JP2000226242A - Production of lightweight aggregate for highly strong concrete - Google Patents

Production of lightweight aggregate for highly strong concrete

Info

Publication number
JP2000226242A
JP2000226242A JP2746599A JP2746599A JP2000226242A JP 2000226242 A JP2000226242 A JP 2000226242A JP 2746599 A JP2746599 A JP 2746599A JP 2746599 A JP2746599 A JP 2746599A JP 2000226242 A JP2000226242 A JP 2000226242A
Authority
JP
Japan
Prior art keywords
clay
sic
loess
foaming
lightweight aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2746599A
Other languages
Japanese (ja)
Other versions
JP3626029B2 (en
Inventor
Kaoru Kimura
薫 木村
Yoshikazu Kimura
吉一 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIIJIMA BUSSAN KK
Original Assignee
NIIJIMA BUSSAN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIIJIMA BUSSAN KK filed Critical NIIJIMA BUSSAN KK
Priority to JP02746599A priority Critical patent/JP3626029B2/en
Priority to CNB001019910A priority patent/CN1136161C/en
Publication of JP2000226242A publication Critical patent/JP2000226242A/en
Application granted granted Critical
Publication of JP3626029B2 publication Critical patent/JP3626029B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/02Treatment
    • C04B20/04Heat treatment
    • C04B20/06Expanding clay, perlite, vermiculite or like granular materials
    • C04B20/068Selection of ingredients added before or during the thermal treatment, e.g. expansion promoting agents or particle-coating materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/02Treatment
    • C04B20/04Heat treatment
    • C04B20/06Expanding clay, perlite, vermiculite or like granular materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Cultivation Of Plants (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a lightweight aggregate having a high strength and a low water absorption by adding a foaming agent and SiC to an expandable clay as a raw material, and then calcining the mixture. SOLUTION: The expandable clay includes Tienchin clay, loess and Hwang Ho deposits. The expandable clay and SiC are homogeneously and finely ground and mixed and then compactly molded. When the molded product is liquidized at a calcination temperature of 1,100-1,200 deg.C, the SiC is wetted and reacted with the melted liquid to generate a gas. When the SiC is covered with uniform glass or the like, the generated gas is closed in the sealed spaces to produce independent spherical pores. When fine clay is used, a finely grinding process can be omitted. For example, the employment of the loess permits the omit of the finely grinding process. The lightweight aggregate is, for example, obtained by adding 0.2% of SiC to loess, milling the mixture with a pot mill for 6 hr to prepare the milled product having an average particle diameter of 3 μm, dehydrating and drying the milled product, forming the dried product into about 10 mm pellets, calcining the pellets at 900 deg.C in an electric oven and then foaming the pellets at 1,160 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、コンクリート用の
高強度軽量骨材の製造方法に関する。
The present invention relates to a method for producing a high-strength lightweight aggregate for concrete.

【0002】[0002]

【従来の技術】人工軽量骨材の原料となる頁岩は、粘土
が地圧あるいは変性作用をうけて硬化したものであり鉱
物組成や過熱に対する性質は膨脹粘土の場合と類似して
いる。各種原料は、化学組成において互いに類似しSi
3が主成分であり下記表1に示す範囲のものが多い。
2. Description of the Related Art Shale, which is a raw material of artificial lightweight aggregate, is obtained by hardening clay under the influence of soil pressure or denaturation, and its mineral composition and properties against overheating are similar to those of expanded clay. Various raw materials are similar to each other in chemical composition
O 3 is the main component and is often in the range shown in Table 1 below.

【0003】[0003]

【表1】 [Table 1]

【0004】またそれらの鉱物組成は石英、長石、火山
灰、珪藻、石灰石また粘土鉱物としてはイライト、カオ
リン、モンモリロナイトなどが主となり、その他少量の
かつ鉄鉱、方解石、ドロマイト、黄鉄鉱などの組み合わ
せからなるものが多い。なお膨脹性をもつ原料は一般に
有機物を含む。
The mineral composition is mainly quartz, feldspar, volcanic ash, diatom, limestone, and clay minerals such as illite, kaolin, montmorillonite, and a small amount of a combination of iron ore, calcite, dolomite, pyrite and the like. There are many. In addition, the raw material having expandability generally contains an organic substance.

【0005】その中には加熱することによって自己分解
する鉱物も多く含まれている。CaCo3は800℃付
近で熱解離をおこしCO2ガスを発生するが昇温速度が
速いとすべて分解しきれず液相が発生した温度で発泡に
係わることもある。その他にガスを発生する鉱物として
イライト(雲母粘土鉱物)、バーミキュライト、モンモ
リロナイト(ベントナイト)、カオリナイト等の粘土鉱
物を含み加熱分解を起しガスが発生する。硫化物の存在
する場合SO2ガスを発生する。これらは900℃以下
で起るのがほとんどであるが、昇温速度が早いと溶液発
生時点まで起り発泡に関与することもある。下記に分解
反応とそのピーク温度の例を記す。
[0005] Among them, there are many minerals which self-decompose when heated. CaCo 3 undergoes thermal dissociation at around 800 ° C. to generate CO 2 gas. However, if the heating rate is high, it may not be completely decomposed and may cause foaming at a temperature at which a liquid phase is generated. In addition, it includes clay minerals such as illite (mica clay mineral), vermiculite, montmorillonite (bentonite), and kaolinite as gas-generating minerals, and generates gas by thermal decomposition. When sulfide is present, SO 2 gas is generated. Most of these occur at 900 ° C. or lower, but if the rate of temperature rise is high, it occurs up to the point when the solution is generated and may be involved in foaming. Examples of the decomposition reaction and its peak temperature are described below.

【0006】 方解石 CaCO3……CaO+CO2 910℃ピーク(70
0℃〜) ドロマイト CaCO3……CaCO3+MgO+CO2 分解温度6
70℃(500〜700℃) CaCO3……CaO+CO2 分解温度670℃〜9
10℃ カオリン鉱物の分解 A123・2SiO2・2H2O……Al23・SiO2
+2H2O 930℃ 表2に軽量骨材原料の化学成分例を示す。
Calcite CaCO 3 CaO + CO 2 910 ° C. peak (70
0 ° C.) Dolomite CaCO 3 CaCO 3 + MgO + CO 2 decomposition temperature 6
70 ° C. (500 to 700 ° C.) CaCO 3 ... CaO + CO 2 decomposition temperature 670 ° C. to 9
Degradation 10 ° C. kaolin minerals A1 2 O 3 · 2SiO 2 · 2H 2 O ...... Al 2 O 3 · SiO 2
+ 2H 2 O 930 ° C. Table 2 shows examples of chemical components of the lightweight aggregate raw material.

【0007】[0007]

【表2】 [Table 2]

【0008】しかし、それと同時にヘマタイト、パイラ
イト等の鉄化合物とカーボンやそれに相当する有機物が
発泡に大きく影響を与える。頁岩や発泡粘土は昇温速度
が早いと酸化されない残留カーボンによって高温時、F
23が還元されFeOやFe35になりCO2のガス
を発生するとともにFeOは融点が低い物質であり、内
部の液相化を促進し発泡をし易くする。
[0008] However, at the same time, iron compounds such as hematite and pyrite and carbon and organic substances corresponding thereto greatly affect foaming. Shale and foamed clay are not oxidized if the temperature rise rate is high.
e 2 O 3 is reduced to FeO or Fe 3 O 5 to generate CO 2 gas, and FeO is a substance having a low melting point, which promotes liquid phase inside and facilitates foaming.

【0009】6Fe23+C……4Fe35+CO2 2Fe35+C……6FeO+CO2 即ち基本的に粒内部が還元雰囲気になった時、Fe23
が還元されCO2ガスを発生して発泡する機構である。
FeOは発泡を促進するが、それが逆に行過ぎて黒芯現
象を粒内部に大きな空洞部をつくることもある。
6Fe 2 O 3 + C... 4Fe 3 O 5 + CO 2 2Fe 3 O 5 + C... 6FeO + CO 2 Basically, when the inside of the grain becomes a reducing atmosphere, Fe 2 O 3
Is reduced to generate CO 2 gas and foam.
Although FeO promotes foaming, it can go too far to cause black core phenomenon and create large cavities inside the grains.

【0010】頁岩や発泡粘土は上記の発泡機構を利用し
て製造される。原料は鉄分が多く、炭素源となる微生物
や植物の腐食物が多いほど適し、またより軽量にする場
合には、あえて廃油やカーボンの含まれた廃棄物等を添
加している。そして温度曲線も急勾配にし炭素源を高温
の発泡領域まで温存し還元雰囲気を原料内部に起こさせ
発泡させる。
Shale and foamed clay are produced using the above-mentioned foaming mechanism. The raw material contains more iron and is more suitable for corrosive substances of microorganisms and plants as a carbon source. In order to make the material lighter, waste oil and waste containing carbon are added. Then, the temperature curve is made steep, and the carbon source is kept up to the high-temperature foaming region, and a reducing atmosphere is generated inside the raw material to cause foaming.

【0011】これらの発泡方法は,コストが少なく軽量
化には即つながるが、気泡の構造は連通気孔が多く性能
において吸水率が高く、比強度も小さい。その為、構造
用骨材として強度や吸水率を維持するためには比重を高
めにもって行かなければならず、現状は構造用骨材にお
いては比重が1.3位であり軽量効果が不十分である。
また超軽量(1.0以下)のものは、吸水率が大きく、
強度が弱いため断熱ブロックや間仕切り用の軽量ブロッ
ク等、付加価値の低い製品が使えない。
[0011] These foaming methods have a low cost and are immediately linked to a reduction in weight. However, the cell structure has a large number of continuous ventilation holes, a high water absorption and a low specific strength. Therefore, in order to maintain strength and water absorption as a structural aggregate, it is necessary to raise the specific gravity. At present, the specific gravity of the structural aggregate is about 1.3, and the light weight effect is insufficient. It is.
Ultra-light (1.0 or less) has high water absorption,
Because of its low strength, products with low added value such as heat-insulating blocks and lightweight blocks for partitions cannot be used.

【0012】中国の北京及び天津の周辺に広がる平地は
黄河による古い堆積物で覆われている。もとは黄河の氾
らんによってもたらされた黄土であるが何万年又は何千
年の間に土壌化されたものであり粘土も多く含み微細で
あり、鉄分も場所によっては多く集まっている。農業に
おいては肥沃な土地である。この土壌を用いて軽量骨材
(陶粒)が小規模であるが多数の郷鎮企業により生産さ
れている。それらは先に触れたFe23と有機物から発
生するカーボンによる還元発泡を利用して簡単な設備に
よって焼成されている。コストは安いが強度が弱く、吸
水率が高く、ひたすら断熱材用ブロックに使用されてい
る。表3には従来の構造用軽量骨材の例を、又、表4に
は従来の超軽量骨材の例を示す。
The plains extending around Beijing and Tianjin in China are covered with old sediments by the Yellow River. Originally loess caused by the flooding of the Yellow River, it has been soild for tens of thousands or thousands of years, has many clays, is fine, and has a large concentration of iron in some places. It is a fertile land in agriculture. Light-weight aggregates (porcelain granules) are produced on a small scale using this soil by many local enterprises. They are fired by simple equipment using the above-mentioned reduced foaming of Fe 2 O 3 and carbon generated from organic matter. Although the cost is low, the strength is low, the water absorption is high, and it is used solely for blocks for thermal insulation. Table 3 shows an example of a conventional lightweight structural aggregate, and Table 4 shows an example of a conventional ultra-light aggregate.

【0013】[0013]

【表3】 [Table 3]

【0014】[0014]

【表4】 [Table 4]

【0015】[0015]

【発明が解決しようとする課題】本発明は、軽量でかつ
高強度でしかも吸水率の小さな軽量骨材を安価に提供せ
んとするものである。また粘土系の原料を使用すること
によって微粉砕工程を大幅に省力しようとするものであ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide an inexpensive lightweight aggregate having a high strength and a small water absorption. Further, the use of a clay-based raw material greatly reduces the need for the fine grinding step.

【0016】[0016]

【課題を解決するための手段】本発明者が開発した高強
度超軽量骨材はSiCを発泡剤とする事と原料の微粉砕
に特徴がある。SiCによる発泡機構は頁岩や膨張粘土
の従来の発泡方法とは全く異なる環境でおきる。
The high-strength ultralight aggregate developed by the present inventors is characterized by using SiC as a foaming agent and pulverizing raw materials. The foaming mechanism by SiC is set in an environment completely different from the conventional foaming method of shale and expanded clay.

【0017】有機物や残留カーボンとなるものは嫌い、
また鉄分は少ない方がコントロールしやすい。SiCセ
ラミックは高温用耐火物として使用されており、その使
用温度は1600℃まで可能である。そして本発明の焼
成温度1200℃ではわずかしか酸化しない。しかし流
紋岩等の原料を約1200℃にて焼成すると、溶融した
液相に濡れて反応を起こし酸化されCO2等のガスを出
して発泡する。液相において反応する事は、例えば低融
点のビンガラス(800℃で軟化)においても約800
℃になり液相が発生すると発泡するという実験結果から
も明らかである。しかもN2ガス雰囲気においても所定
の融点温度に達すればその液相と反応をおこし、発泡す
る。これはSiCの酸化反応に対し酸素の供給が外部空
気からだけでなく液相からもあると推測される。このよ
うな発泡メカニズムは独立気泡を発生させるのには最適
である。そしてSi34窒化珪素やBN窒化硼素等の高
温セラッミク原料も同じように発泡剤として利用でき
る。下記表5に天然ガラスの組成例を示す。
I hate organic matter and carbon residue.
Also, less iron is easier to control. SiC ceramics are used as high-temperature refractories, and the operating temperature can be up to 1600 ° C. And, at the firing temperature of 1200 ° C. of the present invention, it is slightly oxidized. However, when raw materials such as rhyolite are fired at about 1200 ° C., they are wetted by the molten liquid phase, react, oxidize and emit gas such as CO 2 to foam. Reacting in the liquid phase requires, for example, a low melting bottle glass (softened at 800 ° C.) of about 800
It is also evident from the experimental results that foaming occurs when the temperature reaches ℃ and a liquid phase is generated. Moreover, even when the temperature reaches a predetermined melting point even in an N 2 gas atmosphere, the liquid phase reacts with the liquid phase and foams. This is presumed to be due to the supply of oxygen not only from the outside air but also from the liquid phase for the SiC oxidation reaction. Such a foaming mechanism is optimal for generating closed cells. High-temperature ceramic materials such as Si 3 O 4 silicon nitride and BN boron nitride can also be used as foaming agents. Table 5 below shows a composition example of the natural glass.

【0018】[0018]

【表5】 [Table 5]

【0019】非晶質天然ガラスでありIg.Lossの
ほとんどは構造水であり800℃までに放出される。コ
ーガ石は流紋岩の溶岩が地表にでてきて徐々に冷やされ
たものであるIg.lossの水は既に放出されていて
持っていない。他の火山レキおよび火山灰は火山から吹
き上げられたものでありIg.lossをもつ。
It is an amorphous natural glass and is made of Ig. Most of the Loss is structured water and is released up to 800 ° C. Cogaite is a type of rhyolite lava that emerges on the surface and is gradually cooled. Lost water has already been released and does not have. Other volcanic rocks and volcanic ash have been blown up from volcanoes and are found in Ig. Has loss.

【0020】天然ガラス(流紋岩)である抗火石や火山
灰のシラスを主原料とした発泡体及び軽量骨材にこの方
法が用いられてきた。(日本国特許第1405185)
これらの原料は火山から発生したもので熱履歴を受けて
おりまだ有機物の混入や土壌化が進んでいないものが多
い。それは焼成時に残留カーボンによる還元作用を起さ
ないことを示す。
This method has been used for foams and lightweight aggregates mainly made of natural glass (rhyolites), anti-firestone and volcanic ash shirasu. (Japanese Patent No. 1405185)
Many of these raw materials are generated from volcanoes and have received heat history, and many of them have not yet been mixed with organic matter or soiled. It indicates that no reduction action is caused by the residual carbon during firing.

【0021】また鉄分の含有量も0.8から2.5%と
比較的少ないものが多く炉内が還元雰囲気にならないか
ぎりFe23の還元発泡は起こらない。そのためSiC
による単独の発泡をさせやすく、比重や気泡の大きさを
コントロールし易い。また原料を微粉砕することにより
気泡形態も微細になり、独立気泡を形成させることがで
き、吸水率の少ない高強度の発泡体を得ることができ
る。表6にそれらの例を示す。
In addition, the content of iron is relatively small, such as 0.8 to 2.5%, and the reduction foaming of Fe 2 O 3 does not occur unless the inside of the furnace becomes a reducing atmosphere. Therefore SiC
And it is easy to control specific gravity and bubble size. Further, by finely pulverizing the raw material, the cell shape becomes fine, closed cells can be formed, and a high-strength foam having a small water absorption can be obtained. Table 6 shows examples of these.

【0022】[0022]

【表6】 [Table 6]

【0023】しかし既存のロータリーキルンを使用しよ
うとしたときや、市場に近いところに新規工場を計画し
ようとしたとき、その設置場所の近くに天然ガラスがな
い場合もある。特に中国においては活火山や比較的新し
い火山噴出物が少なく、あっても変性作用をうけており
天然ガラスの形であるものが少なく土壌化が進んでいる
ものが多い。
However, when trying to use an existing rotary kiln or planning a new factory near the market, there is a case where there is no natural glass near the installation location. Especially in China, there are few active volcanoes and relatively new volcanic products, and even though they are undergoing denaturation, few are in the form of natural glass and many are becoming soiled.

【0024】そこで本発明は中国大陸のような膨張粘土
や黄土が簡単に人手しやすいところにおいて、結晶質原
料においてもSiCによる発泡を適用しようとするもの
である。頁岩や膨張粘土と均一に微粉砕混合され緻密に
成形された場合、1100℃から1200℃の焼成温度
で液相化すると、SiCが融液に濡れて反応しガスを発
生することは天然ガラスと同じである。そのとき、廻り
の均一なガラスにおおわれていることにより密封された
空間の中でガスが閉じ込められ高密度に成形されたもの
ほどガスの逃げ場がなくなり独立した真球な気泡を成長
させる。
Therefore, the present invention intends to apply foaming with SiC to a crystalline raw material even in a place where expanded clay or loess is easily and easily handled, such as in mainland China. When shale and expanded clay are uniformly pulverized and mixed and densely formed, if they are liquefied at a firing temperature of 1100 ° C to 1200 ° C, SiC wets the melt and reacts to generate gas. Is the same. At this time, since the gas is confined in a sealed space by being covered with the surrounding uniform glass and the gas is formed at a high density, there is no escape area for the gas and an independent true spherical bubble grows.

【0025】徴粉であればあるほど、粒界の部分は小さ
くなり気泡も小さくなる。空隙が密封されるに伴いガラ
ス相の内部からの酸素の供給が大切である。このとき未
酸化カーボンがあると酸素が奪われてしまい還元雰囲気
になりSiCの発泡が起ることによりFe23等による
不均一で連続気泡の多い発泡を起す。真球に近いほど強
度が高くなるのは力学上当然のことである。この結果、
鉄分は少ないほどよく骨材内部は鉄分の少ないものは白
及び灰色になる。
The finer the dust, the smaller the grain boundaries and the smaller the bubbles. It is important to supply oxygen from inside the glass phase as the voids are sealed. At this time, if there is unoxidized carbon, oxygen is deprived and the atmosphere becomes a reducing atmosphere, and the foaming of SiC occurs, thereby causing the foaming of non-uniform and many open cells by Fe 2 O 3 or the like. It is natural in terms of dynamics that the closer to the true sphere, the higher the strength. As a result,
The lower the iron content, the better the inside of the aggregate becomes white and gray if the iron content is low.

【0026】頁岩や膨張粘土はカーボンやカーボン源と
なる有機物を多く含んでいる。抗火石でも(0.8%の
鉄分の含有量)還元雰囲気になると鉄分の発泡が起こ
り、骨材の芯部に気泡の極端に大きな黒い発泡部分を観
察することがある。陶磁器産業では赤煉瓦や屋根瓦とに
よくみられる現象で黒芯と呼ばれている。黒芯現象を起
す原因は焼結時に未燃カーボンを残し内部が極端な還元
雰囲気になりFe23等が還元されFeOやFe35
なり黒色になる。さらに進むとFeOは融点が低いため
液相化を促進し気泡の壁は粘性が落ち、内部に閉じ込め
られたガスが壁を破り気泡が連続しさらには大きな空洞
となる。また昇温速度が早いとガス発生鉱物が未反応の
まま発泡時まで持ち越され、発泡源となり気泡壁内で発
泡しその壁を破壊する。
Shale and expanded clay contain a large amount of carbon and organic substances serving as carbon sources. In the case of anti-firestone, when a reducing atmosphere is reached (iron content of 0.8%), foaming of iron occurs, and an extremely large black foaming portion of bubbles may be observed in the core of the aggregate. In the ceramics industry, this phenomenon is commonly called black brick or roof tile, and is called black core. The cause of the black core phenomenon is that unburned carbon is left during sintering, the inside becomes an extremely reducing atmosphere, and Fe 2 O 3 and the like are reduced to FeO or Fe 3 O 5 and become black. As the melting point of FeO further decreases, liquefaction is promoted because FeO has a low melting point, and the walls of the bubbles become less viscous. If the heating rate is high, the gas-generating mineral is carried over without being reacted until foaming, becomes a foaming source, foams in the cell wall, and destroys the wall.

【0027】そこで発明は膨張粘土等の有機物をまず仮
焼して酸化させ、又発泡鉱物のガス発生の反応を終らせ
溶融温度まで残さないようにした後、1100℃〜12
00℃の温度の酸化雰囲気で焼成発泡させる方法であ
る。
Accordingly, the present invention provides a method of calcining and oxidizing an organic substance such as expanded clay first, and terminating the gas generation reaction of the foamed mineral so as not to remain at the melting temperature.
This is a method of firing and foaming in an oxidizing atmosphere at a temperature of 00 ° C.

【0028】あるいは焼成温度曲線を緩やかにすること
により微生物や植物の腐食物等の有機物を600℃〜9
00℃で燃焼酸化させ被熱物内にカーボンCを残さない
ようにし、その後発泡温度付近まで十分な空気を投入し
炉内を常に酸化雰囲気に保つことによりFe23の発泡
を抑制する。仮焼成による脱炭および熱分解を行う意味
で900℃付近の滞留時間を長く取るようにする。
Alternatively, by reducing the firing temperature curve, organic substances such as corrosive substances of microorganisms and plants can be removed from 600 ° C. to 9 ° C.
By burning and oxidizing at 00 ° C. so as not to leave carbon C in the object to be heated, sufficient air is supplied to the vicinity of the foaming temperature and the inside of the furnace is always kept in an oxidizing atmosphere to suppress foaming of Fe 2 O 3 . In order to perform decarburization and thermal decomposition by calcination, the residence time around 900 ° C. is set to be long.

【0029】中国の北京及び天津の周辺に広がる平地は
黄河による古い堆積物で覆われている。もとは黄河の氾
らんによってもたらされた黄土であるが何万年又は何千
年の間に土壌化されたものであり粘土も多く含み微細で
あり、鉄分も場所によっては多く集まっている。農業に
おいては肥沃な土地である。この土壌を用いて軽量骨材
(陶粒)が小規模であるが多数の郷鎮企業により生産さ
れている。それらは先に触れたFe23と有機物から発
生するカーボンによる還元発泡を利用して簡単な設備に
よって焼成されている。コストは安いが強度が弱く、吸
水率が高く、ひたすら断熱材用ブロックに使用されてい
る。
The plains around Beijing and Tianjin, China, are covered with old sediments by the Yellow River. Originally loess caused by the flooding of the Yellow River, it has been soild during tens of thousands or thousands of years, is rich in clay, is fine, and has a high concentration of iron in some places. It is a fertile land in agriculture. Light-weight aggregates (porcelain granules) are produced on a small scale using this soil by many local enterprises. They are fired by simple equipment using the above-mentioned reduced foaming of Fe 2 O 3 and carbon generated from organic matter. Although the cost is low, the strength is low, the water absorption is high, and it is used solely for blocks for thermal insulation.

【0030】本方法は粘土質の微細な点を活かし微粉砕
工程を省略しようとするものである。土壌化した黄土は
粘土質が多いため微粉砕コストが削減でき有利である。
上記の堆積物に発泡剤のSiCを0.2%加えポットミ
ルにて6時間粉砕し平均粒径3ミクロンにし脱水乾燥し
10mm位のペレットをつくり電気炉にて1160℃ま
で20分で昇温し発泡させたものと900℃で仮焼した
ものを改めて1160℃で焼成発泡させたものととの比
較を表7に示す。
In the present method, the fine pulverizing step is intended to be omitted by utilizing the fine points of clay. Soiled loess is advantageous because it can reduce the cost of pulverization because it has a lot of clay.
0.2% of SiC as a foaming agent was added to the above sediment, pulverized by a pot mill for 6 hours to make an average particle diameter of 3 μm, dehydrated and dried to form a pellet of about 10 mm, and heated to 1160 ° C. in an electric furnace in 20 minutes. Table 7 shows a comparison between the foamed product and the product calcined at 900 ° C. and the product calcined and foamed at 1160 ° C.

【0031】[0031]

【表7】 [Table 7]

【0032】内部に黒芯が発生したものは空洞を伴い製
品とはいえなかったが仮焼すれば黒芯現象が改善され
た。次に2度焼きはせず焼成をゆっくり行いカーボンの
燃焼を完全に行ない、また加熱ガス発生鉱物の反応を終
らせて発泡温度に持ちこむ。(焼成時間:4時間、温
度:1170℃〜1190℃)結果を表8に示す。
The product having a black core therein was void and was not a product. However, calcining improved the black core phenomenon. Next, the carbon is completely burned by baking slowly without baking twice, and the reaction of the heated gas generating mineral is terminated to bring it to the foaming temperature. (Baking time: 4 hours, temperature: 1170 ° C to 1190 ° C) The results are shown in Table 8.

【0033】[0033]

【表8】 [Table 8]

【0034】中国の黄土は、タクラマカン砂漠や北方の
砂漠から風化した微粉が風に運ばれたものであり、その
大規模に堆積した地域がオルドス高原である。西安はオ
ルドス高原のふもとにあり黄土高原に近い。そこの黄土
は厚みが数十mから数百mにおよび地表から1mもさが
ったところの土は過酷な自然にさらされていたため土壌
化作用を受けておらず有機物の混入が少ない。また場所
によっては鉄分の少ないとおもわれる白い露頭がたくさ
ん見受けられる。それらは脱鉄処理をすることによって
本発明の原料となる。一方その黄土台地からそこを侵食
されて流れてくる黄土をかき集めるかのようにして黄河
が下流の中華平原に大量の土砂として黄土を運んでく
る。
The loess of China is the fine dust that has been weathered from the Taklamakan Desert and the northern desert, and is carried by the wind. The large-scale area of the loess is the Ordos Plateau. Xi'an is at the foot of the Ordos Plateau and close to the Loess Plateau. The loess has a thickness of several tens of meters to several hundreds of meters and a depth of one meter from the surface of the ground, and is exposed to severe nature. In some places, there are many white outcrops, which are considered to be low in iron. They become the raw materials of the present invention by being subjected to a deironing treatment. On the other hand, the Yellow River transports loess as a large amount of sediment to the downstream China Plain, as if it were collecting the loess eroded from the Loess Plateau.

【0035】本方法は黄河の流れで洗われて、現在まだ
微生物が生息せず、また土壌化作用のはたらいていない
新鮮な堆積物を利用しようとするものでもある。黄河は
下流の川幅の広い場所に大量のシルトや粘土を堆積して
いる。このような黄土は一面では堆積によって川床の高
さをあげる。それは黄河を天井川にする原因であり、洪
水に備えて常に浚渫作業が行われている。本方法はこの
ように言わば厄介視されている黄土を資源として有効利
用しようとするものである。これらの原料に発泡剤Si
Cを加え微粉砕したのち脱鉄処理してフィルタープレス
で脱水して原料とする。脱鉄処理することにより鉄の含
有量を半分近く減らすことができ焼成物の内部もグレー
がかったクリーム色になり、また気泡も細かくなる。
The method also seeks to utilize fresh sediments that have been washed in the Yellow River stream, are not currently inhabited by microorganisms, and have not yet undergone soil conversion. The Yellow River deposits a large amount of silt and clay in a wide river downstream. Such loess, on the whole, raises the riverbed by sedimentation. It causes the Yellow River to become a ceiling river, and dredging is constantly being done in preparation for floods. The present method seeks to effectively use so-called troubled loess as a resource. The foaming agent Si
C is added, finely pulverized, deironed, and dehydrated by a filter press to obtain a raw material. By performing the iron removal treatment, the iron content can be reduced by nearly half, and the inside of the fired product becomes grayish cream and the bubbles are fine.

【0036】各種黄土の化学成分を下記表9にあらわ
す。黄河堆積物のシルト部分はIg.lossが少なく
それだけ有機物を含んでいないことを示す。表9には黄
河堆積物と天津膨脹粘土の化学成分を示す。
The chemical components of the various loess are shown in Table 9 below. The silt part of the Yellow River sediment is Ig. The loss is small, indicating that it does not contain organic matter. Table 9 shows the chemical composition of Yellow River sediment and Tianjin expanded clay.

【0037】[0037]

【表9】 [Table 9]

【0038】鉱物組成:X線解析、熱分析による。 黄土 :方解石と石英の含有量が高く長石も含む。ま
た鉱物の中ではイライトが特に多い。方解石が平均1
1.6%(3.6〜20.9)石英が約20%また粘土
鉱物の組成は、イライト50%、カオリン15〜20
%、スメクタイト15%と10%以下の緑泥石とバーミ
キュライトを含んでいる。
Mineral composition: X-ray analysis and thermal analysis. Loess: High in calcite and quartz, including feldspar. Illite is particularly common among minerals. Calcite average 1
1.6% (3.6 to 20.9) Quartz is about 20% and the composition of clay mineral is illite 50%, kaolin 15 to 20
%, Less than 15% smectite and less than 10% chlorite and vermiculite.

【0039】黄河堆積砂:方解石が少なく長石と石英が
主体である。角セン石がみられる。Ig.Lossは極
端に少ない。830℃で方解石の分解による重量減があ
る程度ある。 黄河堆積粘土:石英と方解石と粘土鉱物としてカオリン
鉱物、雲母、バーミキュライトがみられる。そのためI
g.Lossが8.4%と多い。方解石のCO2の解離
が多いが熱分析では全重量減が11%もあり粘土からの
熱解離もみられる。
Yellow River sedimentary sand: Fewer calcites and mainly feldspar and quartz. Kakusen stone is seen. Ig. Loss is extremely small. At 830 ° C, there is some weight loss due to the decomposition of calcite. Yellow River sedimentary clay: Kaolin mineral, mica, and vermiculite are found as quartz, calcite, and clay minerals. Therefore I
g. Loss is as high as 8.4%. Although calcite has a large amount of CO 2 dissociation, thermal analysis shows a total weight loss of 11% and thermal dissociation from clay is also observed.

【0040】黄河堆積シルト:石英が多く長石もある。
Ig.Lossは3.6%あり熱分析によると方解石か
らのCO2の解離があり、また若干粘土鉱物も含みそれ
の解離が少しみられる。これらの原料を脱鉄工程に付す
るが、それぞれの原料によって違いがある。
Yellow River sediment silt: High in quartz and feldspar.
Ig. Loss is 3.6%. According to thermal analysis, CO 2 is dissociated from calcite, and a small amount of dissociation is observed, including some clay minerals. These raw materials are subjected to a deironing process, and there are differences depending on each raw material.

【0041】黄河堆積砂は鉄分を3.55%含むが原石
のうちに砂鉄を多く含み磁石で簡単に除鉄できる。焼成
色はかなり白に近ずくが、成形性が悪く粘土分として黄
河堆積粘土を20%ほど加えると若干灰色が強くなる。
The Yellow River sedimentary sand contains 3.55% of iron, but contains a large amount of iron sand in the ore and can be easily removed with a magnet. The sintering color is fairly close to white, but the formability is poor and the gray becomes slightly more intense when about 20% of Yellow River sedimentary clay is added as a clay component.

【0042】黄河堆積粘土は粘土が多いため粒子が小さ
く脱鉄しにくい。それでも繰り返すうちに除除にへる。
脱鉄することにより使用可能である。しかし黄土色の呈
色は消えない。黄河堆積シルトは黄河堆積砂と同様砂鉄
がみられ粉砕前なら除鉄はしやすい。
Since the Yellow River sedimentary clay has a large amount of clay, its particles are small and it is difficult to remove iron. Still, it will be removed while repeating.
It can be used by removing iron. However, the ocher coloration does not disappear. Yellow river sediment silt has iron sand similar to the Yellow River sedimentary sand, and it is easy to remove iron before crushing.

【0043】ただし黄河堆積砂と比べると粘土鉱物があ
り脱鉄しにくいが粘土よりよい。粉砕すると粘土分がで
てきて成形性がよい。
However, compared to the Yellow River sedimentary sand, there are clay minerals and it is difficult to remove iron, but it is better than clay. When pulverized, clay content comes out and moldability is good.

【0044】このような有機物を含まない原料において
脱鉄処理をおこない実機に近い温度勾配で小型電気炉で
焼成する。各原料2Kgに発泡剤SiC0.2%と水2
Kgをいれポットミルにて6時間粉砕混合し、平均粒径
3ミクロンから7ミクロンにする。
The raw material containing no organic matter is subjected to a deironing treatment and fired in a small electric furnace at a temperature gradient close to that of the actual machine. 0.2 kg of foaming agent SiC and water 2
Kg is added and pulverized and mixed in a pot mill for 6 hours to make the average particle size from 3 microns to 7 microns.

【0045】そのスラリーに10000ガウスの棒磁石
を入れ撹拌しながら除鉄を行う。石膏型で脱水し粘土状
の練り土をえる。そしてそこから直径10mm位の粒を
もみながらつくる。それを110℃で乾燥したのち電気
炉で焼成する。表10に電気炉で45分焼成した例を示
す。
A 10000 Gauss bar magnet is put into the slurry, and iron is removed while stirring. Dehydrate with a plaster mold to obtain clay-like clay. And from there, it is made while looking at grains of about 10 mm in diameter. After drying it at 110 ° C., it is fired in an electric furnace. Table 10 shows an example of firing in an electric furnace for 45 minutes.

【0046】[0046]

【表10】 [Table 10]

【0047】このようにこれらの原料を脱鉄処理すると
上記のような好結果がえられた。各種原料を500Kg
ボールミルに原料300Kg、水400kg、粉砕用玉
石800Kgいれ24時間粉砕し平均粒径を7ミクロン
〜10ミクロンにした。粉砕されたスラリーを湿式除鉄
(10,000ガウス)によって脱鉄した。
Thus, when these raw materials were subjected to the iron removal treatment, the above-mentioned good results were obtained. 500kg of various raw materials
300 kg of raw material, 400 kg of water, and 800 kg of cobblestone for grinding were placed in a ball mill and ground for 24 hours to make the average particle size 7 to 10 microns. The pulverized slurry was deironed by wet iron removal (10,000 gauss).

【0048】フィルタープレス(濾過機)にて脱水し、
真空土練機にて混合混練り及び成形し、それを回転炉乾
燥させた。乾燥後強度がある程度でたところで破砕し径
15mm〜3mmに分級し実機回転炉で焼成した。
Dewatered with a filter press (filter),
The mixture was kneaded and kneaded with a vacuum kneading machine, and the mixture was dried in a rotary furnace. When the strength reached a certain level after drying, it was crushed, classified to a diameter of 15 mm to 3 mm, and fired in a rotary furnace of an actual machine.

【0049】先端焼成部の直径が1.6m長さ15m後
部の余熱乾燥部が直径1.2m長さ20mのロータリー
キルンを使用し燃料は石炭を微粉砕そ吹き込み燃焼させ
た。キルン内は酸素濃度15.2%の酸化雰囲気を保っ
た。原料のキルン滞留時間は約30分〜45分である。
ロータリーキルンの燃焼状況を表11に示す。
Using a rotary kiln with a diameter of the front-end baking section of 1.6 m and a length of 15 m behind and a residual heat drying section of 1.2 m in diameter and 20 m in length, the fuel was finely pulverized and injected into coal for combustion. An oxidizing atmosphere with an oxygen concentration of 15.2% was maintained in the kiln. The kiln residence time of the feedstock is about 30 to 45 minutes.
Table 11 shows the combustion status of the rotary kiln.

【0050】[0050]

【表11】 [Table 11]

【0051】又、焼成結果を表12に示す。Table 12 shows the firing results.

【0052】[0052]

【表12】 [Table 12]

【0053】筒圧強度はGB−2839に規定筒圧強度
3.0Mpa以上とある。今回はそれの2倍でている。 1.天津粘土は事前脱炭化焼成が必要である。 2.黄河質シルトは磁力選鉱機がよく働き鉄分がとれ
た。また黄河に洗われて有機物も少なかった。
The cylinder pressure strength is specified in GB-2839 to be equal to or higher than the specified cylinder pressure strength of 3.0 Mpa. This time it is twice that. 1. Tianjin clay requires decarburization firing in advance. 2. In the Yellow River silt, the magnetic separator worked well to remove iron. It was washed by the Yellow River and had little organic matter.

【0054】3.黄河粘土は最初黒芯が発生しうまくい
かなかった。これはシルト部分から自然に水簸されたよ
うなものであるが、粘土鉱物が集中し脱鉄が十分働かな
かった。しかし天津粘土に比べると有機物がすくなく、
磁石で丁寧に除鉄すると焼成色も灰色になってくる。電
気炉で30分の高速昇温しても正常のものができた。こ
れは粘土の泥液の濃度を薄くし磁力選鉱を何度か繰り返
せばとれることがわかった。そこで磁鉄物単体分離の目
的で微粉砕を行い平均粒径5ミクロンにし、またスラリ
ーの濃度を薄くし、改めて数回脱鉄機を通し同じ工程で
実機焼成したところ黒芯現象は改善された。黄河粘土は
すでに超微粒であるため粉砕コストは少なかった。
3. Yellow River clay did not work because black core was first formed. This is as if elutriation was naturally performed from the silt part, but the clay minerals were concentrated and deironing did not work well. However, compared to Tianjin clay, there is less organic matter,
When iron is carefully removed with a magnet, the firing color becomes gray. Even if the temperature was raised at a high speed in an electric furnace for 30 minutes, a normal product was obtained. It was found that this can be achieved by reducing the concentration of clay mud and repeating magnetic separation several times. Then, for the purpose of separating the magnetism, the powder was finely pulverized to an average particle size of 5 microns, the concentration of the slurry was reduced, and the product was fired several times through a de-ironing machine and fired in the same process. . Since the Yellow River clay is already very fine, the grinding cost was low.

【0055】火山灰が変性作用をうけて沸石になること
がある。中国においては沸石が中国国内に広く分布して
おり、鉄分の少ないものも見受けられる。また沸石は岩
状で産出されるため土壌化にさらされていない。化学成
分も流紋岩と似ておりSiC発泡には適した原料であ
る。
[0055] Volcanic ash sometimes undergoes denaturing action and becomes zeolite. In China, zeolite is widely distributed in China, and some have low iron content. In addition, zeolite is not exposed to soil formation because it is produced in the form of rock. The chemical composition is similar to rhyolite and is a suitable raw material for SiC foaming.

【0056】[0056]

【表13】 [Table 13]

【0057】上記沸石を用いて下記の表14に示すよう
に実施した。
The procedure was carried out as shown in Table 14 below using the above zeolite.

【0058】[0058]

【表14】 [Table 14]

【0059】沸石は黄土に比べると高価であり、また岩
状に産出するものを使用するため微粉砕コストがかか
る。しかし沸石による発泡は天然ガラスのように扱うこ
とができ好結果が得られる。原料産地が工場立地にそく
した場合、それらのコストも吸収できる。
Zeolite is more expensive than loess, and requires fine pulverization because it is produced in the form of a rock. However, bubbling with zeolite can be treated like natural glass with good results. If the raw material production area is shifted to the factory location, those costs can be absorbed.

【0060】[0060]

【発明の効果】本発明によれば、大量にある未活用資源
を有効に活用して、コンクリート用骨材として有用な軽
量骨材を製造することができる。この軽量骨材は吸水率
が低いので、コンクリート骨材として使用する場合に水
セメント比に悪影響を及ぼさないので、安定した強度の
コンクリートを形成することができる。しかも軽量で高
強度であるため高層建築にも適用可能である。
According to the present invention, a lightweight aggregate useful as an aggregate for concrete can be manufactured by effectively utilizing a large amount of unused resources. Since this lightweight aggregate has a low water absorption rate, it does not adversely affect the water-cement ratio when used as a concrete aggregate, so that concrete with stable strength can be formed. Moreover, since it is lightweight and has high strength, it can be applied to high-rise buildings.

【0061】近年超高層ビルが世界中に建てられるよう
になり、それには、より軽量で高強度の骨材が望まし
い。又、建物が高層化するにつれコンクリートのポンプ
による圧送工法が有利となるが、圧送時に骨材が吸水す
るとコンクリートのワーカビリチーが変動するばかりで
なくホースが閉塞することさえある。またそれが寒冷地
で行われると骨材に吸水された水の凍結融解によるコン
クリートの損傷があり得る。このような問題をなくすた
めには吸水率の小さい骨材が必要である。しかも骨材の
強度が高ければ構造用コンクリートに利用できる。
In recent years, skyscrapers have been built around the world, and lighter and stronger aggregates are desirable. In addition, as the building becomes higher, the pumping method using a concrete pump becomes more advantageous. However, if the aggregate absorbs water during the pumping, not only the workability of the concrete fluctuates but also the hose may become blocked. Also, if it is performed in cold climates, concrete may be damaged by freeze-thawing of the water absorbed by the aggregate. In order to eliminate such a problem, an aggregate having a small water absorption is required. Moreover, if the strength of the aggregate is high, it can be used for structural concrete.

【0062】ところが、従来知られている膨張粘土系の
軽量骨材は中国、ヨーロッパ等で多く作られているが構
造用には適用できるような強度や吸水率でなく、専ら断
熱を目的とした非構造用の間仕切り壁のコンクリートブ
ロックやプレキャスト製品として低層建物の壁材や屋根
材に一部使用されている程度である。
However, conventionally known expanded clay-based lightweight aggregates are widely produced in China, Europe, etc., but not for the purpose of strength and water absorption which can be applied to structures, but exclusively for heat insulation. It is only partially used for low-rise building walls and roofing materials as a non-structural partition concrete block or precast product.

【0063】日本において構造用軽量骨材は年間80万
3程度生産されているが、非構造用には天然の火山砂
利が使われており、低比重(400Kg〜500Kg/
3)の軽量骨材は生産されることはなかったが、最
近、低比重でも従来の構造用に匹敵する超軽量高強度の
骨材が生産されるようになり、それを使用したコンクリ
ートで比重が1.0で圧縮強度200Kg/cm2のカ
ーテンウォールが採用されようとしている。日本では建
築及び土木学会による構造用軽量骨材には浮遊率が10
%以内という指針がある。比重が小さいものは強度が弱
い。またモルタルと骨材の分離問題等が理由になってい
たが、本発明による骨材は比重が1.0以下であっても
高強度であり、また実質的にコンクリートの分離低減剤
の発達した今ではそれらの問題が解消されつつある。実
際に安全である限り、誰しも超軽量高強度コンクリート
を望んでいる筈である。これらの原料を利用することに
より天然ガラス質原料でなくても、超軽量高強度コンク
リート用骨材を製造することができ、建造物の構造体と
して利用されれば、軽量化という新しい社会的効果を果
たす。本発明によれば、中国に大量にあり未利用資源で
ある黄土等を有効活用するばかりか、黄河の洪水対策
上、天井川の原因となる厄介もの扱いされてきた堆積物
を処理することができ、その社会的貢献は大きい。
In Japan, about 800,000 m 3 of structural lightweight aggregate is produced annually, but natural volcanic gravel is used for non-structural use and low specific gravity (400 kg to 500 kg /
Lightweight aggregate of M 3) is never produced, recently, even in the low specific gravity is as aggregate ultra lightweight high strength comparable for the conventional structure is produced, in concrete using it A curtain wall having a specific gravity of 1.0 and a compressive strength of 200 kg / cm 2 is being adopted. In Japan, the light weight aggregate for structural use by the Japan Society of Construction and Civil Engineers has a floating rate of 10
There is a guideline within%. Those with low specific gravity have low strength. In addition, the separation problem of the mortar and the aggregate was the reason. However, the aggregate according to the present invention has high strength even if the specific gravity is 1.0 or less, and has substantially developed a concrete separation reducing agent. Now those problems are being resolved. Everyone wants ultra-light, high-strength concrete as long as it's actually safe. By using these raw materials, it is possible to produce ultra-light and high-strength concrete aggregates, even if they are not natural vitreous raw materials. Fulfill. Advantageous Effects of Invention According to the present invention, it is possible to not only effectively utilize loess and the like which are a large amount of unused resources in China, but also to treat sediment that has been treated as a troublesome cause of a ceiling river for flood control of the Yellow River. , Its social contribution is great.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 膨張粘土を原料としこれに発泡剤SiC
を加えて焼成することを特徴とする高強度コンクリート
用軽量骨材の製造方法。
An expansive clay is used as a raw material and a blowing agent, SiC, is used as a starting material.
A method for producing lightweight aggregate for high-strength concrete, characterized by adding and firing.
【請求項2】 中国の黄土及び黄河の堆積物を利用した
請求項1記載の高強度コンクリート用軽量骨材製造方
法。
2. The method for producing lightweight aggregate for high-strength concrete according to claim 1, wherein sediment of loess and Yellow River in China is used.
【請求項3】 沸石を原料とした請求項1記載の高強度
コンクリート用軽量骨材の製造方法。
3. The method for producing a high-strength concrete lightweight aggregate according to claim 1, wherein zeolite is used as a raw material.
JP02746599A 1999-02-04 1999-02-04 Manufacturing method of lightweight aggregate for high-strength concrete Expired - Fee Related JP3626029B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP02746599A JP3626029B2 (en) 1999-02-04 1999-02-04 Manufacturing method of lightweight aggregate for high-strength concrete
CNB001019910A CN1136161C (en) 1999-02-04 2000-02-04 Production method of light aggregate for high-strength concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02746599A JP3626029B2 (en) 1999-02-04 1999-02-04 Manufacturing method of lightweight aggregate for high-strength concrete

Publications (2)

Publication Number Publication Date
JP2000226242A true JP2000226242A (en) 2000-08-15
JP3626029B2 JP3626029B2 (en) 2005-03-02

Family

ID=12221877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02746599A Expired - Fee Related JP3626029B2 (en) 1999-02-04 1999-02-04 Manufacturing method of lightweight aggregate for high-strength concrete

Country Status (2)

Country Link
JP (1) JP3626029B2 (en)
CN (1) CN1136161C (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1561739A2 (en) * 2004-02-07 2005-08-10 Forschungszentrum Karlsruhe GmbH Porous insulating moulded body, method of making it and its use
KR100744777B1 (en) * 2006-04-26 2007-08-01 박공영 Bio red clay and a method thereof
KR100744776B1 (en) 2006-04-26 2007-08-01 박공영 Bio red clay and a method thereof
JP2010095978A (en) * 2008-10-20 2010-04-30 Taiheiyo Cement Corp Crime preventive gravel
RU2471746C1 (en) * 2011-10-24 2013-01-10 Юлия Алексеевна Щепочкина Ceramic mixture

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101717215B (en) * 2009-11-11 2011-11-09 天津大学 Concrete aggregate produced by desert fine sands and production method thereof
CN113816705B (en) * 2021-07-16 2022-11-04 故宫博物院 Red mortar for historic building and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1561739A2 (en) * 2004-02-07 2005-08-10 Forschungszentrum Karlsruhe GmbH Porous insulating moulded body, method of making it and its use
EP1561739A3 (en) * 2004-02-07 2008-05-14 Forschungszentrum Karlsruhe GmbH Porous insulating moulded body, method of making it and its use
KR100744777B1 (en) * 2006-04-26 2007-08-01 박공영 Bio red clay and a method thereof
KR100744776B1 (en) 2006-04-26 2007-08-01 박공영 Bio red clay and a method thereof
JP2010095978A (en) * 2008-10-20 2010-04-30 Taiheiyo Cement Corp Crime preventive gravel
RU2471746C1 (en) * 2011-10-24 2013-01-10 Юлия Алексеевна Щепочкина Ceramic mixture

Also Published As

Publication number Publication date
CN1136161C (en) 2004-01-28
JP3626029B2 (en) 2005-03-02
CN1263061A (en) 2000-08-16

Similar Documents

Publication Publication Date Title
Muraleedharan et al. Factors affecting the mechanical properties and microstructure of geopolymers from red mud and granite waste powder: A review
CN102781870B (en) Manufacturing method of lightweight construction materials using sludge waste
Zhou et al. Sewage sludge ash: A comparative evaluation with fly ash for potential use as lime-pozzolan binders
Park et al. Circulating fluidized bed combustion ash as controlled low-strength material (CLSM) by alkaline activation
CN101289332A (en) Low-temperature ceramic foam material and production method thereof
CN105414146A (en) Method for improving large amount of red mud soil and method for burning haycite from improved red mud
Murali et al. Recent research in utilization of phosphogypsum as building materials
RU2505362C2 (en) Method of obtaining inorganic hydraulic binding substances
CN107344840A (en) A kind of preparation method of phosphorus base grouting material
CN118003432A (en) Method for preparing landscaping product
CN110078449B (en) Baking-free brick prepared from sludge generated by flushing broken stone and machine-made sand and preparation method thereof
CN113454043A (en) Novel preparation of low-carbon building binder, preparation method and building material
CN106145784A (en) Sea water with solid waste as raw material mixes foster type concrete and preparation method thereof
JP3188200B2 (en) Manufacturing method of artificial lightweight aggregate
DE102016106642A1 (en) Process for the production of aerated concrete molded bodies
Sithole et al. Effect of binary combination of waste gypsum and fly ash to produce building bricks
KR101354249B1 (en) A composite of hauyne cement by using fly ash of fluidize-bed boiler and manufacturing method thereof
JP3626029B2 (en) Manufacturing method of lightweight aggregate for high-strength concrete
JP2011132111A (en) Hydraulic composition
KR100863139B1 (en) The manufacturing method of construction materials using waterworks sludge
CN105801062A (en) Method for preparing self-leveling floor material from phosphorus solid waste
CN111635206A (en) Impervious and carbonization-resistant solid waste concrete and preparation method thereof
Reig et al. Reutilization of Ceramic Waste as Supplementary Cementitious Material
RU2284305C1 (en) Process of manufacturing heat-resistant concrete mix and process for manufacturing products from heat-resistant concrete mix
CN111574197B (en) Method for preparing light ceramic sand particles from coal kiln ash and application thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A521 Written amendment

Effective date: 20040610

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20041116

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20041201

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20081210

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20091210

LAPS Cancellation because of no payment of annual fees