JP2000228213A - Energy storing element and its manufacture - Google Patents

Energy storing element and its manufacture

Info

Publication number
JP2000228213A
JP2000228213A JP11026834A JP2683499A JP2000228213A JP 2000228213 A JP2000228213 A JP 2000228213A JP 11026834 A JP11026834 A JP 11026834A JP 2683499 A JP2683499 A JP 2683499A JP 2000228213 A JP2000228213 A JP 2000228213A
Authority
JP
Japan
Prior art keywords
wire
energy storage
electrode
electrolyte
protective layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11026834A
Other languages
Japanese (ja)
Inventor
Takeshige Ichimura
剛重 市村
Hiroshi Kimura
浩 木村
Koichi Tsuda
孝一 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP11026834A priority Critical patent/JP2000228213A/en
Publication of JP2000228213A publication Critical patent/JP2000228213A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive capacitor-type energy storing element that is high in energy density as well as output density, and easy to manufacture. SOLUTION: An element unit is composed by arranging an electrode activating material layer 12 formed of V2O5 and a protective layer 13 formed by impregnating an electrolyte into a non-woven fabric of an ethylene tetrafluoride resin on the surface of a core 11 formed of a titanium metal wire to form each wire-like electrode 1, by equally dividing the multiple bundled wire-like electrodes 1 respectively for a positive electrode and a negative electrode and by electrically connecting the cores 11 to a positive electrode current collecting plate 2 or a negative electrode current collecting plate 3 at their ends.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、二次電池、電気二
重層コンデンサー等のエネルギー貯蔵素子に関する。
The present invention relates to an energy storage device such as a secondary battery and an electric double layer capacitor.

【0002】[0002]

【従来の技術】バッテリーは、電気エネルギーを化学エ
ネルギーに変換して蓄電できる手軽な電源として、古く
から独占的に使用されてきた。しかしながら、適用分野
の拡大に伴ってバッテリーに対する要求性能も高くな
り、それとともに充放電可能回数が少ないこと、パワー
密度が小さく得られる電流が小さいこと、さらには充電
量のチェックができないこと等の難点が指摘されるに至
った。しかしながら、これらの難点はいずれもバッテリ
ーの動作原理に係わるもので、本質的に避けられない特
性である。
2. Description of the Related Art Batteries have been used exclusively for a long time as a simple power supply that can convert electric energy into chemical energy and store it. However, as the field of application expands, the required performance of the battery also increases, and the number of times that the battery can be charged and discharged is small, the power density is small, the current obtained is small, and the charge amount cannot be checked. Was pointed out. However, all of these difficulties are related to the operating principle of the battery, and are inherently inevitable characteristics.

【0003】このバッテリーの難点を解決するものとし
て注目されている蓄電デバイスが、別の原理に基づくキ
ャパシタであり、所定の蓄電機能を持った高容量のキャ
パシターとすれば、上述のごときバッテリーの難点は完
全に解決される。図4は、従来のキャパシタタイプのエ
ネルギー貯蔵素子の一例の基本構成を示す斜視図であ
る。本エネルギー貯蔵素子は、正電極31と負電極32
をセパレータ33を介して対向させたシートをロール状
に巻回して構成されている。このほか、正電極と負電極
を平面で対向させ、これをセパレータを介して複数個積
層して構成される積層型のエネルギー貯蔵素子も知られ
ている。
[0003] An electric storage device that has attracted attention as a solution to the problem of the battery is a capacitor based on another principle. If a high-capacity capacitor having a predetermined electric storage function is used, the above-described problem of the battery can be obtained. Is completely resolved. FIG. 4 is a perspective view showing a basic configuration of an example of a conventional capacitor type energy storage element. The energy storage element comprises a positive electrode 31 and a negative electrode 32.
Are wound in a roll shape with the sheet facing each other with a separator 33 interposed therebetween. In addition, there is also known a stacked energy storage element in which a positive electrode and a negative electrode are opposed to each other on a plane, and a plurality of such electrodes are stacked via a separator.

【0004】[0004]

【発明が解決しようとする課題】このようなキャパシタ
タイプのエネルギー貯蔵素子はバッテリーの難点を解消
する特性を備えているが、一方、キャパシターにはエネ
ルギー密度が小さいという難点がある。図5は、蓄電デ
バイスの主要特性であるエネルギー密度と出力密度を示
した特性図である。図に見られるように、バッテリー
は、出力密度は小さいが、エネルギー密度が高く小型化
ができるという利点を備えている。これに対して、電気
二重層キャパシタは、エネルギー密度は小さいが、出力
密度は高くとれる。電気化学キャパシタは、電気二重層
キャパシタをさらに進化させ、エネルギー密度を改善し
たもので、実用化を目指して開発が進められている。
Although such a capacitor-type energy storage device has the characteristics of solving the disadvantages of a battery, the capacitor has the disadvantage that the energy density is low. FIG. 5 is a characteristic diagram illustrating energy density and output density, which are main characteristics of the power storage device. As can be seen from the figure, the battery has the advantage that it has a low power density but a high energy density and can be miniaturized. On the other hand, the electric double layer capacitor has a low energy density but a high output density. The electrochemical capacitor is a further evolution of the electric double layer capacitor with improved energy density, and is being developed for practical use.

【0005】このようにエネルギー密度が高いキャパシ
タが得られれば、単独に、あるいはバッテリーと組み合
わせてハイブリッド化することにより、出力密度が高
く、かつエネルギー密度も高い蓄電が可能となる。
[0005] If a capacitor having a high energy density can be obtained as described above, it is possible to store power with a high output density and a high energy density by making a hybrid alone or in combination with a battery.

【0006】本発明は、上記のごとき技術の現状を踏ま
えてなされたもので、出力密度が高いとゆう本来の特性
を備えるとともに、エネルギー密度が高く、コンパクト
で、かつ、製造が容易で安価なキャパシタタイプのエネ
ルギー貯蔵素子を提供することにある。
The present invention has been made in view of the state of the art as described above, and has the essential characteristics that the output density is high, and has a high energy density, is compact, is easy to manufacture, and is inexpensive. An object of the present invention is to provide a capacitor type energy storage device.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明においては、正電極、負電極および電解質
を備えてなるエネルギー貯蔵素子において、(1)正電
極と負電極を、いずれも、ワイヤー状に形成されたワイ
ヤー状電極の結束体より構成することとし、(2)例え
ば、上記のワイヤー状電極を、金属材料、導電性高分子
材料、炭素繊維等の金属電導性を有する材料からなるコ
アー部と、その外周に配された、電解質と酸化還元反応
する、例えば白金族元素あるいは遷移金属元素を含む化
学物質からなる電極活性材層と、さらにその外周に配さ
れた、繊維状で多孔性の4弗化エチレン樹脂、ポリエチ
レン、ポリプロピレン、弗化ビニリデン、ポリオレフィ
ン等の絶縁物に電解質を含浸して形成された保護層とに
より構成することとする。
According to the present invention, there is provided an energy storage device comprising a positive electrode, a negative electrode, and an electrolyte. (2) For example, the above-mentioned wire electrode has a metal conductivity such as a metal material, a conductive polymer material, and carbon fiber. A core portion made of a material, and an electrode active material layer made of a chemical substance containing, for example, a platinum group element or a transition metal element, which is redox-reacted with an electrolyte, and a fiber arranged on the outer periphery thereof. And a protective layer formed by impregnating an electrolyte with an insulator such as porous and tetrafluoroethylene resin, polyethylene, polypropylene, vinylidene fluoride, and polyolefin. To.

【0008】(3)また、上記のワイヤー状電極を、電
極活性材を付着させる槽および保護層を付着させる槽を
含む処理装置にコアー部を形成するワイヤーを連続的に
供給して、ワイヤーの表面に電極活性材層と保護層を形
成した長尺線を製作し、その後所定の長さに切断するこ
とにより製造することとする。
(3) In addition, the wire forming the core portion is continuously supplied to a processing apparatus including a tank for depositing an electrode active material and a tank for depositing a protective layer. A long wire having an electrode active material layer and a protective layer formed on the surface is manufactured, and then cut to a predetermined length to manufacture.

【0009】(4)また、上記の(2)において、正電
極を構成するワイヤー状電極と負電極を構成するワイヤ
ー状電極を均等に配置して結束し、かつ、その一方の端
部において正電極を構成するワイヤー状電極のそれぞれ
のコアー部を第1の集電板に電気的に接続し、もう一方
の端部において負電極を構成するワイヤー状電極のそれ
ぞれのコアー部を第2の集電板に電気的に接続して基本
単位としての素子ユニットを構成することとする。さら
に、このように構成した素子ユニットを電気的に直列あ
るいは並列に接続してエネルギー貯蔵素子を形成するこ
ととする。
(4) In the above (2), the wire-like electrode constituting the positive electrode and the wire-like electrode constituting the negative electrode are uniformly arranged and bound, and a positive electrode is formed at one end thereof. The respective cores of the wire-like electrodes constituting the electrode are electrically connected to the first current collector plate, and the respective cores of the wire-like electrodes constituting the negative electrode are connected to the second collector at the other end. An element unit as a basic unit is electrically connected to the electric plate. Further, the energy storage elements are formed by electrically connecting the element units thus configured in series or in parallel.

【0010】上記(1)のごとく、正電極と負電極を、
例えば(2)のように形成されたワイヤー状電極の結束
体より構成することとすれば、結束された多数のワイヤ
ー状電極のそれぞれの表面に電極が配されるので、電極
面積の密度が高く採れる。特にワイヤー状電極を極細線
により形成すれば電極面積の密度がより一層高くなり、
エネルギー密度が上昇する。したがって、コンパクトな
エネルギー貯蔵素子が得られる。
As described in the above (1), the positive electrode and the negative electrode are
For example, if it is configured from a bundle of wire-like electrodes formed as in (2), the electrodes are arranged on the respective surfaces of a large number of the bundled wire-like electrodes, so that the density of the electrode area is high. Can be taken. In particular, if the wire-like electrode is formed by a fine wire, the density of the electrode area is further increased,
The energy density increases. Therefore, a compact energy storage element can be obtained.

【0011】また、上記(3)のごとくワイヤー状電極
を製造することとすれば、ワイヤー状電極が一貫して連
続的に製造され、これを結束させることによりエネルギ
ー貯蔵素子が製作されるので、製造方法が簡単となり、
製造コストが大幅に低下することとなる。また、上記
(4)のごとく素子ユニットを構成し、これを組み合わ
せれば、用途に合わせた特性を備えたエネルギー貯蔵素
子が得られることとなる。
Further, if the wire electrode is manufactured as in the above (3), the wire electrode is manufactured continuously and continuously, and the energy storage element is manufactured by binding the wires. The manufacturing method is simplified,
Manufacturing costs will be significantly reduced. When the element units are configured as described in (4) above and combined, an energy storage element having characteristics suitable for the intended use can be obtained.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施例を図面を用
いて説明する。図1は本発明の実施例のエネルギー貯蔵
素子の素子ユニットの基本構成を示す図で、(a)は一
部を切断して示した素子ユニットの斜視図、(b)は素
子ユニットに組み込まれているワイヤー状電極の部分斜
視図である。
Embodiments of the present invention will be described below with reference to the drawings. FIGS. 1A and 1B are views showing a basic configuration of an element unit of an energy storage element according to an embodiment of the present invention. FIG. 1A is a perspective view of the element unit with a part cut away, and FIG. FIG. 3 is a partial perspective view of a wire electrode.

【0013】図1(a)に見られるように、本実施例の
素子ユニットは、結束された多数の極細線のワイヤー状
電極1の両端に、正電極集電板2と負電極集電板3を配
し、外側を外筒4で覆って構成されている。このうちワ
イヤー状電極1の結束体は、ほぼ同数の正電極用のワイ
ヤー状電極1と負電極用のワイヤー状電極1を互いに対
をなすように均等に配置して構成されており、正電極用
のワイヤー状電極1の一端は正電極集電板2に、また、
負電極用のワイヤー状電極1の一端は負電極集電板3に
接続されている。
As shown in FIG. 1A, the element unit of this embodiment has a positive electrode current collector plate 2 and a negative electrode current collector plate at both ends of a large number of ultra-fine wire-like electrodes 1. 3 and the outside is covered with an outer cylinder 4. Among these, the binding body of the wire-shaped electrode 1 is configured by arranging approximately the same number of wire-shaped electrodes 1 for the positive electrode and wire-shaped electrodes 1 for the negative electrode so as to form a pair with each other. One end of the wire-shaped electrode 1 is connected to the positive electrode current collector plate 2 and
One end of the wire electrode 1 for the negative electrode is connected to the negative electrode current collector 3.

【0014】ワイヤー状電極1は、図1(b)に見られ
るように、金属電導性をもつコアー部11、その外周に
配された電極活性材層12、さらにその外周に配された
保護層13から構成されている。このうち、コアー部1
1には直径が 50 μmのチタン金属線が用いられてい
る。電極活性材層12には電解質と酸化還元反応をする
化学物質としてV2O5が用いられており、その厚さは約1
μmである。また、保護層13は、4弗化エチレン樹脂
を素材とする不織布に電解質を含浸して構成されてお
り、正電極と負電極との電気的接触を防止するセパレー
タの役割も果たしている。その厚さは約 30 μmであ
る。
As shown in FIG. 1B, the wire-shaped electrode 1 has a metal conductive core portion 11, an electrode active material layer 12 disposed on the outer periphery thereof, and a protective layer disposed on the outer periphery thereof. 13. Of these, core 1
1 is a titanium metal wire having a diameter of 50 μm. V 2 O 5 is used for the electrode active material layer 12 as a chemical substance that undergoes an oxidation-reduction reaction with the electrolyte.
μm. The protective layer 13 is formed by impregnating a non-woven fabric made of a tetrafluoroethylene resin with an electrolyte, and also serves as a separator for preventing electrical contact between the positive electrode and the negative electrode. Its thickness is about 30 μm.

【0015】なお、本実施例ではコアー部11に直径 5
0 μmのチタン金属線が用いられているが、チタン以外
の金属線を用いてもよく、また、同様に金属電導性を有
する材料である導電性高分子材料、あるいは炭素繊維等
を用いてもよい。またワイヤー状電極1が細いほど素子
のエネルギー密度が増大するので、適正な機械強度が得
られる限りコアー部11の直径は小さいことが望まし
く、10μm〜 0.5 mm の範囲において選定すればよい。
また、本実施例では電極活性材層12に厚さが約1μm
の V2O5 が用いられているが、V2O5に替わって、同様に
電解質と酸化還元反応をする化学物質である RuO2 、Ni
O 等の白金族元素あるいは遷移金属元素を含む化学物質
でもよい。電極活性材層12の厚さは、上記のコアー部
11の直径に対応して、10 nm 〜 0.5 mm の範囲におい
て選定すればよい。また、本実施例では保護層13を4
弗化エチレン樹脂を素材とする不織布に電解質を含浸し
て構成し、その厚さを約 30 μmとしているが、4弗化
エチレン樹脂に替わって、ポリエチレン、ポリプロピレ
ン、弗化ビニリデン、ポリオレフィン等の絶縁物を用い
てもよく、その厚さは、上記のコアー部11の直径およ
び電極活性材層12の厚さに対応して、10μm〜 200μ
mの範囲において選定すればよい。なお、ワイヤー状電
極1の長さについては特に制限はなく、使用用途に応じ
たキャパシタの必要特性から選定すればよい。
In this embodiment, the core 11 has a diameter of 5 mm.
Although a 0 μm titanium metal wire is used, a metal wire other than titanium may be used, or a conductive polymer material which is also a material having metal conductivity, or a carbon fiber or the like may be used. Good. Further, since the energy density of the element increases as the wire-shaped electrode 1 becomes thinner, it is desirable that the diameter of the core portion 11 is small as long as appropriate mechanical strength is obtained, and the diameter may be selected in the range of 10 μm to 0.5 mm.
In this embodiment, the electrode active material layer 12 has a thickness of about 1 μm.
V 2 O 5 is used, but instead of V 2 O 5 , chemical substances that also perform oxidation-reduction reactions with electrolytes RuO 2 , Ni
Chemical substances containing a platinum group element such as O 2 or a transition metal element may be used. The thickness of the electrode active material layer 12 may be selected in the range of 10 nm to 0.5 mm corresponding to the diameter of the core portion 11 described above. In this embodiment, the protective layer 13 is
It is constructed by impregnating a non-woven fabric made of fluoroethylene resin with an electrolyte and has a thickness of about 30 μm. Instead of tetrafluoroethylene resin, insulating materials such as polyethylene, polypropylene, vinylidene fluoride, and polyolefin are used. The thickness may be 10 μm to 200 μm, depending on the diameter of the core 11 and the thickness of the electrode active material layer 12.
It may be selected in the range of m. The length of the wire-like electrode 1 is not particularly limited, and may be selected from the necessary characteristics of the capacitor according to the intended use.

【0016】図2は、本実施例のエネルギー貯蔵素子の
素子ユニットの端部の基本構成を示す断面図である。結
束した複数のワイヤー状電極1を半数づつ均等に選んだ
のち、一方の群の複数のワイヤー状電極1の端部の保護
層13と電極活性材層12を切除してコアー部11を露
出させ、このコアー部11を正電極集電板2に電気的に
接触させることによって正電極が形成されている。ま
た、同様に、もう一方の群の複数のワイヤー状電極1の
端部のコアー部11を負電極集電板3に電気的に接触さ
せることによって負電極が形成されている。
FIG. 2 is a sectional view showing a basic structure of an end portion of the element unit of the energy storage element of the present embodiment. After uniformly selecting a plurality of the bundled wire-like electrodes 1 by half, the protective layer 13 and the electrode active material layer 12 at the ends of the plurality of wire-like electrodes 1 in one group are cut off to expose the core portion 11. The positive electrode is formed by electrically contacting the core portion 11 with the positive electrode current collector plate 2. Similarly, the negative electrode is formed by electrically contacting the core portion 11 at the end of the plurality of wire-shaped electrodes 1 of the other group with the negative electrode current collector plate 3.

【0017】図3は、本実施例のエネルギー貯蔵素子の
主要構成要素であるワイヤー状電極1の製造方法を示す
工程図である。ワイヤー状電極1のコアー部11となる
直径 50 μmのチタンワイヤーは、ワイヤーリール21
より引き出され、アセトンあるいはアルコールを満たし
た脱脂槽22へ送られて洗浄される。チタンワイヤーの
送り速度は毎分 100 mm であり、この送り速度におい
て、脱脂槽22へ浸漬される時間が3分になるよう構成
されている。洗浄されたチタンワイヤーは、次いで 80
〜 90 ℃に加温された蓚酸10 wt%水溶液を満たしたエ
ッチング槽23に送られてエッチング洗浄される。エッ
チング洗浄されチタンワイヤーは、水洗槽24に送ら
れ、エッチング液を除去したのち電極活性材付着槽25
へと送られる。
FIG. 3 is a process chart showing a method for manufacturing the wire-like electrode 1 which is a main component of the energy storage element of the present embodiment. A 50 μm diameter titanium wire serving as the core 11 of the wire-shaped electrode 1 is
It is drawn out and sent to a degreasing tank 22 filled with acetone or alcohol to be washed. The feed speed of the titanium wire is 100 mm per minute, and the immersion time in the degreasing tank 22 is 3 minutes at this feed speed. The cleaned titanium wire is then
It is sent to an etching tank 23 filled with a 10 wt% aqueous solution of oxalic acid heated to 90 ° C. to be etched and cleaned. The titanium wire that has been subjected to etching and cleaning is sent to a washing tank 24 to remove the etchant, and then the electrode active material attaching tank 25 is removed.
Sent to.

【0018】電極活性材付着槽25には、電極活性材V2
O5を付着させるための前駆体である溶液、すなわちバナ
ジン酸アンモニウム NH4VO3 と蓚酸と H2Oを3:1: 1
6 の割合で混合した溶液が満たされている。この電極活
性材付着槽25を通過して表面に電極活性材 V2O5 の前
駆体が付着したワイヤーは、乾燥槽26において温度60
〜 70 ℃で乾燥されたのち、加熱分解槽27へと導か
れる。加熱分解槽27は、空気雰囲気で 345〜355 ℃の
温度に保たれており、ワイヤーの表面に付着した前駆体
は加熱分解し、電極活性材V2O5の層が形成される。形成
されるV2O5の層の厚さは電極活性材付着槽25中の前駆
体の濃度に依存するが、上記条件の場合には 0.7〜1,0
μmとなる。
The electrode active material deposition tank 25 contains an electrode active material V 2.
A solution that is a precursor for attaching O 5 , namely, ammonium vanadate NH 4 VO 3 , oxalic acid, and H 2 O is used in a ratio of 3: 1: 1.
The solution mixed in the ratio of 6 is filled. The wire having the electrode active material V 2 O 5 precursor adhered to the surface thereof through the electrode active material adhering tank 25 has a temperature of 60 ° C. in the drying tank 26.
After drying at ~ 70 ° C, it is led to the thermal decomposition tank 27. The thermal decomposition tank 27 is maintained at a temperature of 345 to 355 ° C. in an air atmosphere, and the precursor attached to the surface of the wire is thermally decomposed to form a layer of the electrode active material V 2 O 5 . The thickness of the V 2 O 5 layer to be formed depends on the concentration of the precursor in the electrode active material deposition tank 25.
μm.

【0019】電極活性材 V2O5 の層が形成されたワイヤ
ーは引き続いて保護層付着工程へと送られる。保護層付
着槽28には、繊維状の4弗化エチレン樹脂を水に溶か
してパルプ状に形成したものが満たされており、この槽
を通過することによってワイヤーの電極活性材 V2O5
層の上に4弗化エチレン樹脂が約 30 μm付着する。引
き続いて、4弗化エチレン樹脂が付着したワイヤーを乾
燥槽29へ送り約 100℃で乾燥することにより保護層が
形成される。
The wire on which the layer of the electrode active material V 2 O 5 is formed is subsequently sent to a protective layer attaching step. The protective layer adhesion tank 28 is filled with a pulp formed by dissolving fibrous ethylene tetrafluoride resin in water, and passing through this tank, the electrode active material V 2 O 5 of the wire is filled. About 30 μm of tetrafluoroethylene resin adheres on the layer. Subsequently, the wire to which the tetrafluoroethylene resin has adhered is sent to the drying tank 29 and dried at about 100 ° C., thereby forming a protective layer.

【0020】このようにして電極活性材層と保護層を形
成したチタンワイヤーは、巻取りリール30に巻き取ら
れる。なお、上記の説明では1本のワイヤーについて製
造工程を説明したが、実際の工程では多数本のワイヤー
が並列して処理され、電極活性材層と保護層を形成した
チタンワイヤーが同時に多数本巻き取られることとな
る。
The titanium wire on which the electrode active material layer and the protective layer are formed as described above is wound on a take-up reel 30. In the above description, the manufacturing process is described for one wire. However, in the actual process, a large number of wires are processed in parallel, and a large number of titanium wires on which an electrode active material layer and a protective layer are formed are simultaneously wound. Will be taken.

【0021】巻き取られたワイヤーは、適当な長さに切
断されてワイヤー状電極として形成される。さらにその
両端に、すでに図2を用いて説明したごとく、正電極集
電板と負電極集電板を組み込むことによってエネルギー
貯蔵素子の素子ユニットが形成される。また、得られた
素子ユニットを適宜電気的に接続することにより、それ
ぞれの所要条件に対応した特性を持つエネルギー貯蔵素
子が構成される。
The wound wire is cut into a suitable length to form a wire-like electrode. Further, as described with reference to FIG. 2, the element unit of the energy storage element is formed at both ends by incorporating the positive electrode current collector and the negative electrode current collector. Also, by appropriately electrically connecting the obtained element units, an energy storage element having characteristics corresponding to each required condition is configured.

【0022】このように本実施例の構成のエネルギー貯
蔵素子の素子ユニットにおいては、主要構成要素のワイ
ヤー状電極が、簡単な設備で一貫して連続的に製造でき
るので、製造工程が簡単となり、製作コストが低く抑え
られる。
As described above, in the element unit of the energy storage element having the configuration of the present embodiment, the wire-like electrodes of the main components can be manufactured consistently and continuously with simple equipment, so that the manufacturing process is simplified. Production costs can be kept low.

【0023】[0023]

【発明の効果】上述のように、本発明によれば、正電
極、負電極および電解質を備えてなるエネルギー貯蔵素
子において、 (1)正電極と負電極を、例えば、金属電導性を有する
材料からなるコアー部と電解質と酸化還元反応する化学
物質からなる電極活性材層と絶縁物に電解質を含浸して
形成された保護層により形成されたワイヤー状電極の結
束体より構成することとしたので、素子あるいは素子ユ
ニットがコンパクトに構成されることとなり、エネルギ
ー密度の高いエネルギー貯蔵素子が得られることとなっ
た。
As described above, according to the present invention, in an energy storage device comprising a positive electrode, a negative electrode and an electrolyte, (1) the positive electrode and the negative electrode are made of, for example, a material having metal conductivity. And a wire-shaped electrode bundle formed by a protective layer formed by impregnating the electrolyte with the electrolyte, and an electrode active material layer made of a chemical substance that undergoes a redox reaction with the electrolyte. Thus, the element or the element unit is made compact, and an energy storage element having a high energy density can be obtained.

【0024】(2)また、上記のワイヤー状電極を、電
極活性材を付着させる槽および保護層を付着させる槽を
含む処理装置にコアー部を形成するワイヤーを連続的に
供給して、ワイヤーの表面に電極活性材層と保護層を形
成した長尺線を製作し、その後所定の長さに切断するこ
とにより製造することとすれば、ワイヤー状電極が一貫
して連続的に製造され、これを結束させることによりエ
ネルギー貯蔵素子が製作されるので、製造方法が極めて
簡単となり、製造コストが大幅に低下する。したがっ
て、コンパクトでエネルギー密度が高いばかりでなく、
製造が容易で安価なエネルギー貯蔵素子が得られること
となる。
(2) In addition, the wire forming the core portion is continuously supplied to a processing apparatus including a tank for depositing an electrode active material and a tank for depositing a protective layer. If a long wire having an electrode active material layer and a protective layer formed on the surface is manufactured and then cut to a predetermined length to manufacture the wire, the wire-shaped electrode is manufactured continuously and continuously. Since the energy storage element is manufactured by bundling, the manufacturing method is extremely simplified, and the manufacturing cost is greatly reduced. Therefore, not only compact and high energy density,
An energy storage element which is easy to manufacture and inexpensive can be obtained.

【0025】(3)また、上記の(1)において、正電
極を構成するワイヤー状電極と負電極を構成するワイヤ
ー状電極を均等に配置して結束し、かつ、その一方の端
部において正電極を構成するワイヤー状電極のそれぞれ
のコアー部を第1の集電板に電気的に接続し、もう一方
の端部において負電極を構成するワイヤー状電極のそれ
ぞれのコアー部を第2の集電板に電気的に接続して素子
ユニットを構成することとする。さらに、このように構
成した素子ユニットを電気的に直列あるいは並列に接続
してエネルギー貯蔵素子を形成することとすれば、用途
に適合した特性を備えたエネルギー貯蔵素子が容易に構
成できるので、コンパクトでエネルギー密度が高く、か
つ安価に製作できるエネルギー貯蔵素子として好適であ
る。
(3) In the above (1), the wire-like electrode constituting the positive electrode and the wire-like electrode constituting the negative electrode are uniformly arranged and bound, and the positive electrode is formed at one end thereof. The respective cores of the wire-like electrodes constituting the electrode are electrically connected to the first current collector plate, and the respective cores of the wire-like electrodes constituting the negative electrode are connected to the second collector at the other end. The element unit is constituted by being electrically connected to the electric plate. Furthermore, if the energy storage element is formed by electrically connecting the element units configured as described above in series or in parallel, an energy storage element having characteristics suitable for the application can be easily configured, so that it is compact. It is suitable as an energy storage element which has a high energy density and can be manufactured at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例のエネルギー貯蔵素子の素子ユ
ニットの基本構成を示す図で、(a)は一部を切断して
示した素子ユニットの斜視図、(b)は素子ユニットに
組み込まれているワイヤー状電極の部分斜視図
FIGS. 1A and 1B are diagrams showing a basic configuration of an element unit of an energy storage element according to an embodiment of the present invention, wherein FIG. 1A is a perspective view of the element unit with a part cut away, and FIG. Partial perspective view of a wire-shaped electrode

【図2】図1の実施例の素子ユニットの端部の基本構成
を示す断面図
FIG. 2 is a sectional view showing a basic configuration of an end portion of the element unit of the embodiment of FIG.

【図3】図1の実施例の素子ユニットのワイヤー状電極
の製造方法を示す工程図
FIG. 3 is a process chart showing a method for manufacturing a wire-like electrode of the element unit of the embodiment in FIG. 1;

【図4】従来のキャパシタタイプのエネルギー貯蔵素子
の基本構成の一例を示す一部分解斜視図
FIG. 4 is a partially exploded perspective view showing an example of a basic configuration of a conventional capacitor-type energy storage element.

【図5】蓄電デバイスのエネルギー密度と出力密度を示
した特性図
FIG. 5 is a characteristic diagram showing an energy density and an output density of the electric storage device.

【符号の説明】[Explanation of symbols]

1 ワイヤー状電極 2 正電極集電板 3 負電極集電板 4 外筒 11 コアー部 12 電極活性材層 13 保護層 21 ワイヤーリール 22 脱脂槽 23 エッチング槽 24 水洗槽 25 電極活性材付着槽 26 乾燥槽 27 加熱分解槽 28 保護層付着層 29 乾燥槽 30 巻取りリール Reference Signs List 1 wire electrode 2 positive electrode current collector 3 negative electrode current collector 4 outer cylinder 11 core 12 electrode active material layer 13 protective layer 21 wire reel 22 degreasing tank 23 etching tank 24 washing tank 25 electrode active material adhesion tank 26 drying Tank 27 Thermal decomposition tank 28 Protective layer adhesion layer 29 Drying tank 30 Take-up reel

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 4/48 H01M 10/40 Z 4/52 H01G 9/00 301B 4/66 301C 10/40 301J (72)発明者 津田 孝一 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 Fターム(参考) 5H003 AA02 AA08 BB04 BD02 5H014 AA04 CC01 EE05 EE07 EE10 HH01 HH06 5H017 AA03 CC18 HH03 5H028 AA05 CC11 HH05 5H029 AJ03 AJ14 AK02 AL00 AM02 DJ04 DJ07 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01M 4/48 H01M 10/40 Z 4/52 H01G 9/00 301B 4/66 301C 10/40 301J (72 ) Inventor Koichi Tsuda 1-1-1, Tanabe-Shinda, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture F-term in Fuji Electric Co., Ltd. AJ03 AJ14 AK02 AL00 AM02 DJ04 DJ07

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】正電極、負電極および電解質を備えてなる
エネルギー貯蔵素子において、正電極と負電極が、いず
れも、ワイヤー状に形成されたワイヤー状電極の結束体
より構成されていることを特徴とするエネルギー貯蔵素
子。
1. An energy storage device comprising a positive electrode, a negative electrode, and an electrolyte, wherein each of the positive electrode and the negative electrode is formed of a binding body of wire-like electrodes formed in a wire shape. Energy storage element characterized.
【請求項2】前記のワイヤー状電極が、金属電導性を有
する材料からなるコアー部と、その外周に配された、電
解質と酸化還元反応する化学物質からなる電極活性材層
と、さらにその外周に配された、繊維状で多孔性の絶縁
物に電解質を含浸して形成された保護層とにより構成さ
れていることを特徴とする請求項1に記載のエネルギー
貯蔵素子。
2. The method according to claim 1, wherein the wire electrode comprises a core portion made of a material having metal conductivity, an electrode active material layer made of a chemical substance that undergoes an oxidation-reduction reaction with an electrolyte, and an outer periphery thereof. The energy storage element according to claim 1, further comprising: a protective layer formed by impregnating an electrolyte with a fibrous porous insulator disposed in the element.
【請求項3】正電極を構成するワイヤー状電極と負電極
を構成するワイヤー状電極が均等に配置されて結束さ
れ、かつ、その一方の端部において正電極を構成するワ
イヤー状電極のそれぞれのコアー部が第1の集電板に電
気的に接続され、もう一方の端部において負電極を構成
するワイヤー状電極のそれぞれのコアー部が第2の集電
板に電気的に接続されて形成された素子ユニットを1個
または複数個用いて構成されていることを特徴とする請
求項2に記載のエネルギー貯蔵素子。
3. A wire-like electrode constituting a positive electrode and a wire-like electrode constituting a negative electrode are uniformly arranged and bound, and each of the wire-like electrodes constituting a positive electrode at one end thereof. The core is electrically connected to the first current collector, and the other end of the wire-shaped electrode constituting the negative electrode is electrically connected to the second current collector. The energy storage device according to claim 2, wherein the energy storage device is configured by using one or a plurality of element units.
【請求項4】前記の複数個の素子ユニットを電気的に直
列あるいは並列に接続して構成されたことを特徴とする
請求項3に記載のエネルギー貯蔵素子。
4. The energy storage device according to claim 3, wherein said plurality of device units are electrically connected in series or in parallel.
【請求項5】前記のコアー部を形成する金属電導性を有
する材料が、金属材料、導電性高分子材料および炭素繊
維のうちのいずれか一つであることを特徴とする請求項
2、3または4に記載のエネルギー貯蔵素子。
5. A material according to claim 2, wherein said metal conductive material forming said core portion is one of a metal material, a conductive polymer material and carbon fiber. Or the energy storage element according to 4.
【請求項6】前記の電極活性材層を形成する化学物質
が、白金族元素あるいは遷移金属元素を含む化学物質で
あることを特徴とする請求項2、3または4に記載のエ
ネルギー貯蔵素子。
6. The energy storage device according to claim 2, wherein the chemical substance forming the electrode active material layer is a chemical substance containing a platinum group element or a transition metal element.
【請求項7】前記の化学物質が、RuO2、NiO 、V2O5のう
ちのいずれか一つであることを特徴とする請求項6に記
載のエネルギー貯蔵素子。
7. The energy storage device according to claim 6, wherein the chemical substance is one of RuO 2 , NiO, and V 2 O 5 .
【請求項8】前記の保護層を形成する繊維状で多孔性の
絶縁物が、4弗化エチレン樹脂、ポリエチレン、ポリプ
ロピレン、弗化ビニリデン、ポリオレフィンのうちのい
ずれか一つであることを特徴とする請求項2、3または
4に記載のエネルギー貯蔵素子。
8. The fibrous porous insulator forming the protective layer is any one of ethylene tetrafluoride resin, polyethylene, polypropylene, vinylidene fluoride and polyolefin. The energy storage element according to claim 2, 3 or 4, wherein:
【請求項9】電解質を含む水溶液あるいは電解質を含む
有機溶媒を含浸させることにより、前記の保護層に電解
質が含浸されていることを特徴とする請求項2、3また
は4に記載のエネルギー貯蔵素子。
9. The energy storage device according to claim 2, wherein the protective layer is impregnated with an electrolyte by impregnating with an aqueous solution containing an electrolyte or an organic solvent containing an electrolyte. .
【請求項10】前記のコアー部の直径が、10μm乃至
0.5 mm であることを特徴とする請求項2、3または4
に記載のエネルギー貯蔵素子。
10. The core part has a diameter of 10 μm or less.
5. The method according to claim 2, wherein the thickness is 0.5 mm.
An energy storage element according to claim 1.
【請求項11】前記の電極活性材層の厚さが、10 nm 乃
至 0.2 mm であることを特徴とする請求項2、3または
4に記載のエネルギー貯蔵素子。
11. The energy storage device according to claim 2, wherein said electrode active material layer has a thickness of 10 nm to 0.2 mm.
【請求項12】前記の保護層の厚さが、10μm乃至 200
μmであることを特徴とする請求項2、3または4に記
載のエネルギー貯蔵素子。
12. The protective layer has a thickness of 10 μm to 200 μm.
The energy storage element according to claim 2, 3 or 4, wherein the thickness is μm.
【請求項13】正電極、負電極および電解質を備え、か
つ、正電極と負電極がいずれもワイヤー状に形成された
ワイヤー状電極の結束体より構成され、かつ、ワイヤー
状電極が、金属電導性を有する材料からなるコアー部
と、その外周に配された電極活性材層と、さらにその外
周に配された、繊維状で多孔性の絶縁物に電解質を含浸
して形成された保護層とにより構成されたエネルギー貯
蔵素子の製造方法において、 前記のワイヤー状電極が、電極活性材を付着させる槽お
よび保護層を付着させる槽を含む処理装置にコアー部を
形成するワイヤーを連続的に供給して、ワイヤーの表面
に電極活性材層と保護層を形成した長尺線を製作し、そ
の後、所定の長さに切断することにより製造されること
を特徴とするエネルギー貯蔵素子の製造方法。
13. A battery comprising a positive electrode, a negative electrode, and an electrolyte, wherein each of the positive electrode and the negative electrode is formed of a bundle of wire-like electrodes formed in a wire shape, and the wire-like electrode is formed of a metal conductive material. A core portion made of a material having properties, an electrode active material layer disposed on the outer periphery thereof, and a protective layer formed by impregnating a fibrous porous insulator with an electrolyte further disposed on the outer periphery thereof. In the method for manufacturing an energy storage element constituted by, the wire-shaped electrode continuously supplies a wire forming a core portion to a processing apparatus including a tank for attaching an electrode active material and a tank for attaching a protective layer. A long wire having an electrode active material layer and a protective layer formed on the surface of the wire, and then cutting the wire to a predetermined length to manufacture the energy storage element.
JP11026834A 1999-02-04 1999-02-04 Energy storing element and its manufacture Pending JP2000228213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11026834A JP2000228213A (en) 1999-02-04 1999-02-04 Energy storing element and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11026834A JP2000228213A (en) 1999-02-04 1999-02-04 Energy storing element and its manufacture

Publications (1)

Publication Number Publication Date
JP2000228213A true JP2000228213A (en) 2000-08-15

Family

ID=12204310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11026834A Pending JP2000228213A (en) 1999-02-04 1999-02-04 Energy storing element and its manufacture

Country Status (1)

Country Link
JP (1) JP2000228213A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003317794A (en) * 2002-04-22 2003-11-07 Kawasaki Heavy Ind Ltd Fiber cell and its manufacturing method
US7763382B2 (en) 2002-07-26 2010-07-27 A123 Systems, Inc. Bipolar articles and related methods
WO2011007548A1 (en) * 2009-07-14 2011-01-20 川崎重工業株式会社 Electrical storage device provided with fiber electrodes, and method for producing same
WO2011007549A1 (en) * 2009-07-14 2011-01-20 川崎重工業株式会社 Fiber electrode and fiber cell, and method for producing same, facility for producing fiber electrode and fiber cell
US7988746B2 (en) 2000-10-20 2011-08-02 A123 Systems, Inc. Battery structures, self-organizing structures and related methods
US8088512B2 (en) 2001-07-27 2012-01-03 A123 Systems, Inc. Self organizing battery structure method
US8148009B2 (en) 2000-10-20 2012-04-03 Massachusetts Institute Of Technology Reticulated and controlled porosity battery structures
JP2014502134A (en) * 2010-11-30 2014-01-23 ヴァレオ・シャルター・ウント・ゼンゾーレン・ゲーエムベーハー Vehicle operation method and driver support device
JP2014524643A (en) * 2011-08-02 2014-09-22 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド Biocompatible wire battery
US8999571B2 (en) 2007-05-25 2015-04-07 Massachusetts Institute Of Technology Batteries and electrodes for use thereof
US9065139B2 (en) 2009-02-04 2015-06-23 National Institute Of Advanced Industrial Science And Technology Fiber electrode for lithium secondary battery, fabrication method therefor, and lithium secondary battery including fiber electrode
US9065093B2 (en) 2011-04-07 2015-06-23 Massachusetts Institute Of Technology Controlled porosity in electrodes
JP2015135829A (en) * 2010-05-20 2015-07-27 エルジー・ケム・リミテッド Cable-type secondary battery having metal-coated polymer current collector
US10345620B2 (en) 2016-02-18 2019-07-09 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form biocompatible energization elements incorporating fuel cells for biomedical devices
US10361404B2 (en) 2014-08-21 2019-07-23 Johnson & Johnson Vision Care, Inc. Anodes for use in biocompatible energization elements
US10361405B2 (en) 2014-08-21 2019-07-23 Johnson & Johnson Vision Care, Inc. Biomedical energization elements with polymer electrolytes
US10367233B2 (en) 2014-08-21 2019-07-30 Johnson & Johnson Vision Care, Inc. Biomedical energization elements with polymer electrolytes and cavity structures
US10374216B2 (en) 2014-08-21 2019-08-06 Johnson & Johnson Vision Care, Inc. Pellet form cathode for use in a biocompatible battery
US10381687B2 (en) 2014-08-21 2019-08-13 Johnson & Johnson Vision Care, Inc. Methods of forming biocompatible rechargable energization elements for biomedical devices
US10386656B2 (en) 2014-08-21 2019-08-20 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form separators for biocompatible energization elements for biomedical devices
US10451897B2 (en) 2011-03-18 2019-10-22 Johnson & Johnson Vision Care, Inc. Components with multiple energization elements for biomedical devices
US10558062B2 (en) 2014-08-21 2020-02-11 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form biocompatible energization primary elements for biomedical device
US10569480B2 (en) 2014-10-03 2020-02-25 Massachusetts Institute Of Technology Pore orientation using magnetic fields
US10598958B2 (en) 2014-08-21 2020-03-24 Johnson & Johnson Vision Care, Inc. Device and methods for sealing and encapsulation for biocompatible energization elements
US10627651B2 (en) 2014-08-21 2020-04-21 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form biocompatible energization primary elements for biomedical devices with electroless sealing layers
US10675819B2 (en) 2014-10-03 2020-06-09 Massachusetts Institute Of Technology Magnetic field alignment of emulsions to produce porous articles
US10775644B2 (en) 2012-01-26 2020-09-15 Johnson & Johnson Vision Care, Inc. Ophthalmic lens assembly having an integrated antenna structure

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8148009B2 (en) 2000-10-20 2012-04-03 Massachusetts Institute Of Technology Reticulated and controlled porosity battery structures
US8586238B2 (en) 2000-10-20 2013-11-19 Massachusetts Institute Of Technology Battery structures, self-organizing structures, and related methods
US8580430B2 (en) 2000-10-20 2013-11-12 Massachusetts Institute Of Technology Battery structures, self-organizing structures, and related methods
US8709647B2 (en) 2000-10-20 2014-04-29 A123 Systems Llc Battery structures and related methods
US7988746B2 (en) 2000-10-20 2011-08-02 A123 Systems, Inc. Battery structures, self-organizing structures and related methods
US8277975B2 (en) 2000-10-20 2012-10-02 Massachusetts Intitute Of Technology Reticulated and controlled porosity battery structures
US8206468B2 (en) 2000-10-20 2012-06-26 Massachusetts Institute Of Technology Battery structures, self-organizing structures and related methods
US8168326B2 (en) 2000-10-20 2012-05-01 A123 Systems, Inc. Battery structures, self-organizing structures and related methods
US8241789B2 (en) 2000-10-20 2012-08-14 Massachusetts Institute Of Technology Battery structures, self-organizing structures and related methods
US8206469B2 (en) 2000-10-20 2012-06-26 A123 Systems, Inc. Battery structures, self-organizing structures and related methods
US8088512B2 (en) 2001-07-27 2012-01-03 A123 Systems, Inc. Self organizing battery structure method
JP2003317794A (en) * 2002-04-22 2003-11-07 Kawasaki Heavy Ind Ltd Fiber cell and its manufacturing method
US7763382B2 (en) 2002-07-26 2010-07-27 A123 Systems, Inc. Bipolar articles and related methods
US8481208B2 (en) 2002-07-26 2013-07-09 A123 Systems, LLC Bipolar articles and related methods
US8999571B2 (en) 2007-05-25 2015-04-07 Massachusetts Institute Of Technology Batteries and electrodes for use thereof
US9065139B2 (en) 2009-02-04 2015-06-23 National Institute Of Advanced Industrial Science And Technology Fiber electrode for lithium secondary battery, fabrication method therefor, and lithium secondary battery including fiber electrode
WO2011007549A1 (en) * 2009-07-14 2011-01-20 川崎重工業株式会社 Fiber electrode and fiber cell, and method for producing same, facility for producing fiber electrode and fiber cell
JP5527671B2 (en) * 2009-07-14 2014-06-18 川崎重工業株式会社 Fiber battery and manufacturing method thereof, fiber electrode and fiber battery manufacturing equipment
JP5527670B2 (en) * 2009-07-14 2014-06-18 川崎重工業株式会社 Electric storage device including fiber electrode and method for manufacturing the same
WO2011007548A1 (en) * 2009-07-14 2011-01-20 川崎重工業株式会社 Electrical storage device provided with fiber electrodes, and method for producing same
US9281539B2 (en) 2009-07-14 2016-03-08 Kawasakai Jukogyo Kabushiki Kaisha Electrical storage device including fiber electrode, and method of fabricating the same
JP2015135829A (en) * 2010-05-20 2015-07-27 エルジー・ケム・リミテッド Cable-type secondary battery having metal-coated polymer current collector
JP2014502134A (en) * 2010-11-30 2014-01-23 ヴァレオ・シャルター・ウント・ゼンゾーレン・ゲーエムベーハー Vehicle operation method and driver support device
US10451897B2 (en) 2011-03-18 2019-10-22 Johnson & Johnson Vision Care, Inc. Components with multiple energization elements for biomedical devices
US9065093B2 (en) 2011-04-07 2015-06-23 Massachusetts Institute Of Technology Controlled porosity in electrodes
US10164242B2 (en) 2011-04-07 2018-12-25 Massachusetts Institute Of Technology Controlled porosity in electrodes
JP2014524643A (en) * 2011-08-02 2014-09-22 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド Biocompatible wire battery
US10775644B2 (en) 2012-01-26 2020-09-15 Johnson & Johnson Vision Care, Inc. Ophthalmic lens assembly having an integrated antenna structure
US10386656B2 (en) 2014-08-21 2019-08-20 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form separators for biocompatible energization elements for biomedical devices
US10367233B2 (en) 2014-08-21 2019-07-30 Johnson & Johnson Vision Care, Inc. Biomedical energization elements with polymer electrolytes and cavity structures
US10374216B2 (en) 2014-08-21 2019-08-06 Johnson & Johnson Vision Care, Inc. Pellet form cathode for use in a biocompatible battery
US10381687B2 (en) 2014-08-21 2019-08-13 Johnson & Johnson Vision Care, Inc. Methods of forming biocompatible rechargable energization elements for biomedical devices
US10361405B2 (en) 2014-08-21 2019-07-23 Johnson & Johnson Vision Care, Inc. Biomedical energization elements with polymer electrolytes
US10361404B2 (en) 2014-08-21 2019-07-23 Johnson & Johnson Vision Care, Inc. Anodes for use in biocompatible energization elements
US10558062B2 (en) 2014-08-21 2020-02-11 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form biocompatible energization primary elements for biomedical device
US10598958B2 (en) 2014-08-21 2020-03-24 Johnson & Johnson Vision Care, Inc. Device and methods for sealing and encapsulation for biocompatible energization elements
US10627651B2 (en) 2014-08-21 2020-04-21 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form biocompatible energization primary elements for biomedical devices with electroless sealing layers
US10569480B2 (en) 2014-10-03 2020-02-25 Massachusetts Institute Of Technology Pore orientation using magnetic fields
US10675819B2 (en) 2014-10-03 2020-06-09 Massachusetts Institute Of Technology Magnetic field alignment of emulsions to produce porous articles
US10345620B2 (en) 2016-02-18 2019-07-09 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form biocompatible energization elements incorporating fuel cells for biomedical devices

Similar Documents

Publication Publication Date Title
JP2000228213A (en) Energy storing element and its manufacture
US11764363B2 (en) Electrical power storage devices
US20100178543A1 (en) Charge storage devices containing carbon nanotube films as electrodes and charge collectors
CN103700798A (en) Fiber chemical energy storage power supply and preparation method thereof
KR101917496B1 (en) Electrochemical device and method of manufacturing electrochemical device
WO2010028162A2 (en) Charge storage device architecture for increasing energy and power density
US11018333B2 (en) Conductive mat for battery electrode plate reinforcement and methods of use therefor
JP5680868B2 (en) Lithium ion capacitor
CN105814728B (en) Secondary cell and its manufacturing method
US6783895B2 (en) Collector for alkaline secondary battery, method for making the same, and alkaline secondary battery using the same
CN108666142B (en) Electrochemical device
JP3428452B2 (en) Battery with spiral electrode body and method of manufacturing the same
KR102136599B1 (en) Electrochemical device
JPH09134726A (en) Collector of electrochemical element, and manufacture of electrochemical element and collector of electrochemical element
JP6684034B2 (en) Electrochemical device and method for manufacturing electrochemical device
EP1022790A2 (en) Alkaline storage battery and manufacturing method of the same
JP2004319606A (en) Electric double layer capacitor
JP3800390B2 (en) Electric double layer capacitor
WO2005076296A1 (en) Electrochemical device and electrode body
US20240128467A1 (en) Electrical power storage devices
JP2003288902A (en) Current collecting material for battery and battery using the same
JP2019216142A (en) Lithium ion capacitor and manufacturing method for lithium ion capacitor
WO1996030957A1 (en) Electrode for an alkaline accumulator and a method of manufacturing the same
KR20010054430A (en) Electric energy storage device having electrode of multi-layer metal film