JP2000225442A - Mold for continuous casting - Google Patents

Mold for continuous casting

Info

Publication number
JP2000225442A
JP2000225442A JP2927799A JP2927799A JP2000225442A JP 2000225442 A JP2000225442 A JP 2000225442A JP 2927799 A JP2927799 A JP 2927799A JP 2927799 A JP2927799 A JP 2927799A JP 2000225442 A JP2000225442 A JP 2000225442A
Authority
JP
Japan
Prior art keywords
mold
film
slow cooling
molten metal
wall surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2927799A
Other languages
Japanese (ja)
Inventor
Isao Matsui
功夫 松井
Kenta Isaki
健太 伊崎
Nobutaka Goto
信孝 後藤
Satoshi Nakajima
聡 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2927799A priority Critical patent/JP2000225442A/en
Publication of JP2000225442A publication Critical patent/JP2000225442A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the sufficiently slow cooling effect in the whole casting operational period without damaging the slow cooling layer at early time by coating a film dispersed with stabilized zirconia fine particles in a matrix composed of a hard metal or cermet at the portion near the poured molten metal surface on the inner wall surface of a mold. SOLUTION: The mold 1 is formed with an Ni Co plated layer 3 as a substrate surface treatment on the whole wall surface of a copper-made wall member 2 and further, on the surface of the Ni Co plated layer at the upper side of the inner wall surface, the film 4 dispersed with the stabilized zirconia fine particles in the matrix composed of WC/Co, is formed with a thermal-spraying method. The thickness of the film 4 is made to, e.g. 500 μm and the film is formed in the range from 50 mm the upper side to 100 mm the lower side with the molten metal surface position 5 as the center. In this method, the sufficiently slow cooling effect is obtd. without damaging the film 4 as the slow cooling layer at early time and the defect, such as longitudinal crack, on the surface of a cast slab is not generated and the component segregation produced along the solidified line caused by the oscillation of the mold is restrained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鋳片を得るための
連続鋳造法で使用される鋳型に関する。
[0001] The present invention relates to a mold used in a continuous casting method for obtaining a slab.

【0002】[0002]

【従来の技術】連続鋳造法は、溶融金属を連続的に鋳型
に注入して凝固させながら移動させることにより、鋳片
を得る方法である。この方法で使用される鋳型において
は、特に中炭素鋼鋳片を連続鋳造する場合に、鋳片の表
面に縦割れ等の欠陥が生じることを防止する目的で、内
壁面の抜熱能(注入された溶融金属から熱を奪う能力)
を、上部側(注入された溶融金属の湯面近傍となる部
分)の方が下部側より小さくなるようにすることが行わ
れている。また、鋳型と凝固シェル(溶融金属の鋳型内
壁面に接触する部分が凝固して生じる)との間に潤滑性
を付与するために、溶融金属の湯面には潤滑パウダー
(溶融パウダー)が投入される。
2. Description of the Related Art The continuous casting method is a method of obtaining a slab by continuously pouring a molten metal into a mold and moving it while solidifying. In the mold used in this method, especially in the case of continuous casting of medium carbon steel slab, in order to prevent defects such as vertical cracks from occurring on the surface of the slab, the heat removal capability of the inner wall surface (injected Ability to remove heat from molten metal)
Is made smaller on the upper side (the portion near the molten metal surface of the injected molten metal) than on the lower side. In addition, lubricating powder (molten powder) is injected into the molten metal surface to provide lubricity between the mold and the solidified shell (the portion of the molten metal that contacts the inner wall surface of the mold is solidified). Is done.

【0003】例えば、特公平1−28661号公報に
は、連続鋳造用鋳型の内壁面の上部側にはAl2 3
子を分散させたFeNiメッキ層を形成し、下部側には
Al23 粒子の分散がないFeNiメッキ層を形成す
ることにより、鋳型の内壁面の上部側を下部側より抜熱
能の小さい緩冷却層とすることが記載されている。ま
た、特開平1−299744号公報には、鋳型の内壁面
の上部側であって、鋳片の前記縦割れが生じ易い位置に
対応させた所定範囲に、耐火材を塗布することにより、
この耐火材が塗布された部分の抜熱能をこれ以外の部分
よりも小さくすることが記載されている。
[0003] For example, Kokoku 1-28661 discloses, on the upper side of the inner wall surface of the mold for continuous casting to form a FeNi-plated layer obtained by dispersing Al 2 O 3 particles, the lower side Al 2 O It is described that by forming an FeNi plating layer having no dispersion of three particles, an upper side of an inner wall surface of the mold is a slow cooling layer having a lower heat removal ability than a lower side. In addition, JP-A-1-299744 discloses that a refractory material is applied to a predetermined range corresponding to a position on the upper side of the inner wall surface of the mold, where the vertical cracks of the slab are likely to occur.
It is described that the heat removal ability of the portion to which the refractory material is applied is made smaller than that of the other portions.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、特公平
1−28661号公報に記載の技術では、FeNiメッ
キ層内に分散しているAl2 3 粒子が、潤滑パウダー
の主たる成分であるCaO、SiO2 、Al2 3 、M
gO等と容易に反応して低融点化合物が生成されるた
め、緩冷却層をなすAl2 3 −FeNiメッキ層が早
期に損傷する場合があるという問題点がある。また、緩
冷却層は通常400℃以上の高温となるが、FeNiメ
ッキ層はこのような高温で十分な硬度を保持できない恐
れがあるため、Al2 3 粒子を分布させたFeNiメ
ッキ層を緩冷却層とすることは困難である。
However [0005] In the technique described in Japanese Patent Kokoku 1-28661, Al 2 O 3 particles dispersed in FeNi plating layer is a main component of the lubricating powder CaO, SiO 2 , Al 2 O 3 , M
Because readily reacts with gO such as low-melting-point compound is generated, Al 2 O 3 -FeNi plating layer constituting the slow cooling layer is disadvantageously sometimes damaged early. The moderate cooling layer usually has a high temperature of 400 ° C. or higher. However, since the FeNi plating layer may not be able to maintain sufficient hardness at such a high temperature, the FeNi plating layer in which Al 2 O 3 particles are distributed is moderated. It is difficult to form a cooling layer.

【0005】特開平1−299744号公報に記載の技
術では、耐火材が塗布された部分は鋳込みの初期にのみ
十分な緩冷却効果を発揮するが、この効果は鋳込みが進
むにつれて小さくなり、最終的には消滅する。同公報に
は、緩冷却効果は鋳込みの初期にのみ得られれば十分で
あると記載されているが、現実的には、鋳込み操業期間
全体において安定的に鋳片の表面に縦割れ等の欠陥が生
じることを防止する要求がある。
In the technique described in Japanese Patent Application Laid-Open No. 1-297744, a portion to which a refractory material is applied exhibits a sufficient slow cooling effect only at the beginning of casting, but this effect becomes smaller as casting progresses, Disappears. The publication states that it is sufficient if the slow cooling effect is obtained only in the early stage of casting, but in reality, defects such as vertical cracks are stably formed on the surface of the slab during the entire casting operation period. There is a demand to prevent the occurrence of.

【0006】本発明は、このような従来技術の問題点に
着目してなされたものであり、内壁面に緩冷却層(抜熱
能を小さくするための被膜)を有する連続鋳造用鋳型に
おいて、緩冷却層が早期に損傷することなく、鋳込み操
業期間全体で十分な緩冷却効果が得られるようにするこ
とを課題とする。
The present invention has been made in view of such problems of the prior art, and has been developed in a continuous casting mold having a slow cooling layer (coating for reducing heat removal ability) on an inner wall surface. An object of the present invention is to provide a sufficient slow cooling effect over the entire casting operation period without the cooling layer being damaged early.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本発明の連続鋳造用鋳型は、鋳型内壁面の、注入さ
れた溶融金属の湯面近傍となる部分に、硬質金属または
サーメットからなるマトリックス中に安定化ジルコニア
の微粒子が分散している被膜を有することを特徴とす
る。
In order to solve the above-mentioned problems, a continuous casting mold according to the present invention is characterized in that a hard metal or a cermet is formed on a portion of an inner wall surface of a casting mold near a molten metal surface of an injected molten metal. A stabilized zirconia fine particle dispersed in a matrix.

【0008】前記被膜としては、硬質金属(FeNi、
NiCo等)のメッキ液に安定化ジルコニア(Zr
2 )の微粒子を分散させたメッキ液により形成された
メッキ膜、またはNiCr微粒子やWC/Co微粒子に
安定化ジルコニア(ZrO2 )の微粒子を混合した溶射
材により形成された溶射膜等が挙げられる。
[0008] As the coating, hard metal (FeNi,
Stabilized zirconia (Zr)
A plating film formed by a plating solution in which fine particles of O 2 ) are dispersed, or a sprayed film formed by a thermal spray material in which fine particles of stabilized zirconia (ZrO 2 ) are mixed with fine particles of NiCr or WC / Co. Can be

【0009】安定化ジルコニアとは、Y2 3 、Ca
O、MgO等の安定化剤を3〜10mol%の範囲でZ
rO2 に添加して焼結されて得られる、破壊靱性の高い
セラミックスであり、潤滑パウダーと反応して低融点化
合物を生成することがない。本発明の連続鋳造用鋳型に
おいては、鋳型内壁面の、注入された溶融金属の湯面近
傍となる部分に、緩冷却層として前記被膜が設けてあ
る。この被膜は、硬質金属またはサーメットからなるマ
トリックスにより内壁面との密着強度が高くなり、熱伝
導率が低く潤滑パウダーと反応して低融点化合物を生成
することのない安定化ジルコニア微粒子の存在により、
高い緩冷却効果と長期間の緩冷却効果の持続性が得られ
るため、早期に損傷することがなく、鋳込み操業期間全
体で十分な緩冷却効果を発揮する。
The stabilized zirconia is Y 2 O 3 , Ca
Stabilizers such as O and MgO are added in the range of 3 to 10 mol% to Z
It is a ceramic with high fracture toughness obtained by sintering by adding to rO 2 , and does not react with lubricating powder to produce a low melting point compound. In the continuous casting mold of the present invention, the coating is provided as a slow cooling layer on the inner wall surface of the casting mold in a portion near the molten metal surface of the poured molten metal. Due to the presence of the stabilized zirconia fine particles, which have a high adhesion strength to the inner wall surface due to a matrix made of a hard metal or a cermet and have a low thermal conductivity and do not react with the lubricating powder to generate a low melting point compound.
Since a high slow cooling effect and long-term sustainability of the slow cooling effect can be obtained, a sufficient slow cooling effect is exhibited throughout the casting operation period without damage at an early stage.

【0010】この被膜は、鋳型内壁面の、注入された溶
融金属の湯面近傍となる部分に形成されるが、具体的に
は、その上端位置を、例えば、湯面位置から上側に50
mm以上100mm以下となる範囲とし、その下端位置
を、例えば、湯面位置から下側に50mm以上200m
m以下となる範囲とする。
[0010] This coating is formed on the inner wall surface of the mold near the molten metal surface of the poured molten metal.
mm and 100 mm or less, and the lower end position thereof is, for example, 50 mm or more and 200 m below the molten metal surface position.
m or less.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施形態について
説明する。図1は、本発明の連続鋳造用鋳型の一実施形
態を示す断面図である。この鋳型1は、銅製の壁部材2
の内壁面全体に、下地表面処理としてNiCoメッキ層
3が形成され、内壁面の上部側に、このNiCoメッキ
層3の表面に重ねて、WC/Coからなるマトリックス
中に安定化ジルコニアの微粒子が分散している被膜4が
形成されている。
Embodiments of the present invention will be described below. FIG. 1 is a sectional view showing an embodiment of a continuous casting mold according to the present invention. This mold 1 is made of a copper wall member 2.
A NiCo plating layer 3 is formed on the entire inner wall surface as a base surface treatment. On the upper side of the inner wall surface, the stabilized zirconia fine particles are superimposed on the surface of the NiCo plating layer 3 in a matrix composed of WC / Co. A dispersed coating 4 is formed.

【0012】この被膜4は、WC/Co微粒子に、安定
化ジルコニア(ZrO2 )微粒子を12%の比率で混合
した溶射材を、所定の条件でNiCoメッキ層3の表面
に溶射することにより形成されている。ここで使用した
WC/Co微粒子の平均粒径は40μmである。安定化
ジルコニア微粒子としては、平均粒径が30μmであ
り、安定化剤としてY2 3 を安定化ジルコニア微粒子
に対して8重量%の比率で含有するものを用いた。
The coating 4 is formed by spraying a sprayed material in which stabilized zirconia (ZrO 2 ) fine particles are mixed with WC / Co fine particles at a ratio of 12% on the surface of the NiCo plating layer 3 under predetermined conditions. Have been. The average particle size of the WC / Co fine particles used here is 40 μm. As the stabilized zirconia fine particles, those having an average particle diameter of 30 μm and containing Y 2 O 3 as a stabilizer at a ratio of 8% by weight with respect to the stabilized zirconia fine particles were used.

【0013】また、被膜4の厚さは500μmとし、注
入された溶融金属の湯面位置5を中心に、上側に50m
m、下側に100mmとなる範囲に形成されている。N
iCoメッキ層3の厚さは、鋳型1の上端から被膜4の
下端位置までは一定(200μm)にしてある。この鋳
型1を用いて各種鋳造速度で鉄鋼スラブ(鋼種:普通
鋼、C含有率0.12%)の連続鋳造を行い、鋳込み開
始から1時間後に、湯面位置(メニスカス部)5での抜
熱熱流束を測定した。また、同じ連続鋳造を、被膜4を
形成しない点のみがこの鋳型1と異なる鋳型(従来鋳
型)を用いて行い、抜熱熱流束の測定を同様に行った。
The thickness of the coating 4 is set to 500 μm, and the thickness of the injected molten metal is 50
m, and a range of 100 mm below. N
The thickness of the iCo plating layer 3 is constant (200 μm) from the upper end of the mold 1 to the lower end of the coating 4. Continuous casting of a steel slab (steel type: ordinary steel, C content: 0.12%) was performed at various casting speeds using the mold 1, and one hour after the start of casting, the metal was removed at the molten metal surface position (meniscus portion) 5. The heat flux was measured. The same continuous casting was performed using a mold (conventional mold) that was different from the mold 1 only in that the coating 4 was not formed, and the heat removal heat flux was measured in the same manner.

【0014】図2は、これらの測定結果を、メニスカス
部での抜熱熱流束と鋳造速度との関係で示すグラフであ
る。この図に示すように、この実施形態の鋳型と従来鋳
型との比較から、この実施形態の鋳型では、被膜4の存
在により抜熱量を従来鋳型の約60%に低減できること
が分かる。また、比較例として、被膜4の代わりに、同
じ位置に同じ厚さでFeNiからなるマトリックスにA
2 3 が分散しているメッキ膜を設けた鋳型を用意
し、この鋳型を用いて同様にして鉄鋼スラブの連続鋳造
を行った。この場合も同様にして抜熱熱流束の測定を行
った。この結果から、この実施形態の鋳型の方が比較例
の鋳型よりも抜熱量の低減量が大きいことが分かった。
FIG. 2 is a graph showing the results of these measurements in relation to the heat removal heat flux at the meniscus portion and the casting speed. As shown in this figure, from the comparison between the mold of this embodiment and the conventional mold, it can be seen that in the mold of this embodiment, the amount of heat removal can be reduced to about 60% of that of the conventional mold due to the presence of the coating film 4. As a comparative example, instead of the coating 4, a matrix made of FeNi was formed at the same position and at the same thickness.
A mold provided with a plating film in which l 2 O 3 was dispersed was prepared, and continuous casting of a steel slab was similarly performed using this mold. In this case, the heat removal heat flux was measured in the same manner. From this result, it was found that the amount of heat removal was larger in the mold of this embodiment than in the mold of the comparative example.

【0015】また、この実施形態の鋳型1によれば、緩
冷却層である被膜4が早期に損傷することなく、鋳込み
操業期間全体で十分な緩冷却効果が得られる。そのた
め、鋳込み操業期間全体で安定的に、鋳片の表面に縦割
れ等の欠陥が生じることが防止される。さらに、この実
施形態の鋳型によれば、鋳片の表面の縦割れが低減され
るだけでなく、鋳型振動に伴う凝固線(所謂「オシレー
ションマーク」)と、この凝固線に沿って生じる成分偏
析を抑制することができる。
Further, according to the mold 1 of this embodiment, a sufficient slow cooling effect can be obtained during the entire casting operation period without the damage of the coating 4 as the slow cooling layer at an early stage. Therefore, the occurrence of defects such as vertical cracks on the surface of the slab is stably prevented during the entire casting operation period. Further, according to the mold of this embodiment, not only the vertical cracks on the surface of the slab are reduced, but also the solidification line (so-called “oscillation mark”) caused by the vibration of the mold and the component generated along the solidification line. Segregation can be suppressed.

【0016】なお、この実施形態では、下地表面処理と
してNiCoメッキ層3を設けているが、これに限定さ
れず、下地表面処理の種類は、鋳造する金属材料の種類
や連続鋳造条件等に応じて適宜選定される。例えば、F
eNiメッキ層、WC/Co溶射膜、NiCr溶射膜等
を用いることもできる。また、被膜4のマトリックスを
なす材料もこの実施形態のWC/Coに限定されず、F
eNi、NiCo、NiCr等を用いることもできる。
In this embodiment, the NiCo plating layer 3 is provided as the base surface treatment. However, the present invention is not limited to this. The type of the base surface treatment depends on the type of the metal material to be cast, the continuous casting conditions, and the like. Is selected as appropriate. For example, F
An eNi plating layer, a WC / Co sprayed film, a NiCr sprayed film, or the like can also be used. Further, the material forming the matrix of the coating film 4 is not limited to WC / Co of this embodiment, either.
eNi, NiCo, NiCr or the like can also be used.

【0017】[0017]

【発明の効果】以上説明したように、本発明の連続鋳造
用鋳型によれば、緩冷却層が早期に損傷することなく、
鋳込み操業期間全体で十分な緩冷却効果が得られるた
め、鋳込み操業期間全体で安定的に鋳片の表面に縦割れ
等の欠陥が生じることが防止される。
As described above, according to the continuous casting mold of the present invention, the slow cooling layer is not damaged early,
Since a sufficient slow cooling effect can be obtained during the entire casting operation, defects such as vertical cracks can be stably prevented from being generated on the surface of the slab during the entire casting operation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の連続鋳造用鋳型の一実施形態を示す断
面図である。
FIG. 1 is a cross-sectional view showing one embodiment of a continuous casting mold of the present invention.

【図2】実施形態で測定した、メニスカス部での抜熱熱
流束と鋳造速度との関係を示すグラフである。
FIG. 2 is a graph showing a relationship between a heat removal heat flux at a meniscus portion and a casting speed measured in the embodiment.

【符号の説明】[Explanation of symbols]

1 鋳型 2 壁部材 3 NiCoメッキ層(下地表面処理) 4 (ZrO2 +WC/Co)被膜 5 注入された溶融金属の湯面位置(メニスカス部)Reference Signs List 1 mold 2 wall member 3 NiCo plating layer (base surface treatment) 4 (ZrO 2 + WC / Co) coating 5 molten metal surface position of injected molten metal (meniscus portion)

フロントページの続き (72)発明者 後藤 信孝 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 中島 聡 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 Fターム(参考) 4E004 AB03 AB04 AB07 AB08 MC01Continued on the front page (72) Inventor Nobutaka Goto 1-chome, Mizushima-Kawasaki-dori, Kurashiki-shi, Okayama Pref. None) Kawasaki Steel Corporation Mizushima Works F-term (reference) 4E004 AB03 AB04 AB07 AB08 MC01

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 鋳型内壁面の、注入された溶融金属の湯
面近傍となる部分に、硬質金属またはサーメットからな
るマトリックス中に安定化ジルコニアの微粒子が分散し
ている被膜を有することを特徴とする連続鋳造用鋳型。
1. A mold having a coating in which fine particles of stabilized zirconia are dispersed in a matrix made of a hard metal or a cermet, on a portion of an inner wall surface of a casting mold near a molten metal surface of an injected molten metal. For continuous casting.
JP2927799A 1999-02-05 1999-02-05 Mold for continuous casting Pending JP2000225442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2927799A JP2000225442A (en) 1999-02-05 1999-02-05 Mold for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2927799A JP2000225442A (en) 1999-02-05 1999-02-05 Mold for continuous casting

Publications (1)

Publication Number Publication Date
JP2000225442A true JP2000225442A (en) 2000-08-15

Family

ID=12271791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2927799A Pending JP2000225442A (en) 1999-02-05 1999-02-05 Mold for continuous casting

Country Status (1)

Country Link
JP (1) JP2000225442A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103614724A (en) * 2013-11-22 2014-03-05 西峡龙成特种材料有限公司 Preparation technique of continuous casting crystallizer copper plate surface cermet coating
JP2017030051A (en) * 2015-07-29 2017-02-09 Jfeスチール株式会社 Continuous casting method of steel
CN117265458A (en) * 2023-11-13 2023-12-22 成都成高阀门股份有限公司 Ceramic whisker reinforced high-toughness supersonic flame spraying coating material and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103614724A (en) * 2013-11-22 2014-03-05 西峡龙成特种材料有限公司 Preparation technique of continuous casting crystallizer copper plate surface cermet coating
CN103614724B (en) * 2013-11-22 2015-09-02 西峡龙成特种材料有限公司 A kind of preparation technology of continuous casting crystallizer copper plate surface cermet coating
JP2017030051A (en) * 2015-07-29 2017-02-09 Jfeスチール株式会社 Continuous casting method of steel
CN117265458A (en) * 2023-11-13 2023-12-22 成都成高阀门股份有限公司 Ceramic whisker reinforced high-toughness supersonic flame spraying coating material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6213101B2 (en) Scum weir, thin slab manufacturing method and thin slab manufacturing apparatus
JP2000225442A (en) Mold for continuous casting
JPWO2011071152A1 (en) Molten steel surface thermal insulation and molten steel surface thermal insulation method
JP2008502481A (en) Zirconia refractories for steelmaking
JP2012210647A (en) Immersion nozzle for continuous casting and continuous casting method using the same
JP2011056516A (en) Continuous casting method for steel
JP3114004B2 (en) Nozzle and continuous casting method
WO2013190594A1 (en) Submerged entry nozzle for continuous casting and continous casting method using same
JP2000042696A (en) Nozzle for continuous casting
JP2001096344A (en) Immersion nozzle
JP4321292B2 (en) Immersion nozzle for continuous casting of steel
JP4284206B2 (en) Immersion nozzle for continuous casting of steel
JP2985671B2 (en) Mold powder for continuous casting of steel
JP2003320444A (en) Casting method for aluminum killed steel
JPS63112057A (en) Submerged nozzle for continuous casting
JP4315847B2 (en) Dipping nozzle for continuous casting with good adhesion
JP3713182B2 (en) Continuous casting method for molten steel
JP2004114100A (en) Dipped nozzle for continuous castings
JP3328803B2 (en) Nozzle for continuous casting of steel
JP3037152B2 (en) Nozzle for continuous casting
JPS5847264B2 (en) Aluminum − Metals
JP4264286B2 (en) Continuous casting nozzle
JP2004330256A (en) Method of continuous casting of steel
JP4462052B2 (en) Continuous casting mold and steel continuous casting method
JPS61103655A (en) Immersion nozzle for continuous casting