrons are generated in the semiconductor electrode 9.
Then, electrons in the semiconductor electrode 1 are collected by the transparent electrode 5 and extracted from the transparent electrode 5. As shown in FIG. 8, a conventional semiconductor electrode 9 includes a porous electrode base 922 formed by partially sintering semiconductor fine particles (particle size: several nm to several tens nm) such as TiO 2 , It consists of a dye 923 such as a ruthenium complex disposed on its surface. In addition,
In a state where the dye 923 is not provided, the semiconductor electrode 9 can be used not only for the solar cell but also for an ordinary battery, a photocatalyst, and the like.

【0004】[0004]

【解決しようとする課題】しかしながら,上記従来の半
導体電極9においては,次の問題がある。即ち,従来の
半導体電極9における電極基体922は,表面積を増加
させるために,上記のごとく半導体の微粒子を部分的に
焼結させて多孔質状に構成してある。そして,この多孔
質状の基体に上記半導体を付着させるには,方向性のあ
る物理蒸着法を用いることはできず,超臨界流体を用い
た方法,ゾルゲル法,液相含浸法,CVI法(chemical
vapor infiltration)等の,比較的工程が複雑な方
法を利用する必要があった。
However, the conventional semiconductor electrode 9 has the following problems. That is, the electrode base 922 of the conventional semiconductor electrode 9 is made porous by partially sintering semiconductor fine particles as described above in order to increase the surface area. In order to attach the semiconductor to the porous substrate, a directional physical vapor deposition method cannot be used, and a method using a supercritical fluid, a sol-gel method, a liquid phase impregnation method, a CVI method ( chemical
It was necessary to use a method whose process was relatively complicated, such as vapor infiltration.

【0005】一方,平坦な基板上に半導体電極を蒸着さ
せる方法は,製造上簡単ではあるが,大きな表面積が得
られず,優れた性能を発揮しうる半導体電極を得ること
はできなかった。
[0005] On the other hand, a method of depositing a semiconductor electrode on a flat substrate is simple in manufacturing, but does not provide a large surface area and cannot obtain a semiconductor electrode exhibiting excellent performance.

【0006】本発明は,かかる従来の問題点に鑑みてな
されたもので,半導体の比表面積を低下させることな
く,容易に製造することができ,かつ,エネルギー変換
効率に優れた,半導体電極およびその製造方法を提供し
ようとするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and it is an object of the present invention to provide a semiconductor electrode which can be easily manufactured without lowering the specific surface area of a semiconductor and which has excellent energy conversion efficiency. It is intended to provide a manufacturing method thereof.

【0007】[0007]

【課題の解決手段】請求項1に記載の発明は,基板と,
該基板の表面に形成された柱状構造を有する半導体より
なる膜とよりなることを特徴とする半導体電極にある。
According to a first aspect of the present invention, there is provided an electronic apparatus comprising: a substrate;
A semiconductor electrode comprising a film made of a semiconductor having a columnar structure formed on a surface of the substrate.

【0008】本発明において最も注目すべきことは,上
記半導体よりなる膜は,柱状構造を有していることであ
る。
What is most notable in the present invention is that the film made of the semiconductor has a columnar structure.

【0009】ここで,上記柱状構造は,個々の柱状組織
の間にある程度の間隙を残して構成されたものである。
そのため,上記柱状構造を有する上記膜は,上記間隙等
によって非常に大きな表面積を有するものとなる。ま
た,上記柱状構造としては,基板の法線方向から傾いた
柱状組織を集合させてなる傾斜柱状構造とすることもで
きる。
Here, the columnar structure is formed by leaving a certain gap between individual columnar structures.
Therefore, the film having the columnar structure has a very large surface area due to the gap and the like. Further, the columnar structure may be an inclined columnar structure formed by collecting columnar structures inclined from the normal direction of the substrate.

【0010】そして,上記膜の総表面積は,基板との界
面面積よりも大きいこと,特に10倍以上大きいことが
好ましい。これにより,半導体電極が受けうる光量を十
分に確保することができ,後述するエネルギー変換効率
をさらに向上させることができる。
[0010] The total surface area of the film is preferably larger than the interface area with the substrate, particularly preferably 10 times or more. As a result, a sufficient amount of light can be received by the semiconductor electrode, and the energy conversion efficiency described later can be further improved.

【0011】また,上記膜となる半導体としては,酸化
物半導体,硫化物半導体等を用いることができる。酸化
物半導体としては,例えば,TiO2,ZnO,Sn
2,Nb25,In23,WO3,ZrO2,La
23,Ta25,SrTiO3,BaTiO3等を用いる
ことができる。硫化物半導体としては,例えば,CdS
等を用いることができる。また,Si,GaAs等も用
いることができる。
Further, an oxide semiconductor, a sulfide semiconductor, or the like can be used as a semiconductor for forming the film. As an oxide semiconductor, for example, TiO 2 , ZnO, Sn
O 2 , Nb 2 O 5 , In 2 O 3 , WO 3 , ZrO 2 , La
2 O 3 , Ta 2 O 5 , SrTiO 3 , BaTiO 3 and the like can be used. As a sulfide semiconductor, for example, CdS
Etc. can be used. Further, Si, GaAs, or the like can also be used.

【0012】また,上記基板としては,用途に合わせて
種々選択することができるが,例えば,上記半導体電極
を太陽電池に用いる場合には,その透明電極となるフッ
素ドープSnO2コートガラス,ITOコートガラス等
を用いることができる。
The substrate can be selected variously according to the application. For example, when the semiconductor electrode is used in a solar cell, fluorine-doped SnO 2 coated glass or ITO coated Glass or the like can be used.

【0013】また,上記柱状構造を有する膜を形成する
方法としては,種々の蒸着法がある。特に後述するごと
く,斜め蒸着法を用いることが好ましい。この場合に
は,上記傾斜柱状構造を容易に得ることができる。
As a method of forming the film having the columnar structure, there are various vapor deposition methods. In particular, as described later, it is preferable to use the oblique deposition method. In this case, the inclined columnar structure can be easily obtained.

【0014】次に,本発明の作用につき説明する。本発
明の半導体電極は,上記のごとく,柱状構造を有する半
導体よりなる膜を有している。そのため,半導体電極の
比表面積が大きくなり,色素等の含有量(付着量)を高
めることができる。それ故,電極としての活性を向上さ
せることができる。
Next, the operation of the present invention will be described. As described above, the semiconductor electrode of the present invention has a film made of a semiconductor having a columnar structure. Therefore, the specific surface area of the semiconductor electrode is increased, and the content (adhesion amount) of the dye or the like can be increased. Therefore, the activity as an electrode can be improved.

【0015】なお,上記半導体よりなる膜は,上記柱状
構造を有する半導体に,後述するごとく粒子状の半導体
と組み合わせて構成しても勿論良い。
Incidentally, the film made of the semiconductor may of course be constituted by combining the semiconductor having the columnar structure with a particulate semiconductor as described later.

【0016】次に,請求項2の発明のように,上記半導
体よりなる膜は,その表面に,色素,金属,金属酸化物
のうちの少なくとも1種を含有することが好ましい。例
えば,色素を含有(付着)させた場合には,上記半導体
電極を太陽電池用半導体電極として使用することができ
る。
Next, it is preferable that the film made of the semiconductor contains at least one of a dye, a metal, and a metal oxide on the surface thereof. For example, when a dye is contained (adhered), the semiconductor electrode can be used as a semiconductor electrode for a solar cell.

【0017】この場合には,非常に優れたエネルギー変
換効率を発揮する。この理由は次のように考えられる。
即ち,太陽電池においては,光を吸収した励起状態の色
素から半導体電極に電子が注入される。太陽電池で発電
できる電流量はこの注入された電子数に依存する。この
電子数は半導体電極の単位面積当たりの色素吸着量に依
存する。そのため,上記のように柱状構造を有する蒸着
膜は総表面積を大きくすることができ,色素の吸着量を
大きくすることができるため,太陽電池として発電でき
る電流量を大きくすることができるためであると考えら
れる。
In this case, extremely excellent energy conversion efficiency is exhibited. The reason is considered as follows.
That is, in a solar cell, electrons are injected into a semiconductor electrode from a dye in an excited state that has absorbed light. The amount of current that can be generated by the solar cell depends on the number of injected electrons. The number of electrons depends on the amount of dye adsorbed per unit area of the semiconductor electrode. Therefore, the vapor deposition film having a columnar structure as described above can increase the total surface area and the amount of dye adsorbed, thereby increasing the amount of current that can be generated as a solar cell. it is conceivable that.

【0018】また,請求項3の発明のように,上記柱状
構造を有する半導体は,その表面に,半導体微粒子また
は該半導体微粒子からなる表面層を有してなることが好
ましい。この場合には,上記半導体微粒子の存在によっ
てさらに色素吸着量を大きくすることができる。上記半
導体微粒子は,基板の表面に形成された柱状構造を有す
る半導体と同一の物質でも異なる物質でもよい。また,
上記半導体微粒子はまたは該半導体微粒子からなる表面
層を存在させるには,塗布,付着,析出等の方法により
行うことができる。
Further, as in the third aspect of the present invention, the semiconductor having the columnar structure preferably has, on the surface thereof, semiconductor fine particles or a surface layer made of the semiconductor fine particles. In this case, the dye adsorption amount can be further increased by the presence of the semiconductor fine particles. The semiconductor particles may be the same or different from the semiconductor having a columnar structure formed on the surface of the substrate. Also,
The above-mentioned semiconductor fine particles or a surface layer made of the semiconductor fine particles can be formed by a method such as coating, adhesion, and precipitation.

【0019】次に,請求項4に記載の発明は,基板の表
面に,該基板の法線方向から10度以上傾斜した方向か
ら蒸着粒子を入射させこれを蒸着させる斜め蒸着法を行
うことにより,上記基板の表面に蒸着膜を形成してなる
半導体電極を得ることを特徴とする半導体電極の製造方
法にある。
Next, a fourth aspect of the present invention is to perform an oblique vapor deposition method in which vapor deposition particles are incident on the surface of the substrate from a direction inclined by 10 degrees or more from the normal direction of the substrate and are deposited. A method of manufacturing a semiconductor electrode, comprising obtaining a semiconductor electrode formed by forming a vapor deposition film on the surface of the substrate.

【0020】上記斜め蒸着法は,基板に対して垂直では
なく(法線方向に平行ではなく),ある傾きを持った状
態で蒸着粒子を入射させて基板上に蒸着膜を形成する方
法である。蒸着法自体は,公知の種々の蒸着法を用いる
ことができる。例えば,電子ビーム蒸着,抵抗加熱蒸
着,スパッタ蒸着,クラスタイオンビーム蒸着等の物理
蒸着法を用いることができる。
The above oblique deposition method is a method in which deposition particles are incident on the substrate in a state where the deposition particles are not perpendicular to the substrate (not parallel to the normal direction) but have a certain inclination, thereby forming a deposition film on the substrate. . As the evaporation method itself, various known evaporation methods can be used. For example, physical vapor deposition methods such as electron beam vapor deposition, resistance heating vapor deposition, sputter vapor deposition, and cluster ion beam vapor deposition can be used.

【0021】さらに酸素等の反応性ガス中で金属等を蒸
発させ,反応生成物を基板上に堆積させる反応蒸着法を
用いることができる。これらの蒸着法は,蒸着粒子に方
向性を持たせることができる方法である。また,蒸着粒
子に方向性を持たせる方法としては,上記の方法に加え
て反応ガスの流れを制御することにより,CVD法(Ch
emical vapor deposition)に代表される化学蒸着法
を用いることもできる。
Further, a reactive vapor deposition method in which a metal or the like is evaporated in a reactive gas such as oxygen to deposit a reaction product on a substrate can be used. These vapor deposition methods are methods that can give directionality to vapor deposition particles. In addition, as a method of giving directionality to the deposited particles, in addition to the above method, by controlling the flow of the reaction gas, the CVD method (Ch
Chemical vapor deposition represented by emical vapor deposition can also be used.

【0022】また,上記斜め蒸着法における蒸着粒子の
入射は,基板の法線方向から10度以上の入射角をもっ
て行う。入射角が10度未満の場合には,上記傾斜柱状
構造が安定的に形成されないおそれがある。そのため,
より好ましくは30度以上がよい。また,入射角が85
度を超える場合には,蒸着源から見た基板の投影面積が
小さくなるために成膜速度が小さくなるというおそれが
ある。
In the above oblique vapor deposition method, the vapor deposition particles are incident at an incident angle of 10 degrees or more from the normal direction of the substrate. If the incident angle is less than 10 degrees, the inclined columnar structure may not be formed stably. for that reason,
More preferably, the angle is 30 degrees or more. When the incident angle is 85
If the temperature exceeds the range, the projected area of the substrate viewed from the vapor deposition source becomes small, so that the film forming rate may be reduced.

【0023】蒸着粒子の入射方向を基板の法線方向から
10度以上の入射角を持たせる手段として,蒸着粒子の
入射方向に対して,所定の角度に基板を傾けてもよい。
さらには蒸着粒子供給源に対して基板を高速で相対移動
させて,基板に対して粒子の相対運動条件を作り出し粒
子を基板表面に斜めに入射させて斜めに堆積させること
もできる。
The substrate may be inclined at a predetermined angle with respect to the incident direction of the deposited particles as means for setting the incident direction of the deposited particles to have an incident angle of 10 degrees or more from the normal direction of the substrate.
Further, the substrate can be relatively moved relative to the deposition particle supply source at a high speed to create a condition of relative movement of the particles with respect to the substrate, and the particles can be obliquely incident on the substrate surface and deposited obliquely.

【0024】次に,本製造方法の作用につき説明する。
蒸着粒子の入射方向を上記傾斜角をもった一方向とした
場合,蒸着膜は基板の法線方向から傾いた柱状組織を集
合させてなる傾斜柱状構造となる。また,蒸着粒子の入
射方向を二以上とし,同時に蒸着させることにより傾斜
角度を変えることもできる。その結果,上記柱状組織は
基板の法線方向に調整することもできる。また,斜め蒸
着時にその方位角を徐々に変えて螺旋状の柱状組織と
し,より大きな表面積とすることもできる。
Next, the operation of the present manufacturing method will be described.
When the incident direction of the vapor deposition particles is one direction having the above-mentioned inclination angle, the vapor deposition film has an inclined columnar structure formed by collecting columnar structures inclined from the normal direction of the substrate. In addition, the inclination angle can be changed by setting the incident direction of the vapor deposition particles to two or more and performing vapor deposition at the same time. As a result, the columnar structure can be adjusted in the normal direction of the substrate. In addition, the azimuth angle can be gradually changed during oblique deposition to form a spiral columnar structure, thereby increasing the surface area.

【0025】そのため,本製造方法により得られる半導
体電極は,上記斜め蒸着法により得られる柱状組織の存
在によって比表面積が大きくなり,色素等の含有量(付
着量)を高めることができる。それ故,電極としての活
性を向上させることができる。
Therefore, the specific surface area of the semiconductor electrode obtained by the present manufacturing method is increased by the presence of the columnar structure obtained by the above-mentioned oblique deposition method, and the content (adhesion amount) of the dye and the like can be increased. Therefore, the activity as an electrode can be improved.

【0026】次に,上記半導体電極の製造方法において
は,上記斜め蒸着法を実施した後に,蒸着膜に熱処理を
加え,相転移させることが好ましい。即ち,例えば蒸着
膜がTiO2の場合を例にとると,上記斜め蒸着法を行
った直後の蒸着膜は,アモルファス(非晶質)状態で形
成されることがある。これに所定温度の熱処理を加える
ことにより,アモルファス相をアナターゼ相に変態させ
ることができる。
Next, in the method of manufacturing a semiconductor electrode, it is preferable that after the oblique deposition method is performed, a heat treatment is applied to the deposited film to cause a phase transition. That is, for example, in the case where the deposited film is TiO 2 , the deposited film immediately after performing the oblique deposition method may be formed in an amorphous state. By applying a heat treatment at a predetermined temperature to this, the amorphous phase can be transformed into an anatase phase.

【0027】この場合の熱処理条件としては,熱処理雰
囲気,昇温速度,熱処理温度を種々選択して決定するこ
とができる。特に,昇温速度を10℃/min,熱処理
時間を30分とした時の大気中での熱処理温度は,30
0〜700℃であることが好ましい。300℃未満の場
合には相変態が得られないという問題があり,700℃
を超える場合にはガラス基板の軟化による変形や導電膜
の特性劣化等の問題がある。
The heat treatment conditions in this case can be determined by variously selecting a heat treatment atmosphere, a temperature rising rate, and a heat treatment temperature. In particular, when the heating rate is 10 ° C./min and the heat treatment time is 30 minutes, the heat treatment temperature in the atmosphere is 30
The temperature is preferably from 0 to 700 ° C. If the temperature is lower than 300 ° C, there is a problem that phase transformation cannot be obtained.
In the case where the ratio exceeds 2, there are problems such as deformation due to softening of the glass substrate and deterioration of characteristics of the conductive film.

【0028】そして,このアナターゼ相への相転移を実
現することにより,例えば太陽電池に用いた場合のエネ
ルギー変換効率をさらに向上させることができる。この
理由は,結晶化による明瞭なバンド構造の形成や膜を構
成する半導体の粒成長や結合性向上により,色素から半
導体電極への電子の注入効率の向上ないしは膜内での電
子の移動が容易になったためであると考えられる。
By realizing the phase transition to the anatase phase, for example, the energy conversion efficiency when used in a solar cell can be further improved. The reason is that the formation of a clear band structure by crystallization, the grain growth of the semiconductor constituting the film, and the improvement of the bonding property improve the efficiency of injecting electrons from the dye into the semiconductor electrode or facilitate the movement of electrons in the film. It is considered that it became.

【0029】また,上記熱処理は,非酸化性雰囲気中に
おいて行うことができる。これにより,酸素欠損量が多
い組成の膜を得ることができる。そのため,膜の電気伝
導度が高くなるという理由により,さらに上記のエネル
ギー変換効率を向上させることができる。
The heat treatment can be performed in a non-oxidizing atmosphere. Thus, a film having a composition with a large amount of oxygen deficiency can be obtained. Therefore, the energy conversion efficiency can be further improved because the electric conductivity of the film increases.

【0030】ここでは,蒸着後の膜がアモルファス状態
の場合について説明したが,蒸着時の雰囲気や基板温度
を制御することにより直接アナターゼ相等の結晶相を得
ることもできる。その場合,熱処理を加えなくてもよい
し,粒径や結晶性,酸素欠損量の制御のために,所定の
雰囲気で熱処理を加えてもよい。
Here, the case where the film after vapor deposition is in an amorphous state has been described. However, a crystal phase such as an anatase phase can be directly obtained by controlling the atmosphere during vapor deposition and the substrate temperature. In that case, heat treatment may not be performed, or heat treatment may be performed in a predetermined atmosphere to control the particle size, crystallinity, and oxygen deficiency.

【0031】次に,請求項5の発明のように,上記蒸着
膜を形成した後,該蒸着膜の表面に,色素,金属,金属
酸化物のうちの少なくとも1種を付着させることができ
る。例えば,Siよりなる半導体の表面にPt等を含有
させることができ,TiO2よりなる半導体の表面にP
tやNiO等を含有させることができ,WO3よりなる
半導体の表面にRuO2等を含有させることができる。
Next, after the above-mentioned deposited film is formed, at least one of a dye, a metal, and a metal oxide can be attached to the surface of the deposited film. For example, Pt or the like can be contained on the surface of a semiconductor made of Si, and Pt can be added on the surface of a semiconductor made of TiO 2.
t, NiO or the like can be contained, and RuO 2 or the like can be contained on the surface of a semiconductor made of WO 3 .

【0032】本発明のより好ましい半導体電極の形態と
しては,基板の表面に,該基板の法線方向から30〜8
5度傾斜した方向から蒸着粒子を入射させる斜め蒸着法
により蒸着させた半導体の表面に色素を含有させたもの
である。この形態では,色素量が多く,活性の高い電極
となる。
As a more preferable form of the semiconductor electrode of the present invention, the surface of the substrate is formed on the surface of the substrate at 30 to 8 from the normal direction of the substrate.
A dye is contained in the surface of a semiconductor deposited by an oblique deposition method in which deposition particles are incident from a direction inclined at 5 degrees. In this embodiment, the electrode has a large amount of dye and high activity.

【0033】また,請求項6の発明のように,上記蒸着
膜の表面に,色素,金属,金属酸化物のうちの少なくと
も1種を付着させる際には,上記蒸着膜の温度を80℃
以上とすることが好ましい。上記温度が80℃未満の場
合には,蒸着膜への大気中の水分の吸着を低減させるこ
とが困難となるという問題がある。一方,半導体電極と
して有利なアナターゼ相を保持するため上記温度は80
0℃以下とすることが好ましい。
When at least one of a dye, a metal, and a metal oxide is attached to the surface of the vapor deposition film, the temperature of the vapor deposition film is set to 80 ° C.
It is preferable to make the above. If the temperature is lower than 80 ° C., there is a problem that it is difficult to reduce the adsorption of atmospheric moisture to the deposited film. On the other hand, in order to maintain an anatase phase which is advantageous as a semiconductor electrode, the above temperature is 80
The temperature is preferably set to 0 ° C. or lower.

【0034】[0034]

【発明の実施の形態】実施形態例1 本発明の実施形態例にかかる半導体電極およびその製造
方法につき,図1〜図5を用いて説明する。本例におい
ては,本発明品としての2つの半導体電極(試料E1,
E2)と,比較品としての1つの半導体電極(試料C
1)を作製し,その性能評価を行った。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 A semiconductor electrode and a method of manufacturing the same according to an embodiment of the present invention will be described with reference to FIGS. In this example, two semiconductor electrodes (samples E1,
E2) and one semiconductor electrode (sample C
1) was fabricated and its performance was evaluated.

【0035】(試料E1)本発明品としての試料E1の
半導体電極1は,図1に示すごとく,基板10と,該基
板10の表面に斜め蒸着法により蒸着した半導体よりな
る蒸着膜12とよりなる。かつ,該蒸着膜12は上記基
板10の法線方向Aから傾いた柱状組織を集合させてな
る傾斜柱状構造を有している。
(Sample E1) As shown in FIG. 1, a semiconductor electrode 1 of a sample E1 according to the present invention comprises a substrate 10 and a vapor deposition film 12 made of a semiconductor vapor-deposited on the surface of the substrate 10 by an oblique vapor deposition method. Become. Further, the deposited film 12 has an inclined columnar structure formed by collecting columnar structures inclined from the normal direction A of the substrate 10.

【0036】この半導体電極1を製造するに当たって
は,図1に示すごとく,基板10の表面に,該基板10
の法線方向から10度以上傾斜した方向から蒸着粒子1
3を入射させこれを蒸着させる斜め蒸着法を行った。こ
の製造方法をさらに詳説する。
In manufacturing the semiconductor electrode 1, as shown in FIG.
Particles 1 from a direction inclined by 10 degrees or more from the normal direction of
3 was made incident, and an oblique deposition method of depositing 3 was performed. This manufacturing method will be described in more detail.

【0037】まず,上記基板10として,フッ素ドープ
SnO2コートガラス(旭硝子製)を準備し,これにT
iO2を電子ビーム蒸着法により蒸着させた。蒸着装置
2は,図5に示すごとく,真空ポンプ21に連結された
容器20内において,電子銃28から蒸着源23に向け
て電子ビーム29を照射するよう構成してある。また,
蒸着源23の上方には基板10を配置すると共に,基板
10の角度(蒸着粒子13の入射角α)を調整できるよ
うになっている。この蒸着装置2としては,実際には,
日本真空技術(株)製EBV−6D型高真空蒸着装置を
用いた。
First, a fluorine-doped SnO 2 coated glass (manufactured by Asahi Glass) was prepared as the substrate 10, and T
iO 2 was deposited by an electron beam evaporation method. As shown in FIG. 5, the vapor deposition apparatus 2 is configured to irradiate an electron beam 29 from an electron gun 28 toward a vapor deposition source 23 in a container 20 connected to a vacuum pump 21. Also,
The substrate 10 is arranged above the vapor deposition source 23, and the angle of the substrate 10 (the incident angle α of the vapor deposition particles 13) can be adjusted. In practice, as the vapor deposition device 2,
An EBV-6D type high vacuum evaporation device manufactured by Japan Vacuum Engineering Co., Ltd. was used.

【0038】また,上記蒸着源(ターゲット)23とし
ては,高純度化学研究所製の純度99.99%のTiO
2(ルチル)を用いた。また,試料E1においては,上
記蒸着粒子13の入射角αが法線Aに対して略70度と
なるように,基板10をセットした。
The vapor deposition source (target) 23 is a 99.99% pure TiO manufactured by Kojundo Chemical Laboratory.
2 (rutile) was used. In the sample E1, the substrate 10 was set such that the incident angle α of the vapor-deposited particles 13 was approximately 70 degrees with respect to the normal A.

【0039】そして,蒸着面積:0.93cm2,蒸着
速度:1.5nm/s,膜厚:2.6μm,基板温度:
200℃,真空度:4×10-6Torrという蒸着条件
により斜め蒸着法を実施し,本発明品としての半導体電
極(試料E1)を得た。得られた試料E1における,蒸
着膜12の構造を,図1のモデル図,図2〜図4の図面
代用写真に示す。図2〜図4は,いずれもFE−SEM
像であって,モデル図(図1)の正面から倍率1500
0倍で見た(紙面の上方から見た)断面が図2,矢印B
方向から倍率20000倍でみた断面が図3,矢印C方
向から倍率20000倍で見た表面が図4に示してあ
る。
Then, a deposition area: 0.93 cm 2 , a deposition rate: 1.5 nm / s, a film thickness: 2.6 μm, and a substrate temperature:
The semiconductor electrode (sample E1) as the product of the present invention was obtained by performing an oblique evaporation method under the conditions of 200 ° C. and a degree of vacuum of 4 × 10 −6 Torr. The structure of the vapor-deposited film 12 in the obtained sample E1 is shown in the model diagram of FIG. 1 and the substitute photographs in FIGS. 2 to 4 are FE-SEM.
Image, magnification 1500 from the front of the model diagram (FIG. 1)
The cross section viewed from 0 times (as viewed from above the paper) is shown in FIG.
FIG. 3 shows a cross section viewed at a magnification of 20,000 from the direction, and FIG. 4 shows a surface viewed at a magnification of 20,000 from the direction of arrow C.

【0040】これらの図から知られるように,試料E1
における蒸着膜12は,柱状組織を集合させてなる傾斜
柱状構造を有している。また,各柱状組織の間には間隙
が残されていることも分かる。また,X線回折により調
査した結果,蒸着膜12はアモルファス相(非晶質相)
であった。
As can be seen from these figures, the sample E1
Has a slanted columnar structure formed by assembling columnar structures. It can also be seen that gaps are left between the columnar structures. Further, as a result of investigation by X-ray diffraction, the deposited film 12 was found to have an amorphous phase (amorphous phase).
Met.

【0041】(試料E2)本発明品としての試料E2
は,試料E1により得られた半導体電極E1に対して熱
処理を加えて,蒸着膜12をアモルファス相からアナタ
ーゼ相へと相転移させた例である。上記熱処理は,大気
雰囲気下において,試料E1を10℃/minの昇温速
度で温度400℃まで昇温し,さらに30分間保持する
ことにより行った。これにより得られた試料E2は,X
線回折により調査した結果,蒸着膜12がアナターゼ相
に変化していた。また,FE−SEM像においては,熱
処理前の試料E1と同じ柱状構造を有していることを確
認した。
(Sample E2) Sample E2 as the product of the present invention
Is an example in which a heat treatment is applied to the semiconductor electrode E1 obtained from the sample E1, and the vapor-deposited film 12 undergoes a phase transition from an amorphous phase to an anatase phase. The heat treatment was performed by raising the temperature of the sample E1 to 400 ° C. at a rate of 10 ° C./min and holding the sample for further 30 minutes in an air atmosphere. The sample E2 obtained in this way has X
As a result of investigation by line diffraction, the deposited film 12 was changed to the anatase phase. In the FE-SEM image, it was confirmed that the sample had the same columnar structure as the sample E1 before the heat treatment.

【0042】(試料C1)比較品としての試料C1は,
試料E2における基板10のセット位置を変更し,基板
10の法線方向Aと蒸着粒子13の入射方向が同じ(入
射角α=0)になるようにして,蒸着膜を形成した。即
ち,蒸着膜の形成に当たり,斜め蒸着法ではなく,通常
の蒸着法を行った。なお,このときの蒸着条件は,蒸着
速度:1.0nm/s,膜厚1.6μm,その他は試料
E1と同様の条件とした。また,蒸着膜の形成後には,
大気雰囲気下において,10℃/minの昇温速度で温
度450℃まで昇温し,さらに30分間保持するという
熱処理を加えた。得られた半導体電極(試料C1)は,
X線回折により調査した結果,蒸着膜12が熱処理前の
アモルファス相からアナターゼ相に変化していた。
(Sample C1) Sample C1 as a comparative product was
The set position of the substrate 10 in the sample E2 was changed so that the normal direction A of the substrate 10 and the incident direction of the vapor deposition particles 13 were the same (incident angle α = 0), and a vapor deposition film was formed. That is, in forming a deposited film, a normal deposition method was performed instead of the oblique deposition method. The vapor deposition conditions at this time were the same as those of the sample E1, except that the vapor deposition rate was 1.0 nm / s, the film thickness was 1.6 μm. After the deposition film is formed,
In an air atmosphere, a heat treatment was performed in which the temperature was raised to 450 ° C. at a rate of 10 ° C./min and held for 30 minutes. The obtained semiconductor electrode (sample C1)
As a result of investigation by X-ray diffraction, the deposited film 12 changed from an amorphous phase before heat treatment to an anatase phase.

【0043】次に,上記各製造方法により作製した半導
体電極(E1,E2,C1)を用いて,図6に示すごと
く,色素増感型の太陽電池3を構成した。まず,各半導
体電極(E1,E2,C1)の蒸着膜12の表面に,色
素を配置した。
Next, as shown in FIG. 6, a dye-sensitized solar cell 3 was constructed using the semiconductor electrodes (E1, E2, C1) produced by the above-mentioned respective production methods. First, a dye was disposed on the surface of the deposited film 12 of each of the semiconductor electrodes (E1, E2, C1).

【0044】具体的には,マグネシウムエトキシドで脱
水した無水エタノールに,ルテニウム錯体(cis-Di(thi
ocyanato)-N,N'-bis(2,2'-bipyridyl-4,4'dicarboxylic
acid)-ruthenium(II))を2.85×10-4mol/l
の濃度で溶解させた溶液を調製した。次いで,この溶液
に,各半導体電極E1,E2,C1を24時間浸漬し
た。これにより,蒸着膜12の表面には,色素としての
ルテニウム錯体が吸着され,太陽電池用の半導体電極が
得られた。この半導体電極は,開放電圧向上の目的で,
tertブチルピリジンのアセトニトリル溶液(濃度
5.0×10-2mol/リットル)に15分間浸漬した
後,窒素気流中で乾燥させた。
Specifically, a ruthenium complex (cis-Di (thi) is added to anhydrous ethanol dehydrated with magnesium ethoxide.
ocyanato) -N, N'-bis (2,2'-bipyridyl-4,4'dicarboxylic
acid) -ruthenium (II)) at 2.85 × 10 -4 mol / l
A solution was prepared by dissolving at a concentration of Next, each semiconductor electrode E1, E2, C1 was immersed in this solution for 24 hours. As a result, the ruthenium complex as a dye was adsorbed on the surface of the deposition film 12, and a semiconductor electrode for a solar cell was obtained. This semiconductor electrode is used to improve the open-circuit voltage.
It was immersed in an acetonitrile solution of tert-butylpyridine (concentration: 5.0 × 10 -2 mol / L) for 15 minutes, and then dried in a nitrogen stream.

【0045】次に,図6に示すごとく,透明電極5を外
方にして半導体電極2を配置すると共に,これに別途準
備した白金を3nm蒸着したフッ素ドープSnO2コー
トガラスよりなる対向電極6(15mm×25mm)と
を対向させる。また,これらの間には,スペーサ81を
介在させて間隙を形成する。そして,この間隙に電解液
4をしみこませることにより,色素増感型の太陽電池3
を得た。なお電解液4は,炭酸エチレン21.14gと
アセトニトリル4.0mlの混合溶液にヨウ化テトラ−
n−プロピルアンモニウム(Tetra-n-propylammonium Io
dide)3.13gとヨウ素0.18gを溶解したもので
ある。
Next, as shown in FIG. 6, the semiconductor electrode 2 is disposed with the transparent electrode 5 facing outward, and a counter electrode 6 (made of fluorine-doped SnO 2 coated glass on which platinum prepared separately is deposited to a thickness of 3 nm). 15 mm × 25 mm). In addition, a gap is formed between them with a spacer 81 interposed therebetween. Then, the electrolyte solution 4 is impregnated into the gap, so that the dye-sensitized solar cell 3
I got The electrolytic solution 4 was prepared by adding a solution of 21.14 g of ethylene carbonate and 4.0 ml of acetonitrile to a mixed solution of tetraiodide.
n-propylammonium (Tetra-n-propylammonium Io
dide) 3.13 g and iodine 0.18 g were dissolved.

【0046】次に,本例においては,上記各半導体電極
により構成した色素増感型の太陽電池3の特性を比較し
た。具体的には,各色素増感型太陽電池3に対して,ソ
ーラーシュミレータ(ワコム電創製WXS−85)を用
いて,1000W/m2の疑似太陽光を照射し,I−V
テスター(ワコム電創製,IV−9802型)により電
流−電圧特性を測定し,開放電圧と短絡電流,およびエ
ネルギー変換効率を求めた。
Next, in this example, the characteristics of the dye-sensitized solar cell 3 constituted by the above-mentioned respective semiconductor electrodes were compared. Specifically, each of the dye-sensitized solar cells 3 is irradiated with 1000 W / m 2 of simulated sunlight using a solar simulator (WXS-85 manufactured by Wacom Denso Co., Ltd.).
The current-voltage characteristics were measured with a tester (Wacom Denki, Model IV-9802), and the open-circuit voltage, short-circuit current, and energy conversion efficiency were determined.

【0047】測定結果を表1に示す。表1より知られる
ごとく,斜め蒸着法を用いて蒸着膜12を形成した試料
E1,E2は,上記熱処理の有無にかかわらず,いずれ
も試料C1の通常の蒸着法により成膜した場合よりも優
れたエネルギー変換効率が得られた。また,試料E1と
E2とを比較することにより,少なくとも温度400
℃,保持時間30分という熱処理を加えて蒸着膜12を
アナターゼ相とすることにより,アモルファス相のまま
の場合よりも大幅にエネルギー変換効率が向上すること
が分かる。
Table 1 shows the measurement results. As is known from Table 1, the samples E1 and E2 on which the vapor deposition film 12 was formed by the oblique vapor deposition method were superior to the samples C1 formed by the normal vapor deposition method regardless of the heat treatment. Energy conversion efficiency was obtained. Further, by comparing the samples E1 and E2, at least the temperature of 400
It can be seen that, by applying a heat treatment of 30 ° C. and a holding time of 30 minutes to make the deposited film 12 an anatase phase, the energy conversion efficiency is greatly improved as compared with the case where the deposited film 12 remains in the amorphous phase.

【0048】[0048]

【表1】 [Table 1]

【0049】実施形態例2 本例においては,斜め蒸着法による成膜後の熱処理の効
果をさらに詳細に調査した。即ち,実施形態例1におけ
る試料E1を基礎として,これに各熱処理温度で熱処理
を30分間行った試料E31〜E34を準備し,そのエ
ネルギー変換効率を測定した。上記各熱処理温度は,E
31は200℃,E32は300℃,E33は400
℃,E34は450℃とした。昇温速度は10℃/mi
n,保持時間は30分,雰囲気は大気とした。なお,E
31〜E34については,tertブチルピリジンのア
セトニトリルの溶液に浸漬しなかった。
Embodiment 2 In this embodiment, the effect of heat treatment after film formation by oblique deposition was investigated in more detail. That is, based on the sample E1 in the first embodiment, samples E31 to E34 were heat-treated at each heat treatment temperature for 30 minutes, and the energy conversion efficiency was measured. Each heat treatment temperature is E
31 is 200 ° C, E32 is 300 ° C, E33 is 400
° C and E34 were 450 ° C. Heating rate is 10 ° C / mi
n, the holding time was 30 minutes, and the atmosphere was air. Note that E
As for 31 to E34, they were not immersed in a solution of tert-butylpyridine in acetonitrile.

【0050】そして,試料E31〜E34に対して,実
施形態例1の場合と同様にして太陽電池を組み立て,エ
ネルギー変換効率を求めた。その結果を図7に示す。同
図は,横軸に熱処理温度を,縦軸にエネルギー変換効率
(%)をとったものである。そして,試料E1を■印,
試料E31〜E34を●印,比較品である試料C1を△
により示した。
Then, solar cells were assembled on the samples E31 to E34 in the same manner as in the first embodiment, and the energy conversion efficiency was determined. FIG. 7 shows the result. In the figure, the horizontal axis represents the heat treatment temperature, and the vertical axis represents the energy conversion efficiency (%). Then, the sample E1 is marked with a triangle,
Samples E31 to E34 are indicated by ●, and sample C1, which is a comparative product, is indicated by Δ.
Indicated by

【0051】同図より知られるごとく,400℃以上の
温度で熱処理した試料E33,E34は,300℃以下
の温度で熱処理した場合よりも優れたエネルギー変換効
率が得られることが分かる。これは,この熱処理条件下
では少なくとも400℃以上においてアモルファス相か
らアナターゼ相への相移行が十分に進み,結晶化するた
めであると考えられる。
As can be seen from the figure, it is understood that the samples E33 and E34 heat-treated at a temperature of 400 ° C. or more can obtain a higher energy conversion efficiency than the case of heat-treated at a temperature of 300 ° C. or less. It is considered that this is because under the heat treatment conditions, the phase transition from the amorphous phase to the anatase phase sufficiently proceeds at least at 400 ° C. or more, and crystallizes.

【0052】また,試料C1と試料E34との比較か
ら,通常の蒸着法により成膜した場合には,熱処理を行
ってもエネルギー変換効率の向上がほとんど得られない
ことがわかる。したがって,斜め蒸着法がエネルギー変
換効率の向上に非常に有効であることが分かる。
From the comparison between Sample C1 and Sample E34, it can be seen that when a film is formed by a normal vapor deposition method, even if heat treatment is performed, the energy conversion efficiency is hardly improved. Therefore, it can be seen that the oblique deposition method is very effective for improving the energy conversion efficiency.

【0053】実施形態例3 本例においては,蒸着膜12の膜厚がエネルギー変換効
率にどのように影響するかを調べた。まず,実施形態例
1における試料E1に対して,温度450℃×30分と
いう熱処理を加えて蒸着膜12をアナターゼ相とした試
料E5(試料E34をtertブチルピリジンのアセト
ニトリル溶液に15分間浸漬したもの)と,この試料E
5の膜厚を成膜時間を変えることにより変更した試料E
4とを準備した。即ち,試料E4の膜厚は1.4μm,
試料E5の膜厚は2,6μmとした。これらの試料E
4,E5は,その他の条件は同じとした。
Embodiment 3 In this embodiment, it was examined how the thickness of the deposited film 12 affects the energy conversion efficiency. First, the sample E1 in the first embodiment is subjected to a heat treatment at a temperature of 450 ° C. for 30 minutes to make the deposited film 12 an anatase phase. ) And this sample E
Sample E in which the film thickness of Sample No. 5 was changed by changing the film formation time
4 was prepared. That is, the thickness of the sample E4 was 1.4 μm,
The film thickness of the sample E5 was 2.6 μm. These samples E
The other conditions were the same for E4 and E5.

【0054】そして,試料E4,E5に対して,実施形
態例1の場合と同様にして太陽電池に組み立て,エネル
ギー変換効率を求めた。その結果を表1に示す。表1よ
り知られるごとく,蒸着膜12の膜厚が増加するほど,
短絡電流の増大およびエネルギー変換効率の向上が得ら
れることが分かる。これは,蒸着膜の膜厚の増加により
その表面積が増加し,これにより蒸着膜に吸着される色
素量が増大するためであると考えられる。
Then, the samples E4 and E5 were assembled into a solar cell in the same manner as in the first embodiment, and the energy conversion efficiency was determined. Table 1 shows the results. As known from Table 1, as the thickness of the vapor deposition film 12 increases,
It can be seen that an increase in short-circuit current and an improvement in energy conversion efficiency can be obtained. This is considered to be because the surface area of the deposited film increases due to an increase in the thickness of the deposited film, thereby increasing the amount of the dye adsorbed on the deposited film.

【0055】実施形態例4 本例においては,蒸着膜12の成膜速度がエネルギー変
換効率にどのように影響するかを調べた。まず,実施形
態例3における試料E4と,蒸着条件の蒸着速度だけを
変えた試料E6を準備した。具体的には,試料E4は蒸
着速度が1.5nm/sであったのに対し,試料E6の
蒸着速度は0.3nm/sに変化させた。試料E6のそ
の他の条件は試料E4と同じにした。したがって,試料
E4とE6は,例えば膜厚はいずれも1.4μmで同じ
である。
Embodiment 4 In this embodiment, it was examined how the deposition rate of the deposited film 12 affects the energy conversion efficiency. First, a sample E4 in which only the deposition rate under the deposition conditions was changed from the sample E4 in the third embodiment was prepared. Specifically, the deposition rate of sample E4 was 1.5 nm / s, whereas the deposition rate of sample E6 was changed to 0.3 nm / s. Other conditions of the sample E6 were the same as those of the sample E4. Therefore, the samples E4 and E6 have the same film thickness of, for example, 1.4 μm.

【0056】次に,試料E6に対して,実施形態例1の
場合と同様にして太陽電池に組み立て,エネルギー変換
効率を求めた。その結果を表1に示す。表1より知られ
るごとく,試料E4とE6とを比較することにより,成
膜速度が遅いほど,短絡電流が増大し,エネルギー変換
効率が向上することが分かる。これは,蒸着膜の組織が
成膜速度によって変化し,結果として成膜速度が遅い場
合は色素の吸着量の増大,色素から半導体への電子注入
効率の向上,ないしは膜内での電子の移動の促進等につ
ながったためである考えられる。
Next, the sample E6 was assembled into a solar cell in the same manner as in the first embodiment, and the energy conversion efficiency was determined. Table 1 shows the results. As can be seen from Table 1, by comparing Samples E4 and E6, it can be seen that the lower the deposition rate, the greater the short-circuit current and the higher the energy conversion efficiency. This is because the structure of the deposited film changes depending on the film formation rate. As a result, when the film formation rate is low, the amount of dye adsorbed increases, the efficiency of electron injection from the dye to the semiconductor increases, or the electron moves in the film. It is considered that this has led to the promotion of

【0057】実施形態例5 本例においては,蒸着膜12の成膜直後に,不純物除去
や新規TiO2表面層形成等のための表面処理を行うこ
とが,エネルギー変換効率にどのように影響するかを調
べた。まず,実施形態例3における試料E5と,表面処
理の有無だけが異なる試料E7を準備した。具体的に
は,試料E5は蒸着後,何ら表面処理を行わずに熱処
理,色素吸着を行ったのに対し,試料E7は,蒸着後に
TiCl4による表面処理を行った。
Embodiment 5 In this embodiment, how the surface treatment for removing impurities, forming a new TiO 2 surface layer, etc., affects the energy conversion efficiency immediately after the deposition film 12 is formed. I checked. First, a sample E7 different from the sample E5 in the third embodiment only in the presence or absence of the surface treatment was prepared. Specifically, sample E5 was subjected to heat treatment and dye adsorption without any surface treatment after vapor deposition, whereas sample E7 was subjected to surface treatment with TiCl 4 after vapor deposition.

【0058】この表面処理は,まず,蒸着膜を成膜した
後に,0.2モル/リットルのTiCl4水溶液を蒸着
膜の表面に滴下して一晩放置する。次いで,蒸着膜を水
洗し,乾燥する。試料E7のその他の条件は,試料E5
と同じである。
In this surface treatment, first, after forming a deposited film, a 0.2 mol / liter TiCl 4 aqueous solution is dropped on the surface of the deposited film and left overnight. Next, the deposited film is washed with water and dried. Other conditions of the sample E7 are as follows.
Is the same as

【0059】次に,試料E7に対して,実施形態例1の
場合と同様にして太陽電池に組み込み,エネルギー変換
効率を求めた。その結果を表1に示す。表1より知られ
るごとく,試料E5とE7とを比較することにより,成
膜後にTiCl4による表面処理を行うことにより,短
絡電流が増大し,エネルギー変換効率が向上することが
分かる。これは,上記のように膜表面での不純物の除去
や,新たなTiO2表面層の形成,ないしは膜を構成す
る粒子間の結合性向上等の理由によると考えられる。
Next, the sample E7 was incorporated into a solar cell in the same manner as in the first embodiment, and the energy conversion efficiency was determined. Table 1 shows the results. As can be seen from Table 1, by comparing Samples E5 and E7, it can be seen that short-circuit current increases and energy conversion efficiency improves by performing surface treatment with TiCl 4 after film formation. This is considered to be due to the removal of impurities on the film surface, the formation of a new TiO 2 surface layer, or the improvement of the connectivity between particles constituting the film, as described above.

【0060】また,上記図7には,上記実施形態例3〜
5において得られた試料E4からE6についてもプロッ
トした。同図より知られるごとく,斜め蒸着法における
蒸着速度を遅くし,かつ,450℃×30分の熱処理を
加えた場合(試料E6)が,最もエネルギー変換効率の
向上に有効であることが分かる。
FIG. 7 shows the third to third embodiments.
5 were also plotted for samples E4 to E6 obtained. As can be seen from the figure, the case where the evaporation rate in the oblique evaporation method is reduced and the heat treatment at 450 ° C. for 30 minutes is applied (sample E6) is most effective for improving the energy conversion efficiency.

【0061】実施形態例6 本例においては,まず実施形態例4の試料No.E6と
同じ蒸着条件で成膜した。すなわち蒸着速度は0.3n
m/sで膜厚1.5μmとした。次いで,これを450
℃で30分間の大気中での熱処理後,実施形態例1と同
様に色素のエタノール溶液に24時間浸漬し蒸着膜の表
面に色素としてのルテニウム錯体を吸着させ,さらにte
rtブチルピリジンのアセトニトリル溶液に15分間浸漬
した後,窒素気流中で乾燥させた。ただし,この工程の
うち,本実施形態例では熱処理後の蒸着膜の表面に大気
中の水が吸着を低減させるために,電気炉から取り出し
た蒸着膜の温度が80℃以上の時に色素のエタノール溶
液に浸漬させた。
Embodiment 6 In this embodiment, first, the sample No. of Embodiment 4 was used. A film was formed under the same evaporation conditions as E6. That is, the deposition rate is 0.3 n
The film thickness was 1.5 μm at m / s. Then, this is 450
After the heat treatment in the air at 30 ° C. for 30 minutes, the film was immersed in an ethanol solution of the dye for 24 hours in the same manner as in Example 1 to adsorb the ruthenium complex as the dye on the surface of the deposited film.
After being immersed in a solution of rt butylpyridine in acetonitrile for 15 minutes, it was dried in a stream of nitrogen. However, in this embodiment, when the temperature of the vapor-deposited film taken out of the electric furnace is 80 ° C. or more, the dye ethanol is used in this embodiment to reduce the adsorption of water in the air to the surface of the vapor-deposited film after the heat treatment. It was immersed in the solution.

【0062】この半導体電極を用いて実施形態例1〜5
と同様に太陽電池を作製し,特性を評価した。ただし,
本実施形態例では,溶媒をグルタロニトリルとし,電解
質種類および濃度は実施形態例1〜5と同じ電解液を用
いた。その結果,開放電圧は0.726V,短絡電流は
5.445mA,変換効率は1.508%であった。こ
のように,本例では,太陽電池製造工程および電解液に
改良を加えることによって変換効率を向上させることが
できた。
Embodiments 1 to 5 using this semiconductor electrode
A solar cell was fabricated in the same manner as described above, and the characteristics were evaluated. However,
In the present embodiment, the solvent was glutaronitrile, and the same electrolyte solution and the same electrolyte as those in Embodiments 1 to 5 were used. As a result, the open-circuit voltage was 0.726 V, the short-circuit current was 5.445 mA, and the conversion efficiency was 1.508%. Thus, in this example, conversion efficiency could be improved by improving the solar cell manufacturing process and the electrolytic solution.

【0063】実施形態例7 本例では,実施形態例6と同じ蒸着速度で,蒸着時間を
延ばすことにより厚い膜を成膜した。すなわち蒸着速度
は0.3nm/sで膜厚4.8μmとした。これを45
0℃で30分間の大気中での熱処理後,実施形態例6と
同様にして半導体電極を作製した。この半導体電極を用
いて実施形態例6と同様に太陽電池を作製し,特性を評
価した。その結果,開放電圧は0.710V,短絡電流
は12.424mA,変換効率は3.827%であっ
た。このように,本例では,蒸着膜の膜厚を厚くするこ
とで色素吸着量が増加し,短絡電流が増加することによ
り,太陽電池の変換効率を向上することができた。
Embodiment 7 In this embodiment, a thick film is formed by elongating the evaporation time at the same evaporation speed as in Embodiment 6. That is, the deposition rate was 0.3 nm / s and the film thickness was 4.8 μm. This is 45
After heat treatment in the air at 0 ° C. for 30 minutes, a semiconductor electrode was produced in the same manner as in the sixth embodiment. Using this semiconductor electrode, a solar cell was fabricated in the same manner as in Example 6, and the characteristics were evaluated. As a result, the open-circuit voltage was 0.710 V, the short-circuit current was 12.424 mA, and the conversion efficiency was 3.827%. Thus, in this example, the conversion efficiency of the solar cell could be improved by increasing the dye adsorption amount by increasing the thickness of the deposited film and increasing the short-circuit current.

【0064】実施形態例8 本例では,実施形態例6と同じ蒸着条件で成膜した。す
なわち蒸着速度は0.3nm/sで膜厚1.5μmとし
た。この蒸着膜上に粒径13nmのTiO2微粒子スラ
リー(Solaronix社製)を塗布,乾燥後,これを450
℃で30分間の大気中での熱処理後,実施形態例6と同
様にして半導体電極を作製した。TiO 2微粒子層の厚
さは2.5μmであった。
Embodiment 8 In this embodiment, a film was formed under the same vapor deposition conditions as in Embodiment 6. You
That is, the deposition rate is 0.3 nm / s and the film thickness is 1.5 μm.
Was. TiO having a particle size of 13 nm is formed on the deposited film.TwoFine particle slurry
Li (Solaronix) is applied and dried.
After heat treatment in air at 30 ° C. for 30 minutes, the same as in Example 6
Thus, a semiconductor electrode was produced. TiO TwoFine particle layer thickness
The length was 2.5 μm.

【0065】この半導体電極を用いて実施形態例6と同
様に太陽電池を作製し,特性を評価した。その結果,開
放電圧は0.646V,短絡電流は8.448mA,変
換効率は1.956%であった。このように,本例で
は,柱状膜に加えTiO2微粒子層を電極内に含むこと
でさらに色素吸着量が増加し,短絡電流が増加すること
により,太陽電池の変換効率を向上することができた。
Using this semiconductor electrode, a solar cell was fabricated in the same manner as in Embodiment 6, and the characteristics were evaluated. As a result, the open-circuit voltage was 0.646 V, the short-circuit current was 8.448 mA, and the conversion efficiency was 1.956%. As described above, in this example, by including the TiO 2 fine particle layer in the electrode in addition to the columnar film, the dye adsorption amount is further increased, and the short circuit current is increased, so that the conversion efficiency of the solar cell can be improved. Was.

【0066】なお,本実施形態例では,半導体柱状構造
膜の上に半導体微粒子層を積層した構造の電極を示した
が,この逆の半導体微粒子層の上に半導体柱状構造膜を
積層した構造の電極,ないしはこれらを繰り返し積層し
た構造でも色素増感型太陽電池の電極として動作し,同
様の効果が期待される。
In this embodiment, an electrode having a structure in which a semiconductor fine particle layer is laminated on a semiconductor columnar structure film is shown. An electrode or a structure in which these are repeatedly laminated operates as an electrode of a dye-sensitized solar cell, and similar effects are expected.

【0067】[0067]

【発明の効果】上述のごとく,本発明によれば,半導体
の比表面積を低下させることなく,容易に製造すること
ができ,かつ,エネルギー変換効率に優れた,半導体電
極およびその製造方法を提供することができる。
As described above, according to the present invention, there is provided a semiconductor electrode which can be easily manufactured without lowering the specific surface area of a semiconductor and has excellent energy conversion efficiency, and a method for manufacturing the same. can do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態例1における,蒸着膜の傾斜柱状構造
を示すモデル図。
FIG. 1 is a model diagram showing an inclined columnar structure of a deposition film in a first embodiment.

【図2】図1の紙面上方から見た蒸着膜断面の傾斜柱状
構造を示す図面代用写真(倍率15000倍)。
FIG. 2 is a photograph (magnification: 15000 ×) showing a tilted columnar structure of a cross section of a deposition film as viewed from above the plane of FIG.

【図3】図1B矢視断面の蒸着膜の傾斜柱状構造を示す
図面代用写真(倍率20000倍)。
FIG. 3 is a photograph (magnification: 20000 times) showing a slanted columnar structure of a vapor deposition film in a cross section taken along the arrow of FIG. 1B.

【図4】図1C矢視表面の蒸着膜の傾斜柱状構造を示す
図面代用写真(倍率20000倍)。
FIG. 4 is a photograph (magnification: 20,000 times) showing a tilted columnar structure of a deposited film on the surface viewed from the direction of the arrow in FIG. 1C.

【図5】実施形態例1における,蒸着装置の構造を示す
説明図。
FIG. 5 is an explanatory diagram showing a structure of a vapor deposition apparatus in the first embodiment.

【図6】実施形態例1における,太陽電池の構造を示す
説明図。
FIG. 6 is an explanatory view showing the structure of a solar cell according to the first embodiment.

【図7】実施形態例3における,熱処理温度とエネルギ
ー変換効率との関係を示す説明図。
FIG. 7 is an explanatory diagram showing a relationship between a heat treatment temperature and energy conversion efficiency in a third embodiment.

【図8】従来例における,半導体電極の構造を示す説明
図。
FIG. 8 is an explanatory view showing a structure of a semiconductor electrode in a conventional example.

【符号の説明】[Explanation of symbols]

1...半導体電極, 10...基板, 12...蒸着膜, 13...蒸着粒子, 2...蒸着装置, 23...蒸着源, 29...電子ビーム, 3...太陽電池, 1. . . 9. semiconductor electrode; . . Substrate, 12. . . 12. deposited film, . . 1. evaporated particles, . . Vapor deposition device, 23. . . Evaporation source, 29. . . 2. electron beam, . . Solar cell,

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹田 康彦 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yasuhiko Takeda 41-41, Yokomichi, Nagakute-cho, Aichi-gun, Aichi, Japan 1 Toyota Central Research Laboratory Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 基板と,該基板の表面に形成された柱状
構造を有する半導体よりなる膜とよりなることを特徴と
する半導体電極。
1. A semiconductor electrode comprising: a substrate; and a film made of a semiconductor having a columnar structure formed on a surface of the substrate.
【請求項2】 請求項1において,上記半導体よりなる
膜は,その表面に,色素,金属,金属酸化物のうちの少
なくとも1種を含有することを特徴とする半導体電極。
2. The semiconductor electrode according to claim 1, wherein the film made of the semiconductor contains at least one of a dye, a metal, and a metal oxide on a surface thereof.
【請求項3】 請求項1又は2において,上記柱状構造
を有する半導体は,その表面に,半導体微粒子または該
半導体微粒子からなる表面層を有してなることを特徴と
する半導体電極。
3. The semiconductor electrode according to claim 1, wherein the semiconductor having the columnar structure has semiconductor fine particles or a surface layer made of the semiconductor fine particles on a surface thereof.
【請求項4】 基板の表面に,該基板の法線方向から1
0度以上傾斜した方向から蒸着粒子を入射させこれを蒸
着させる斜め蒸着法を行うことにより,上記基板の表面
に蒸着膜を形成してなる半導体電極を得ることを特徴と
する半導体電極の製造方法。
4. The method according to claim 1, further comprising the step of:
A method of manufacturing a semiconductor electrode, comprising: obtaining a semiconductor electrode having a vapor-deposited film formed on a surface of the substrate by performing an oblique vapor deposition method in which vapor-deposited particles are incident from a direction inclined at 0 degrees or more and vapor-deposited thereon. .
【請求項5】 請求項4において,上記蒸着膜を形成し
た後,該蒸着膜の表面に,色素,金属,金属酸化物のう
ちの少なくとも1種を付着させることを特徴とする半導
体電極の製造方法。
5. The method according to claim 4, wherein at least one of a dye, a metal, and a metal oxide is attached to the surface of the deposited film after the formation of the deposited film. Method.
【請求項6】 請求項4又は5において,上記蒸着膜の
表面に,色素,金属,金属酸化物のうちの少なくとも1
種を付着させる際には,上記蒸着膜の温度を80℃以上
とすることを特徴とする半導体電極の製造方法。
6. The method according to claim 4, wherein at least one of a dye, a metal, and a metal oxide is formed on the surface of the vapor-deposited film.
A method for manufacturing a semiconductor electrode, wherein the temperature of the above-mentioned deposited film is set to 80 ° C. or more when seeds are attached.
JP34768399A 1998-12-08 1999-12-07 Semiconductor electrode and method of manufacturing the same Expired - Fee Related JP3506080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34768399A JP3506080B2 (en) 1998-12-08 1999-12-07 Semiconductor electrode and method of manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-348939 1998-12-08
JP34893998 1998-12-08
JP34768399A JP3506080B2 (en) 1998-12-08 1999-12-07 Semiconductor electrode and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2000231943A true JP2000231943A (en) 2000-08-22
JP3506080B2 JP3506080B2 (en) 2004-03-15

Family

ID=26578587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34768399A Expired - Fee Related JP3506080B2 (en) 1998-12-08 1999-12-07 Semiconductor electrode and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3506080B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000285972A (en) * 1999-03-30 2000-10-13 Toshiba Corp Photoelectric conversion element
JP2002093475A (en) * 2000-09-19 2002-03-29 Dainippon Printing Co Ltd Coloring matter sensitization type solar battery cell, coloring matter sensitization type solar battery module using the same, and their manufacturing method
JP2002093476A (en) * 2000-09-20 2002-03-29 Dainippon Printing Co Ltd Coloring matter sensitization type solar battery cell, coloring matter sensitization type solar battery module, using the same, and their manufacturing method
WO2003034533A1 (en) * 2001-10-11 2003-04-24 Bridgestone Corporation Organic dye-sensitized metal oxide semiconductor electrode and its manufacturing method, and organic dye-sensitized solar cell
WO2003038909A1 (en) * 2001-10-31 2003-05-08 Sony Corporation Method for fabricating photoelectric conversion element and photoelectric conversion element
WO2004053196A1 (en) * 2002-12-06 2004-06-24 Toppan Printing Co., Ltd. Metal oxide film, dye-sensitized solar cell and method for manufacturing same
WO2007129839A1 (en) * 2006-05-04 2007-11-15 Lg Chem, Ltd. Lithium secondary battery and method for producing the same
JP2009009948A (en) * 2008-08-29 2009-01-15 Toyota Central R&D Labs Inc Dye-sensitized solar cell
US20090211632A1 (en) * 2008-02-12 2009-08-27 The Governors Of The University Of Alberta Photovoltaic device based on conformal coating of columnar structures
JP2010043348A (en) * 2008-08-14 2010-02-25 National Chiao Tung Univ Nanostructure thin film produced by oblique deposition method, and method for producing the same
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
WO2011118581A1 (en) 2010-03-24 2011-09-29 富士フイルム株式会社 Method for manufacturing photoelectric conversion element, photoelectric conversion element and photoelectrochemical cell
WO2012132855A1 (en) 2011-03-30 2012-10-04 富士フイルム株式会社 Photoelectric converter and photoelectrochemical cell
WO2014129575A1 (en) 2013-02-22 2014-08-28 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element and dye-sensitized solar cell
KR101543604B1 (en) * 2008-11-04 2015-08-12 한밭대학교 산학협력단 Anti-reflection coatings for solar cell
JP2016065269A (en) * 2014-09-24 2016-04-28 アイシン精機株式会社 Production method of metallic coating, and metallic coating

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000285972A (en) * 1999-03-30 2000-10-13 Toshiba Corp Photoelectric conversion element
JP2002093475A (en) * 2000-09-19 2002-03-29 Dainippon Printing Co Ltd Coloring matter sensitization type solar battery cell, coloring matter sensitization type solar battery module using the same, and their manufacturing method
JP4659954B2 (en) * 2000-09-19 2011-03-30 大日本印刷株式会社 Method for producing dye-sensitized solar cell and method for producing dye-sensitized solar cell module
JP2002093476A (en) * 2000-09-20 2002-03-29 Dainippon Printing Co Ltd Coloring matter sensitization type solar battery cell, coloring matter sensitization type solar battery module, using the same, and their manufacturing method
JP4659955B2 (en) * 2000-09-20 2011-03-30 大日本印刷株式会社 Dye-sensitized solar cell, dye-sensitized solar cell module using the same, and manufacturing method thereof
US7118936B2 (en) 2001-10-11 2006-10-10 Bridgestone Corporation Organic dye-sensitized metal oxide semiconductor electrode and its manufacturing method, and organic dye-sensitized solar cell
WO2003034533A1 (en) * 2001-10-11 2003-04-24 Bridgestone Corporation Organic dye-sensitized metal oxide semiconductor electrode and its manufacturing method, and organic dye-sensitized solar cell
WO2003038909A1 (en) * 2001-10-31 2003-05-08 Sony Corporation Method for fabricating photoelectric conversion element and photoelectric conversion element
JPWO2004053196A1 (en) * 2002-12-06 2006-04-13 凸版印刷株式会社 Metal oxide film, dye-sensitized solar cell and method for producing the same
JP4622519B2 (en) * 2002-12-06 2011-02-02 凸版印刷株式会社 Dye-sensitized solar cell and method for producing the same
WO2004053196A1 (en) * 2002-12-06 2004-06-24 Toppan Printing Co., Ltd. Metal oxide film, dye-sensitized solar cell and method for manufacturing same
WO2007129839A1 (en) * 2006-05-04 2007-11-15 Lg Chem, Ltd. Lithium secondary battery and method for producing the same
US9825267B2 (en) 2006-05-04 2017-11-21 Lg Chem, Ltd. Lithium secondary battery and method for producing the same
CN101479877B (en) * 2006-05-04 2013-07-31 株式会社Lg化学 Lithium secondary battery and method for producing the same
US20090211632A1 (en) * 2008-02-12 2009-08-27 The Governors Of The University Of Alberta Photovoltaic device based on conformal coating of columnar structures
JP2010043348A (en) * 2008-08-14 2010-02-25 National Chiao Tung Univ Nanostructure thin film produced by oblique deposition method, and method for producing the same
JP2009009948A (en) * 2008-08-29 2009-01-15 Toyota Central R&D Labs Inc Dye-sensitized solar cell
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
EP2845882A2 (en) 2008-10-29 2015-03-11 Fujifilm Corporation Dye, Photoelectric Conversion Element and Photoelectrochemical Cell
KR101543604B1 (en) * 2008-11-04 2015-08-12 한밭대학교 산학협력단 Anti-reflection coatings for solar cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
WO2011118581A1 (en) 2010-03-24 2011-09-29 富士フイルム株式会社 Method for manufacturing photoelectric conversion element, photoelectric conversion element and photoelectrochemical cell
WO2012132855A1 (en) 2011-03-30 2012-10-04 富士フイルム株式会社 Photoelectric converter and photoelectrochemical cell
WO2014129575A1 (en) 2013-02-22 2014-08-28 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element and dye-sensitized solar cell
JP2016065269A (en) * 2014-09-24 2016-04-28 アイシン精機株式会社 Production method of metallic coating, and metallic coating

Also Published As

Publication number Publication date
JP3506080B2 (en) 2004-03-15

Similar Documents

Publication Publication Date Title
JP3506080B2 (en) Semiconductor electrode and method of manufacturing the same
Kim et al. Characteristics of low-temperature annealed TiO2 films deposited by precipitation from hydrolyzed TiCl4 solutions
Souza et al. Nanostructured hematite thin films produced by spin-coating deposition solution: Application in water splitting
Gutpa et al. PVD techniques proffering avenues for fabrication of porous tungsten oxide (WO3) thin films: A review
Karuppuchamy et al. Cathodic electrodeposition of TiO2 thin films for dye-sensitized photoelectrochemical applications
Zhang et al. Influence of different TiO2 blocking films on the photovoltaic performance of perovskite solar cells
Kim et al. Improved performance of dye-sensitized solar cells with compact TiO2 blocking layer prepared using low-temperature reactive ICP-assisted DC magnetron sputtering
Xi et al. Controllable hydrothermal synthesis of rutile TiO2 hollow nanorod arrays on TiCl4 pretreated Ti foil for DSSC application
US8906711B2 (en) Method for preparing titania pastes for use in dye-sensitized solar cells
Najafabadi et al. Performance enhancement of dye-sensitized solar cells by plasma treatment of BaSnO3 photoanode
KR101828943B1 (en) Perovskite solar cells comprising metal oxide nanofiber, nanorod and coating layer as photoelectrode, and the preparation method thereof
Syrrokostas et al. Platinum decorated zinc oxide nanowires as an efficient counter electrode for dye sensitized solar cells
CN101261901B (en) A dye sensitized solar battery anode and its making method
US20110220192A1 (en) Single-sided dye-sensitized solar cells having a vertical patterned structure
KR20090080205A (en) Syntesis of titanium dioxide by aging and peptization methods for photo-electrode of dye-sensitized solar cells
Zheng et al. Optimization of the CdS quantum dot sensitized solar cells with ZnS passivation layer
Sun et al. The application of heterostructured SrTiO3-TiO2 nanotube arrays in dye-sensitized solar cells
JP2000319018A (en) Porous titanium oxide thin film md photoelectric convertor using the film
JP2013016369A (en) Manufacturing method of anode for dye-sensitized solar cell and manufacturing method of dye-sensitized solar cell
Iraj et al. TiO 2 nanotube formation by Ti film anodization and their transport properties for dye-sensitized solar cells
JP4812953B2 (en) Method for producing dye-sensitized solar cell photoelectrode and method for producing dye-sensitized solar cell
KR101179047B1 (en) Photo electrode for plasamonic dye-sensitized solar cells and method for preparing the same
WO2012150805A2 (en) Flexible ti-in-zn-o transparent electrode for dye-sensitized solar cell, and metal-inserted three-layer transparent electrode with high conductivity using same and manufacturing method therefor
Han et al. TiO 2 nanocrystals shell layer on highly conducting indium tin oxide nanowire for photovoltaic devices
CN102324305A (en) Composite structure counter electrode for dye sensitized solar cell and preparation method of composite structure counter electrode

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081226

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091226

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101226

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101226

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees